Merck and Moderna Announce Exercise of Option by Merck for Joint Development and Commercialization of Investigational Personalized Cancer Vaccine -…
By daniellenierenberg
October 12, 2022 7:15 am ET
Companies on track to report data from the ongoing Phase 2 trial of mRNA-4157/V940 in combination with KEYTRUDA as adjuvant therapy in high-risk melanoma in 4Q 2022
CAMBRIDGE, M.A. and RAHWAY, N.J., October 12, 2022 Moderna, Inc. (Nasdaq: MRNA), a biotechnology company pioneering messenger RNA (mRNA) therapeutics and vaccines, and Merck (NYSE:MRK), known as MSD outside of the United States and Canada, today announced that Merck has exercised its option to jointly develop and commercialize personalized cancer vaccine (PCV) mRNA-4157/V940 pursuant to the terms of its existing Collaboration and License Agreement. mRNA-4157/V940 is currently being evaluated in combination with KEYTRUDA, Mercks anti-PD-1 therapy, as adjuvant treatment for patients with high-risk melanoma in a Phase 2 clinical trial being conducted by Moderna.
We have been collaborating with Merck on PCVs since 2016, and together we have made significant progress in advancing mRNA-4157 as an investigational personalized cancer treatment used in combination with KEYTRUDA, said Stephen Hoge, M.D., President of Moderna. With data expected this quarter on PCV, we continue to be excited about the future and the impact mRNA can have as a new treatment paradigm in the management of cancer. Continuing our strategic alliance with Merck is an important milestone as we continue to grow our mRNA platform with promising clinical programs in multiple therapeutic areas.
Under the agreement, originally established in 2016 and amended in 2018, Merck will pay Moderna $250 million to exercise its option for personalized cancer vaccines including mRNA-4157/V940 and will collaborate on development and commercialization. The payment will be expensed by Merck in the third quarter of 2022 and included in its non-GAAP results. Merck and Moderna will share costs and any profits equally under this worldwide collaboration.
This long-term collaboration combining Mercks expertise in immuno-oncology with Modernas pioneering mRNA technology has yielded a novel tailored vaccine approach, said Dr. Eliav Barr, senior vice president and head of global clinical development, chief medical officer, Merck Research Laboratories. We look forward to working with our colleagues at Moderna to advance mRNA-4157/V940 in combination with KEYTRUDA as it aligns with our strategy to impact early-stage disease.
About mRNA-4157/V940
Personalized cancer vaccines are designed to prime the immune system so that a patient can generate a tailored antitumor response to their tumor mutation signature to treat their cancer. mRNA-4157/V940 is designed to stimulate an immune response by generating T cell responses based on the mutational signature of a patients tumor.
About KEYNOTE-942 (NCT03897881)
KEYNOTE-942 is an ongoing randomized, open-label Phase 2 trial that enrolled 157 patients with high-risk melanoma. Following complete surgical resection, patients were randomized to mRNA-4157/V940 (9 doses every three weeks) and KEYTRUDA (200 mg every three weeks) versus KEYTRUDA alone for approximately one year until disease recurrence or unacceptable toxicity. KEYTRUDA was selected as the comparator in the trial because it is considered a standard of care for high-risk melanoma patients. The primary endpoint is recurrence-free survival, and secondary endpoints include distant metastasis-free survival and overall survival. The Phase 2 trial is fully enrolled and primary data are expected in the fourth quarter of 2022.
About KEYTRUDA (pembrolizumab) Injection 100 mg
KEYTRUDA is an anti-programmed death receptor-1 (PD-1) therapy that works by increasing the ability of the bodys immune system to help detect and fight tumor cells. KEYTRUDA is a humanized monoclonal antibody that blocks the interaction between PD-1 and its ligands, PD-L1 and PD-L2, thereby activating T lymphocytes which may affect both tumor cells and healthy cells.
Merck has the industrys largest immuno-oncology clinical research program. There are currently more than 1,600 trials studying KEYTRUDA across a wide variety of cancers and treatment settings. The KEYTRUDA clinical program seeks to understand the role of KEYTRUDA across cancers and the factors that may predict a patients likelihood of benefitting from treatment with KEYTRUDA, including exploring several different biomarkers.
Selected KEYTRUDA (pembrolizumab) Indications in the U.S.
Melanoma
KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic melanoma.
KEYTRUDA is indicated for the adjuvant treatment of adult and pediatric (12 years and older) patients with stage IIB, IIC, or III melanoma following complete resection.
Non-Small Cell Lung Cancer
KEYTRUDA, in combination with pemetrexed and platinum chemotherapy, is indicated for the first-line treatment of patients with metastatic nonsquamous non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.
KEYTRUDA, in combination with carboplatin and either paclitaxel or paclitaxel protein-bound, is indicated for the first-line treatment of patients with metastatic squamous NSCLC.
KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with NSCLC expressing PD-L1 [tumor proportion score (TPS) 1%] as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations, and is:
KEYTRUDA, as a single agent, is indicated for the treatment of patients with metastatic NSCLC whose tumors express PD-L1 (TPS 1%) as determined by an FDA-approved test, with disease progression on or after platinum-containing chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving KEYTRUDA.
Head and Neck Squamous Cell Cancer
KEYTRUDA, in combination with platinum and fluorouracil (FU), is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent head and neck squamous cell carcinoma (HNSCC).
KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent HNSCC whose tumors express PD-L1 [Combined Positive Score (CPS) 1] as determined by an FDA-approved test.
KEYTRUDA, as a single agent, is indicated for the treatment of patients with recurrent or metastatic HNSCC with disease progression on or after platinum-containing chemotherapy.
Classical Hodgkin Lymphoma
KEYTRUDA is indicated for the treatment of adult patients with relapsed or refractory classical Hodgkin lymphoma (cHL).
KEYTRUDA is indicated for the treatment of pediatric patients with refractory cHL, or cHL that has relapsed after 2 or more lines of therapy.
Primary Mediastinal Large B-Cell Lymphoma
KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory primary mediastinal large B-cell lymphoma (PMBCL), or who have relapsed after 2 or more prior lines of therapy. KEYTRUDA is not recommended for treatment of patients with PMBCL who require urgent cytoreductive therapy.
Urothelial Carcinoma
KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC):
Non-muscle Invasive Bladder Cancer
KEYTRUDA is indicated for the treatment of patients with Bacillus Calmette-Guerin-unresponsive, high-risk, non-muscle invasive bladder cancer (NMIBC) with carcinoma in situ with or without papillary tumors who are ineligible for or have elected not to undergo cystectomy.
Microsatellite Instability-High or Mismatch Repair Deficient Cancer
KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR) solid tumors, as determined by an FDA-approved test, that have progressed following prior treatment and who have no satisfactory alternative treatment options.
This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with MSI-H central nervous system cancers have not been established.
Microsatellite Instability-High or Mismatch Repair Deficient Colorectal Cancer
KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic MSI-H or dMMR colorectal cancer (CRC) as determined by an FDA-approved test.
Gastric Cancer
KEYTRUDA, in combination with trastuzumab, fluoropyrimidine- and platinum-containing chemotherapy, is indicated for the first-line treatment of patients with locally advanced unresectable or metastatic HER2-positive gastric or gastroesophageal junction (GEJ) adenocarcinoma.
This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval of this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.
Esophageal Cancer
KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic esophageal or gastroesophageal junction (GEJ) (tumors with epicenter 1 to 5 centimeters above the GEJ) carcinoma that is not amenable to surgical resection or definitive chemoradiation either:
Cervical Cancer
KEYTRUDA, in combination with chemotherapy, with or without bevacizumab, is indicated for the treatment of patients with persistent, recurrent, or metastatic cervical cancer whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test.
KEYTRUDA, as a single agent, is indicated for the treatment of patients with recurrent or metastatic cervical cancer with disease progression on or after chemotherapy whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test.
Hepatocellular Carcinoma
KEYTRUDA is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.
Merkel Cell Carcinoma
KEYTRUDA is indicated for the treatment of adult and pediatric patients with recurrent locally advanced or metastatic Merkel cell carcinoma (MCC). This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.
Renal Cell Carcinoma
KEYTRUDA, in combination with axitinib, is indicated for the first-line treatment of adult patients with advanced renal cell carcinoma (RCC).
KEYTRUDA, in combination with lenvatinib, is indicated for the first-line treatment of adult patients with advanced RCC.
KEYTRUDA is indicated for the adjuvant treatment of patients with RCC at intermediate-high or high risk of recurrence following nephrectomy, or following nephrectomy and resection of metastatic lesions.
Endometrial Carcinoma
KEYTRUDA, in combination with lenvatinib, is indicated for the treatment of patients with advanced endometrial carcinoma that is not MSI-H or dMMR, who have disease progression following prior systemic therapy in any setting and are not candidates for curative surgery or radiation.
KEYTRUDA, as a single agent, is indicated for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR, as determined by an FDA-approved test, who have disease progression following prior systemic therapy in any setting and are not candidates for curative surgery or radiation.
Tumor Mutational Burden-High Cancer
KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic tumor mutational burden-high (TMB-H) [10 mutations/megabase] solid tumors, as determined by an FDA-approved test, that have progressed following prior treatment and who have no satisfactory alternative treatment options. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with TMB-H central nervous system cancers have not been established.
Cutaneous Squamous Cell Carcinoma
KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cutaneous squamous cell carcinoma (cSCC) or locally advanced cSCC that is not curable by surgery or radiation.
Triple-Negative Breast Cancer
KEYTRUDA is indicated for the treatment of patients with high-risk early-stage triple-negative breast cancer (TNBC) in combination with chemotherapy as neoadjuvant treatment, and then continued as a single agent as adjuvant treatment after surgery.
KEYTRUDA, in combination with chemotherapy, is indicated for the treatment of patients with locally recurrent unresectable or metastatic TNBC whose tumors express PD-L1 (CPS 10) as determined by an FDA-approved test.
Selected Important Safety Information for KEYTRUDA
Severe and Fatal Immune-Mediated Adverse Reactions
KEYTRUDA is a monoclonal antibody that belongs to a class of drugs that bind to either the PD-1 or the PD-L1, blocking the PD-1/PD-L1 pathway, thereby removing inhibition of the immune response, potentially breaking peripheral tolerance and inducing immune-mediated adverse reactions. Immune-mediated adverse reactions, which may be severe or fatal, can occur in any organ system or tissue, can affect more than one body system simultaneously, and can occur at any time after starting treatment or after discontinuation of treatment. Important immune-mediated adverse reactions listed here may not include all possible severe and fatal immune-mediated adverse reactions.
Monitor patients closely for symptoms and signs that may be clinical manifestations of underlying immune-mediated adverse reactions. Early identification and management are essential to ensure safe use of antiPD-1/PD-L1 treatments. Evaluate liver enzymes, creatinine, and thyroid function at baseline and periodically during treatment. For patients with TNBC treated with KEYTRUDA in the neoadjuvant setting, monitor blood cortisol at baseline, prior to surgery, and as clinically indicated. In cases of suspected immune-mediated adverse reactions, initiate appropriate workup to exclude alternative etiologies, including infection. Institute medical management promptly, including specialty consultation as appropriate.
Withhold or permanently discontinue KEYTRUDA depending on severity of the immune-mediated adverse reaction. In general, if KEYTRUDA requires interruption or discontinuation, administer systemic corticosteroid therapy (1 to 2 mg/kg/day prednisone or equivalent) until improvement to Grade 1 or less. Upon improvement to Grade 1 or less, initiate corticosteroid taper and continue to taper over at least 1 month. Consider administration of other systemic immunosuppressants in patients whose adverse reactions are not controlled with corticosteroid therapy.
Immune-Mediated Pneumonitis
KEYTRUDA can cause immune-mediated pneumonitis. The incidence is higher in patients who have received prior thoracic radiation. Immune-mediated pneumonitis occurred in 3.4% (94/2799) of patients receiving KEYTRUDA, including fatal (0.1%), Grade 4 (0.3%), Grade 3 (0.9%), and Grade 2 (1.3%) reactions. Systemic corticosteroids were required in 67% (63/94) of patients. Pneumonitis led to permanent discontinuation of KEYTRUDA in 1.3% (36) and withholding in 0.9% (26) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, 23% had recurrence. Pneumonitis resolved in 59% of the 94 patients.
Pneumonitis occurred in 8% (31/389) of adult patients with cHL receiving KEYTRUDA as a single agent, including Grades 3-4 in 2.3% of patients. Patients received high-dose corticosteroids for a median duration of 10 days (range: 2 days to 53 months). Pneumonitis rates were similar in patients with and without prior thoracic radiation. Pneumonitis led to discontinuation of KEYTRUDA in 5.4% (21) of patients. Of the patients who developed pneumonitis, 42% interrupted KEYTRUDA, 68% discontinued KEYTRUDA, and 77% had resolution.
Immune-Mediated Colitis
KEYTRUDA can cause immune-mediated colitis, which may present with diarrhea. Cytomegalovirus infection/reactivation has been reported in patients with corticosteroid-refractory immune-mediated colitis. In cases of corticosteroid-refractory colitis, consider repeating infectious workup to exclude alternative etiologies. Immune-mediated colitis occurred in 1.7% (48/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (1.1%), and Grade 2 (0.4%) reactions. Systemic corticosteroids were required in 69% (33/48); additional immunosuppressant therapy was required in 4.2% of patients. Colitis led to permanent discontinuation of KEYTRUDA in 0.5% (15) and withholding in 0.5% (13) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, 23% had recurrence. Colitis resolved in 85% of the 48 patients.
Hepatotoxicity and Immune-Mediated Hepatitis
KEYTRUDA as a Single Agent
KEYTRUDA can cause immune-mediated hepatitis. Immune-mediated hepatitis occurred in 0.7% (19/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (0.4%), and Grade 2 (0.1%) reactions. Systemic corticosteroids were required in 68% (13/19) of patients; additional immunosuppressant therapy was required in 11% of patients. Hepatitis led to permanent discontinuation of KEYTRUDA in 0.2% (6) and withholding in 0.3% (9) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, none had recurrence. Hepatitis resolved in 79% of the 19 patients.
KEYTRUDA With Axitinib
KEYTRUDA in combination with axitinib can cause hepatic toxicity. Monitor liver enzymes before initiation of and periodically throughout treatment. Consider monitoring more frequently as compared to when the drugs are administered as single agents. For elevated liver enzymes, interrupt KEYTRUDA and axitinib, and consider administering corticosteroids as needed. With the combination of KEYTRUDA and axitinib, Grades 3 and 4 increased alanine aminotransferase (ALT) (20%) and increased aspartate aminotransferase (AST) (13%) were seen at a higher frequency compared to KEYTRUDA alone. Fifty-nine percent of the patients with increased ALT received systemic corticosteroids. In patients with ALT 3 times upper limit of normal (ULN) (Grades 2-4, n=116), ALT resolved to Grades 0-1 in 94%. Among the 92 patients who were rechallenged with either KEYTRUDA (n=3) or axitinib (n=34) administered as a single agent or with both (n=55), recurrence of ALT 3 times ULN was observed in 1 patient receiving KEYTRUDA, 16 patients receiving axitinib, and 24 patients receiving both. All patients with a recurrence of ALT 3 ULN subsequently recovered from the event.
Immune-Mediated Endocrinopathies
Adrenal Insufficiency
KEYTRUDA can cause primary or secondary adrenal insufficiency. For Grade 2 or higher, initiate symptomatic treatment, including hormone replacement as clinically indicated. Withhold KEYTRUDA depending on severity. Adrenal insufficiency occurred in 0.8% (22/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (0.3%), and Grade 2 (0.3%) reactions. Systemic corticosteroids were required in 77% (17/22) of patients; of these, the majority remained on systemic corticosteroids. Adrenal insufficiency led to permanent discontinuation of KEYTRUDA in <0.1% (1) and withholding in 0.3% (8) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement.
Hypophysitis
KEYTRUDA can cause immune-mediated hypophysitis. Hypophysitis can present with acute symptoms associated with mass effect such as headache, photophobia, or visual field defects. Hypophysitis can cause hypopituitarism. Initiate hormone replacement as indicated. Withhold or permanently discontinue KEYTRUDA depending on severity. Hypophysitis occurred in 0.6% (17/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (0.3%), and Grade 2 (0.2%) reactions. Systemic corticosteroids were required in 94% (16/17) of patients; of these, the majority remained on systemic corticosteroids. Hypophysitis led to permanent discontinuation of KEYTRUDA in 0.1% (4) and withholding in 0.3% (7) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement.
Thyroid Disorders
KEYTRUDA can cause immune-mediated thyroid disorders. Thyroiditis can present with or without endocrinopathy. Hypothyroidism can follow hyperthyroidism. Initiate hormone replacement for hypothyroidism or institute medical management of hyperthyroidism as clinically indicated. Withhold or permanently discontinue KEYTRUDA depending on severity. Thyroiditis occurred in 0.6% (16/2799) of patients receiving KEYTRUDA, including Grade 2 (0.3%). None discontinued, but KEYTRUDA was withheld in <0.1% (1) of patients.
Hyperthyroidism occurred in 3.4% (96/2799) of patients receiving KEYTRUDA, including Grade 3 (0.1%) and Grade 2 (0.8%). It led to permanent discontinuation of KEYTRUDA in <0.1% (2) and withholding in 0.3% (7) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement. Hypothyroidism occurred in 8% (237/2799) of patients receiving KEYTRUDA, including Grade 3 (0.1%) and Grade 2 (6.2%). It led to permanent discontinuation of KEYTRUDA in <0.1% (1) and withholding in 0.5% (14) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement. The majority of patients with hypothyroidism required long-term thyroid hormone replacement. The incidence of new or worsening hypothyroidism was higher in 1185 patients with HNSCC, occurring in 16% of patients receiving KEYTRUDA as a single agent or in combination with platinum and FU, including Grade 3 (0.3%) hypothyroidism. The incidence of new or worsening hypothyroidism was higher in 389 adult patients with cHL (17%) receiving KEYTRUDA as a single agent, including Grade 1 (6.2%) and Grade 2 (10.8%) hypothyroidism.
Type 1 Diabetes Mellitus (DM), Which Can Present With Diabetic Ketoacidosis
Monitor patients for hyperglycemia or other signs and symptoms of diabetes. Initiate treatment with insulin as clinically indicated. Withhold KEYTRUDA depending on severity. Type 1 DM occurred in 0.2% (6/2799) of patients receiving KEYTRUDA. It led to permanent discontinuation in <0.1% (1) and withholding of KEYTRUDA in <0.1% (1) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement.
Immune-Mediated Nephritis With Renal Dysfunction
KEYTRUDA can cause immune-mediated nephritis. Immune-mediated nephritis occurred in 0.3% (9/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (0.1%), and Grade 2 (0.1%) reactions. Systemic corticosteroids were required in 89% (8/9) of patients. Nephritis led to permanent discontinuation of KEYTRUDA in 0.1% (3) and withholding in 0.1% (3) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, none had recurrence. Nephritis resolved in 56% of the 9 patients.
Immune-Mediated Dermatologic Adverse Reactions
KEYTRUDA can cause immune-mediated rash or dermatitis. Exfoliative dermatitis, including Stevens-Johnson syndrome, drug rash with eosinophilia and systemic symptoms, and toxic epidermal necrolysis, has occurred with antiPD-1/PD-L1 treatments. Topical emollients and/or topical corticosteroids may be adequate to treat mild to moderate nonexfoliative rashes. Withhold or permanently discontinue KEYTRUDA depending on severity. Immune-mediated dermatologic adverse reactions occurred in 1.4% (38/2799) of patients receiving KEYTRUDA, including Grade 3 (1%) and Grade 2 (0.1%) reactions. Systemic corticosteroids were required in 40% (15/38) of patients. These reactions led to permanent discontinuation in 0.1% (2) and withholding of KEYTRUDA in 0.6% (16) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, 6% had recurrence. The reactions resolved in 79% of the 38 patients.
Other Immune-Mediated Adverse Reactions
The following clinically significant immune-mediated adverse reactions occurred at an incidence of <1% (unless otherwise noted) in patients who received KEYTRUDA or were reported with the use of other antiPD-1/PD-L1 treatments. Severe or fatal cases have been reported for some of these adverse reactions. Cardiac/Vascular: Myocarditis, pericarditis, vasculitis;Nervous System: Meningitis, encephalitis, myelitis and demyelination, myasthenic syndrome/myasthenia gravis (including exacerbation), Guillain-Barr syndrome, nerve paresis, autoimmune neuropathy;Ocular: Uveitis, iritis and other ocular inflammatory toxicities can occur. Some cases can be associated with retinal detachment. Various grades of visual impairment, including blindness, can occur. If uveitis occurs in combination with other immune-mediated adverse reactions, consider a Vogt-Koyanagi-Harada-like syndrome, as this may require treatment with systemic steroids to reduce the risk of permanent vision loss;Gastrointestinal: Pancreatitis, to include increases in serum amylase and lipase levels, gastritis, duodenitis;Musculoskeletal and Connective Tissue: Myositis/polymyositis, rhabdomyolysis (and associated sequelae, including renal failure), arthritis (1.5%), polymyalgia rheumatica;Endocrine: Hypoparathyroidism;Hematologic/Immune: Hemolytic anemia, aplastic anemia, hemophagocytic lymphohistiocytosis, systemic inflammatory response syndrome, histiocytic necrotizing lymphadenitis (Kikuchi lymphadenitis), sarcoidosis, immune thrombocytopenic purpura, solid organ transplant rejection.
Infusion-Related Reactions
KEYTRUDA can cause severe or life-threatening infusion-related reactions, including hypersensitivity and anaphylaxis, which have been reported in 0.2% of 2799 patients receiving KEYTRUDA. Monitor for signs and symptoms of infusion-related reactions. Interrupt or slow the rate of infusion for Grade 1 or Grade 2 reactions. For Grade 3 or Grade 4 reactions, stop infusion and permanently discontinue KEYTRUDA.
Complications of Allogeneic Hematopoietic Stem Cell Transplantation (HSCT)
The rest is here:
Merck and Moderna Announce Exercise of Option by Merck for Joint Development and Commercialization of Investigational Personalized Cancer Vaccine -...
- 001 Cardiac Stem Cell Therapy [Last Updated On: June 24th, 2011] [Originally Added On: June 24th, 2011]
- 002 Wow! UW Research labs [Last Updated On: June 25th, 2011] [Originally Added On: June 25th, 2011]
- 003 cellalign [Last Updated On: June 28th, 2011] [Originally Added On: June 28th, 2011]
- 004 Cardiac Stem Cells in End-Stage Human Failing Hearts: Are they functional? [Last Updated On: August 25th, 2011] [Originally Added On: August 25th, 2011]
- 005 Designer Life: repair brain, heart with stem cells - Future Health keynote speaker [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- 006 Cardiac Stem Cell Therapy at Rostock University [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- 007 Stem Cells: Mending a broken heart? [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- 008 Cardiovascular Derivatives of Embryonic Stem Cells in Cardiac Repair and Drug Discovery [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- 009 Stem Cell Therapy in Cardiac Disease [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- 010 Cardiac Recovery Points to Adult Stem Cells [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- 011 Oral Surgeon utilizes StemSave to preserve stem cells in wisdom teeth to combat cardiac disease [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- 012 Stem Cells and Cardiac Regeneration [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- 013 Dr Victor Dzau on Stem Cells for Cardiac Repair. [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- 014 Cardiomyogenic differentiation of Mesenchymal Stem cells (KUM2/9-15c) [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- 015 Heart Failure Patient After Adult Stem Cell Therapy [Last Updated On: September 5th, 2011] [Originally Added On: September 5th, 2011]
- 016 Stem Cell operation in Cardiac Surgery-Al-Jazeerah [Last Updated On: September 7th, 2011] [Originally Added On: September 7th, 2011]
- 017 Heart Disease Patient Describes His Stem Cell Treatment [Last Updated On: September 9th, 2011] [Originally Added On: September 9th, 2011]
- 018 Cardiovascular Therapies: Spotlight on Stem Cell Research - Douglas Boyd [Last Updated On: September 16th, 2011] [Originally Added On: September 16th, 2011]
- 019 Adult Stem Cell [Last Updated On: September 20th, 2011] [Originally Added On: September 20th, 2011]
- 020 Heart repair using own stem cells after heart attack: Future Health keynote speaker [Last Updated On: September 20th, 2011] [Originally Added On: September 20th, 2011]
- 021 Stem Cell #8 Vas Cath Removal 04/28/11 [Last Updated On: September 20th, 2011] [Originally Added On: September 20th, 2011]
- 022 Adult Stem Cells Used To Rebuild Heart Tissue Video. More at http://www.stemcellfusion.com [Last Updated On: September 20th, 2011] [Originally Added On: September 20th, 2011]
- 023 Davos Question: Stem Cell Answer [Last Updated On: September 22nd, 2011] [Originally Added On: September 22nd, 2011]
- 024 Did you have a Heart Attack and Need to Recover your Cardiac Muscle? [Last Updated On: September 22nd, 2011] [Originally Added On: September 22nd, 2011]
- 025 Cardiac Tissue Can Regenerate [Last Updated On: September 22nd, 2011] [Originally Added On: September 22nd, 2011]
- 026 William F. Testimonial of Treatment Stem Cell [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- 027 Stem Cell Heart Surgery must see [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- 028 Valentine's Day Stem Cell Wish: Mending Broken Hearts [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- 029 Advanced Cell Technology OneMedForum 2011 [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- 030 Human 2.0: The Helix of Our Future [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- 031 heart cell generation from human ES and iPS cells (embryonic and induced pluripotent stem cells).flv [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- 032 Stem Cell Therapy and Stem Cell Treatment with Dell [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- 033 UCD Med Student Receives Fulbright Award [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- 034 Cardiomyocytes derived from mouse Embryonic stem cells [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- 035 Immune Control of Stem Cell Mobilization [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- 036 Better Drugs Through Stem Cells [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- 037 stem cell derived cardiomyocytes [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- 038 Stem Cells: Heart cells grown from mouse stem cells [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- 039 Patel Stem Cell Heart Failure [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- 040 Turning Adult Stem Cells into Medicine - Zannos Grekos, MD [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- 041 Kevin's 2 Heart Transplants and Stem Cell Transplant [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- 042 Breakthrough in Stem cell technology [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- 043 Affordable Stem Cell Therapy in Guatemala (2hrs from Miami) [Last Updated On: September 26th, 2011] [Originally Added On: September 26th, 2011]
- 044 Cadiomyogenesis of human mesenchymal stem cells [Last Updated On: September 26th, 2011] [Originally Added On: September 26th, 2011]
- 045 Mark Mercola: Differentiating embryonic stem cells into adult tissues [Last Updated On: September 26th, 2011] [Originally Added On: September 26th, 2011]
- 046 Cardiomyocytic differentiation of endometrial stem cells. [Last Updated On: September 26th, 2011] [Originally Added On: September 26th, 2011]
- 047 Adult Stem Cell vs Embryonic Stem Cell Research Ethics Video [Last Updated On: September 26th, 2011] [Originally Added On: September 26th, 2011]
- 048 Pt. 1--Dr. Ali Denktas--Stem Cells as Markers after Myocardial Infarctions [Last Updated On: September 27th, 2011] [Originally Added On: September 27th, 2011]
- 049 Repairing Damaged Hearts with Stem Cells [Last Updated On: September 29th, 2011] [Originally Added On: September 29th, 2011]
- 050 Mouse GEN cells overexpressing Csx/Nkx2.5 and GATA4 behave like transient amplifying cells [Last Updated On: September 29th, 2011] [Originally Added On: September 29th, 2011]
- 051 20100804_axiogenesis.wmv [Last Updated On: September 29th, 2011] [Originally Added On: September 29th, 2011]
- 052 Beating Cardiomyocytes from E14 Cells [Last Updated On: September 29th, 2011] [Originally Added On: September 29th, 2011]
- 053 Heart cells grown from human embryonic stem cells [Last Updated On: September 29th, 2011] [Originally Added On: September 29th, 2011]
- 054 First US Patient In Stem Cell Transplant [Last Updated On: September 29th, 2011] [Originally Added On: September 29th, 2011]
- 055 Be still my beating stem cell heart [Last Updated On: October 1st, 2011] [Originally Added On: October 1st, 2011]
- 056 Beating Human Heart Cells from Embryonic Stem Cells [Last Updated On: October 1st, 2011] [Originally Added On: October 1st, 2011]
- 057 Spontaneously and rhythmically beating engineered human heart tissue from pluripotent stem cells [Last Updated On: October 3rd, 2011] [Originally Added On: October 3rd, 2011]
- 058 Cardiac Stem Cell Therapy - How it works [Last Updated On: October 3rd, 2011] [Originally Added On: October 3rd, 2011]
- 059 Doctors To Use 'Trained' Stem Cells To Heal Heart [Last Updated On: October 5th, 2011] [Originally Added On: October 5th, 2011]
- 060 Beating Heart Stem Cells [Last Updated On: October 5th, 2011] [Originally Added On: October 5th, 2011]
- 061 AM RADIO, DR. AMIT PATEL AND STEM CELLS SAVED MY LIFE - Video [Last Updated On: October 14th, 2011] [Originally Added On: October 14th, 2011]
- 062 New heart built with stem cells - Video [Last Updated On: October 15th, 2011] [Originally Added On: October 15th, 2011]
- 063 Adult Stem Cells For Heart Disease: Today's Reality - Video [Last Updated On: October 15th, 2011] [Originally Added On: October 15th, 2011]
- 064 H9 beating stem cells - Video [Last Updated On: October 27th, 2011] [Originally Added On: October 27th, 2011]
- 065 Double Blind Trial of Stem Cells for Heart Failure - Video [Last Updated On: October 27th, 2011] [Originally Added On: October 27th, 2011]
- 066 Repairing Damaged Hearts with Stem Cells - Video [Last Updated On: October 27th, 2011] [Originally Added On: October 27th, 2011]
- 067 Cardiac differentiation of hES cells at 20x - Video [Last Updated On: October 27th, 2011] [Originally Added On: October 27th, 2011]
- 068 SPRAY-ON STEM CELLS - Video [Last Updated On: October 28th, 2011] [Originally Added On: October 28th, 2011]
- 069 Stem Cells: A smart use for wisdom teeth - Video [Last Updated On: November 12th, 2011] [Originally Added On: November 12th, 2011]
- 070 VistaGen's Stem Cell Derived Cardiomyocytes - Video [Last Updated On: November 12th, 2011] [Originally Added On: November 12th, 2011]
- 071 Stem Cell Research [Last Updated On: November 12th, 2011] [Originally Added On: November 12th, 2011]
- 072 The Power of Stem Cells - Video [Last Updated On: November 12th, 2011] [Originally Added On: November 12th, 2011]
- 073 Beating iCellĀ® Cardiomyocytes - Video [Last Updated On: November 13th, 2011] [Originally Added On: November 13th, 2011]
- 074 SCIPIO: Cardiac stem cells and postinfarction heart failure - Video [Last Updated On: November 15th, 2011] [Originally Added On: November 15th, 2011]
- 075 Beating Cardiomyocytes in Cell Culture - Video [Last Updated On: November 15th, 2011] [Originally Added On: November 15th, 2011]
- 076 Stem Cells Heal Heart Attack Damage. - Video [Last Updated On: December 7th, 2011] [Originally Added On: December 7th, 2011]
- 077 C2CAM - 2011.11.15 - Dulce Base - Regenerative Medicine - Info - Video [Last Updated On: December 7th, 2011] [Originally Added On: December 7th, 2011]
- 078 Latest Update on Stem Cell Research at UW - Dr. Timothy Kamp - Video [Last Updated On: December 7th, 2011] [Originally Added On: December 7th, 2011]
- 079 Coast To Coast AM: Regenerative Medicine / Dulce Base 11-15-2011 Download Link - Video [Last Updated On: December 7th, 2011] [Originally Added On: December 7th, 2011]
- 080 C2CAM - 2011.11.15 - Dulce Base - Regenerative Medicine - Video [Last Updated On: December 7th, 2011] [Originally Added On: December 7th, 2011]
