Cells or drugs? The race to regenerate the heart – Scientific American
By daniellenierenberg
Twenty years ago, cardiologist and stem-cell scientist Piero Anversa published an exciting paper. He was then a prominent researcher at New York Medical College in Valhalla, and his data in mice showed that injured hearts could regenerate with the help of stem cells taken from bone marrow1contrary to prevailing wisdom.
Myocardial infarction, commonly known as a heart attack, deprives cardiac muscle cells of oxygen, causing them to perish. The human heart responds by laying scar tissue over lost muscle. But these reconstituted areas dont pump blood as competently as before. In time, this can lead to heart failureparticularly if other heart attacks follow. The implications of Anversas work were clear: stem cells, through their growth and proliferation, had the potential to reverse the damage caused by heart attacks and thereby prevent heart failure.
But other researchers who attempted to replicate these mouse studies found themselves coming up short. Allegations of faked results eventually began to surface, and Anversa, who had since joined Harvard Medical School, and Brigham and Womens Hospital in Boston, Massachusetts, was forced to leave his posts in 2015. Two years later, Brigham and Womens Hospital paid the US government US$10 million to settle allegations that Anversa and his colleagues had used fraudulent data to apply for federal funding. And a 2018 investigation conducted by Harvard called for 31 of Anversas papers to be retracted.
This saga has dampened the enthusiasm that once surrounded research into stem-cell therapy, says Michael Schneider, a research cardiologist at Imperial College London. The controversy, overt scientific misconduct and evidence against Anversas claims has cast aspersions on the field more generally, he admits. Thats unfortunate, because many other stem-cell scientists are conducting legitimate research.
Meanwhile, another heart-healing strategy has emerged, drawing inspiration from species that, unlike humans, can regrow cardiac muscle after trauma. Researchers are seeking to learn more about the molecules produced by zebrafish (Danio rerio) hearts as they heal themselvesand are investigating whether injectable drugs containing the same substances could also yield reparative results.
The question is now whether it will be stem cells, small-molecule drugs or a combination of the two that achieve the goal of convincing the heart to heal instead of scar.
In the wake of the Anversa scandal, there has been an important evolution of thinking on the stem-cells front. A 2019 literature review pointed out that newer studies tend to show the most significant impact from stem-cell therapy comes from the substances the cells secrete, rather than their proliferation2. After many years of work, we find that when we deliver cells into the heart, the benefit of replaced damaged cells is only minor, says the reviews author Javaria Tehzeeb, an internal-medicine specialist at the Albany Medical Center in New York. The real work of regeneration happens, she explains, when the cells produce growth factors, which in turn affect heart repair by reducing inflammation and stimulating the development of new heart muscle.
That means stem-cell therapies share some similarities with the drug strategyessentially it comes down to molecules secreted by the stem cells versus molecules that are directly injected. But they also have important differences.
First, part of the stem-cell therapy benefits might still come from the cells proliferation, even if that bonus is relatively small. Second, theres little control over what substances the stem cells produce once theyre injected, whereas specific molecules can be administered at known doses. And finally, the logistics of scaling up and delivering these two therapies will be very different.
A study published in 2020 showcased the importance of stem-cell-produced molecules by looking at the structural integrity of proteins found in infarcted mouse hearts3. The scientists artificially induced heart attacks in eight adult mice. Four weeks later, they administered stem cells to half the rodents. After a further four weeks, their hearts were removed and washed with a series of buffer solutions and chemical reagents to extract the proteins, which were then analysed. We essentially did a massive scan of every single protein in the heart, says Andre Terzic, lead author of the study. The authors were able to identify almost 4,000 proteins, and showed that heart attacks distorted the structure of 450 of them. But with stem-cell therapy, that number fell to 283.
Proteins are the intimate components that make our hearts work properly, and when the heart is diseased, they become damaged, says Terzic, who is director of the Mayo Clinic Center for Regenerative Medicine in Rochester, Minnesota. The ability of these stem cells to secrete healing signals is probably a key element to what weve observed.
All cells and tissues are constantly telling each other what they need and whether theyre stressed through molecular signalling. When you lose a chunk of cells in a heart attack, you lose part of that conversation, explains Charles Murry, an experimental pathologist and director of the Institute for Stem Cell and Regenerative Medicine at the University of Washington in Seattle. Injected stem cells could be filling in the missing dialogue by secreting signalling and rescue molecules, he explains.
Although this sounds encouraging, there are still parts of the stem-cell-therapy approach that need to be finessed. In a 2018 study, Murry and colleagues transplanted approximately 750 million cardiomyocytes into macaque monkeys that had experienced major heart attacks4. One month after the intervention, the amount of blood pumped by their hearts had increased by 10.6% compared with just 2.5% in the control group. This advantage persisted three months later, but one out of the five stem-cell-treated monkeys suffered arrhythmias. The onset of arrhythmia wasnt previously observed in small-animal studies, but it is a known complication of heart attacks. Nevertheless, the researchers thought it could be a potential side effect of the stem-cell infusion. Obviously it isnt statistically significant, but common sense led us to classify this as a treatment complication, says Murry.
In addition to safety concerns, stem-cell therapies are also beset by questions of practicality. Think of a lab with all these cell culture flasks where you have to grow millions of cells just to create a single dose, says Terzic. Now imagine tens of thousands of patients. Its a formidable effort to be ready, especially if you want to intervene rapidly. You dont have the luxury of time to build up supplies.
Thats one reason why some people think the promise of cardiac rejuvenation lies elsewhere. Theres been an awful lot of time and money spent on stem-cell therapy, raising false hope in patientsand so far, the clinical outcomes have been largely disappointing, says Paul Riley, a cardiovascular scientist at the University of Oxford, UK. Riley is investigating whether inserting specific molecules into the heart might be more effective.
Human hearts cant regenerate on their own, but other animals do have such abilities. Zebrafish, for example, can regrow their hearts after as much as 20% is removed. Newborn mice can also regenerate heart tissue. Observing the molecular pathways in these animals might make similar results possible in humans.
Research has shown that following a myocardial infarction in zebrafish, the epicardiuma membrane surrounding the heart muscleproduces molecular signals that might kick-start muscle-cell regeneration5. The hope is that manipulating the human epicardium could elicit the same therapeutic results. There are probably approaches we can take to target the cells that exist in the heart with small molecules or drugs, that could invoke repair and regeneration, says Riley.
Back in 2011, Riley and colleagues showed that this is theoretically possible6. They pre-treated adult mice with a daily injection of a protein called thymosin 4 for one week before inducing an infarction, and found that these mice were able to produce new cardiac muscle. This offers a road map to a pre-emptive therapy. If an individual is at high risk of a heart attack, says Riley, then its conceivable they could be advised to take a priming or preventative therapeutic, which may counteract an event, but its not quite the holy grail of restoring lost tissue after a heart attack that were searching for. In other studies, Riley has since shown that other proteins besides thymosin 4 might also have a role in stimulating the epicardium to regenerate the heart7.
Its easier to see how the drug route offers clearer prospects for scaling upbut the science behind this approach is newer, and there havent been any clinical trials in humans yet. What goes in stem cells favour is the body of work behind them, says Tehzeeb.
It might be that stem-cell therapies achieve government approvals first, but then drugs overtake them once the science and research have had time to catch up. When we get to the end of the line with molecules, then maybe we can say stem cells are a thing of the past, Tehzeeb says. But until then, we should continue to pursue their potential.
Murry echoes that sentiment, arguing that findings from both camps could end up helping everyones research. We need an ecosystem with a competition of ideas, and as long as its all openly published then well figure it out, he says. Thats the better approach, rather than saying my idea is better than your idea.
This article is part ofNature Outlook: Heart health, an editorially independent supplement produced with the financial support of third parties.About this content.
Orlic, D.et al.Nature410, 701705 (2001).
Tehzeeb, J., Manzoor, A. & Ahmed, M. M.Cureus11, e5959 (2019).
Arrell, D. K., Rosenow, C. S., Yamada, S., Behfar, A. & Terzic, A.npj Regen. Med.5, 5 (2020).
Liu, Y.-W.et al.Nature Biotechnol.36, 597605 (2018).
Cao, J. & Poss, K. D.Nature Rev. Cardiol.15, 631647 (2018).
Smart, N.et al.Nature474, 640644 (2011).
McManus, S.et al.J. Mol. Cell. Cardiol.140, 3031 (2020).
Read more here:
Cells or drugs? The race to regenerate the heart - Scientific American
- 001 Cardiac Stem Cell Therapy [Last Updated On: June 24th, 2011] [Originally Added On: June 24th, 2011]
- 002 Wow! UW Research labs [Last Updated On: June 25th, 2011] [Originally Added On: June 25th, 2011]
- 003 cellalign [Last Updated On: June 28th, 2011] [Originally Added On: June 28th, 2011]
- 004 Cardiac Stem Cells in End-Stage Human Failing Hearts: Are they functional? [Last Updated On: August 25th, 2011] [Originally Added On: August 25th, 2011]
- 005 Designer Life: repair brain, heart with stem cells - Future Health keynote speaker [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- 006 Cardiac Stem Cell Therapy at Rostock University [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- 007 Stem Cells: Mending a broken heart? [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- 008 Cardiovascular Derivatives of Embryonic Stem Cells in Cardiac Repair and Drug Discovery [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- 009 Stem Cell Therapy in Cardiac Disease [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- 010 Cardiac Recovery Points to Adult Stem Cells [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- 011 Oral Surgeon utilizes StemSave to preserve stem cells in wisdom teeth to combat cardiac disease [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- 012 Stem Cells and Cardiac Regeneration [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- 013 Dr Victor Dzau on Stem Cells for Cardiac Repair. [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- 014 Cardiomyogenic differentiation of Mesenchymal Stem cells (KUM2/9-15c) [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- 015 Heart Failure Patient After Adult Stem Cell Therapy [Last Updated On: September 5th, 2011] [Originally Added On: September 5th, 2011]
- 016 Stem Cell operation in Cardiac Surgery-Al-Jazeerah [Last Updated On: September 7th, 2011] [Originally Added On: September 7th, 2011]
- 017 Heart Disease Patient Describes His Stem Cell Treatment [Last Updated On: September 9th, 2011] [Originally Added On: September 9th, 2011]
- 018 Cardiovascular Therapies: Spotlight on Stem Cell Research - Douglas Boyd [Last Updated On: September 16th, 2011] [Originally Added On: September 16th, 2011]
- 019 Adult Stem Cell [Last Updated On: September 20th, 2011] [Originally Added On: September 20th, 2011]
- 020 Heart repair using own stem cells after heart attack: Future Health keynote speaker [Last Updated On: September 20th, 2011] [Originally Added On: September 20th, 2011]
- 021 Stem Cell #8 Vas Cath Removal 04/28/11 [Last Updated On: September 20th, 2011] [Originally Added On: September 20th, 2011]
- 022 Adult Stem Cells Used To Rebuild Heart Tissue Video. More at http://www.stemcellfusion.com [Last Updated On: September 20th, 2011] [Originally Added On: September 20th, 2011]
- 023 Davos Question: Stem Cell Answer [Last Updated On: September 22nd, 2011] [Originally Added On: September 22nd, 2011]
- 024 Did you have a Heart Attack and Need to Recover your Cardiac Muscle? [Last Updated On: September 22nd, 2011] [Originally Added On: September 22nd, 2011]
- 025 Cardiac Tissue Can Regenerate [Last Updated On: September 22nd, 2011] [Originally Added On: September 22nd, 2011]
- 026 William F. Testimonial of Treatment Stem Cell [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- 027 Stem Cell Heart Surgery must see [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- 028 Valentine's Day Stem Cell Wish: Mending Broken Hearts [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- 029 Advanced Cell Technology OneMedForum 2011 [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- 030 Human 2.0: The Helix of Our Future [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- 031 heart cell generation from human ES and iPS cells (embryonic and induced pluripotent stem cells).flv [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- 032 Stem Cell Therapy and Stem Cell Treatment with Dell [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- 033 UCD Med Student Receives Fulbright Award [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- 034 Cardiomyocytes derived from mouse Embryonic stem cells [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- 035 Immune Control of Stem Cell Mobilization [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- 036 Better Drugs Through Stem Cells [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- 037 stem cell derived cardiomyocytes [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- 038 Stem Cells: Heart cells grown from mouse stem cells [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- 039 Patel Stem Cell Heart Failure [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- 040 Turning Adult Stem Cells into Medicine - Zannos Grekos, MD [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- 041 Kevin's 2 Heart Transplants and Stem Cell Transplant [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- 042 Breakthrough in Stem cell technology [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- 043 Affordable Stem Cell Therapy in Guatemala (2hrs from Miami) [Last Updated On: September 26th, 2011] [Originally Added On: September 26th, 2011]
- 044 Cadiomyogenesis of human mesenchymal stem cells [Last Updated On: September 26th, 2011] [Originally Added On: September 26th, 2011]
- 045 Mark Mercola: Differentiating embryonic stem cells into adult tissues [Last Updated On: September 26th, 2011] [Originally Added On: September 26th, 2011]
- 046 Cardiomyocytic differentiation of endometrial stem cells. [Last Updated On: September 26th, 2011] [Originally Added On: September 26th, 2011]
- 047 Adult Stem Cell vs Embryonic Stem Cell Research Ethics Video [Last Updated On: September 26th, 2011] [Originally Added On: September 26th, 2011]
- 048 Pt. 1--Dr. Ali Denktas--Stem Cells as Markers after Myocardial Infarctions [Last Updated On: September 27th, 2011] [Originally Added On: September 27th, 2011]
- 049 Repairing Damaged Hearts with Stem Cells [Last Updated On: September 29th, 2011] [Originally Added On: September 29th, 2011]
- 050 Mouse GEN cells overexpressing Csx/Nkx2.5 and GATA4 behave like transient amplifying cells [Last Updated On: September 29th, 2011] [Originally Added On: September 29th, 2011]
- 051 20100804_axiogenesis.wmv [Last Updated On: September 29th, 2011] [Originally Added On: September 29th, 2011]
- 052 Beating Cardiomyocytes from E14 Cells [Last Updated On: September 29th, 2011] [Originally Added On: September 29th, 2011]
- 053 Heart cells grown from human embryonic stem cells [Last Updated On: September 29th, 2011] [Originally Added On: September 29th, 2011]
- 054 First US Patient In Stem Cell Transplant [Last Updated On: September 29th, 2011] [Originally Added On: September 29th, 2011]
- 055 Be still my beating stem cell heart [Last Updated On: October 1st, 2011] [Originally Added On: October 1st, 2011]
- 056 Beating Human Heart Cells from Embryonic Stem Cells [Last Updated On: October 1st, 2011] [Originally Added On: October 1st, 2011]
- 057 Spontaneously and rhythmically beating engineered human heart tissue from pluripotent stem cells [Last Updated On: October 3rd, 2011] [Originally Added On: October 3rd, 2011]
- 058 Cardiac Stem Cell Therapy - How it works [Last Updated On: October 3rd, 2011] [Originally Added On: October 3rd, 2011]
- 059 Doctors To Use 'Trained' Stem Cells To Heal Heart [Last Updated On: October 5th, 2011] [Originally Added On: October 5th, 2011]
- 060 Beating Heart Stem Cells [Last Updated On: October 5th, 2011] [Originally Added On: October 5th, 2011]
- 061 AM RADIO, DR. AMIT PATEL AND STEM CELLS SAVED MY LIFE - Video [Last Updated On: October 14th, 2011] [Originally Added On: October 14th, 2011]
- 062 New heart built with stem cells - Video [Last Updated On: October 15th, 2011] [Originally Added On: October 15th, 2011]
- 063 Adult Stem Cells For Heart Disease: Today's Reality - Video [Last Updated On: October 15th, 2011] [Originally Added On: October 15th, 2011]
- 064 H9 beating stem cells - Video [Last Updated On: October 27th, 2011] [Originally Added On: October 27th, 2011]
- 065 Double Blind Trial of Stem Cells for Heart Failure - Video [Last Updated On: October 27th, 2011] [Originally Added On: October 27th, 2011]
- 066 Repairing Damaged Hearts with Stem Cells - Video [Last Updated On: October 27th, 2011] [Originally Added On: October 27th, 2011]
- 067 Cardiac differentiation of hES cells at 20x - Video [Last Updated On: October 27th, 2011] [Originally Added On: October 27th, 2011]
- 068 SPRAY-ON STEM CELLS - Video [Last Updated On: October 28th, 2011] [Originally Added On: October 28th, 2011]
- 069 Stem Cells: A smart use for wisdom teeth - Video [Last Updated On: November 12th, 2011] [Originally Added On: November 12th, 2011]
- 070 VistaGen's Stem Cell Derived Cardiomyocytes - Video [Last Updated On: November 12th, 2011] [Originally Added On: November 12th, 2011]
- 071 Stem Cell Research [Last Updated On: November 12th, 2011] [Originally Added On: November 12th, 2011]
- 072 The Power of Stem Cells - Video [Last Updated On: November 12th, 2011] [Originally Added On: November 12th, 2011]
- 073 Beating iCellĀ® Cardiomyocytes - Video [Last Updated On: November 13th, 2011] [Originally Added On: November 13th, 2011]
- 074 SCIPIO: Cardiac stem cells and postinfarction heart failure - Video [Last Updated On: November 15th, 2011] [Originally Added On: November 15th, 2011]
- 075 Beating Cardiomyocytes in Cell Culture - Video [Last Updated On: November 15th, 2011] [Originally Added On: November 15th, 2011]
- 076 Stem Cells Heal Heart Attack Damage. - Video [Last Updated On: December 7th, 2011] [Originally Added On: December 7th, 2011]
- 077 C2CAM - 2011.11.15 - Dulce Base - Regenerative Medicine - Info - Video [Last Updated On: December 7th, 2011] [Originally Added On: December 7th, 2011]
- 078 Latest Update on Stem Cell Research at UW - Dr. Timothy Kamp - Video [Last Updated On: December 7th, 2011] [Originally Added On: December 7th, 2011]
- 079 Coast To Coast AM: Regenerative Medicine / Dulce Base 11-15-2011 Download Link - Video [Last Updated On: December 7th, 2011] [Originally Added On: December 7th, 2011]
- 080 C2CAM - 2011.11.15 - Dulce Base - Regenerative Medicine - Video [Last Updated On: December 7th, 2011] [Originally Added On: December 7th, 2011]
