Page 33«..1020..32333435..40..»

Full-Body Transplants Are a Crazy, Wildly Unethical Idea

By daniellenierenberg

For the last week, an Italian neurosurgeon has been executing a full-blown media offensive, talking up his plan to stitch one persons head to another persons body. If the powers-that-be would just get over their ethical queasiness, Sergio Canavero of the Turin Advanced Neuromodulation Group says he could accomplish the feat by 2017.

But full-body transplants arent so crazy. In fact, it might surprise you that there was a successful operation as far back as 1818. Well, successful if you ignore that the transplantee freaked out and murdered his doctors family. Oh wait. That was Frankenstein. I take it back, full body transplants are totally crazy.

What the hell, going to the moon was crazy too, right? And a maybe-crazy-but-what-the-hell moonshot is exactly how Canavero sees his plan to help patients with severe physical impairments. Why did the US and the Soviet Union just vie for being the first to space? Because it is about measuring dicks. We want to demonstrate as a country, to say: I am the best, he says. Canaveros latest paper glosses over questions of ethics and practicality and tacklesthe trickiest aspect of the head-swapping procedure: The spinal splice.

Canaveros plan focuses on sewingtwo people together by their spinal cords. (Hooking up the rest of the utilitiesblood vessels, airways, blood vesselsis incredibly difficult, but trifling in comparison.) Step one is to sever the cords with a special, ultra-thin blade. Canavero rightly notes most cases of spinal trauma are well, traumatic: Snapping your neck on a skateboard ramp is bound to leave the spinal cord in an untidy condition. Those nerve cells scar, and scarring would impede their regeneration (if cells in the central nervous system could regeneratewell get to that in a sec). A clean wound, on the other hand, heals cleanly. Canavero likens those million sharply severed neurons to spaghetti. Italians adore spaghetti, I love spaghetti, and spaghetti is what is called for here, he says.

The job of fusing those spaghetti-like spinal sections together falls to a substance called polyethylene glycol. This stuff has actually been pretty good at repairing the motor functions in rats with spinal traumathough even the kindest critic will point out that successful rat experiments are a far cry from proving that the stuff will repair human spines. Still, Canavero is raring to go. I have enough animal data, he says. Give me a brain dead organ donor. Say someone is in a traumatic car accident, and doctors say that he cannot be saved. In the time between when the persons family says its OK to pull the plug and the moment the doctors actually do so, Canavero asks for three to four hours. I sever the spinal cord, add polyethylene glycol, and start measuring electrophysiological responses, he says.

After surgery (and during it, one hopes), Canavero will keep the patient in a coma. He estimates it will take about at least two weeks for the first axons to beginlacing themselves together, at which point the patient can be revived. Throughout the coma and for some time after, Canavero will bathe the spinal splice with a mild electrical current. This is not a free Frankenstein joke from the good doctor: Its actually a method thats seen surprisingly promising results healingrealhuman patients with spinal trauma. Canavero is confident that this will keep the muscle cells operational. Combined with physical therapy, Canavero estimates his as-yet-unchosen patient (any volunteers?) will be back on her (new) feet in about a year.

In case this wasnt entirelyclear: Canaveros plan is insane. Like, James Bond villain insane. And its not just because his plan fits together like a Voltron of bad science (which it does). Its kind of a bummer, actually, because his plan couldmaybework, if he was given free rein to cut and sew living peoples heads to dead peoples bodies until he got it right. But besides ethics, theres an unfortunate fact of biology standing in his way: The central nervous system in higher vertebrateslike humansdoes not regenerate. Hes insane. You cant put a head on somebody else! says Binhai Zhang, a neurosurgeon at UC San Diego. The reason why goes down to your DNA. The genes in a mature mammalian central nervous system that control regeneration are repressed, says Michael Beattie, a professor of neurosurgery at UC San Francisco. Theyll stay that way, no matter how much you treat the spinal cord with polyethylene glycol and electrical currents. (Although, hey, who wants to work on un-repressing those genes?)

Nobody knows for sure why the cells in your brain and spine arent wired for regrowth. After all, your peripheral nervous systemthe circuitry for every other part of your bodyconducts electrical impulses in exactly the same way, but its genes can code for self-repair. Beattie says this may have to do the fact the spine and brain contain the circuitry coded for movement, not just for conducting signals. Spinal cells must knit themselves together in super-complex configurations in order to command the motor functions youve learned over a lifetime. Once the connections are made, you dont want the wrong connections getting created, he says.

The only reliable way to induce spinal cell regrowth in higher order vertebrates is with stem cell therapy. Last year scientists showed pluripotent stem cells could regrow damaged spinal cordsbut only in rats. Mark Tuszynski studies stem cells in spinal injury at UC San Diego, and he says even with this advance the research community is years away from attempting suchtreatments on humans. Its not at the stage yet where there can be meaningful advances in clinical trials, he says. Plus stem cells will need help, in the form of drugs that knock down natural regeneration inhibitors that your body creates (because cancer), and still more drugs to keep your body from creating scar tissue around the wound. (Though in fairness, thats the idea behind Canaveros super-thin knife.) All of this research remainsyears away from clinical application.

And this slow, careful tempodo no harm being a hallmark of western medicineis what drives Canaveros bold assertion that he will have a successful head transplant in 24 months. There are all these people who tell you: Who is this guy who can do this in two years? When you go public with something like this, you have to have two balls like this. There are people who are not so strong-balled and will just get crushed by the critics. But I love the critics. This is a feat of theoretical neuroscience and the evidence is there and its going to work. In case you need clarification, his main argument there is Haters gonna hate.

Excerpt from:
Full-Body Transplants Are a Crazy, Wildly Unethical Idea

To Read More: Full-Body Transplants Are a Crazy, Wildly Unethical Idea
categoriaSpinal Cord Stem Cells commentoComments Off on Full-Body Transplants Are a Crazy, Wildly Unethical Idea | dataMarch 3rd, 2015
Read All

'Miraculous' stem cell treatment may reverse symptoms of multiple sclerosis

By Sykes24Tracey

A new stem cell treatment that reboots the entire immune system is enabling multiple sclerosis sufferers to walk, run and even dance again, in results branded "miraculous" by doctors.

Patients who have been wheelchair-bound for 10 years have regained the use of their legs in the ground-breaking therapy, while others who were blind can now see again. The treatment is the first to reverse the symptoms of MS, which is incurable, and affects about 100,000 people in Britain.

The two dozen patients who are taking part in the trials at the Royal Hallamshire Hospital, Sheffield, and Kings College Hospital, London, have effectively had their immune systems "rebooted". Although it is unclear what causes MS, some doctors believe that it is the immune system itself that attacks the brain and spinal cord, leading to inflammation pain, disability and, in severe cases, death.

In the new treatment, specialists use a high dose of chemotherapy to knock out the immune system before rebuilding it with stem cells taken from the patient's own blood. "Since we started treating patients three years ago, some of the results we have seen have been miraculous," Prof Basil Sharrack, a consultant neurologist at Sheffield Teaching Hospitals NHS Foundation Trust, told The Sunday Times.

"This is not a word I would use lightly, but we have seen profound neurological improvements." Holly Drewry, 25, of Sheffield, was wheelchair bound after the birth of her daughter Isla, now two. But she claims the new treatment has transformed her life.

"It worked wonders," she said. "I remember being in the hospital... after three weeks, I called my mum and said: 'I can stand'. We were all crying. I can run a little bit, I can dance. I love dancing, it is silly but I do. " However, specialists warn that patients need to be fit to benefit from the new treatment. "This is not a treatment that is suitable for everybody because it is very aggressive and patients need to be quite fit to withstand the effects of the chemotherapy," warned Prof Sharrack.

The research was published in the Journal of the American Medical Association.

Continue reading here:
'Miraculous' stem cell treatment may reverse symptoms of multiple sclerosis

To Read More: 'Miraculous' stem cell treatment may reverse symptoms of multiple sclerosis
categoriaSpinal Cord Stem Cells commentoComments Off on 'Miraculous' stem cell treatment may reverse symptoms of multiple sclerosis | dataMarch 3rd, 2015
Read All

A Pancreas in a Capsule

By JoanneRUSSELL25

Stem-cell advocates pin their hopes on an artificial pancreas to treat diabetes.

Fourteen years ago, during the darkest moments of the stem-cell wars pitting American scientists against the White House of George W. Bush, one group of advocates could be counted on to urge research using cells from human embryos: parents of children with type 1 diabetes. Motivated by scientists who told them these cells would lead to amazing cures, they spent millions on TV ads, lobbying, and countless phone calls to Congress.

Now the first test of a type 1 diabetes treatment using stem cells has finally begun. In October, a San Diego man had two pouches of lab-grown pancreas cells, derived from human embryonic stem cells, inserted into his body through incisions in his back. Two other patients have since received the stand-in pancreas, engineered by a small San Diego company called ViaCyte.

Its a significant step, partly because the ViaCyte study is only the third in the United States of any treatment based on embryonic stem cells. These cells, once removed from early-stage human embryos, can be grown in a lab dish and retain the ability to differentiate into any of the cells and tissue types in the body. One other study, since cancelled, treated several patients with spinal-cord injury (see Geron Shuts Down Pioneering Stem-Cell Program and Stem-Cell Gamble), while tests to transplant lab-grown retina cells into the eyes of people going blind are ongoing (see Stem Cells Seem Safe in Treating Eye Disease).

Type 1 patients must constantly monitor their blood glucose using finger pricks, carefully time when and what they eat, and routinely inject themselves with insulin that the pancreas should make. Insulin, a hormone, triggers the removal of excess glucose from the blood for storage in fat and muscles. In type 1 diabetics, the pancreas doesnt make it because their own immune system has attacked and destroyed the pancreatic islets, the tiny clusters of cells containing the insulin-secreting beta cells.

The routine is especially hard on children, but if they dont manage their glucose properly, they could suffer nerve and kidney damage, blindness, and a shortened life span. Yet despite years of research, there is still just nothing to offer patients, says Robert Henry, a doctor at the University of California, San Diego, whose center is carrying out the surgeries for ViaCyte.

Henry slightly overstates the case, but not by much. There is something called the Edmonton Protocol, a surgical technique first described in the New England Journal of Medicine in 2000. It used islets collected from cadavers; by transplanting them, doctors at the University of Alberta managed to keep all seven of their first patients off insulin for an entire year.

Early hopes for the Edmonton Protocol were quickly tempered, however. Only about half of patients treated have stayed off insulin long-term, and the procedure, which is still regarded as experimental in the U.S., isnt paid for by insurance. It requires recipients to take powerful immune-suppressing drugs for life. Suitable donor pancreases are in extremely short supply.

The early success of the Edmonton Protocol came only two years after the discovery of embryonic stem cells, in 1998. Those pressing for a diabetes cure quickly set a new goal: pair something like the Edmonton Protocol with the technology of lab-grown beta cells, the supplies of which are theoretically infinite.

This biocompatible capsule is designed to protect manufactured pancreas cells.

The rest is here:
A Pancreas in a Capsule

To Read More: A Pancreas in a Capsule
categoriaSpinal Cord Stem Cells commentoComments Off on A Pancreas in a Capsule | dataFebruary 12th, 2015
Read All

The stem-cell miracle is anecdotal

By raymumme

On the weekend, a whos who of hockey legends gathered to pay tribute to Gordie Howe in his hometown of Saskatoon.

In addition to sharing memories about Mr. Hockey, a constant theme of the festivities was his miracle recovery from stroke.

Mr. Howe, 86, suffered two strokes last year and, according to his family, was near death before he travelled to Clinica Santa Clarita in Tijuana, Mexico, in December for experimental stem-cell treatment.

Afterward, Mr. Howe was able to walk again. He regained a lot of weight and he began to resemble his old self. (Most of this is second-hand; Mr. Howe also suffers from dementia and has not or cannot speak of his symptoms or treatment first-hand.)

After his stem-cell treatment, the doctor told us it was kind of an awakening of the body, his son, Marty Howe, told The Canadian Press. They call it the miracle of stem cells and it was nothing less than a miracle.

Mr. Howes Lazarus-like recovery makes for a great tug-at-the-heartstrings narrative for a man whose career has been the embodiment of perseverance and longevity. But if you step back a moment and examine the science, all sorts of alarm bells should go off.

Stem cells, which were discovered in the early 1960s, have the remarkable potential to develop into many different cells, at least in the embryonic stage. They also serve as the bodys internal repair system.

The notion that spinal cords and limbs and heart muscle and brain cells could be regenerated holds a magical appeal.

But, so far, stem-cell therapies have been used effectively to treat only a small number of blood disorders, such as leukemia. (Canada has a public bank that collects stem cells from umbilical-cord blood and a program to match stem-cell donors with needy patients.)

Stem cells also show promise in the treatment of conditions such as spinal-cord injuries, Parkinsons and multiple sclerosis, but those hopes have not yet moved from the realm of science-fiction into clinical medicine.

Read this article:
The stem-cell miracle is anecdotal

To Read More: The stem-cell miracle is anecdotal
categoriaSpinal Cord Stem Cells commentoComments Off on The stem-cell miracle is anecdotal | dataFebruary 10th, 2015
Read All

NIH Grant Will Help Understanding How Connections Rewire After Spinal Cord Injury

By Sykes24Tracey

Contact Information

Available for logged-in reporters only

By Beth Miller

Newswise Restoring function after spinal cord injury, which damages the connections that carry messages from the brain to the body and back, depends on forming new connections between the surviving nerve cells. While there are some delicate surgical techniques that reconnect the nerves, researchers are also looking at ways to restore the connections themselves at a cellular level.

With a five-year, nearly $1.7 million grant from the National Institutes of Health, Shelly Sakiyama-Elbert, PhD, professor of biomedical engineering in the School of Engineering & Applied Science at Washington University in St. Louis, is using novel methods to take a closer look at how these nerve cells grow and make new connections to reroute signals between the brain and the body that could restore function and movement in people with these debilitating injuries.

Sakiyama-Elbert, also associate chair of the Department of Biomedical Engineering, is widely known for her groundbreaking work in tissue engineering techniques. Her research expertly blends biology, chemistry and biomedical engineering to focus on developing biomaterials for drug delivery and cell transplantation to treat peripheral nerve and spinal cord injury.

In the new research, funded by the National Institute of Neurological Disorders and Stroke, she and her lab members want to understand how these nerve cells, or neurons, form connections and rewire after a spinal cord injury, looking closely at which particular cells, or interneurons, are forming these new connections.

There have been a lot of studies where researchers have shown recovery in partial spinal cord injury models, but no one understands at a cellular level which cells are responsible for rewiring or forming the new connections, Sakiyama-Elbert said. If we want to make regeneration more efficient and potentially translatable to humans where it is more challenging, we need to understand whats actually going on at a cellular level.

Once we determine which cells are making connections, we can determine how to transplant more of those cells or try to stimulate tissue-specific stem cells to make those types of neurons and form these types of connections, Sakiyama-Elbert said.

While much is known about motor neurons, less is known about these interneurons in culture or how to direct their connection with other neurons. Sakiyama-Elbert is developing new tools that will allow her to isolate very pure groups of different types of interneurons and then study what encourages them to grow and form new connections.

See the original post:
NIH Grant Will Help Understanding How Connections Rewire After Spinal Cord Injury

To Read More: NIH Grant Will Help Understanding How Connections Rewire After Spinal Cord Injury
categoriaSpinal Cord Stem Cells commentoComments Off on NIH Grant Will Help Understanding How Connections Rewire After Spinal Cord Injury | dataFebruary 10th, 2015
Read All

Help us `break through': scientists

By NEVAGiles23

Exciting research . . . Spinal Cord Society research director Dr Jim Faed demonstrates a Terumo sterile tube welder, in use in Dunedin Hospital. PHOTO: BRENDA HARWOOD

A Dunedin-based research team, working on a cure for type 1 diabetes, is reaching out for support.

The Spinal Cord Society of New Zealand research team, based at the University of Otago's Centre for Innovation, has been developing methods for using patients' stem cells to ''turn off'' the auto-immune response that causes type 1 diabetes.

Research director Dr Jim Faed said the work built on the research of a

Chinese-American group, which was able to show a way to cure type 1 diabetes using a patient's own stem cells to reset the body's immune system, helping the return of insulin production.

''That work now needs repeating and improving, to speed up the recovery process,'' Dr Faed said.

Type 1 diabetes destroys the body's insulin-producing cells as an auto-immune response to a trigger, such as an infection, in people with an inherited tendency. These people, who number about 25,000 in New Zealand, ''need some help to flick the switch and turn that auto-immune response off'', he said.

''We feel we have the right strategy for that. What we need now is to buy the equipment to progress from just lab-scale work to producing cells that are safe to use in people [in clinical trials].''

The research was ''on the verge of a real breakthrough'' and could be one of the most exciting scientific advances since antibiotics, he said.

If a cure for type 1 diabetes could be established, it could open the way for researchers to look into other auto-immune diseases, such as rheumatoid arthritis, he said.

See the rest here:
Help us `break through': scientists

To Read More: Help us `break through': scientists
categoriaSpinal Cord Stem Cells commentoComments Off on Help us `break through': scientists | dataFebruary 7th, 2015
Read All

Laying a foundation for treating ALS, spinal cord injury

By NEVAGiles23

Feb. 2, 2015

Su-Chun Zhang (center), a UW professor of neuroscience, talks with staff in his lab as they prepare stem cell cultures in March 2013.Zhangs new research may lay the foundation for treating neurodegenerative diseases like ALS.

Photo: Jeff Miller

This story starts in 1955, upon the death of Albert Einstein, when the pathologist charged with performing the famous scientists autopsy stole his brain.

Fast forward to the 1980s when a University of California, Berkeley scientist was studying parts of the stolen goods involved in complex thinking and discovered that the father of relativity had more of certain types of cells, called astrocytes, than other human brains studied.

Today, another 30 years later, scientists still dont have a solid grasp on everything these cells do in the human nervous system, largely because theyre difficult to study. But Su-Chun Zhang, a professor of neuroscience and neurology at the University of Wisconsin-Madison Waisman Center, and his research team have published a unique model for learning more about the role of human astrocytes in the Journal of Clinical Investigation today.

Su-Chun Zhang

The findings may lay a foundation for the treatment of a number of neurodegenerative diseases, including ALS (amyotrophic lateral sclerosis) and debilitating spinal cord injuries.

See the original post here:
Laying a foundation for treating ALS, spinal cord injury

To Read More: Laying a foundation for treating ALS, spinal cord injury
categoriaSpinal Cord Stem Cells commentoComments Off on Laying a foundation for treating ALS, spinal cord injury | dataFebruary 5th, 2015
Read All

Topeka Zoo's bear gets CT scan, stem cell therapy

By daniellenierenberg

Peek, a 20-year-old American Black Bear living at the Topeka Zoo, is undergoing treatment, including a CT scan, for a back condition, zoo director Brendan Wiley said Monday.

Peek came out of her den two weeks ago and her keeper noticed the bears hind legs were wobbly. Peek was given pain medication. However, the condition quickly worsened, Wiley said in a news release.

Within the next seven days, Peek continued to lose control of her rear legs.

One of the unique things about this scenario is that Peek hasnt acted like anything is hurting her, said Shanna Simpson, animal care supervisor. It is like the front half of her body can no longer communicate with the back half.

Peeks illness required the use of a CT scan, which used equipment the zoo doesnt have, Wiley said.

Zoo veterinarian Shirley Llizo brought in Larry Snyder and Travis Gratton, of University Bird and Small Animal Hospital, to help harvest fat cells from Peek. This would allow the fat cells to be converted to stem cells to be injected.

Peek was tranquilized Jan. 22 and transported to the zoos hospital so the fat cells could be harvested. After the harvest, Peek was transported to St. Francis Health Center, where she was met by Brent Wilkins, director of imaging services, and his staff.

After confirming Peek would fit in the 72-centimeter CT scanner, Wilkins was able to do the scan, and radiologist James Owen found an area of Peeks spine was experiencing spinal stenosis. This is a narrowing of the spinal column that causes pressure on the spinal cord, according to zoo officials.

Our first priority is human patient safety and access, Wilkins said. We work with the Topeka Zoo to accommodate animals that need CT scans in off hours when one of our CT scanners is available. We made sure the bear was separated from any other patients and performed a high-level decontamination and cleaning of the area, called a terminal cleaning, after the bears visit. Were very happy to help our friends at the zoo in keeping the animals healthy.

After the CT scan, Peek went back to the zoo, where she received the stem cell therapy. Stem cell therapy treatment in bears is new technology, Wiley said.

Follow this link:
Topeka Zoo's bear gets CT scan, stem cell therapy

To Read More: Topeka Zoo's bear gets CT scan, stem cell therapy
categoriaSpinal Cord Stem Cells commentoComments Off on Topeka Zoo's bear gets CT scan, stem cell therapy | dataFebruary 2nd, 2015
Read All

Topeka Zoo Black Bear Undergoes Stem Cell Therapy

By JoanneRUSSELL25

Peek the American black bear (Courtesy: Topeka Zoo)

Peek the bear is shown undergoing a CT scan at St. Francis Health Center in this photo from the Topeka Zoo.

St. Francis Health Center staff watch as a CT scan is performed on Peek the black bear. (Courtesy: Topeka Zoo)

TOPEKA, Kan. (WIBW) - An American black bear at the Topeka Zoo may be the first bear ever to undergo stem cell treatment for a spinal problem.

Zoo Director Brendan Wiley says Peek, who is 20-years old, started losing control of her hind legs two weeks ago. The condition worsened and zoo staff says pain medication was not having any impact on the situation.

One of the unique things about this scenario is that Peek hasnt acted like anything is hurting her. It is like the front half of her body can no longer communicate with the back half, said Animal Care Supervisor Shanna Simpson.

The zoo worked with St. Francis Health Center to perform a CT scan. Peek was tranquilized and transported to St. Francis' imaging facilities.

"Our first priority is human patient safety and access," says Brent Wilkins, director of Imaging Services at St. Francis Health. "We work with the Topeka Zoo to accommodate animals that need CT scans in off hours when one of our CT scanners is available. We made sure the bear was separated from any other patients and performed a high-level decontamination and cleaning of the area, called a terminal cleaning, after the bears visit."

The scan revealed an area of Peek's spine with spinal stenosis, a narrowing of her spinal column, causing pressure on the spinal cord.

In anticipation of future treatment, Dr. Larry Snyder and Dr. Travis Gratton, veterinarians from Topeka's University Small Animal Hospital were contacted. Before Peek was transported for the CT scan, the two harvested fat cells, which they converted to stem cells to inject back into her. The theory behind the treatment is that the stem cells can stimulate damaged area to repair and heal itself.

Visit link:
Topeka Zoo Black Bear Undergoes Stem Cell Therapy

To Read More: Topeka Zoo Black Bear Undergoes Stem Cell Therapy
categoriaSpinal Cord Stem Cells commentoComments Off on Topeka Zoo Black Bear Undergoes Stem Cell Therapy | dataFebruary 2nd, 2015
Read All

Latest Sports SEE MORE

By JoanneRUSSELL25

TORONTO - Gordie Howe's son says the hockey legend's stroke symptoms have improved since his treatment with stem cells at a Mexican clinic in early December and he wants him to repeat the procedure.

But regenerative medicine experts say there's no scientific evidence such therapies work, and in some cases they can be seriously harmful or even deadly.

The 86-year-old Howe suffered two disabling strokes late last year. In December, the family took him to a Tijuana clinic where he received stem cell injections as part of a clinical trial being run under a licensing agreement with Stemedica Cell Technologies of San Diego, Calif.

The experimental treatment involved injecting neural stem cells into Howe's spinal canal, along with intravenous infusions of mesenchymal stem cells, which are found in bone marrow, fat and umbilical cord blood.

Marty Howe said his father can walk again, his speech is improving and he is regaining some of the weight he lost following the strokes.

"After his stem cell treatment, the doctor told us it was kind of an awakening of the body, and it was all that," he told The Canadian Press while in Calgary for a hockey promotion event Tuesday. "They call it the miracle of stem cells and it was nothing less than a miracle."

However, experts in the field question whether stem cells are responsible for Howe's improvement and caution that most so-called stem cell therapies have not gone through rigorous scientific trials, nor have they been approved as treatments by Health Canada or the U.S. Food and Drug Administration.

Mick Bhatia, director of McMaster University's Stem Cell and Cancer Research Institute, said there are many unknowns in Howe's case, such as how many stem cells were administered, were tests done to see whether they migrated to the targeted area of the body, and did they take up residence where they might have some effect or simply disappear?

"Is this a transient effect, or is it really a perceived or somewhat of a placebo effect and is there something really happening? Scientifically and biologically that is important," Bhatia said Wednesday from Hamilton.

And because Howe received adult stem cells produced from donor cells, he may have needed to take drugs to prevent an immune reaction as well as anti-inflammatory medications, he said.

Read this article:
Latest Sports SEE MORE

To Read More: Latest Sports SEE MORE
categoriaSpinal Cord Stem Cells commentoComments Off on Latest Sports SEE MORE | dataJanuary 30th, 2015
Read All

Growing Bone in Space: UCLA and CASIS Announce Pioneering Collaborative Study to Test Therapy for Bone Loss on the …

By raymumme

Contact Information

Available for logged-in reporters only

Newswise UCLA has received grant funding from the Center for the Advancement of Science in Space (CASIS) to lead a research mission that will send rodents to the International Space Station (ISS). The mission will allow astronauts on the space station and scientists on Earth to test a potential new therapy for accelerating bone growth in humans.

The research will be led by Dr. Chia Soo, a UCLA professor of plastic and reconstructive surgery and orthopaedic surgery, who is member of the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research. Soo is also research director for UCLA Operation Mend, which provides medical care for wounded warriors. The study will test the ability of a bone-forming molecule called NELL-1 to direct stem cells to induce bone formation and prevent bone degeneration.

Other members of the UCLA research team are Dr. Kang Ting, a professor in dentistry who discovered NELL-1 and is leading efforts to translate NELL-1 therapy to humans, Dr. Ben Wu, a professor of bioengineering who modified the NELL-1 molecule to make useful for treating osteoporosis, and Dr. Jin Hee Kwak, an assistant professor of dentistry who will manage daily operations.

Based on results of previous studies supported by the NIH, the UCLA-ISS team will begin ground operations in early 2015. They hope that the study will provide new insights into the prevention of bone loss or osteoporosis as well as the regeneration of massive bone defects that can occur in wounded military personnel. Osteoporosis is a significant public health problem commonly associated with skeletal disuse conditions such as immobilization, stroke, cerebral palsy, muscular dystrophy, spinal cord injury and jaw resorption after tooth loss.

NELL-1 holds tremendous hope, not only for preventing bone loss but one day even restoring healthy bone, Ting said. For patients who are bed-bound and suffering from bone loss, it could be life-changing.

The UCLA team will oversee the ground operations of the mission in tandem with a flight operation coordinated by CASIS and NASA.

A group of 40 rodents will be sent to the International Space Station U.S. National Laboratory onboard the SpaceX Dragon capsule, where they will live for two months in a microgravity environment during the first ever test of NELL-1 in space, said Dr. Julie Robinson, NASAs chief scientist for the International Space Station program at the Johnson Space Center.

CASIS is proud to work alongside UCLA in an effort to promote the station as a viable platform for bone loss inquiry, said Warren Bates, director of portfolio management for CASIS. Through investigations like this, we hope to make profound discoveries and enable the development of therapies to counteract bone loss ailments common in humans.

More:
Growing Bone in Space: UCLA and CASIS Announce Pioneering Collaborative Study to Test Therapy for Bone Loss on the ...

To Read More: Growing Bone in Space: UCLA and CASIS Announce Pioneering Collaborative Study to Test Therapy for Bone Loss on the …
categoriaSpinal Cord Stem Cells commentoComments Off on Growing Bone in Space: UCLA and CASIS Announce Pioneering Collaborative Study to Test Therapy for Bone Loss on the … | dataJanuary 22nd, 2015
Read All

Growing bone in space: Study to test therapy for bone loss on the International Space Station

By Dr. Matthew Watson

UCLA has received grant funding from the Center for the Advancement of Science in Space (CASIS) to lead a research mission that will send rodents to the International Space Station (ISS). The mission will allow astronauts on the space station and scientists on Earth to test a potential new therapy for accelerating bone growth in humans.

The research will be led by Dr. Chia Soo, a UCLA professor of plastic and reconstructive surgery and orthopaedic surgery, who is member of the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research. Soo is also research director for UCLA Operation Mend, which provides medical care for wounded warriors. The study will test the ability of a bone-forming molecule called NELL-1 to direct stem cells to induce bone formation and prevent bone degeneration.

Other members of the UCLA research team are Dr. Kang Ting, a professor in dentistry who discovered NELL-1 and is leading efforts to translate NELL-1 therapy to humans, Dr. Ben Wu, a professor of bioengineering who modified the NELL-1 molecule to make useful for treating osteoporosis, and Dr. Jin Hee Kwak, an assistant professor of dentistry who will manage daily operations.

Based on results of previous studies supported by the NIH, the UCLA-ISS team will begin ground operations in early 2015. They hope that the study will provide new insights into the prevention of bone loss or osteoporosis as well as the regeneration of massive bone defects that can occur in wounded military personnel. Osteoporosis is a significant public health problem commonly associated with "skeletal disuse" conditions such as immobilization, stroke, cerebral palsy, muscular dystrophy, spinal cord injury and jaw resorption after tooth loss.

"NELL-1 holds tremendous hope, not only for preventing bone loss but one day even restoring healthy bone," Ting said. "For patients who are bed-bound and suffering from bone loss, it could be life-changing."

The UCLA team will oversee the ground operations of the mission in tandem with a flight operation coordinated by CASIS and NASA.

"A group of 40 rodents will be sent to the International Space Station U.S. National Laboratory onboard the SpaceX Dragon capsule, where they will live for two months in a microgravity environment during the first ever test of NELL-1 in space," said Dr. Julie Robinson, NASA's chief scientist for the International Space Station program at the Johnson Space Center.

"CASIS is proud to work alongside UCLA in an effort to promote the station as a viable platform for bone loss inquiry," said Warren Bates, director of portfolio management for CASIS. "Through investigations like this, we hope to make profound discoveries and enable the development of therapies to counteract bone loss ailments common in humans."

Prolonged space flights induce extreme changes in bone and organ systems that cannot be replicated on Earth.

"Besides testing the limits of NELL-1's robust bone-producing effects, this mission will provide new insights about bone biology and could uncover important clues for curing diseases such as osteoporosis," Wu said.

Excerpt from:
Growing bone in space: Study to test therapy for bone loss on the International Space Station

To Read More: Growing bone in space: Study to test therapy for bone loss on the International Space Station
categoriaSpinal Cord Stem Cells commentoComments Off on Growing bone in space: Study to test therapy for bone loss on the International Space Station | dataJanuary 22nd, 2015
Read All

Optimism on stem cells, ahead of reality

By NEVAGiles23

Illustration: John Spooner

One of the joys for those who work in the health services area is bringing relief to patients from chronic conditions.

And as the level of desperation rises, some patients will pay over the odds for treatment, pursing unproven options in the hope of some improvement in their condition. And where there is unmet demand, supply soon steps in to fill the gap.

Last year, there was intense global media attention on stem cell treatments following a paralysed patient in Poland who walked after a cell transplant, a project involving Polish and UK researchers.

Stem cells may well offer significant potential promise for patients in a range of treatments. But to date, much of that optimism has run well ahead of the reality.

Advertisement

Clinical trials to ensure the efficacy and safety of medical treatments is slow and laborious, taking several years, at the very least, to verify the merits of a treatment before then seeking approvals to offer the treatment to patients.

But for those searching for a stem cell treatment in Australia, there is a loophole: a referral from your doctor is often all it takes to get access, even though there is scant proof that the patient benefits.

Clearly, some patients so badly want to believe the treatment is good for them that this will override the necessary caution.

Much of this activity is taking place in private clinics, although sharemarket investors, too, have stem cell groups they can invest in.

The rest is here:
Optimism on stem cells, ahead of reality

To Read More: Optimism on stem cells, ahead of reality
categoriaSpinal Cord Stem Cells commentoComments Off on Optimism on stem cells, ahead of reality | dataJanuary 19th, 2015
Read All

Quadriplegic veteran to receive stem cell treatments

By raymumme

LAWTON, Okla._A stem cell surgery procedure, not yet approved by the FDA, could give a local paralyzed veteran the use of his arms again.

Two years ago, retired Senior Airman Ted "TJ" Williams was left as a quadriplegic when his Humvee rolled over in a freak accident while on duty in Montana. He spent several weeks in a coma.

Now, he and his wife have found a surgery that may improve his physical abilities. They're dipping into their funds to pay for the procedure, since it's not covered by insurance, but they've set up a GoFundMe account to raise $7,500 to cover travel expenses out of the country to get the treatment.

Williams is able to move his left wrist and arm more, and has even gained more core control, thanks to therapy. But, he still needs his wife's help for simple tasks like getting dressed and using the restroom.

Williams sits next to his wife in his wheelchair and watches TV. Years ago, he would've been running outside, but one accident changed everything.

"I just remember leaving base and then waking up 2 or 3 weeks later, wondering where am I. I couldn't move anything. It was just shocking seeing my family around my bed. I was just like, Wow. What's going on,'" recalled Williams.

On November 29, 2012, Williams was on duty with his security forces team. He was in the back seat when his Humvee suddenly swerved to miss a herd of deer, rolling several times. He was ejected from the vehicle and was later found 60 feet away.

Williams was rushed to the hospital. When he woke up from the coma, doctors told him he had broken the vertebrae in his neck and lost function from the chest down.

"I was really upset and scared. Me and my wife are young. We haven't had children yet or anything. It scared me not knowing what the future was to hold," said Williams.

He was sent to a VA hospital in San Antonio for in-patient rehab. Once he was finished, he met a physical trainer in who specializes in exercises for those who are suffering from spinal cord and other neurological injuries, which was just what he needed.

Read the original here:
Quadriplegic veteran to receive stem cell treatments

To Read More: Quadriplegic veteran to receive stem cell treatments
categoriaSpinal Cord Stem Cells commentoComments Off on Quadriplegic veteran to receive stem cell treatments | dataJanuary 9th, 2015
Read All

Stem Cell Treatment for Spinal Cord Injuries SCI Therapy

By JoanneRUSSELL25

Stem Cell Therapy for Spinal Cord Injuries

SCI or Spinal cord injuries usually occur with a sudden & traumatic injury or blow to the spinal cord that dislocates or fractures the vertebrae. The damage of SCI begins at the point of impact when the displaced disc material,bone fragments, or ligaments either bruise or tear the spinal cord tissue. Most SCI injuries do not sever the spinal cord completely. The SCI is likely to cause minor compressions or fractures of the vertebrae, that crush and destroy the signal carriers called axons. Axons carry electric signals up and down our spinal cords and act as a messenger between our brains and the rest of our bodies. SCI generally cause damage to some,many, or in some cases all the axons.

Some SCI victims can accomplish a complete recovery. Others however,will be left with complete paralysis.SCI are classified in two categories, complete or incomplete. A complete SCI is indicated by the total lack of all sensory and motor functions below the area of injury. An incomplete SCI means that the patient has the ability to convey some messages to &/or from the brain but often in a limited capacity. Most People with incomplete SCI injuries can retain minor sensory and/or motor function below the point of injury. Those who survive SCI will most likely suffer for medical complications like bowel and bladder dysfunction and often have chronic pain. Partial SCI patients also have an increased susceptibility to heart & respiratory problems. Successful recovery usingstem cells to treatspinal cord Injuries depends largely on how well systematic failures and chronic conditions are handled day-to-day.

Cell Therapy for injured Spinal Cordsfocuses on regeneration of the connections between your brain and body that have been broken or severely hampered. Stem cellscan help regain motor functions and regain bowel and bladder dysfunction, regain loss of sensations, help minimize chronic pain,cramps and its associated depression. Conventional treatments for SCI today are focused mainly on providing rehabilitation and the prevention of secondary damage. Recent advancements in spinal cord cell treatments offer hope for thousands of victims around the world who are often left with little or no hope for recovery. Stemcell treatments for spinal cord injury can help support and promote the bodies natural regeneration cycle by stimulating the rapid repair of damaged cells and tissue. The regenerative treatmentgoes well beyond the traditional approach of symptomatic treatments and can help you improve and regain some of the previously lost or impaired physical functions. Cell death normally occurs when our cells are injured. These dead cells are surrounded by both damaged and healthy cells. Stem cells stimulate the healing of these injured cells via the secretion of cytokines and other cells such as NGF or nerve growth factors to trigger the body into self-healing mode.

Thai Medical offers a uniquespinal cordtreatment protocol usinga multi-pronged approach. First, adult stem cells are injected directly into the damaged areas of the spine via the accuracy and precision guidance of a CT-guided intra-spinal injection. The treatment is then supplemented even further with another injection using an LP or lumbar puncture and/or IV drip injections.

CT-guided intra-spinal stem cell treatments are considered the gold standard in the field of Stem Cell treatment for spinal cord injury and spinal injury stem cell research for Stem Cell Treatments in Thailand. The precision of CT guidance allows the neurosurgeon to precisely aim the stem cells inside the healthy spinal cord tissues directly adjacent to the injury and lesions. The CT-guided intra-spinal stem cell treatments avoids the requirements of open spine surgeries of yesteryear. CT-guided intra-spinal stem cell treatments also avoid the risks, pain and subsequent healing time associated with cell treatment for SCI (spinal cord injury.)

The objectives of the enrichedcell treatments for spinal cord injuries is to help repair the injured areas on the cellular level near the point of impacts and lesions. The resulting therapy will generally lead to improved quality of life and improved symptoms primarily in physical function,movements and abilities. The majority of patients who are accepted into the program have show dramatic improvements usually after the first or second treatments and continue to improve and regenerate 6 months to a year after treatment. The results are permanent barring new injuries.

View original post here:
Stem Cell Treatment for Spinal Cord Injuries SCI Therapy

To Read More: Stem Cell Treatment for Spinal Cord Injuries SCI Therapy
categoriaSpinal Cord Stem Cells commentoComments Off on Stem Cell Treatment for Spinal Cord Injuries SCI Therapy | dataJanuary 6th, 2015
Read All

Stopping Multiple Sclerosis with Stem Cell Transplants

By LizaAVILA

Washington, DC - infoZine - Three-year outcomes from an ongoing clinical trial suggest that high-dose immunosuppressive therapy followed by transplantation of a person's own blood-forming stem cells may induce sustained remission in some people with relapsing-remitting multiple sclerosis (RRMS). RRMS is the most common form of MS, a progressive autoimmune disease in which the immune system attacks the brain and spinal cord.

Three years after the treatment, called high-dose immunosuppressive therapy and autologous hematopoietic cell transplant or HDIT/HCT, nearly 80 percent of trial participants had survived without experiencing an increase in disability, a relapse of MS symptoms or new brain lesions. Investigators observed few serious early complications or unexpected side effects, although many participants experienced expected side effects of high-dose immunosuppression, including infections and gastrointestinal problems.

Scientists estimate that MS affects more than 2.3 million people worldwide. Symptoms can vary widely and may include disturbances in speech, vision and movement. Most people with MS are diagnosed with RRMS, which is characterized by periods of relapse or flare up of symptoms followed by periods of recovery or remission. Over years, the disease can worsen and shift to a more progressive form.

In the study, researchers tested the effectiveness of HDIT/HCT in 25 volunteers with RRMS who had relapsed and experienced worsened neurological disability while taking standard medications. Doctors collected blood-forming stem cells from participants and then gave them high-dose chemotherapy to destroy their immune systems. The doctors returned the stem cells to the participants to rebuild and reset their immune systems.

"Notably, participants did not receive any MS drugs after transplant, yet most remained in remission after three years," said Daniel Rotrosen, M.D., director of NIAID's Division of Allergy, Immunology and Transplantation. "In contrast, other studies have shown that the best alternative MS treatments induce much shorter remissions and require long-term use of immunosuppressive drugs that can cause serious side effects."

The study researchers plan to follow participants for a total of five years, recording all side effects associated with the treatment. Final results from this and similar studies promise to help inform the design of larger trials to further evaluate HDIT/HCT in people with MS.

The trial is funded by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, and conducted by the NIAID-funded Immune Tolerance Network (ITN).

The three-year findings are published in the Dec. 29, 2014, online issue of JAMA Neurology.

Related Link Immune Tolerance Network (ITN)

The rest is here:
Stopping Multiple Sclerosis with Stem Cell Transplants

To Read More: Stopping Multiple Sclerosis with Stem Cell Transplants
categoriaSpinal Cord Stem Cells commentoComments Off on Stopping Multiple Sclerosis with Stem Cell Transplants | dataDecember 31st, 2014
Read All

News & Events

By JoanneRUSSELL25

NIH-funded study yields encouraging early results

Three-year outcomes from an ongoing clinical trial suggest that high-dose immunosuppressive therapy followed by transplantation of a person's own blood-forming stem cells may induce sustained remission in some people with relapsing-remitting multiple sclerosis (RRMS). RRMS is the most common form of MS, a progressive autoimmune disease in which the immune system attacks the brain and spinal cord. The trial is funded by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, and conducted by the NIAID-funded Immune Tolerance Network (ITN) .

Three years after the treatment, called high-dose immunosuppressive therapy and autologous hematopoietic cell transplant or HDIT/HCT, nearly 80 percent of trial participants had survived without experiencing an increase in disability, a relapse of MS symptoms or new brain lesions. Investigators observed few serious early complications or unexpected side effects, although many participants experienced expected side effects of high-dose immunosuppression, including infections and gastrointestinal problems. The three-year findings are published in the Dec. 29, 2014, online issue of JAMA Neurology.

These promising results support the need for future studies to further evaluate the benefits and risks of HDIT/HCT and directly compare this treatment strategy to current MS therapies, said NIAID Director Anthony S. Fauci, M.D. If the findings from this study are confirmed, HDIT/HCT may become a potential therapeutic option for people with this often-debilitating disease, particularly those who have not been helped by standard treatments.

Scientists estimate that MS affects more than 2.3 million people worldwide. Symptoms can vary widely and may include disturbances in speech, vision and movement. Most people with MS are diagnosed with RRMS, which is characterized by periods of relapse or flare up of symptoms followed by periods of recovery or remission. Over years, the disease can worsen and shift to a more progressive form.

In the study, researchers tested the effectiveness of HDIT/HCT in 25 volunteers with RRMS who had relapsed and experienced worsened neurological disability while taking standard medications. Doctors collected blood-forming stem cells from participants and then gave them high-dose chemotherapy to destroy their immune systems. The doctors returned the stem cells to the participants to rebuild and reset their immune systems.

Notably, participants did not receive any MS drugs after transplant, yet most remained in remission after three years, said Daniel Rotrosen, M.D., director of NIAIDs Division of Allergy, Immunology and Transplantation. In contrast, other studies have shown that the best alternative MS treatments induce much shorter remissions and require long-term use of immunosuppressive drugs that can cause serious side effects.

The study researchers plan to follow participants for a total of five years, recording all side effects associated with the treatment. Final results from this and similar studies promise to help inform the design of larger trials to further evaluate HDIT/HCT in people with MS.

The work was sponsored by NIAID, NIH, and conducted by the ITN (contract number N01 AI015416) and NIAID-funded statistical and clinical coordinating centers (contract numbers HHSN272200800029C and HHSN272200900057C). The ClinicalTrials.gov identifier for the study High-Dose Immunosuppression and Autologous Transplantation for Multiple Sclerosis (HALT-MS) is NCT00288626.

NIAID conducts and supports research at NIH, throughout the United States, and worldwide to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at http://www.niaid.nih.gov.

See the article here:
News & Events

To Read More: News & Events
categoriaSpinal Cord Stem Cells commentoComments Off on News & Events | dataDecember 30th, 2014
Read All

Spinal cord injury and stem cell research; find out the …

By daniellenierenberg

Spinal cord injuries are devastating, leaving the person injured facing a life time of challenges, and placing a huge strain on their family and loved ones who help care for them.

The numbers affected are not small. More than a quarter of a million Americans are living with spinal cord injuries and there are more than 11,000 new cases each year.

Its not just a devastating injury, its also an expensive one. According to the National Spinal Cord Injury Statistical Center it can cost more than $775,000 to care for a patient in the first year after injury, and the estimated lifetime costs due to spinal cord injury can be as high as $3 million.

Right now there is no cure, and treatment options are very limited. We have heard for several years now about stem cell research aimed at helping people with spinal cord injuries, but where is that research and how close are we to testing the most promising approaches in people?

Thats going to be the focus of a Google Hangout on Spinal Cord Injury and Stem Cell Research that we are hosting tomorrow, Tuesday, November 18 from noon till 1pm PST.

Well be looking at the latest stem cell-based treatments for spinal cord injury including work being done by Asterias Biotherapeutics, which was recently given approval by the Food and Drug Administration (FDA) to start a clinical trial for spinal cord injury. We are giving Asterias $14.3 million to carry out that trial and you can read more about that work here.

Were fortunate in having three great guests for the Hangout: Jane Lebkowski, Ph.D., the President of research and development at Asterias; Roman Reed, a patient advocate and tireless champion of stem cell research and the founder of the Roman Reed Foundation; and Kevin Whittlesey, Ph.D., a CIRM science officer, who will discuss other CIRM-funded research that aims to better understand spinal cord injury and to bring stem cell-based therapies to clinic trials.

You can find out how to join the Hangout by clicking on the event page link: http://bit.ly/1sh1Dsm

The event is free and interactive, so youll be able to ask questions of our experts. You dont need a Google+ account to watch the Hangout just visit the event page at the specified time. If you do have a G+ account, please RSVP at the event page (link shown above). Also, with the G+ account you can ask questions in the comment box on this event page. Otherwise, you can tweet questions using #AskCIRMSCI or email us at info@cirm.ca.gov.

We look forward to seeing you there!

View original post here:
Spinal cord injury and stem cell research; find out the ...

To Read More: Spinal cord injury and stem cell research; find out the …
categoriaSpinal Cord Stem Cells commentoComments Off on Spinal cord injury and stem cell research; find out the … | dataDecember 29th, 2014
Read All

Neural stem cell transplantation for chronic cervical …

By LizaAVILA

Public Abstract:

1.3 million Americans suffer chronically from spinal cord injuries (SCI); each year ~15,000 individuals sustain a new injury. For California, this means nearly 147,000 individuals are living with a SCI which can leave otherwise healthy individuals with severe deficits in movement, sensation, and autonomic function. Recovery after SCI is often limited, even after aggressive emergency treatment with steroids and surgery, followed by rehabilitation. The need to develop new treatments for SCI is pressing. We believe that stem cell therapies could provide significant functional recovery, improve quality of life, and reduce the cost of care for SCI patients. The goal of this Disease Team is to evaluate a novel cell therapy approach to SCI involving transplantation of human neural stem cells. In 2005, the FDA authorized the worlds first clinical testing of human neural stem cell transplantation into the CNS. Since then, our research team has successfully generated clinical grade human neural stem cells for use in three clinical trials, established a favorable safety profile that now approaches five years in some subjects and includes evidence of long-term donor-cell survival. Relevant to this Disease Team, the most recent study began testing human neural stem cells in thoracic spinal cord injury. The initial group of three patients with complete injury has been successfully transplanted. The Disease Team seeks to extend the research into cervical SCI. Neural cell transplantation holds tremendous promise for achieving spinal cord repair. In preliminary experiments, the investigators on this Disease Team showed that transplantation of both murine and human neural stem cells into animal models of SCI restore motor function. The human neural stem cells migrate extensively within the spinal cord from the injection site, promoting new myelin and synapse formation that lead to axonal repair and synaptic integrity. Given these promising proof-of-concept studies, we propose to manufacture clinical-grade human neural stem cells and execute the preclinical studies required to submit an IND application to the FDA that will support the first-in-human neural stem cell transplantation trial for cervical SCI. Our unmatched history of three successful regulatory submissions, extensive experience in manufacturing, preclinical and clinical studies of human neural stem cells for neurologic disorders, combined with an outstanding team of basic and clinical investigators with expertise in SCI, stem cell biology, and familiarity with all the steps of clinical translation, make us an extremely competitive applicant for CIRMs Disease Team awards. This award could ultimately lead to a successful FDA submission that will permit human testing of a new treatment approach for SCI; one that could potentially reverse paralysis and improve the patients quality of life.

Statement of Benefit to California:

Spinal cord injuries affect more than 147,000 Californians; the majority are injuries to the cervical level (neck region) of the spinal cord. SCI exacts a devastating toll not only on patients and families, but also results in a heavy economic impact on the state: the lifetime medical costs for an individual with a SCI can exceed $3.3 million, not including the loss of wages and productivity. In California this translates to roughly $86 billion in healthcare costs. Currently there are no approved therapies for chronic thoracic or cervical SCI. We hope to advance our innovative cell therapy approach to treat patients who suffer cervical SCI. For the past 9 years, the assembled team (encompassing academic experts in pre-clinical SCI models, complications due to SCI, rehabilitation and industry experts in manufacturing and delivery of purified neural stem cells), has developed the appropriate SCI models and assays to elucidate the therapeutic potential of human neural stem cells for SCI repair. Human neural stem cell transplantation holds the promise of creating a new treatment paradigm. These cells restored motor function in spinal cord injured animal models. Our therapeutic approach is based on the hypothesis that transplanted human neural stem cells mature into oligodendrocytes to remyelinate demyelinated axons, and/or form neurons to repair local spinal circuitry. Any therapy that can partially reverse some of the sequelae of SCI could substantially change the quality-of-life for patients by altering their dependence on assisted living, medical care and possibly restoring productive employment. Through CIRM, California has emerged as a worldwide leader in stem cell research and development. If successful, this project would further CIRMs mission and increase Californias prominence while providing SCI therapy to injured Californians. This Team already has an established track record in stem cell clinical translation. The success of this Disease Team application would also facilitate new job creation in highly specialized areas including cell manufacturing making California a unique training ground. In summary, the potential benefit to the state of California brought by a cervical spinal cord Disease Team project would be myriad. First, a novel therapy could improve the quality of life for SCI patients, restore some function, or reverse paralysis, providing an unmet medical need to SCI patients and reducing the high cost of health care. Moreover, this Disease Team would maintain Californias prominence in the stem cell field and in clinical translation of stem cell therapies, and finally, would create new jobs in stem cell technology and manufacturing areas to complement the states prominence in the biotech field.

More:
Neural stem cell transplantation for chronic cervical ...

To Read More: Neural stem cell transplantation for chronic cervical …
categoriaSpinal Cord Stem Cells commentoComments Off on Neural stem cell transplantation for chronic cervical … | dataDecember 24th, 2014
Read All

365 days: 2014 in science

By Dr. Matthew Watson

Keith Vanderlinde/NSF

The BICEP2 telescope at the South Pole may have spied gravitational waves or dust.

This year may be best remembered for how quickly scientific triumph morphed into disappointment, and even tragedy: breakthroughs in stem-cell research and cosmology were quickly discredited; commercial spaceflight faced major setbacks. Yet landing a probe on a comet, tracing humanitys origins and a concerted push to understand the brain provided reasons to celebrate.

Asian nations soared into space this year. The Indian Space Research Organisation put a mission into orbit around Mars the first agency to do so on its first try. Japan launched the Hayabusa-2 probe, its second robotic voyage to bring back samples from an asteroid. And even as Chinas lunar rover Yutu (or Jade Rabbit) stopped gathering data on the Moons surface, mission controllers took the next step in the countrys lunar exploration programme by sending a test probe around the Moon and back to Earth.

But for commercial spaceflight, it was a bad year. Virgin Galactics proposed tourism vehicle SpaceShipTwo disintegrated during a test flight in California and killed one of its pilots. That came just three days after a launch-pad explosion in Virginia destroyed an uncrewed private rocket intended to take supplies to the International Space Station. The accident wiped out a number of research experiments destined for the station, whose managers are trying to step up its scientific output. Problems on the station also delayed the deployment of a flock of tiny Earth-watching satellites, nicknamed Doves, which are part of the general trend of using miniature CubeSats to collect space data.

On a bigger scale, the European Space Agency successfully launched the first in its long-awaited series of Sentinel Earth-observing satellites.

After a decade-long trip, the European Space Agencys Rosetta spacecraft arrived at comet 67P/ChuryumovGerasimenko in August and settled into orbit. Three months later, Rosetta dropped the Philae probe to 67Ps surface, in the first-ever landing on a comet. Philae relayed science data for 64hours before losing power in its shadowy, rocky landing site.

Meanwhile, a flotilla of Mars spacecraft probes from India, the United States and Europe had an unplanned close brush with comet Siding Spring, which zipped past the red planet in October at a distance of 139,500kilometres about one-third of the distance from Earth to the Moon. NASA rovers continued to trundle along on the Martian surface: Curiosity finally reached the mountain that it has been heading towards since landing in 2012, and Opportunity passed 40kilometres on its odometer, breaking a Soviet lunar rovers distance record for off-Earth driving.

The search for planets beyond the Solar System also got a huge boost. In February, the team behind the now mostly defunct Kepler spacecraft announced that it had confirmed the existence of 715extrasolar planets, the largest-ever single haul. Kepler data also revealed the first known Earth-sized exoplanet in the habitable zone of its star, a step closer to the long-sought Earth twin.

Considering that they have been dead for around 30,000 years, Neanderthals had a hell of a year. Their DNA survives in non-African human genomes, thanks to ancient interbreeding, and two teams this year catalogued humans Neanderthal heritage. Scientists learnt more about the sexual encounters between Homo neanderthalensis and early humans after analysing the two oldest Homo sapiens genomes on record from men who lived in southwest Siberia 45,000years ago and in western Russia more than 36,000years ago, respectively. The DNA revealed hitherto-unknown human groups and more precise dates for when H.sapiens coupled with Neanderthals, which probably occurred in the Middle East between 50,000 and 60,000 years ago. Radiocarbon dating of dozens of archaeological sites in Europe, meanwhile, showed that humans and Neanderthals coexisted there for much longer than was once thought up to several thousand years in some places.

Read more from the original source:
365 days: 2014 in science

To Read More: 365 days: 2014 in science
categoriaSpinal Cord Stem Cells commentoComments Off on 365 days: 2014 in science | dataDecember 18th, 2014
Read All

Page 33«..1020..32333435..40..»


Copyright :: 2024