Page 13«..10..12131415..2030..»

Stem Cell Assay Market Highlights On Future Development 2025 – Science In Me

By daniellenierenberg

Stem Cell Assay Market: Snapshot

Stem cell assay refers to the procedure of measuring the potency of antineoplastic drugs, on the basis of their capability of retarding the growth of human tumor cells. The assay consists of qualitative or quantitative analysis or testing of affected tissues and tumors, wherein their toxicity, impurity, and other aspects are studied.

With the growing number of successful stem cell therapy treatment cases, the global market for stem cell assays will gain substantial momentum. A number of research and development projects are lending a hand to the growth of the market. For instance, the University of Washingtons Institute for Stem Cell and Regenerative Medicine (ISCRM) has attempted to manipulate stem cells to heal eye, kidney, and heart injuries. A number of diseases such as Alzheimers, spinal cord injury, Parkinsons, diabetes, stroke, retinal disease, cancer, rheumatoid arthritis, and neurological diseases can be successfully treated via stem cell therapy. Therefore, stem cell assays will exhibit growing demand.

Get Sample Copy of the Report @https://www.tmrresearch.com/sample/sample?flag=B&rep_id=40

Another key development in the stem cell assay market is the development of innovative stem cell therapies. In April 2017, for instance, the first participant in an innovative clinical trial at the University of Wisconsin School of Medicine and Public Health was successfully treated with stem cell therapy. CardiAMP, the investigational therapy, has been designed to direct a large dose of the patients own bone-marrow cells to the point of cardiac injury, stimulating the natural healing response of the body.

Newer areas of application in medicine are being explored constantly. Consequently, stem cell assays are likely to play a key role in the formulation of treatments of a number of diseases.

Global Stem Cell Assay Market: Overview

The increasing investment in research and development of novel therapeutics owing to the rising incidence of chronic diseases has led to immense growth in the global stem cell assay market. In the next couple of years, the market is expected to spawn into a multi-billion dollar industry as healthcare sector and governments around the world increase their research spending.

The report analyzes the prevalent opportunities for the markets growth and those that companies should capitalize in the near future to strengthen their position in the market. It presents insights into the growth drivers and lists down the major restraints. Additionally, the report gauges the effect of Porters five forces on the overall stem cell assay market.

Global Stem Cell Assay Market: Key Market Segments

For the purpose of the study, the report segments the global stem cell assay market based on various parameters. For instance, in terms of assay type, the market can be segmented into isolation and purification, viability, cell identification, differentiation, proliferation, apoptosis, and function. By kit, the market can be bifurcated into human embryonic stem cell kits and adult stem cell kits. Based on instruments, flow cytometer, cell imaging systems, automated cell counter, and micro electrode arrays could be the key market segments.

In terms of application, the market can be segmented into drug discovery and development, clinical research, and regenerative medicine and therapy. The growth witnessed across the aforementioned application segments will be influenced by the increasing incidence of chronic ailments which will translate into the rising demand for regenerative medicines. Finally, based on end users, research institutes and industry research constitute the key market segments.

The report includes a detailed assessment of the various factors influencing the markets expansion across its key segments. The ones holding the most lucrative prospects are analyzed, and the factors restraining its trajectory across key segments are also discussed at length.

Request TOC of the Report @https://www.tmrresearch.com/sample/sample?flag=T&rep_id=40

Global Stem Cell Assay Market: Regional Analysis

Regionally, the market is expected to witness heightened demand in the developed countries across Europe and North America. The increasing incidence of chronic ailments and the subsequently expanding patient population are the chief drivers of the stem cell assay market in North America. Besides this, the market is also expected to witness lucrative opportunities in Asia Pacific and Rest of the World.

Global Stem Cell Assay Market: Vendor Landscape

A major inclusion in the report is the detailed assessment of the markets vendor landscape. For the purpose of the study the report therefore profiles some of the leading players having influence on the overall market dynamics. It also conducts SWOT analysis to study the strengths and weaknesses of the companies profiled and identify threats and opportunities that these enterprises are forecast to witness over the course of the reports forecast period.

Some of the most prominent enterprises operating in the global stem cell assay market are Bio-Rad Laboratories, Inc (U.S.), Thermo Fisher Scientific Inc. (U.S.), GE Healthcare (U.K.), Hemogenix Inc. (U.S.), Promega Corporation (U.S.), Bio-Techne Corporation (U.S.), Merck KGaA (Germany), STEMCELL Technologies Inc. (CA), Cell Biolabs, Inc. (U.S.), and Cellular Dynamics International, Inc. (U.S.).

About TMR Research:

TMR Research is a premier provider of customized market research and consulting services to business entities keen on succeeding in todays supercharged economic climate. Armed with an experienced, dedicated, and dynamic team of analysts, we are redefining the way our clients conduct business by providing them with authoritative and trusted research studies in tune with the latest methodologies and market trends.

Visit link:
Stem Cell Assay Market Highlights On Future Development 2025 - Science In Me

To Read More: Stem Cell Assay Market Highlights On Future Development 2025 – Science In Me
categoriaSpinal Cord Stem Cells commentoComments Off on Stem Cell Assay Market Highlights On Future Development 2025 – Science In Me | dataApril 8th, 2020
Read All

Synaptic silencing of fast muscle is compensated by rewired innervation of slow muscle – Science Advances

By daniellenierenberg

/ AChR subunit KO zebrafish lines

We generated a subunit gene KO zebrafish (KO) using CRISPR-Cas9 (Fig. 1A) and an subunit gene KO zebrafish (KO) using transcription activatorlike effector nucleases (TALEN) (Fig. 1A). The KO zebrafish did not show obvious phenotypes during development and matured in a fashion indistinguishable from wild-type (WT) siblings (fig. S1). In contrast, KO fish generally failed to form swim bladders, and most of them died prematurely within 2 weeks after fertilization. However, a fraction of KO fish (approximately 25%) survived to adulthood. A double KO (DKO) line was generated by crossing KO and K lines. DKO larvae also failed to form swim bladders (Fig. 1B) and died within 2 weeks after fertilization.

(A) Schematic diagram of targeted genes. Arrowheads indicate targeted regions of genome editing. Each box and line indicates an exon and an intron, respectively. Alignment of genomic DNA sequences of WT and KO lines showed a 7base pair (bp) insertion in the AChR subunit gene chrng and a 1-bp insertion in the AChR subunit gene chrne. (B) Photograph showing WT and / DKO larva at 6 dpf. Notice the lack of swim bladder (arrowheads) in DKO. Scale bar, 1 mm. (C) Trunk regions of a WT larva (6 dpf) and a DKO larva (6 dpf) were stained with -BTX conjugated with Alexa Fluor 488 (green). In WT, AChRs were distributed in myoseptal regions (arrows) and in punctae in middle regions (arrowhead). DKO had -BTX signals only in myoseptal regions. Scale bars, 100 m.

We histologically analyzed the expression of AChRs in the trunk region of 6 days post-fertilization (dpf) larvae by using -bungarotoxin (-BTX) conjugated with Alexa Fluor 488, a toxin that specifically binds to the assembled AChR (Fig. 1C). AChR clusters in DKOs were observed only in boundary regions between body segments (Fig. 1C), where slow muscles form NMJs (16). We initially expected that AChRs in fast muscles of DKO larvae would convert to the slow muscletype AChRs, comprising only , , and subunits. This conversion of subunit composition would not cause a change in AChR distribution visualized by -BTX, because both types of AChRs bind to -BTX. However, -BTX signals were absent in fast muscles, which suggested that fast muscles could not express AChRs composed of , , and subunits.

To correlate the AChR expression pattern observed by the -BTX staining with the synaptic function, we analyzed synaptic activities of fast and slow muscles in the DKO line at 6 dpf. We recorded spontaneous synaptic currents from muscle cells using the whole-cell patch clamp technique (Fig. 2, A to C). Traces show miniature endplate currents (mEPCs) from muscles of WT or DKO larvae (Fig. 2A). Slow muscles in the DKO line exhibited mEPCs. The frequency (14.5 3.1 Hz in WT, 15.5 3.2 Hz in DKO) and the amplitude of slow muscle mEPCs (260.0 74.1 pA in WT, 491.7 105.2 pA in DKO) showed no differences between WT and DKO lines (Fig. 2, B and C). However, fast muscles in DKO failed to produce mEPCs. To confirm that the lack of mEPCs is caused by the absence of functional receptors, we recorded currents in muscles generated by puff application of ACh (Fig. 2D). While fast muscles in WT larvae showed ACh-induced currents (756.4 138.6 pA), those in DKO larvae failed to show any response (0 0 pA). These results, in conjunction with the -BTX staining (Fig. 1C), showed that fast muscles of DKO larvae do not express any AChRs and receive no synaptic input.

(A) mEPC traces from fast or slow muscles of WT and DKO larvae (6 dpf) by whole-cell patch-clamp recordings. Fast muscle cells in DKO failed to exhibit mEPCs. (B and C) Frequencies (B) and amplitudes (C) of mEPCs were plotted for each muscle (n = 8 cells). (D) Representative traces of voltage-clamped slow and fast muscles in DKO larvae in response to the application of 30 M ACh. Calibration: 1 s, 500 pA. Amplitudes of ACh-induced currents in slow (n = 7 cells) and fast muscles (n = 7 cells) are shown. Each dot represents a muscle cell. (E) Construct used for Ca2+ imaging. Top: The GCaMP7a coding sequence was fused to the promoter region of the -actin promoter pact. Bottom: Schematic illustration showing the experimental procedure. The gene construct was injected into eggs of DKO at the one cell stage. Ca2+ response was analyzed at 6 dpf. Representative traces showing the increase of F/F in a fast muscle (black line) and a slow muscle (red line) during spontaneous contractions. (F) Overexpression of the subunit fused with an EGFP (-EGFP) in WT (3 dpf). Top panels: -EGFPs were expressed under the control of a slow musclespecific promoter, psmyhc. EGFP signals (green), expressed in the superficial slow muscles, filled the cytoplasm and did not colocalize with -BTX (magenta) signals. Bottom panels: -EGFPs were expressed under the regulation of pact. In deeper layer fast muscles, the clusters of EGFP and -BTX colocalized (arrowheads). Scale bars, 50 m.

We performed in vivo Ca2+ imaging in the DKO larvae at 6 dpf to further support the result of synaptic current recordings. We designed a gene construct in which a pan-muscle promoter, -actin promoter, drives the expression of a Ca2+ indicator, GCaMP7a (17), and injected the construct into fertilized eggs (Fig. 2E). In DKOs, we recorded Ca2+ response associated with spontaneous locomotion activities, induced by the application of N-methyl-d-aspartate (50 M) (18). The results showed that slow muscle cells exhibited Ca2+ transients, while fast muscle cells did not generate any Ca2+ response.

Considering that fast muscles do not allow composition of , , and subunits, we next examined whether slow muscles conversely allow incorporation of subunits in the AChR pentamer, by overexpressing the subunit in slow muscles. We designed a gene construct that expressed an subunit fused with enhanced green fluorescent protein (-EGFP) under the regulation of a slow musclespecific promoter, psmyhc (19). We injected the construct into fertilized WT eggs and observed the expression of EGFP at 3 to 4 dpf. EGFP signals typically filled the cytoplasm of the slow muscle cells and never colocalized with -BTX signals (Fig. 2F). In a control experiment, in which -EGFP was driven by the pan-muscle promoter (-actin promoter), the -EGFP signals made clusters in fast muscles, colocalizing with -BTX signals in deeper layers of the trunk region where fast muscles form NMJs. Together, fast muscles and slow muscles express specific types of AChR, and the alternate composition of subunits is prohibited.

To examine how silencing of synapses in fast muscles affect locomotion, we next analyzed swimming of WT and DKO larvae at 6 dpf. We induced escape responses by gentle tactile stimuli. Locomotion was recorded with a high-speed camera, and we measured angles between head and tail trajectories throughout each escape response (Fig. 3A and movie S1). WT fish turned their heads 120 to 140 in the initial stage of escape. The typical startle response of teleosts generally begins with a large turn of the head (termed C-bend), followed by a robust forward propulsion as described in previous studies (20).

(A) Escape behaviors in WT and DKO lines at 6 dpf in response to tactile stimuli. Images of representative larva on the left show superimposed frames of the complete escape response (the duration of movement is indicated in the top right corner). Scale bars, 2 mm. Kinematics for representative traces of 10 larvae are shown for the initial 50 ms of the response. Middle panels represent averaged traces. In the right panels, each trace represents a different larva. Body angles are shown in degrees, with 0 indicating a straight body, and positive and negative values indicating body bends in opposite directions. Scale bars, 10 ms. (B to D) Maximum turn angles, time to reach the maximum angle, and post-startle swimming speed were calculated for each group of fish (6 dpf). In DKO, the turn angle and the swimming speed were notably reduced, and it took longer to reach maximum angles (n = 10 fish). (E and F) Analyses of spontaneous locomotion. Images of representative larva (left) for WT or DKO showed superimposed frames of spontaneous swim bouts (the duration of movement indicated in the bottom right corner). Swimming speed was calculated for WT (n = 5 fish) and DKO (n = 5 fish), which showed no significant difference. Scale bars, 2 mm.

The initial turns of the DKO larvae were in sharp contrast to WT. Averaged maximum head turn angles in DKOs were markedly smaller compared to WT larvae (116.0 5.8 in WT, 20.2 4.0 in DKO; P < 0.001) (Fig. 3B), and time to reach the maximum angle was increased (8.7 0.2 ms in WT, 15.8 0.8 ms in DKO; P < 0.001) (Fig. 3C). In addition to the absence of C-bends, the post-startle swimming speed of the DKO line was also notably slower (84.9 8.1 mm/s in WT, 12.8 1.3 mm/s in DKO; P < 0.001) (Fig. 3D).

In addition to the escape response, we also analyzed spontaneous locomotion, which corresponds to the slow swim described by Budick and OMalley (21) or scoot reported by Burgess and Granato (22) (Fig. 3, E and F). Significant difference in swimming speed was not observed between WT and DKO (16.1 1.60 mm/s in WT, 13.2 0.9 mm/s in DKO; P = 0.20) (Fig. 3F). Thus, the contribution of fast muscles in spontaneous swimming is relatively small. These results strongly suggest that fast muscles in larval zebrafish play a key role in executing quick escape responses including the C-bend and fast forward propulsion behaviors, which corroborate earlier studies (23).

DKO fish die prematurely and do not develop into adults. However, KOs that reached the adult stage are expected to lack both and subunits, because subunit expression terminates early in development.

To dismiss the possibility of compensatory up-regulation of the subunit in adult KOs, we analyzed the expression of subunit mRNA with digital droplet polymerase chain reaction (ddPCR). Subunit mRNA was not detected in adult KOs, which were 3 to 5 months old (Fig. 4A). Interestingly, subunit mRNA was strongly up-regulated in larval KOs (Fig. 4B), which may account for functional escape response behavior at 6 dpf (fig. S1). Thus, our findings suggest that compensation by the subunit expression occurs only in larval KOs and not in adults.

(A) Quantification of or subunit mRNA in adult muscles. Subunit was not detected in WT. or subunit mRNA was not detected in KO (n = 6 fish in WT, n = 5 fish in KO). Sample numbers are shown in parentheses. (B) mRNA expression of subunit in 1-dpf larvae. Subunit was highly up-regulated in the KO (n = 5 fish) compared to WT (n = 5 fish). Sample numbers are shown in parentheses. (C) Schematic illustration of a transverse section of the trunk region. The area shown in micropictograms is indicated with a box. The distribution of AChRs in adults, WT or KO, was visualized by -BTX conjugated with Alexa Fluor 488 (green). Broken lines indicate the boundary of fast muscle area (arrowheads). Fast muscles in the KO fish lack -BTX signals. (D) Sections of adult fast muscles of WT and KO, stained with the fast musclespecific F310 antibody. Fast muscles in KO fish did not display atrophy. In the right panel, diameters of fast muscles in WT and KO were calculated (87 fibers, n = 3 fish). There was no significant difference. Scale bars, 100 m.

The expression of AChR in adult KO fish, visualized by -BTX, was consistent with the lack of compensation (Fig. 4C). Transverse sections of the trunk region were labeled with -BTX. Slow, intermediate, and fast muscles are spatially segregated (11). Slow muscles are located closest to the surface. WT fish displayed universally distributed, positive -BTX signals. In sharp contrast, -BTX signals in the KO fish were detected only in shallow, lateral regions, and fast muscles of the adult KO lacked AChR expression.

In spite of the absence of -BTXpositive signals, fast muscle fibers in KO fish unexpectedly lacked signs of prominent atrophy (24). A fast musclespecific F310 antibody used via immunohistochemistry allowed the visualization and diameter measurements of fast muscle fibers. Statistical analysis revealed no difference between KO and WT fiber size (58.7 0.5 m in WT, 58.3 0.7 m in KO; P = 0.945) (Fig. 4D).

We observed escape responses induced by objects dropping on water and subsequently analyzed C-bend angles and the swimming speed during escape (Fig. 5A) (25). We compared the maximum C-bend angles between the focal genetic lines. Similar to WT larvae (Fig. 3), WT adults start the escape response with the initial extreme head turn. Unexpectedly, we found that KO adult fish also display robust C-bends (Fig. 5, A and B). Although smaller in amplitude (103.0 7.5 in WT, 53.4 2.5 in KO), their time course did not exhibit any delay compared to WT. This is in sharp contrast to the complete loss of C-bend behavior observed in larval DKOs (Fig. 3). The duration of first turn also showed no significant difference between WTs and KOs (38.9 3.8 ms in WT, 46.6 4.9 ms in KO).

(A) Escape behaviors in WT and KO adults (3 to 4 months old). The startle response was induced by dropping objects on water. Images of representative fish to the left show superimposed frames of the complete escape response (the duration of movement is indicated in the bottom right corner). Kinematics for representative traces from 10 or 9 fish are shown for the initial 50 ms of response. Middle panels represent averaged traces. In right panels, each trace represents a different fish. Body angles are shown in degrees, with 0 indicating a straight body. Positive and negative values indicate body bends in opposite directions. (B) First turn angles were calculated for each group of fish (n = 10 fish in WT, n = 9 fish in KO). Turn angles were reduced in the KO fish. Sample numbers are shown in parentheses. (C) Post-startle swimming speed and total distance traveled were calculated for the first 120 ms. There was no significant difference between WT (n = 10 fish) and KO (n = 9 fish) adults.

Furthermore, the forward propulsion during escape of the KO adult zebrafish was almost intact. When the distance traveled was plotted against the time after stimulation, the curves for WT and KO nearly overlapped (Fig. 5C). The swimming speed (31.7 1.3 cm/s in WT, 25.5 3.0 cm/s in KO; P = 0.08) and total distance traveled (4.0 0.2 cm in WT, 3.2 0.4 cm in KO; P = 0.08) were similar between WT and KO adults.

Suspecting that compensation of locomotion occurred at the level of neural projection, we examined the projections of motor neurons by retrograde labeling using a fluorescent tracer, dextran conjugated with Alexa Fluor 488 (Fig. 6, A to C). We injected the tracer into muscles of WT and K fish following a method described in a previous report (26). Spinal motor neurons in adult zebrafish are classified on the basis of morphological features. Dorsomedial motor neurons with larger cell somas, which are called primary motor neurons (pMNs), specifically innervate fast muscles. Ventrolateral motor neurons with smaller somas, called secondary motor neurons (sMNs), are grouped in distinct populations depending on the innervation target: fast, intermediate, and slow muscles (2729). We analyzed the location of motor neuron somas in the spinal cord (Fig. 6B) by measuring the distance from the center of spinal cord to cell somas. In WT adults, fast muscles were innervated mainly by dorsomedial motor neurons (located close to the center), and slow muscles were innervated by ventrolateral motor neurons (Fig. 6, A and B).

(A) Schematic illustration of a transverse section of the trunk region showing the sites of dye injections. Right panels showing cell bodies of labeled motor neurons (arrowheads) in spinal cords. Broken lines indicating outlines of spinal cords. Scale bars, 50 m. (B) A graph showing the distance from the center of the spinal cord to cell bodies of motor neurons. In WT, motor neurons located close to the center innervate fast muscles, and ventrolateral motor neurons innervate slow muscles. In KO, slow muscles were innervated by motor neurons located close to the center. Numbers of labeled cells are shown in parentheses. (C) Graph showing the size of cell somas of motor neurons. In WT, large motor neurons innervate fast muscles, and smaller neurons innervate slow muscles. In KO, slow muscles were innervated by large motor neurons. (D) Schematic illustration of a transverse section of the trunk region showing the locations of the DiI crystal insertion. The right panel displays cell body of labeled pMN (arrowhead) in the spinal cord. The broken line indicates the outline of the spinal cord. Scale bar, 50 m. (E) Presynaptic structures were visualized by SV2A antibody. Broken lines indicate the boundary of slow muscle area (left side). Note the reduced signal in the fast muscles of the KO fish. Scale bars, 100 m. (F and G) Fast musclespecific myosins labeled by F310 antibody in WT (F) and KO (G). In (G), the boxed area is enlarged in the right panel. Broken lines indicate the boundary of slow muscle area (left side). Arrowheads indicate muscle cells with F310 signals in the slow muscle region. While a small number of slow muscle cells in WT sometimes showed immunoreactivity, the cell number was markedly increased in KO. Scale bars, 100 m. (H and I) Glycolytic muscle fibers were visualized by GPD staining in WT (H) and KO (I). Black broken lines indicate the boundary between slow and intermediate muscles, and the red broken line indicates the boundary between intermediate and fast muscles. Fast, intermediate, and slow muscle areas are labeled with F, I, and S, respectively. Note that the intermediate muscle region in KO is hard to distinguish from the fast muscle region, blurring the boundary (I). Arrowheads in the right panel indicate muscle cells with GPD signals in the slow muscle region. Scale bars, 100 m. (J) Schematic illustration showing the rerouted innervation of pMNs. In KO adults, synaptic silencing of fast muscles led to the innervation of fast musclespecific pMNs on slow muscle. This reinnervation caused conversion of slow to fast muscles. The projections of sMNs that innervate fast muscles may not change.

Both the location and the size of motor neuron somas suggested that slow muscles in KO adults were innervated by large motor neurons, which innervate only fast muscles in WT adults (Fig. 6C). Ventrolateral neurons did not seem to innervate slow muscles in KOs, as they were absent in retrograde labeling (Fig. 6, B and C). When we injected the tracer into fast muscles of KO adults, pMNs were not labeled (fig. S2). Motor neurons labeled in these preparations were presumably fast sMNs (26).

To rule out the possibility that pMN axons are inadvertently damaged by dye injections into slow muscles of KO adults, we used another method of retrograde labeling using a lipophilic tracer DiI (or DiIC18), which has a minimal possibility of causing pressure injection damage (30). After gently placing crystals of DiI onto slow muscles of KO adults, we found that pMNs were labeled in spinal cords of KO adults (Fig. 6D). We also analyzed the presynaptic input in muscles of WT and KO adults using SV2A antibody to visualize presynaptic proteins (Fig. 6E). The results showed that positive signals within fast muscles were reduced in KO compared to WT adults. Thus, fewer motor neurons innervated fast muscles in KO fish.

The muscle cell type is determined by the motor neuron input (31). Suspecting the signals from pMNs may convert the properties of slow muscles into those of fast muscles in adult KO fish, we examined the characteristics of slow muscle fibers. To do so, we analyzed the F310 antibody immunohistochemistry in adult KO fish, which labels fast musclespecific myosin (Fig. 6, F and G) (19). We also examined the -glycerophosphate dehydrogenase (-GPD) activity, which is a well-established method to visualize glycolytic muscles, i.e., fast muscles (Fig. 6, H and I) (32). Some tissue located in slow muscle regions stained positive for F310 (n = 3 fish; Fig. 6G) and -GPD signals (n = 3 fish; Fig. 6I), suggesting that some slow muscles expressed the fast muscletype isoform of myosin light chain and obtained glycolytic ability. Intermediate muscle fibers in KO also showed higher glycolytic ability compared to WT (Fig. 6, H and I). Thus, a subpopulation of slow and intermediate muscles was converted to fast muscles, presumably due to the innervation of fast muscle motor neurons (31).

In summary, the absence of AChRs in developing KOs is presumed to drive motor neuron axon innervation of fast muscles to instead reroute to slow muscles. These rewired pMNs presumably predominate over original axons in slow muscles, as a result of synaptic competition, and convert some slow and intermediate muscles to fast muscles (Fig. 6J).

Here is the original post:
Synaptic silencing of fast muscle is compensated by rewired innervation of slow muscle - Science Advances

To Read More: Synaptic silencing of fast muscle is compensated by rewired innervation of slow muscle – Science Advances
categoriaSpinal Cord Stem Cells commentoComments Off on Synaptic silencing of fast muscle is compensated by rewired innervation of slow muscle – Science Advances | dataApril 8th, 2020
Read All

Blood cancer treatment added to PBS – Newcastle Herald

By daniellenierenberg

news, national

Nearly a decade after doctors told him he had up to six years to live, Ian Fox's blood cancer is in remission. He was part of an early trial of Revlimid, one of a handful of drugs added to the Pharmaceutical Benefits Scheme on Wednesday. "It was a bit scary because right from the start they said, 'Look, there's not a cure for this'," the 65-year-old told AAP. He was placed on a trial for the drug in 2012 after he got stem cell treatment and he's happy he could help researchers, with doctors telling him the cancer was in remission in 2015. "I'm rapt ... I'm on a maintenance program now, still taking a minimum dose," he said. Before his diagnosis, Mr Fox noticed cooking smells were making him nauseous. But it wasn't until he donated blood that he was referred to a GP, with doctors finally diagnosing him with myeloma. Mr Fox said he couldn't have gotten through the past 10 years without his wife Lesley and his kids Cameron and Maddy. Now the retired web designer is working on his vintage cars, having had to give up his motorcycle collection due to peripheral neuropathy in his feet - damage to the nerve cells that carry messages to and from the brain and spinal cord - a side-effect of myeloma treatment. "That's why I'm sort of directing my energies into the classic cars, because they're a bit more stable," Mr Fox said. Revlimid targets blood cancer cells while boosting the immune system. Its addition to the PBS is expected to save Australians $194,000 in out-of-pocket costs over the course of their treatment. More than 1000 people each year are expected to benefit from the change, with about 18,000 Australians living with myeloma. The government has also added Kadcyla, a breast cancer treatment; Symtuza, a treatment for people living with HIV; and Briviact, an epilepsy drug. Health Minister Greg Hunt said the drugs would give patients a better quality of life and boost their chances of recovery. Australian Associated Press

https://nnimgt-a.akamaihd.net/transform/v1/crop/frm/silverstone-feed-data/5926065c-ff01-4d99-b2de-a02d418090f4.jpg/r0_74_800_526_w1200_h678_fmax.jpg

Nearly a decade after doctors told him he had up to six years to live, Ian Fox's blood cancer is in remission.

He was part of an early trial of Revlimid, one of a handful of drugs added to the Pharmaceutical Benefits Scheme on Wednesday.

"It was a bit scary because right from the start they said, 'Look, there's not a cure for this'," the 65-year-old told AAP.

He was placed on a trial for the drug in 2012 after he got stem cell treatment and he's happy he could help researchers, with doctors telling him the cancer was in remission in 2015.

"I'm rapt ... I'm on a maintenance program now, still taking a minimum dose," he said.

Before his diagnosis, Mr Fox noticed cooking smells were making him nauseous.

But it wasn't until he donated blood that he was referred to a GP, with doctors finally diagnosing him with myeloma.

Mr Fox said he couldn't have gotten through the past 10 years without his wife Lesley and his kids Cameron and Maddy.

Now the retired web designer is working on his vintage cars, having had to give up his motorcycle collection due to peripheral neuropathy in his feet - damage to the nerve cells that carry messages to and from the brain and spinal cord - a side-effect of myeloma treatment.

"That's why I'm sort of directing my energies into the classic cars, because they're a bit more stable," Mr Fox said.

Revlimid targets blood cancer cells while boosting the immune system.

Its addition to the PBS is expected to save Australians $194,000 in out-of-pocket costs over the course of their treatment.

More than 1000 people each year are expected to benefit from the change, with about 18,000 Australians living with myeloma.

The government has also added Kadcyla, a breast cancer treatment; Symtuza, a treatment for people living with HIV; and Briviact, an epilepsy drug.

Health Minister Greg Hunt said the drugs would give patients a better quality of life and boost their chances of recovery.

Australian Associated Press

Continued here:
Blood cancer treatment added to PBS - Newcastle Herald

To Read More: Blood cancer treatment added to PBS – Newcastle Herald
categoriaSpinal Cord Stem Cells commentoComments Off on Blood cancer treatment added to PBS – Newcastle Herald | dataApril 1st, 2020
Read All

The science of hope: Why tomorrows world will be better than todays – Irish Examiner

By daniellenierenberg

Rita de Brn gathers 20 of the best innovations that will make life better for all of us.

IF ever hope was needed, its now, during the coronavirus outbreak.

Cocooning, self-isolation, and lock-down are not conducive to positive thinking.

Nor are pandemics. But we can choose to focus our thoughts elsewhere.

Every day, universities and laboratories across the globe announce heartening observations, discoveries, breakthroughs, and cures that will save and enrich life on this planet.

Scientists havent yet succeeded in creating an invisible woman.

But whenever they do, her cloak may be waiting at the University of Rochester.

There, researchers can make objects disappear from view by strategically placing light beams to create a blind spot between them.

Compounds that can kill malaria parasites have been developed by Australian and US researchers.

Drugs based on these compounds should shortly enter phase one of clinical trials.

The birth, this year, of a baby born from eggs matured and frozen in a laboratory was a happy event that gives hope to women made infertile by chemotherapy.

The mother had treatment for breast cancer five years previously.

Researchers at Imperial College London have developed a wearable sensor that can track and monitor vital signs through fur and clothing.

The device will help sniffer dogs in their work, and monitor the health of companion animals.

University of Canterbury scientists are studying the brain networks that produce speech.

The research should benefit everyone who has a stutter or other speech disorder.

Esketamine has recently been licenced in the UK for use in the treatment of depression. The drugs antidepressant impact can take effect within hours.

Academic studies have long shown that dark night skies are crucial for plant life, wildlife, and human mental health.

Growing awareness of this has led to the Polynesian island of Niue becoming the worlds first dark-sky nation.

Washington University scientists have cured type 1 diabetes in mice, using pluripotent stem cells to efficiently create insulin-producing beta cells.

Their success brings hope of a cure one step closer for the 422m people the World Health Organisation estimates have the condition.

Videos from the European Space Agency and satellite images from NASA show air pollution clearing dramatically over Italy and China.

Economic slowdown, due to the COVID-19 outbreak, is thought to play a role.

A massive reduction in tourists to the Italian city, in recent weeks, has sharply reduced boat and cruise ship traffic.

As a result, the canal water is much cleaner, with swimming fish clearly visible, a phenomenon that has not been witnessed for decades.

Scientists have developed contact lenses that correct deuteranomaly, which is reduced sensitivity to green light.

Colour blindness affects approximately six percent of males.

The condition can make it difficult to recognise an unripe banana by its colour.

The FDA has recently approved Romosozumab, a drug that combines the benefits of earlier osteoporosis treatment drugs, while building more bone than was previously possible and helping prevent fractures.

The prospect of a single-dose vaccine, which offers long-lasting protection against multiple strains of influenza, is closer than ever.

The FDA has approved Aimmune Therapeutics peanut allergen powder.

The new immunotherapy is now being administered in US medical centres to youngsters aged between 4 and 17 years who are presenting with peanut allergies.

Making hydrogen fuel a commercially viable option in the energy market has proved elusive.

But the discovery by Tokyo-based scientists that Fe-OOH, a form of rust, is an efficient catalyst in the process, is viewed by environmentalists to be game-changing.

By combining water with plant-based cellulose nanocrystals, scientists have created a powerful, non-toxic adhesive.

Spinal-cord stimulation is a common treatment for chronic back and leg pain, outcomes for which are often disappointing.

A recent innovation, in the form of a closed-loop, spinal-cord stimulation system, delivers superior pain relief for up to 12 months after implant.

For the first time, mitral heart valves have been repaired in beating-heart surgery.

While the patient in this procedure was a dog, the surgical victory augurs well for humans aged 75 and over, roughly ten percent of whom have faulty mitral valves.

The lives of ten COVID-19 patients were recently saved in Italy,when 3D printers were successfully used to create breathing-valve spare parts for respirators.

Airbus is now taking bookings for low-Earth orbit payload slots on the International Space Stations new Bartolomeo platform.

It offers the ISSs only unobstructed view towards Earth and into outer space.

The mission is devoted to addressing sustainable development goals.

View post:
The science of hope: Why tomorrows world will be better than todays - Irish Examiner

To Read More: The science of hope: Why tomorrows world will be better than todays – Irish Examiner
categoriaSpinal Cord Stem Cells commentoComments Off on The science of hope: Why tomorrows world will be better than todays – Irish Examiner | dataMarch 26th, 2020
Read All

Mayo Clinic research is a step toward hope for spinal cord …

By daniellenierenberg

Early research published in Mayo Clinic Proceedings examines the first case at Mayo Clinic of stem cell therapy tested in humans for spinal cord injury. The case study found stem cell intervention, which took place after standard surgery, and physical and occupational therapy, restored some function in a patient with spinal cord injury. The report, "Celltop Clinical Trial: First Report From a Phase I Trial of Autologous Adipose-Derived Mesenchymal Stem Cells in the Treatment of Paralysis Due to Traumatic Spinal Cord Injury" is published in the Nov. 27, 2019 edition of Mayo Clinic Proceedings.

The research discusses the experience related to the first case in a phase I safety study of mesenchymal stem cell treatment for spinal cord injury. Mohamad Bydon, M.D., a Mayo Clinic neurologic surgeon and the lead author, cautions that each patient is different, so it's too early to consider stem cell therapies as a treatment or cure for paralysis from spinal cord injury. Dr. Bydon adds that much like early trials in general, the stem cell trials are going to show variable response rates.

"Whilein this case, the first subject was a superresponder, others may not respond inthe same manner. We do not yet understand all of the necessary biology neededto achieve neurological recovery in paralyzed individuals," says Dr.Bydon. "One of our objectives in this study and future studies is tobetter delineate who will be a responder and why patients respond differently."

The research

The research centers on a 53-year-old man who suffered a spinal cord injury in a surfing accident that left him paralyzed below the neck. The patient had immediate improvements with standard therapy, but plateaued at six months post-injury. Researchers enrolled the patient in the study at Mayo Clinic nine months after the accident and injected the patient with stem cells 11 months after injury. After the stem cell injection, the patient significantly improved motor and sensory function.

Thecase study focuses on feasibility, safety and dosing of stem cell therapy. Thestudy team derived mesenchymal stem cells from the patient's fat cells andinjected them into the lower back in a procedure known as lumbar puncture.

Dr.Bydon; Wenchun Qu,M.D., Ph.D.,a physical medicine and rehabilitation physician; and Allan Dietz,Ph.D.,a transfusion medicine physician, led the multidisciplinary research team atMayo Clinic.

"Severespinal cord injury is a devastating condition for which scientists andphysicians are trying to find a cure. For the first time, we are inspiring hopethat people may receive better recovery in their function and quality of life,"says Dr. Qu. "Mayo Clinic has been taking the lead in translating thefruits of decades of research and treating neurological conditions, among whichhave been very important clinical trials where we evaluate the safety,feasibility and efficacy of adult stem cells for severe spinal cord injuries."

"This work both demonstrates the ability of cells to initiate repair and capitalizes on more than 10 years of work in the Immune, Progenitor and Cell Therapeutics Lab at Mayo Clinic. While there is still much to learn about the amazing ability of cells to heal tissue, this trial is an important step in advancing cell-based therapies toward clinical practice," says Dr. Dietz.

Investigatorscollected cerebrospinal fluid to look for new biological markers that mightgive clues to healing. Biological markers are important because they can helpidentify the critical processes that lead to spinal cord injury at a cellularlevel and could lead to new regenerative therapies.

Furtherstudy is needed to understand the effectiveness of stem cell lumbar injectionsand why patients may respond differently.

Currently,there is no way to reverse the devastating life-changing effects of paralysisfrom spinal cord injuries. Today, the only treatment is supportive care, suchas surgery and physical and occupational therapy.

Dr.Bydon says his early findings give hope that new regenerative therapies are onthe horizon for spinal cord injuries.

"Thehope is that we will have novel treatments for spinal cord injuries in the comingyears that will be different from what we have today. These will be therapies thatdo not rely upon supportive care, but therapies that rely on science to createa regenerative process for the spinal cord," says Dr. Bydon.

This research was made possible by funding from Mayo Clinic Transform the Practice Initiative and Regenerative Medicine Minnesota with support from the Mayo Clinic Center for Regenerative Medicine and the Department of Laboratory Medicine and Pathology Immune, Progenitor and Cell Therapeutics lab. The Transform the Practice Initiative aims to foster multidisciplinary teams of clinicians and researchers who align discovery and translational science, create new capacities and achieve solutions that improve the practice and address the unmet needs of patients.

###

Read the news release

Tags: #Mayo Clinic Proceedings, #Spinal cord injury research, #stem cell lumbar puncture, #stem cell research, Dr. Allan Dietz, Dr. Mohamad Bydon, Dr. Wenchun Qu, Mayo Clinic Center for Regenerative Medicine, Regenerative Medicine Minnesota, Research, spinal cord injury

Excerpt from:
Mayo Clinic research is a step toward hope for spinal cord ...

To Read More: Mayo Clinic research is a step toward hope for spinal cord …
categoriaSpinal Cord Stem Cells commentoComments Off on Mayo Clinic research is a step toward hope for spinal cord … | dataMarch 25th, 2020
Read All

Coronavirus treatment research is delayed by Trumps ban on the use of fetal tissue – Vox.com

By daniellenierenberg

President Donald Trump has repeatedly said that the US is working to develop a vaccine for Covid-19, the disease caused by the novel coronavirus, as quickly as possible. But one of his own administrations policies appears to be standing in the way of at least one scientist.

According to a report by the Washington Posts Amy Goldstein, Kim Hasenkrug, an immunologist at the National Institutes of Healths Rocky Mountain Laboratories in Montana, wants to test potential treatments for Covid-19 in mice with humanized lungs. But as the Post first reported, the work is being held up by officials at the Department of Health and Human Services due to a 2019 ban on NIH scientists using donated fetal tissue from abortions in their research.

While fetal tissue isnt typically used to develop actual therapies or treatments, it has one particularly key use for researchers: the ability to create mice with human tissue suitable for medical testing. Mice, generally, have similar immune systems to humans, making them particularly useful for early medical testing.

Humanized mice have been key to developing several important medical treatments for diseases like the Zika virus or HIV/AIDS, which was Hasenkrugs previous research focus. The calculation is simple. You cant test certain treatments without humanized mice, and you cant get humanized mice without fetal tissue.

There are, of course, many avenues of research using other kinds of tissue, but fetal cells can rapidly divide, grow, and adapt to new environments in ways that make them the gold standard for some disease research. And in other research areas, we dont yet know if there is anything that could substitute, R. Alta Charo, professor of law and bioethics at the University of Wisconsin at Madison, wrote in the New England Journal of Medicine in 2015.

And as the Posts Goldstein noted, scientists have already shown that humanized mice could make good test subjects for coronavirus treatments specifically:

Just months ago, before the new coronavirus began to infect people around the world, other U.S. scientists made two highly relevant discoveries. They found that specialized mice could be transplanted with human fetal tissue that develops into lungs the part of the body the new coronavirus invades. These humanized mice, they also found, could then be infected with coronaviruses to which ordinary mice are not susceptible closely related to the one that causes the new disease, Covid-19.

Outside researchers have offered the mice to Hasenkrug for coronavirus research. But so far, Hasenkrug and other government researchers havent been allowed to obtain the mice they need to perform testing, the Post reported, thanks to a June 2019 HHS directive banning fetal tissue research for those employed by the government.

Caitlin Oakley, a HHS spokesperson, told the Post that no decision has been made about Hasenkrugs request. A separate HHS spokesperson confirmed that in a statement to Vox.

The spokesperson also pointed to an HHS statement from last June detailing the administrations policy on fetal tissue research. Promoting the dignity of human life from conception to natural death is one of the very top priorities of President Trumps administration, reads the statement.

Hasenkrug, and the potentially millions of Americans who may benefit from his research, now find themselves caught in a deeply divisive political issue thats been years in the making.

The US government had funded fetal tissue research efforts since the 1950s and for nearly as long, anti-abortion activists have opposed the practice.

In the Trump era, they finally found an administration ready to listen.

In 2018, the US government spent $115 million on about 173 research projects utilizing fetal tissue, a third of which were devoted to developing therapies for HIV/AIDS.

Research using fetal tissue has led to the development of vaccines such as those for polio, rubella, and measles, the International Society for Stem Cell Research (ISSCR) said in a statement last September. Fetal tissue is still helping advance science, with research underway using cells from fetal tissue to evaluate conditions including Parkinsons disease, ALS, and spinal cord injury. Fetal tissue is also necessary for the development of potential treatments for Zika virus and HIV/AIDS.

But anti-abortion activists argue it incentivizes abortion providers to perform more abortions in order to procure more tissue they could sell to third-party companies, which then provide the tissue directly to researchers. Fetal tissue procurement has been heavily regulated since enactment of the NIH Revitalization Act of 1993, which states that profits cannot be made in the transfer or acceptance of fetal tissue for research purposes.

That hasnt stopped anti-abortion activists from continuing to call into question the ethics of abortion providers or procurement companies. In 2000, the anti-abortion rights group Life Dynamics seemingly began the practice of releasing false or deceptively edited videos targeting the fetal tissue sales process. The main source in their videos was found to be not credible.

The George W. Bush administration did not take action against fetal tissue research, instead enacting restrictions on stem cell research derived from embryos in an August 2001 executive order. Those restrictions were later rolled back by an executive order from President Barack Obama in 2009.

More recently, the anti-abortion rights group Center for Medical Progress, run by activist David Daleiden, infamously released heavily edited videos appearing to show a Planned Parenthood employee negotiating prices for fetal tissue, and CMP accused the abortion care provider of illegally profiting from sales.

The videos caught the attention of Republican lawmakers. Investigations by the House Energy and Commerce, House Judiciary, and Oversight and Government Reform committees found no wrongdoing. Further investigations into Planned Parenthood and fetal tissue transfer proceeded with the creation of the Select Investigative Panel on Infant Lives in October 2015, chaired by Rep. Marsha Blackburn (R-TN), leading to $1.59 million in spending and a 471-page final report making numerable anti-abortion recommendations.

Among those requests was a call for the government to ban fetal tissue research by government scientists, which Barack Obamas administration, which favored the practice, ultimately ignored.

Democrats on the committee released their own report, disputing the conclusions of their Republican colleagues. At the end of their crusade, the conclusion was undeniable: There was no wrongdoing on behalf of fetal tissue researchers, including Advanced Bioscience Resources, or anyone else in the fetal tissue research space, said Rep. Jan Schakowksy (D-IL), who served as the ranking Democrat on the select committee, in a statement to Rewire.News in October 2018.

Anti-abortion activists saw an opportunity to advance their agenda on fetal tissue research when President Donald Trump won election in 2016, but it took a conservative media freakout in 2018 to enact new restrictions.

Over the summer of 2018, conservative media focused on several transactions by Advanced Bioscience Resources, a company that procured fetal tissue from abortion providers and shipped it to researchers for use. ABR was also one of the subjects of the 2015 select committee investigation.

HHS decided to cancel the governments contract with ABR in late September 2018 and began a review of the agencys rules and processes for procuring fetal tissue for research. That review concluded last summer, with HHS announcing in June that it would ban any fetal tissue studies by in-house NIH scientists, like Hasenkrug. It also introduced strict paperwork requirements for any outside scientists conducting research funded by the government.

The decision came as welcome news to anti-abortion activists. The language is trying to hold an ethical standard for the research proposals and the research that might be done. The policy is not just about science. Its also about ethics, David Prentice, vice president and research director at the anti-abortion Charlotte Lozier Institute, told Science magazine last July.

For his part, Hasenkrug has reportedly asked the Trump administration several times for permission to begin working with UNCs humanized mice for a coronavirus cure, but is still waiting on permission. Per the Post:

On Feb. 19, two people said, Hasenkrug wrote to a senior NIH official, asking for permission to use those mice and run experiments related to covid-19. He eventually was told that his request had been passed on to senior HHS officials.

Since then, he has written repeatedly to NIH, laying out in greater detail the experiments he wants to undertake and why several alternatives to the fetal tissue-implanted mice would not be as useful. In one appeal to NIH, Hasenkrug wrote that the mice he was offered are more than a year old and have a relatively short time remaining to live, so they should be used quickly, according to Kerry Lavender, a Canadian researcher familiar with the correspondence.

Hasenkrugs request has reportedly been forwarded to the White House Domestic Policy Council, which is chaired by Trump himself, but the government has not made a decision on the research as of yet.

Read the original here:
Coronavirus treatment research is delayed by Trumps ban on the use of fetal tissue - Vox.com

To Read More: Coronavirus treatment research is delayed by Trumps ban on the use of fetal tissue – Vox.com
categoriaSpinal Cord Stem Cells commentoComments Off on Coronavirus treatment research is delayed by Trumps ban on the use of fetal tissue – Vox.com | dataMarch 20th, 2020
Read All

Why computers won’t be reading your mind any time soon – Wired.co.uk

By daniellenierenberg

Edward Chang can't read your thoughts. Whenever the neuroscientist's lab at the University of California publishes a new piece of research, there's always a familiar refrain: that he's created "mind-reading technology" or can "read your thoughts". He's not alone, it's a phrase that follows much of the research into brain-computer interfaces and speech decoding.

And no wonder, when Elon Musk's startup Neuralink claims it will eventually enable "consensual telepathy" and Facebook one of the funders of Chang's lab said it wants to let people send messages by just thinking the words, rather than tapping them out on a phone, an example of a brain-computer interface (BCI).

But Chang isn't trying to read minds; he's decoding speech in people who otherwise can't speak. "We're not really talking about reading someone's thoughts," Chang says. "Every paper or project we've done has been focusing on understanding the basic science of how the brain controls our ability to speak and understand speech. But not what we're thinking, not inner thoughts." Such research would have significant ethical implications, but it's not really possible right now anyway and may never be.

Even decoding speech isn't easy. His most recent paper, in Nature last year, aimed to translate brain signals produced by speech into words and sentences read aloud by a machine; the aim is to help people with diseases such as amyotrophic lateral sclerosis (ALS) a progressive neurodegenerative disease that affects nerve cells in the brain and spinal cord. "The paper describes the ability to take brain activity in people who are speaking normally and use that to create speech synthesis it's not reading someone's thoughts," he says. "It's just reading the signals that are speaking."

The technology worked to an extent. Patients with electrodes embedded in their brains were read a question and spoke an answer. Chang's system could accurately decipher what they heard 76 per cent of the time and what they said 61 per cent of the time by looking at their motor cortex to see how the brain fired up to move their mouth and tongue. But there are caveats. The potential answers were limited to a selection, making the algorithm's job a bit easier. Plus, the patients were in hospital having brain scans for epilepsy, and could therefore speak normally; it's not clear how this translates to someone who can't speak at all.

"Our goal is to translate this technology to people who are paralysed," he says. "The big challenge is understanding somebody who's not speaking. How do you train an algorithm to do that?" It's one thing to train a model using someone you can ask to read out sentences; you scan their brain signals while they read out sentences. But how do you do that if someone can't speak?

Chang's lab is currently in the middle of a clinical trial attempting to address that "formidable challenge", but it's as yet unclear how speech signals change for those unable to speak, or if different areas of the brain need to be considered. "There are these fairly substantial issues that we have to address in terms of our scientific knowledge," he says.

Decoding such signals is challenging in part because of how little we understand about how our own brains work. And while systems can be more easily trained to move a cursor left or right, speech is complicated. "The main challenges are the huge vocabulary that characterise this task, the need of a very good signal quality achieved only by very invasive technologies and the lack of understanding on how speech is encoded in the brain," says David Valeriani of Harvard Medical School. "This latter aspect is a challenge across many BCI fields. We need to know how the brain works before being able to use it to control other technologies, such as a BCI."

And we simply don't have enough data, says Mariska van Steensel, assistant professor at UMC Utrecht. It's difficult to install brain implants, so it's not frequently done; Chang used epilepsy patients because they were already having implants to track their seizures. Sitting around waiting for a seizure to strike, a handful were willing to take part in his research out of boredom. "On these types of topics, the number of patients that are going to be implanted will stay low, because it is very difficult research and very time consuming," she says, noting that fewer than 30 people have been implanted with a BCI worldwide; her own work is based on two implants. "That is one of the reasons why progress is relatively slow," she added, suggesting a database of work could be brought together to help share information.

There's another reason this is difficult: our brains don't all respond the same. Van Steensel has two patients with implants, allowing them to make a mouse click with brain signals by thinking about moving their hands. In the first patient, with ALS, it worked perfectly. But it didn't in the second, a patient with a brain-stem stroke. "Her signals were different and less optimal for this to b e reliable," she says. "Even a single mouse click to get reliable in all situations is already difficult."

This work is different than that of startups such as NextMind and CTRL-Labs that use external, non-invasive headsets to read brain signals, but they lack the precision of an implant. "If you stay outside a concert hall, you will hear a very distorted version of what's playing inside this is one of the problems of non-invasive BCIs," says Ana Matran-Fernandez, artificial intelligence industry fellow at the University of Essex. "You will get an idea of the general tempo... of the piece that's being played, but you can't pinpoint specifically each of the instruments being played. This is the same with a BCI. At best, we will know which areas of the brain are the most active playing louder, if you will but we won't know why, and we don't necessarily know what that means for a specific person."

Still, tech industry efforts including Neuralink and Facebook aren't misplaced, says Chang, but they're addressing different problems. Those projects are looking at implant or headset technology, not the hard science that's required to make so-called mind reading possible. "I think it's important to have all of these things happening," he says. "My caveat is that's not the only part of making these things work. There's still fundamental knowledge of the brain that we need to have before any of this will work."

Until then, we won't be able to read speech, let alone inner thoughts. "Even if we were perfectly able to distinguish words someone tries to say from brain signals, this is not even close to mind reading or thought reading," van Steensel says. "We're only looking at the areas that are relevant for the motor aspects of speech production. We're not looking at thoughts I don't even think that's possible."

Edward Chang will be one of the speakers at WIRED Health in London on March 25, 2020. For more details, and to book your ticket, click here

Does alcohol kill coronavirus? The biggest myths, busted

The best shows coming to Disney Plus UK

Gender neutral toilets are a massive failure (so far)

A huge Airbnb scam is taking over London

Follow WIRED on Twitter, Instagram, Facebook and LinkedIn

Get The Email from WIRED, your no-nonsense briefing on all the biggest stories in technology, business and science. In your inbox every weekday at 12pm sharp.

by entering your email address, you agree to our privacy policy

Thank You. You have successfully subscribed to our newsletter. You will hear from us shortly.

Sorry, you have entered an invalid email. Please refresh and try again.

Excerpt from:
Why computers won't be reading your mind any time soon - Wired.co.uk

To Read More: Why computers won’t be reading your mind any time soon – Wired.co.uk
categoriaSpinal Cord Stem Cells commentoComments Off on Why computers won’t be reading your mind any time soon – Wired.co.uk | dataMarch 12th, 2020
Read All

Exploring future spinal cord injury therapies – Drug Target Review

By daniellenierenberg

Drug Target Review explores five of the latest research developments in the field of spinal cord injury (SCI) repair.

MRIs of Lumbar & Thoracic spine showing how a fracture of thoracic spine gets worse over time.

Researchers have shown that increasing energy supply to injured spinal cord neurons can promote axon regrowth and motor function restoration after a spinal cord injury (SCI).

We are the first to show that spinal cord injury results in an energy crisis that is intrinsically linked to the limited ability of damaged axons to regenerate, said Dr Zu-Hang Sheng, study co-senior author, senior principal investigator at the US National Institute of Neurological Disorders and Stroke (NINDS).

According to the team, energy levels are damaged because the mitochondria that produce adenosine triphosphate (ATP) for neurons are located in the axons. When damaged, the mitochondria are unable to produce ATP at the same level.

Nerve repair requires a significant amount of energy, said Dr Sheng. Our hypothesis is that damage to mitochondria following injury severely limits the available ATP and this energy crisis is what prevents the regrowth and repair of injured axons.

The scientists suggest that this is compounded by the anchoring of mitochondria in adult cells alongside the axons, so once damaged they are hard to replace.

Using a murine model, called a Syntaphilin knockout, where mitochondria are free to move along the axons, the researchers showed that when mitochondria are more mobile, mice have significantly more axon regrowth across the site of SCI compared to control animals. The paper also demonstrated that newly-grown axons made appropriate connections beyond the injury site, leading to functional recovery of motor tasks.

They hypothesised that increasing mitochondrial transport and thus the available energy to the injury site could enable repair of damaged nerve fibres.

When fed creatine, a compound that enhances the formation of ATP, both the control and knockout mice had increased axon regrowth following injury, compared to mice fed saline instead. More robust nerve regrowth was seen in the knockout mice that received creatine.

We were very encouraged by these results, said Dr Sheng. The regeneration that we see in our knockout mice is very significant and these findings support our hypothesis that an energy deficiency is holding back the ability of both central and peripheral nervous systems to repair after injury.

Dr Sheng highlighted that despite the promising results of the study published in Cell Metabolism, genetic manipulation was required for the best regrowth as creatine produced only modest regeneration. He concluded that further research is required to develop therapeutic compounds that are more effective in entering the nervous system and increasing energy production for the treatment of SCI.

Experiments exploring the role of immune and glial cells in wound healing and neural repair has revealed that Plexin-B2, an axon guidance protein, is essential for their organisation after SCI.

The researchers suggest their findings could aid in the development of therapies that target axon guidance pathways for treatment of SCI.

An artists impression of a macrophage.

The paper published in Nature Neuroscience reveals that Plexin-B2 on macrophages and microglia is essential for the process of corralling, where microglia and macrophages are mobilised and form a protective barrier around the site of SCI, separating healthy and necrotic tissue. In this study, researchers found that corralling begins early in the healing process and requires the ability of Plexin-B2 to steer immune cells away from colliding cells.

When they deleted Plexin-B2 from the microglia and macrophages in tissues, it led to tissue damage, inflammatory spillover and hindered axonal regeneration.

The lead investigator Dr Hongyan Jenny Zou, Professor of Neurosurgery and Neuroscience at the Icahn School of Medicine at Mount Sinai, US, said the results were quite unexpected.

She concluded that understanding the signalling pathways and interactions of glial cells with each other and the injury environment is fundamental to improving neural repair after a traumatic brain or spinal cord injury.

Another studyexploring the interactions of macrophages and microglia has revealed that in the central nervous system (CNS), microglia interfere with macrophages preventing them from moving out of damaged regions of the CNS.

We expected the macrophages would be present in the area of injury, but what surprised us was that microglia actually encapsulated those macrophages and surrounded them almost like police at a riot. It seemed like the microglia were preventing them from dispersing into areas they should not be, said Jason Plemel, a medical researcher at Canadas University of Alberta and a member of the Neuroscience and Mental Health Institute.

A microglial cell stained with Rio Hortegas silver carbonate method under the microscope.

Plemel said that more research is required to ascertain why this is happening, but they found that both the immune cells that protect the CNS, microglia and the immune cells of the peripheral immune system, macrophages, are present early after demyelination and microglia continue to accumulate at the expense of macrophages.

When we removed the microglia to understand what their role was, the macrophages entered into uninjured tissue. This suggests that when there is injury, the microglia interfere with the macrophages in our CNS and act as a barrier preventing their movement.

The scientists said that this observation was only possible because they were able to distinguish between microglia and macrophages, which has historically not been possible. Using this technique, they established than one type of microglia responded to demyelination. The results were published in Science Advances.

The indication of at least two different populations of microglia is an exciting confirmation for us, said Plemel. We are continuing to study these populations and hopefully, in time, we can learn what makes them unique in terms of function. The more we know, the closer we get to understanding what is going on (or wrong) when there is neurodegeneration or injury and being able to hypothesise treatment and prevention strategies.

Researchers suggest subpially-injecting neural precursor cells (NSCs) may reduce the risk of further injury associated with current spinal cell delivery techniques.

NSCs have the potential to differentiate into many neural cell types depending on the environment and have been the subject of investigation in both the field of SCI repair and neurodegenerative disease therapies.

subpially-injected cells are likely to accelerate and improve treatment potency in cell-replacement therapies for several spinal neurodegenerative disorders

However, the senior author of this study Dr Martin Marsala, professor in the Department of Anesthesiology at University of California (UC) San Diego School of Medicine, US, explained the current delivery techniques involve direct needle injection into the spinal parenchyma the primary cord of nerve fibres running through the vertebral column, so there is an inherent risk of (further) spinal tissue injury or intraparenchymal bleeding.

The novel technique Dr Marsala proposed in a paper published in Stem Cells Translational Medicine, is to inject these cells into the spinal subpial space an area between the pial membrane and the superficial layers of the spinal cord.

This injection technique allows the delivery of high cell numbers from a single injection, Dr Marsala explained. Cells with proliferative properties, such as glial progenitors, then migrate into the spinal parenchyma and populate over time in multiple spinal segments as well as the brain stem. Injected cells acquire the functional properties consistent with surrounding host cells.

The research collaborators suggest that subpially-injected cells are likely to accelerate and improve treatment potency in cell-replacement therapies for several spinal neurodegenerative disorders. This may include spinal traumatic injury, amyotrophic lateral sclerosis and multiple sclerosis, said study senior author Dr Joseph Ciacci, a neurosurgeon at UC San Diego Health.

The team now intend to move their experiments from rats to larger pre-clinical animal models, more anatomically similar to humans. The goal is to define the optimal cell dosing and timing of cell delivery after spinal injury, which is associated with the best treatment effect, concluded Dr Marsala.

Dr Mohamad Khazaei is the recipient of the STEM CELLS Translational Medicines (SCTM) Young Investigator Award for his work on SCI.

The award recognises advancements in the field of stem cells and regenerative medicine made by young researchers. The recipient is the principal author of an article published in SCTM that, over the course of a year, is deemed to have the most impact.

Dr Khazaeis work focuses on bringing cell-based strategies, such as NSC transplantation, into the therapeutic pipeline through generating and differentiating novel cell types using genetic and cell engineering approaches.

While we currently lack effective regenerative medicine treatment options for spinal cord injuries, Dr Khazaeis work to create a cell transplantation therapy utilising neural precursor cells is novel and provides a promising approach, said Dr Anthony Atala, Editor-in-Chief of SCTM and director of the Wake Forest Institute for Regenerative Medicine.

His winning paper details how Dr Khazaei and his team used neurons and oligodendrocytes to obtain better functional recovery after SCI.

Related topicsCell Regeneration, CNS, Disease research, Drug Delivery, Drug Discovery, Drug Targets, Neurons, Neurosciences, Regenerative Medicine, Research & Development, Therapeutics

See the rest here:
Exploring future spinal cord injury therapies - Drug Target Review

To Read More: Exploring future spinal cord injury therapies – Drug Target Review
categoriaSpinal Cord Stem Cells commentoComments Off on Exploring future spinal cord injury therapies – Drug Target Review | dataMarch 12th, 2020
Read All

Online Extra: London case appears to be second HIV cure – Bay Area Reporter, America’s highest circulation LGBT newspaper

By daniellenierenberg

Adam Castillejo revealed himself to be the London Patient. Photo: Courtesy Adam Castillejo/Facebook

A London man who still has undetectable virus 30 months after stopping antiretroviral treatment is likely the second person ever cured of HIV, according to a report presented this week at the Conference on Retroviruses and Opportunistic Infections.

Two days before the conference was set to open in Boston, organizers decided to make the meeting virtual due to concerns about the coronavirus. Researchers gave their presentations via webcasts.

At last year's CROI, Dr. Ravindra Gupta of University College London reported that the so-called London Patient, who received a bone marrow transplant using stem cells from a donor with natural resistance to HIV, had no detectable virus in his blood plasma or T cells 18 months after stopping treatment.

At this week's meeting, Gupta said that an additional year of more extensive testing had found no functional HIV in the man's blood, lymph nodes, semen, gut tissue or cerebrospinal fluid.

"After 2.5 years off antiretrovirals and lack of evidence for any active virus, this almost certainly represents cure," Gupta told the Bay Area Reporter.

A day before Gupta's presentation, the New York Times revealed that the man, Adam Castillejo, 40, had decided to go public as the London Patient. Castillejo, who grew up in Venezuela, moved to London in 2002 and was diagnosed with HIV a year later. He is now leading a healthy and active life.

"My message to everyone out there living and coping with HIV is to not give up hope," Castillejo told the B.A.R. "I do hope that me going public will give some encouragement and empower people to keep breaking the stigma associated with HIV."

Resistant T cellsLike former San Francisco resident Timothy Ray Brown, known as the Berlin Patient the only other person known to be cured of HIV Castillejo underwent a bone marrow transplant to treat advanced cancer. According to the Times story, he spoke with Brown repeatedly before deciding to reveal his identity.

In both cases, doctors searched an international registry to find donors with double copies of an uncommon genetic mutation known as CCR5-delta-32, which makes T cells resistant to most types of HIV.

Brown received two stem cell transplants to treat leukemia in 2006, first undergoing strong chemotherapy and radiation to kill off his cancerous immune cells. He stopped antiretroviral therapy at the time of his first transplant, but his viral load did not rebound as expected. Over years of testing, researchers have found no functional virus anywhere in his body. Brown has now been free of HIV for more than 13 years.

Castillejo was diagnosed with lymphoma in 2011. After five years of grueling treatment, he underwent a bone marrow transplant in May 2016. But he received less aggressive chemotherapy than Brown and was able to stay on antiretroviral therapy.

The transplant led to complete remission of his lymphoma. Post-transplant tests showed that most of his T cells now lacked the CCR5 receptors HIV uses to enter the cells. In September 2017, with no evidence of viable HIV in his blood, he stopped his antiretrovirals in a closely monitored analytic treatment interruption.

When Castillejo was last tested on March 4, his plasma viral load remained undetectable using an ultrasensitive assay. Viral load was also undetectable in his semen and cerebrospinal fluid surrounding the brain and spinal cord. Biopsies showed no evidence of functional HIV in a lymph node or in his large or small intestine. Some bits of HIV genetic material were detected in long-lived memory T cells, but Gupta said these are probably "fossils" that cannot trigger active viral replication.

If this does prove to be a second cure, experts caution that the high-risk procedure will not be an option for people with HIV who do not need the treatment for cancer. But researchers are working on ways to mimic the same effect using gene therapy to delete CCR5 receptors from T cells or stem cells that give rise to all immune cells.

Read the rest here:
Online Extra: London case appears to be second HIV cure - Bay Area Reporter, America's highest circulation LGBT newspaper

To Read More: Online Extra: London case appears to be second HIV cure – Bay Area Reporter, America’s highest circulation LGBT newspaper
categoriaSpinal Cord Stem Cells commentoComments Off on Online Extra: London case appears to be second HIV cure – Bay Area Reporter, America’s highest circulation LGBT newspaper | dataMarch 12th, 2020
Read All

10 things to know about stem cell therapy – Outlook India

By daniellenierenberg

10 things to know about stem cell therapy

New Delhi, March 3 (IANSlife) The usage of stem cells to cure or treat a disease or repair the injured tissue is defined as stem cell therapy. The best example of the stem cell treatment is seen in patients suffering from restoring the vision of the damaged eyes, grafting of the skin in severe burnt conditions. Stem cell treatments for brain or neural diseases like Parkinson''s and Alzheimer''s disease, multiple sclerosis, preventing heart strokes, curing diabetes, kidney disorders, autism, and spinal cord injuries are progressively making their way. Vipul Jain, CEO of Advancells and also a Serial entrepreneur, explains in detail the treatment, its uses, cost and effectiveness.

Q: What are stem cells?

Undifferentiated cells that are able to differentiate and transform into any type of cells of the body when and where needed. They have an enormous potential to repair, heal and regenerate. Stem cells come from blood, bone marrow, umbilical cord blood and adipose tissue.

Types of stem cell therapy

Autologous stem cell therapy: Patient receives stem cells from his/her own body

Allogeneic stem cell therapy: Patient receives the stem cells donated by another individual

Autologous stem cell therapy is better than allogeneic stem cell therapy as chances of mismatching are not there and they pose the minimum risk of immune rejection. Also, no side effects or adverse effects are seen as a person''s own blood cells are used. They start the healing process immediately in a natural way.

What is stem cell therapy?

The usage of stem cells to cure or treat a disease or repair the injured tissue is defined as stem cell therapy. Stem cells can be obtained from the bone marrow, adipose tissues etc. Due to their tremendous potential to prevent and to treat various health conditions and to repair the injured tissues global research investigation is continuously being done as to explore the maximum advantage of these cell lines.

The best example of the stem cell treatment is seen in patients suffering from restoring the vision of the damaged eyes, grafting of the skin in severe burnt conditions. Stem cell treatments for brain or neural diseases like Parkinson''s and Alzheimer''s disease, multiple sclerosis, preventing heart strokes, curing diabetes, kidney disorders, autism, and spinal cord injuries are progressively making their way.

What are the sources of stem cell?

Depending upon the disease, different stem cell source can be used in a specific condition. The procedure may involve the extraction of stem cells from adipose tissue-derived stem cells with the combination of PRP (Platelet-rich plasma) or can be obtained from bone marrow that can differentiate into progenitor cells that differentiate into various other tissues which can help in the therapy.

Procedure of stem cell therapy

The stem cells are isolated from the bone marrow or adipose tissues followed by their processing and enrichment under sterile conditions. These activated stem cells are placed back into the patient''s body at the target site for repairing the damaged tissue. It is necessary that the stem cells are injected in the specific area of injury as only then the desired results will be achieved.

Adipose stem cells are preferred over bone marrow stem cells as they are easy to isolate and contain a higher number of stem cells.

Stem cells injection

The stem cells injections are gaining much interest because it is devoid of the painful procedure, takes less time in comparison to a surgery, there are no host and recipient rejections as stem cells are harvested from the patient''s body itself and a targeted delivery system is available.

The stem cells obtained are processed in a sophisticated stem cell lab and after activation are inserted back into the host with the help of intravenous, intramuscular, intra-arterial, intradermal and intrathecal injections as per the requirement of the treatment process.

What is the use of anesthetics and why? Usually, local anesthetics are used during a stem cell procedure to numb the area but sometimes general anesthesia is also given while extracting the stem cells from bone marrow. But it is necessary to find out what anesthetic your doctor uses during orthopedic stem cell treatments.

A number of anesthetics have been found to kill the stem cells thus; the treatment''s end result will greatly depend on the use of anesthetics. Some anesthetics very well sync with the stem cell and hence, aid in the treatment.

How good are the processing techniques in the onsite labs?

Stem cells are to be extracted and processed in a clean room, under aseptic conditions maintaining a controlled environment. The doctor should explain the entire process and the number of viable stem cells infused into the patient during the process. Also, the precision of the injections to provide good quality of stem cells at the site of injury will help in better and faster recovery of the patient''s damaged area.

Duration and cost of the therapy

Cost of the treatment and its duration varies from one patient to another. The disease which needs to be cured, the severity, age factor, health condition, etc, define the duration of the therapy. One may respond during the treatment phase itself while the other may show results after a few sessions or weeks. Depending upon the disease diagnosed, the stem cells extracted, duration of the therapy, other adjuvants used in the process, the cost of the stem cell therapy can vary.

Follow-up visits

It is essential that after the stem cell therapy the patient should visit the stem cell doctor for recuperation therapies. The primary goals of such therapy is the prevention of secondary complications, analysis of recovery of motor, sensory and all the bodily functioning, psychological support/counseling for depression, mood swings or anxiety etc. and reintegration into the community.

There can be different sets of precautions which need to be followed at various steps for the recovery of the damaged tissues. The treatment and post treatment conditions may vary from person to person depending upon the disease and the severity.

Success rate of stem cell therapy

Stem cell therapy has shown results in treating serious ailments like leukemia, grafting tissues, autism, orthopedic conditions and skin problems etc. Stem Cell Therapy has been successfully used in the treatment of around 80 serious disorders.

Survival rates among patients who received stem cell treatment are significantly high, whether the cell donors are related or unrelated to them. With the ongoing research around the world, scientists are exploring new possibilities in which a number of life threatening diseases can be prevented and cured hence, the stem cells have proved to be promising in the near future as many aspects are yet to be revealed.

--IANS

pg/adr/

Disclaimer :- This story has not been edited by Outlook staff and is auto-generated from news agency feeds. Source: IANS

Read the original here:
10 things to know about stem cell therapy - Outlook India

To Read More: 10 things to know about stem cell therapy – Outlook India
categoriaSpinal Cord Stem Cells commentoComments Off on 10 things to know about stem cell therapy – Outlook India | dataMarch 4th, 2020
Read All

Spinal Muscular Atrophy Treatment Market to Exhibit a Spectacular CAGR of 28.9%; Growing Initiatives by Government Authorities for Pre-Diagnosis to…

By daniellenierenberg

Pune, March 03, 2020 (GLOBE NEWSWIRE) -- The global Spinal Muscular Atrophy Treatment Market size is expected to reach USD 14.49 billion by 2026, exhibiting a CAGR of 28.9% during the forecast period. The rising prevalence of rare diseases around the world will fuel demand for SMA treatment in the forthcoming years, which in turn will aid the growth of the market. As per the National Policy for the treatment of rare diseases, globally, around 6000 to 8000 rare diseases are estimated to exist with new rare diseases reported on a regular basis. Furthermore, 80% of all the rare diseases are genetically originated and therefore impact children inexplicably. The survey also revealed that 50% of new cases are in children and are responsible for 35% of deaths before the age of 1 year, 10% between the ages of 1 and 5 years and 12% between 5 and 15 years. Nonetheless, "the growing initiatives by government authorities for pre-diagnosis will impact the Spinal Muscular Atrophy Treatment Market share positively during the forecast period", predicts our lead analysts at Fortune Business Insights.

For more information in the analysis of this report, visit: https://www.fortunebusinessinsights.com/industry-reports/spinal-muscular-atrophy-treatment-market-100576

According to the report, published by Fortune Business Insights, titled "Spinal Muscular Atrophy Treatment Market Size, Share and Global Trend By Product (Nusinersen and Onasemnogen Abeparvovec), By Disease Type (Type 1 SMA, Type 2 SMA and Others), By Distribution Channel (Hospital Pharmacies, Retail Pharmacies and Others), and Geography Forecast till 2026" the market size stood at USD 1.72 billion. The SMA Treatment Market report executes a PESTEL study and SWOT analysis to reveal the stability, restrictions, openings, and threats in the smart building market. Combined with the market analysis capabilities and knowledge integration with the relevant findings, the report has foretold the robust future growth of the SMA treatment market, and all articulated with geographical and merchandise segments. Moreover, it also shows different procedures and strategies, benefactors and dealers working in the market, explores components convincing market development, generation patterns, and following systems. Additionally, the figures and topics covered in this report are both all-inclusive and reliable for the readers.

Market Driver:

R&D Initiatives by Key Players to Spur Sales Opportunities

The surge in research and development activities for the improvement of therapies and treatment options by key players will aid the Spinal Muscular Atrophy Treatment Market growth during the forecast period. Various drug pipeline for advanced stages of clinical trials by major pharmaceutical companies will augment the healthy growth of the market. For instance, Genentech/Roche's pipeline candidate of Risdiplam, which recently received a priority review from the FDA and is expected to receive a decision on approval from the FDA by May 2020. Furthermore, the growing initiatives for pre-diagnosis and positive reimbursement policies will boost the Spinal Muscular Atrophy Treatment Market trends in the foreseeable future. Moreover, the growing awareness regarding pivotal treatment options will create new opportunities for the market.

Request a Sample Copy of the Research Report:https://www.fortunebusinessinsights.com/enquiry/request-sample-pdf/spinal-muscular-atrophy-treatment-market-100576

Market Restraint:

High Cost of Products to Impede Market Expansion

The cost-intensive products and high prices associated with the rare disease therapies will subsequently obstruct the growth of the market. For instance, spinraza is expected to cost US$ 750,000 for the first year and will be repriced at US$ 375,000 after that. Apart from that, Novartis rare gene therapy, Zolgensma will come at a price of US$ 2.1 million for a one-time treatment. The expensive cost of therapies will restrict the adoption of treatment for many patients, which in turn will act as a restraint for the Spinal Muscular Atrophy Treatment Market revenue.

Regional Insight:

Presence of Major Players to Influence Growth in North America

The market in North America stood at USD 854 million in 2018 and is likely to remain dominant during the forecast period. The growth in the region is attributed to the presence of prominent players in the region. The growing awareness regarding the prevalence of rare disease and pre-treatment initiatives will bolster accelerate the Spinal Muscular Atrophy Treatment Market growth in North America.

List of the Major Players Operating in the Global SMA Treatment Market Include:

Have Any Query? Ask Our Experts:https://www.fortunebusinessinsights.com/enquiry/speak-to-analyst/spinal-muscular-atrophy-treatment-market-100576

Detailed Table of Content:

TOC Continued.!

Request for Customization: https://www.fortunebusinessinsights.com/enquiry/customization/spinal-muscular-atrophy-treatment-market-100576

Have a Look at Related Reports:

Bone Growth Stimulators Market Size, Share and Global Trend By Product Type (Bone Growth Stimulation Devices, Bone Morphogenetic Proteins (BMP), Platelet-Derived Growth Factor (PDGF)), By Application (Spinal Fusion, Maxillofacial & Dental, Nonunion and Union Bone Fractures), By End User (Hospitals, Ambulatory Surgical Centers, Specialty Clinics, Home Care), and Geography Forecast till 2026

Spinal Cord Stimulation Market Size, Share and Global Trend By Product (Implantable Pulse Generator, Radiofrequency System), Disease Indication (Failed Back Syndrome, Degenerative Disk Disease, Complex Regional Pain Syndrome, Arachnoiditis), End Users (Hospital, Ambulatory Surgical Centers, Specialty Clinics) and Geography Forecast till 2025

Spinal Devices Market Size, Share & Industry Analysis, By Product Type (Fusion Devices (Cervical Devices, Thoracolumbar Devices, Interbody Devices, and Biologics), Non-Fusion Devices (Vertebral Compression Fracture Devices, Artificial Discs, Dynamic Stabilization Devices, and Others), and Stimulation Devices) By Disease Indication (Degenerative Disc Disease, Complex Deformity, Traumas & Fractures, and Others), By End User (Hospitals & Ambulatory Surge

Spinal Fusion Devices Market Size, Share & Industry Analysis, By Product Type (Cervical Devices, Thoracolumbar Devices, Interbody Devices, and Biologics), By Disease Indication (Degenerative Disc Disease, Complex Deformity, Traumas & Fractures, and Others), By End User (Hospitals & Ambulatory Surgery Centers, Specialty Clinics and Others) and Regional Forecast, 2019-2026

Orthopedic Implants Market Size, Share & Industry Analysis, By Product (Joint Reconstruction, Spinal Implants, Trauma Implants, Dental Implants, Orthobiologics, and Others) End-user (Hospitals, Orthopedic Clinics, Ambulatory Surgical Centers, and Others) and Regional Forecast, 2019-2026

Orthobiologics Market Size, Share and Industry Analysis by Product Type (Viscosupplements, Bone Growth Stimulators, Demineralized Bone Matrix, Synthetic Bone Substitutes, Stem Cells, Allografts), By Application (Spinal Fusion, Maxillofacial & Dental, Soft Tissue Repair, Reconstructive & Fracture Surgery), By End User (Hospitals, Ambulatory Surgical Centers, Speciality Clinics), and Regional Forecast 2019-2026

Neurodegenerative Diseases Drugs Market Size, Share and Industry Analysis By Drug Class (Immunomodulator, Interferons, Decarboxylase Inhibitors, Dopamine Agonists, Others), By Disease Indication (Multiple Sclerosis, Parkinson's Disease, Alzheimer's Disease, Spinal Muscular Atrophy (SMA), Others), By Route of Administration (Oral, Injection, Transdermal, Others), By End User and Regional Forecast 2019-2026

Orthodontics Market Size, Share & Industry Analysis, By Product Type [Instruments and Supplies {Fixed (Brackets, Bands & Buccal Tubes, Archwires, and Others), and Removable (Aligners, Retainers, and Others)}], By End User (Hospitals, Dental Clinics, Others) and Regional Forecast, 2019-2026

About Us:

Fortune Business Insights offers expert corporate analysis and accurate data, helping organizations of all sizes make timely decisions. We tailor innovative solutions for our clients, assisting them to address challenges distinct to their businesses. Our goal is to empower our clients with holistic market intelligence, giving a granular overview of the market they are operating in.

Our reports contain a unique mix of tangible insights and qualitative analysis to help companies achieve sustainable growth. Our team of experienced analysts and consultants use industry-leading research tools and techniques to compile comprehensive market studies, interspersed with relevant data.

At Fortune Business Insights we aim at highlighting the most lucrative growth opportunities for our clients. We, therefore, offer recommendations, making it easier for them to navigate through technological and market-related changes. Our consulting services are designed to help organizations identify hidden opportunities and understand prevailing competitive challenges.

Contact Us:Fortune Business Insights Pvt. Ltd. 308, Supreme Headquarters, Survey No. 36, Baner, Pune-Bangalore Highway, Pune - 411045, Maharashtra, India.Phone:US :+1 424 253 0390UK : +44 2071 939123APAC : +91 744 740 1245Email: sales@fortunebusinessinsights.comFortune Business InsightsLinkedIn | Twitter | Blogs

Press Release: https://www.fortunebusinessinsights.com/press-release/spinal-muscular-atrophy-sma-treatment-market-9626

See original here:
Spinal Muscular Atrophy Treatment Market to Exhibit a Spectacular CAGR of 28.9%; Growing Initiatives by Government Authorities for Pre-Diagnosis to...

To Read More: Spinal Muscular Atrophy Treatment Market to Exhibit a Spectacular CAGR of 28.9%; Growing Initiatives by Government Authorities for Pre-Diagnosis to…
categoriaSpinal Cord Stem Cells commentoComments Off on Spinal Muscular Atrophy Treatment Market to Exhibit a Spectacular CAGR of 28.9%; Growing Initiatives by Government Authorities for Pre-Diagnosis to… | dataMarch 4th, 2020
Read All

Stem Cells: A New Way to Potentially Treat Spinal Cord …

By daniellenierenberg

People sustain approximately 11,000 spinal cord injuries each year. Approximately 38 percent of these injuries are from motor vehicle accidents, with falls, gunshot wounds and similar forms of violence, sports activities, and medical or surgical complications being the other common causes. Regardless of the cause, any type of injury to the spinal cord can damage nerve and tissue cells and result in a loss of sensation or paralysis. One possible option for treatment for spinal cord injuries thats been gaining traction among Beverly Hills spine surgeons is the use of stem cells.

Stem cells are undifferentiated cells. They are useful because they can become specialized cells in the area where they are injected. These cells have the ability to become other types of cells and encourage the production of new, healthy cells. There are two common types of stem cells:

Normally, treatment for a spinal cord injury involves extensive physical therapy and rehab. However, recovery is usually limited because an injured spine cant heal due to the formation of scar tissue triggered by an inflammatory response that keeps healthy cells from reaching the damaged area.

Adult stem cells that come from either bone marrow or a donated umbilical cord from a healthy pregnancy are usually used for spinal injury treatments. With umbilical cord tissue, there is a more rigorous screening process to look for viruses and bacteria. Regardless of how they are collected, stem cells may help with spinal cord injuries by:

Along with a local anesthetic, stem cells used to treat spinal injuries are injected directly into the affected area, and they are placed into the spinal fluid to allow the undefined cells to reach the injured part of the spine. Patients usually receive multiple injections over the course of several weeks. Treatment is often coupled with:

Stem cells wont completely repair an injured spinal cord. However, there are several promising studies that suggest some patients do see noticeable improvements, such as the ability to feel light touch below the injured area. At one facility in India, eight out of ten patients with no motor or sensory function below the waist were able to walk for about an hour with the assistance of a walker eight months after receiving transplanted stem cells. Stem cell therapy is still in its infancy, but it does offer some hope for patients with spinal injuries who are looking for an alternative to minimally invasive spinal surgery. Beverly Hills residents should contact The Spine Institute at 310-828-7757 for more information.

According to an article on Beckers Spine Review, The Spine Institutes Dr. Hyun Bae has spent a significant amount of time researching stem cell repair for degenerative disc disease as well as how growth factors can treat spinal cord injuries. Dr. Bae was among the first spinal surgeons to utilize growth factor tissue engineering for intervertebral discs, and in 2010 he also chaired a course for the North American Spine Society that dealt with navigating research in spinal biologics.

Read more here:
Stem Cells: A New Way to Potentially Treat Spinal Cord ...

To Read More: Stem Cells: A New Way to Potentially Treat Spinal Cord …
categoriaSpinal Cord Stem Cells commentoComments Off on Stem Cells: A New Way to Potentially Treat Spinal Cord … | dataFebruary 28th, 2020
Read All

West Point: Bioprinting for Soldiers in the Battlefield – 3DPrint.com

By daniellenierenberg

Last summer, U.S. Army Lieutenant Colonel Jason Barnhill traveled to an undisclosed desert location in Africa with a ruggedized 3D printer and other basic supplies that could be used to biofabricate for field medical care, such as human mesenchymal stem/stromal cells (hMSCs). The aim was to discover how a 3D bioprinter could expedite healing and even replace damaged tissue for troops injured in combat.

Jason Barnhill with a 3D bioprinter that could replace damaged tissues for troops injured on the battlefield. (Image: Military Health System/West Point)

Barnhill, who is the life science program director of the United States Military Academy West Point Department of Chemistry and Life Sciences, is leading a project with a team of cadets working on experiments to advance bioprinting research in the field with an ultimate goal to develop technology for creating wound-healing biologics, bandages, and more for soldiers on-site or near the point-of-care. According to U.S. Army news, 26 first-class cadets at the United States Military Academy at West Point, in New York, are doing bioprinting research across seven different projects: two teams are working on biobandages for burn and field care; other two teams are working on how to bioengineer blood vessels to enable other bioprinted items that require a blood source, such as organs, to be viable; while one team is working on printing a viable meniscus, and another team is looking to print a liver.

A lot of this has to do with the bioink that we want to use, exactly what material were using as our printer ink, if you will, explained Class of 2020 cadet Allen Gong, a life science major conducting research for the meniscus project. Once we have that 3D model where we want it, then its just a matter of being able to stack the ink on top of each other properly.

Gong, along with his teammates, are researching how to use bioinks to create a meniscus that could be implanted into a soldiers injured knee, while other cadets are seeking to print a liver that could be used to test medicine and maybe one day eliminate the shortage of transplantable organs. This is not the first time we hear the U.S. Army is using bioprinting for regenerative medicine, after all, they often suffer from trauma, resulting in loss of limbs, injuries to the face and severe burns. Deployed soldiers confront the risks of battle on a daily basis. However, being able to have immediate access to specialized bioprinters created to solve catastrophic medical injuries could be the dream-scenario solution many have been waiting for.

In 2014, scientists at the Armed Forces Institute of Regenerative Medicine (AFIRM), established by the Department of Defense, were using 3D bioprinters extensively for skin repair research; but the Army is also actively developing artificial 3D printed hearts, blood vessels, and other organs in a quest to develop customizable and 3D printed medicine. Barnhills pilot program in 2019, conducted by the Uniformed Services University of the Health Sciences (USU) in collaboration with the U.S. Military Academy at West Point, has shown that a 3D printer capable of biofabrication could potentially change the way deployed warfighters receive care also. Under his direction, the 3D printer successfully fabricated a number of products, including a scalpel capable of immediate use and a hemostat (a surgical tool used to control bleeding during surgery and capable of gripping objects) while locking them into place to hold a tissue or other medical implements. The tools were made of a material that could be sterilized on-site, reducing the chance of infection during practical use.

Common combat injuries include second and third-degree burns, broken bones, shrapnel wounds, brain injuries, spinal cord injuries, nerve damage, paralysis, loss of sight and hearing, post-traumatic stress disorder (PTSD), and limb loss. Many of these injuries could be tackled with customizable, on-site bioprinting machines, but for now, the cadets on each of the teams are in the beginning stages of their research before starting the actual printing process. This stage includes reading the research already available in their area of focus and learning how to use the printers, and after spring break, they will have their first chance to start printing with cells. The teams focusing on biobandage, meniscus, and liver will try to print a tangible product by the end of the semester as part of the initial research.

Another cadet and life science major working on the meniscus project, Thatcher Shepard, described in the U.S. Army article that there are definitely some leaps before we can get to that point [of actually implanting what they print]. We have to make sure the body doesnt reject the new bioprinted meniscus and also the emplacement. There can be difficulties with that. Right now, were trying to just make a viable meniscus, then, well look into further research to be able to work on methods of actually placing it into the body.

They claim that the meniscus team is starting with magnetic resonance images (MRI) of knees and working to build a 3D model of a meniscus, which they will eventually be able to print. A great deal of the teams research will be figuring out how and when to implant those cells into the complex cellular structure they are printing.

Cadets at West Point Department of Chemistry and Life Sciences (Image: West Point)

According to Michael Deegan, another life science major and cadet working on one of the blood vessel projects, for now, it will involve a lot of research into what has already been done in the field and the questions that still need to be answered. He described the experience as kind of like putting the cart before the horse. Saying that youve printed it, great, but whats the point of printing it if its not going to survive inside your body? Being able to work on that fundamental step thats actually going to make these organs viable is what drew me and my teammates to be able to do this. Deegan and his colleagues will eventually decide on the scope and direction of their projects, knowing that their research will be key to allowing other areas of the field to move forward, since organs, such as livers and pancreases, have been printed, but so far, they can only be produced at the micro level because they have no blood flow.

While generating organs and blood vessels will be one of the great benefits of customized medicine in the future, the work behind the biobandage teams could have a direct use in the field during combat. The U.S. Army suggests that the goal is to be able to take cells from an injured soldier, specifically one who suffered burns and print a bandage with built-in biomaterial on it to jumpstart the healing process. Medical personnel could potentially be deployed with a 3D printer in their Forward Operating Base or it could be sent along in a column with a Humvee to enable bandages to be printed on-site.

Were researching how the body actually heals from burns, said Channah Mills, a life science major working on one of the biobandage projects. So, what are some things we can do to speed along that process? Introducing a bandage could kickstart that healing process. The faster you start healing, the less scarring and the more likely youre going to recover.

Being on the forefront of it and just seeing the potential in bioengineering, its pretty astounding, Gong said. But it has also been sobering just to see how much more complicated it is to 3D print biomaterials than plastic.

At the moment, the projects are building on existing research on printing sterile bandages and then adding a bioengineering element. The bandages would be printed with specialized skin and stem cells necessary for the healing process.

More than half of the cadets working on the bioprinting projects plan to continue on to medical school following their graduation from West Point. This research, which will be presented during the academys annual Projects Day on April 30, is a great starting point for the future army doctors, as they begin to understand and work on some of the more complex technologies that could become their allies in the future, helping them heal soldiers in the field.

Read more:
West Point: Bioprinting for Soldiers in the Battlefield - 3DPrint.com

To Read More: West Point: Bioprinting for Soldiers in the Battlefield – 3DPrint.com
categoriaSpinal Cord Stem Cells commentoComments Off on West Point: Bioprinting for Soldiers in the Battlefield – 3DPrint.com | dataFebruary 28th, 2020
Read All

Dutch startup Neuroplast raises 4M for its stem cell-based technology to treat patients with Spinal Cord Injury – Silicon Canals

By daniellenierenberg

Neuroplast is a company based in Maastricht (the Netherlands) developing autologous stem cell therapies for patients suffering from neurodegenerative diseases such as spinal cord injury (SCI), amyotrophic lateral sclerosis (ALS) and traumatic brain injury.

Recently, the company has raised 4 million from Dutch-based Brightlands Venture Partners and LIOF and from an existing shareholder and informal investor Lumana Invest BV.

CEO Johannes de Munter said:

The financing and support of the investors will enable us to perform multicenter clinical trials in the Netherlands, Denmark, Germany, and Spain and bring the product to market.

This Dutch startup will use the fund to perform a phase II/III clinical trial with the aim of obtaining conditional market approval for the treatment of patients suffering from Spinal Cord Injury.

Founded by physician Hans de Munter and neurologist Erik Wolters in 2014, Neuroplast has expanded with Juliette van den Dolder, who was appointed as COO and management team member.

In the case of SCI, isolating, manufacturing, and reinserting patients own cells, very promising preclinical outcomes have resulted in an Orphan Drug Designation from European regulatory authorities, allowing a fast-track procedure for the clinical trials. These trials are expected to start in March 2020.

Marcel Kloosterman Director at Brightlands Venture Partners:

Neuroplast combines breakthrough science with a solid management team. In a sizable market characterised by major unmet need, successful treatment of (accident caused) paralysed patients would make life so much easier for them and their families while lowering the burden and costs for the society.

Yearly, 24,500 people in Europe and the USA are diagnosed with Spinal Cord Injury, usually caused by accident. Its worth mentioning that for Europe and the US, the medical cost associated with Spinal Cord Injury is over 13 bn per year.

CEO Johannes de Munter adds:

Neuroplast is becoming an ATMP player in the region and wants to contribute to our beautiful eco-system.

Main image credits:Neuroplast

Stay tuned toSilicon Canalsfor more European technology news

Originally posted here:
Dutch startup Neuroplast raises 4M for its stem cell-based technology to treat patients with Spinal Cord Injury - Silicon Canals

To Read More: Dutch startup Neuroplast raises 4M for its stem cell-based technology to treat patients with Spinal Cord Injury – Silicon Canals
categoriaSpinal Cord Stem Cells commentoComments Off on Dutch startup Neuroplast raises 4M for its stem cell-based technology to treat patients with Spinal Cord Injury – Silicon Canals | dataFebruary 20th, 2020
Read All

MicroCures Announces Material Transfer Agreement with Henry M. Jackson Foundation for the Advancement of Military Medicine to Support Preclinical…

By daniellenierenberg

U.S. Department of Defense Researchers to Study Ability of siFi2 to Drive Axon Regeneration and Functional Recovery following Spinal Cord Injury

NEW YORK, Feb. 19, 2020 (GLOBE NEWSWIRE) -- MicroCures, a biopharmaceutical company developing novel therapeutics that harness the bodys innate regenerative mechanisms to accelerate tissue repair, today announced that it has entered into a material transfer agreement (MTA) with the Henry M. Jackson Foundation (HJF) for the Advancement of Military Medicine. Under terms of the agreement, United States Department of Defense researchers will conduct a preclinical study of siFi2, MicroCures lead product candidate, in animal models of spinal cord injury. siFi2, a small interfering RNA (siRNA) therapeutic that can be applied topically, is designed to enhance recovery after trauma.

Researchers, led by Kimberly Byrnes, Ph.D. of Uniformed Services University of the Health Sciences, will evaluate the potential of siFi2 treatment to drive axon regeneration and functional recovery in a rat model of spinal cord injury. As part of this study, multiple siFi2 formulations will be evaluated in order to assist in the identification of a lead formulation to be advanced into clinical development.

MicroCures technology is based on foundational scientific research at Albert Einstein College of Medicine regarding the fundamental role that cell movement plays as a driver of the bodys innate capacity to repair tissue, nerves, and organs. The company has shown that complex and dynamic networks of microtubules within cells crucially control cell migration, and that this cell movement can be reliably modulated to achieve a range of therapeutic benefits. Based on these findings, the company has established a first-of-its-kind proprietary platform to create siRNA-based therapeutics capable of precisely controlling the speed and direction of cell movement by selectively silencing microtubule regulatory proteins (MRPs).

The company has developed a broad pipeline of therapeutic programs with an initial focus in the area of tissue, nerve and organ repair. Unlike regenerative medicine approaches that rely upon engineered materials or systemic growth factor/stem cell therapeutics, MicroCures technology directs and enhances the bodys inherent healing processes through local, temporary modulation of cell motility. siFi2 is a topical siRNA-based treatment designed to silence the activity of Fidgetin-Like 2 (FL2), a fundamental MRP, within an area of wounded tissue or nerve. In doing so, the therapy temporarily triggers accelerated movement of cells essential for repair into an injury area. Importantly, based on its topical administration, siFi2 can be applied early in the treatment process as a supplement to current standard of care.

The U.S. Department of Defense continues to be a valued and trusted partner for MicroCures as we work to advance research of siFi2 with the goal of ultimately delivering transformative treatments to patients with significant unmet medical needs, said David Sharp, Ph.D., co-founder and chief science officer of MicroCures. With a focus in the area of spinal cord injury, this MTA further demonstrates the broad applicability of our technology platform to a range of therapeutic indications. We look forward to collaborating with Dr. Byrnes and her team at Uniformed Services University of the Health Sciences to continue the advancement of this promising program.

Previously conducted research in a rat model of spinal cord injury has demonstrated that treatment with siFi2 allowed axon growth to occur through the inhibitory barriers that typically appear and prevent healing at the site of injury. Conversely, study results failed to demonstrate similar axon growth through these inhibitory barriers for animals administered a siRNA control treatment. Additional preclinical findings have demonstrated functional improvement in rats with spinal cord injury following treatment with siFi2. This was evidenced by significantly improved hind limb locomotor function in siFi2-treated animals as compared to control subjects at Day 5 (p < 0.05) and Day 7 (p < 0.01).

About MicroCures

Story continues

MicroCures develops biopharmaceuticals that harness innate cellular mechanisms within the body to precisely control the rate and direction of cell migration, offering the potential to deliver powerful therapeutic benefits for a variety of large and underserved medical applications.

MicroCures has developed a broad pipeline of novel therapeutic programs with an initial focus in the area of tissue, nerve and organ repair. The companys lead therapeutic candidate, siFi2, targets excisional wound healing, a multi-billion dollar market inadequately served by current treatments. Additional applications for the companys cell migration accelerator technology include dermal burn repair, corneal burn repair, cavernous nerve repair/regeneration, spinal cord repair/regeneration, and cardiac tissue repair. Cell migration decelerator applications include combatting cancer metastases and fibrosis. The company protects its unique platform and proprietary therapeutic programs with a robust intellectual property portfolio including eight issued or allowed patents, as well as eight pending patent applications.

For more information please visit: http://www.microcures.com

Contact:

Vida Strategic Partners (On behalf of MicroCures)

Stephanie Diaz (investors)415-675-7401sdiaz@vidasp.com

Tim Brons (media)415-675-7402tbrons@vidasp.com

More here:
MicroCures Announces Material Transfer Agreement with Henry M. Jackson Foundation for the Advancement of Military Medicine to Support Preclinical...

To Read More: MicroCures Announces Material Transfer Agreement with Henry M. Jackson Foundation for the Advancement of Military Medicine to Support Preclinical…
categoriaSpinal Cord Stem Cells commentoComments Off on MicroCures Announces Material Transfer Agreement with Henry M. Jackson Foundation for the Advancement of Military Medicine to Support Preclinical… | dataFebruary 20th, 2020
Read All

Lineage Cell Therapeutics to Present New Data From OpRegen and Vision Restoration Programs at the Association for Research in Vision and Ophthalmology…

By daniellenierenberg

Lineage Cell Therapeutics, Inc. (NYSE American and TASE: LCTX), a clinical-stage biotechnology company developing novel cell therapies for unmet medical needs, announced today that updated results from a Phase I/IIa study of its lead product candidate, OpRegen, a retinal pigment epithelium (RPE) cell transplant therapy currently in development for the treatment of dry age-related macular degeneration (dry AMD), have been accepted for presentation at the 2020 Association for Research in Vision and Ophthalmology (ARVO) Meeting, which will be held May 3rd through May 7th, 2020 at the Baltimore Convention Center in Baltimore, MD. The abstract presentation, entitled, "Phase I/IIa Clinical Trial of Human Embryonic Stem Cell (hESC)-Derived Retinal Pigmented Epithelium (RPE, OpRegen) Transplantation in Advanced Dry Form Age-Related Macular Degeneration (AMD): Interim Results", will be presented as part of the Gene Therapy and Stem cells Session on May 3rd, 2020 from 3:00PM to 4:45PM EDT by Christopher D. Riemann, M.D., Vitreoretinal Surgeon and Fellowship Director, Cincinnati Eye Institute and University of Cincinnati School of Medicine; Clinical Governance Board, Cincinnati Eye Institute (presentation number 865). The presentation will provide updated data from patient cohorts 1 through 4 of the clinical study and will include data on the first patients dosed with both a new subretinal delivery system as well as with a new Thaw-and-Inject (TAI) formulation of OpRegen.

"We continue to be encouraged by positive data with OpRegen for the treatment of dry AMD," stated Brian M. Culley, CEO of Lineage. "The five patients treated as part of cohort 4, which more closely match our intended patient population, have all demonstrated an increase in the number of letters they can read on an Early Treatment Diabetic Retinopathy Scale (ETDRS), having gained between 10 25 letters. Importantly, the first patient treated using both a new subretinal delivery system and our TAI formulation of OpRegen demonstrated notable improvements in vision, having gained 25 readable letters (or 5 lines) 6 months following administration of OpRegen RPE cells, as assessed by the ETDRS. This represents an improvement in visual acuity from a baseline of 20/250 to 20/100 in the treated eye. These visual acuity measurements are meaningful and can translate into quality of life enhancements to things like reading, driving, or avoiding accidents. With the opening of two leading ophthalmology research centers as clinical sites for our study, we are focused on rapid enrollment so that our clinical update at ARVO can be as mature and informative as possible. Our objective is to combine the best cells, the best production process and the best delivery system, which we believe will position us as the front-runner in the race to address the unmet opportunity in the potential billion-dollar dry AMD market."

In addition, Lineage will present new preclinical results from its Vision Restoration Program, a proprietary program based on the ability to generate 3-dimensional human retinal tissue derived from pluripotent cells. Lineages 3-dimensional retinal tissue technology may address the unmet need of implementing a retinal tissue restoration strategy to address a wide range of severe retinal degenerative conditions including retinitis pigmentosa and advanced forms of AMD. In 2017 and 2019, the Small Business Innovation Research program of the National Institutes of Health awarded Lineage grants of close to $2.3 million to further develop this innovative, next generation vision restoration program.

- The poster presentation, entitled, "Transplantation of organoid-derived human retinal tissue in to the subretinal space of CrxRdy/+ cats)," will be presented as part of the Animal models for visual disease and restoration Session on May 4th, 2020 4:00PM to 5:45PM EDT in Session Number 291 by Igor Nasonkin, Ph.D., Principal Investigator, Director of Research & Development at Lineage (Poster board Number: 2253 - B0162).

- The poster presentation, entitled, " Intraocular biocompatibility of Hystem hydrogel for delivery of pharmaceutical agents and cells," will be presented as part of the Stem cells and organoids: Technical advances Session on May 5th, 2020 between 8:45AM to 10:30AM EDT in Session Number 332 by our collaborator Randolph D. Glickman, Ph.D., Professor of Ophthalmology, UT Health San Antonio (Poster board Number: # A0247).

Story continues

About Lineage Cell Therapeutics, Inc.

Lineage Cell Therapeutics is a clinical-stage biotechnology company developing novel cell therapies for unmet medical needs. Lineages programs are based on its robust proprietary cell-based therapy platform and associated in-house development and manufacturing capabilities. With this platform Lineage develops and manufactures specialized, terminally-differentiated human cells from its pluripotent and progenitor cell starting materials. These differentiated cells are developed either to replace or support cells that are dysfunctional or absent due to degenerative disease or traumatic injury or administered as a means of helping the body mount an effective immune response to cancer. Lineages clinical programs are in markets with billion dollar opportunities and include (i) OpRegen, a retinal pigment epithelium transplant therapy in Phase I/IIa development for the treatment of dry age-related macular degeneration, a leading cause of blindness in the developed world; (ii) OPC1, an oligodendrocyte progenitor cell therapy in Phase I/IIa development for the treatment of acute spinal cord injuries; and (iii) VAC2, an allogeneic cancer immunotherapy of antigen-presenting dendritic cells currently in Phase I development for the treatment of non-small cell lung cancer. Lineage is also evaluating potential partnership opportunities for Renevia, a facial aesthetics product that was recently granted a Conformit Europenne (CE) Mark. For more information, please visit http://www.lineagecell.com or follow the Company on Twitter @LineageCell.

Forward-Looking Statements

Lineage cautions you that all statements, other than statements of historical facts, contained in this press release, are forward-looking statements. Forward-looking statements, in some cases, can be identified by terms such as "believe," "may," "will," "estimate," "continue," "anticipate," "design," "intend," "expect," "could," "plan," "potential," "predict," "seek," "should," "would," "contemplate," project," "target," "tend to," or the negative version of these words and similar expressions. Such statements include, but are not limited to, statements relating to the potential applications in Lineages Vision Restoration Program. Forward-looking statements involve known and unknown risks, uncertainties and other factors that may cause Lineages actual results, performance or achievements to be materially different from future results, performance or achievements expressed or implied by the forward-looking statements in this press release, including risks and uncertainties inherent in Lineages business and other risks in Lineages filings with the Securities and Exchange Commission (the SEC). Lineages forward-looking statements are based upon its current expectations and involve assumptions that may never materialize or may prove to be incorrect. All forward-looking statements are expressly qualified in their entirety by these cautionary statements. Further information regarding these and other risks is included under the heading "Risk Factors" in Lineages periodic reports with the SEC, including Lineages Annual Report on Form 10-K filed with the SEC on March 14, 2019 and its other reports, which are available from the SECs website. You are cautioned not to place undue reliance on forward-looking statements, which speak only as of the date on which they were made. Lineage undertakes no obligation to update such statements to reflect events that occur or circumstances that exist after the date on which they were made, except as required by law.

View source version on businesswire.com: https://www.businesswire.com/news/home/20200218005395/en/

Contacts

Lineage Cell Therapeutics, Inc. IR Ioana C. Hone(ir@lineagecell.com) (510) 871-4188

Solebury Trout IR Gitanjali Jain Ogawa(Gogawa@troutgroup.com)(646) 378-2949

Original post:
Lineage Cell Therapeutics to Present New Data From OpRegen and Vision Restoration Programs at the Association for Research in Vision and Ophthalmology...

To Read More: Lineage Cell Therapeutics to Present New Data From OpRegen and Vision Restoration Programs at the Association for Research in Vision and Ophthalmology…
categoriaSpinal Cord Stem Cells commentoComments Off on Lineage Cell Therapeutics to Present New Data From OpRegen and Vision Restoration Programs at the Association for Research in Vision and Ophthalmology… | dataFebruary 20th, 2020
Read All

The 411 on Stem Cells: What They Are and Why It’s Important to Be Educated – Legal Examiner

By daniellenierenberg

Medical treatment involving stem cells is an ever-growing, billion-dollar industry, so chances are you have heard about it in the news. Here in the U.S. and around the world, stem cells are being used in various therapies to treat a wide variety of health problems and diseases, including dementia, autism, multiple sclerosis, cerebral palsy, osteoarthritis, cancer, heart disease, Parkinsons disease, and spinal cord injury. Treatments for such health issues may sound promising, but the risk is many of those being sold and advertised arent yet proven to be safe and effective. This is why its so important to educate yourself before jumping into any kind of stem cell treatment.

What are stem cells?

To gain a better understanding of this new age of medical research, one must first understand what stem cells are and how they work. Stem cells are special human cells that can develop into many different types of cells. They can divide and produce more of the same type of stem cells, or they can turn into different functioning cells. There are no other types of cells in the body that have this natural ability to generate new cell types.

Where do stem cells come from?

So where do stem cells that are used for research and medical treatments come from? The three main types of stem cells are embryonic (or pluripotent) stem cells, adult stem cells, and induced pluripotent stem cells.

Embryonic stem cells come from unused, in vitro fertilized embryos that are three to five days old. The embryos are only donated for research purposes with the informed consent of the donors. Embryonic stem cells are pluripotent, which means they can turn into any cell type in the body.

Adult stem cells are found in small numbers in developed tissues in different parts of the body, such as bone marrow, skin, and the brain. They are specific to a certain kind of tissue in the body and are limited to maintaining and repairing the tissue in which they are found. For example, liver stem cells can only make new liver tissue; they arent able to make new muscle tissue.

Induced pluripotent stem cells are another form of adult stem cells. These are stem cells that have been manipulated in a laboratory and reprogrammed to work like embryotic (or pluripotent) stem cells. While these altered adult stem cells dont appear to be clinically different from embryonic stem cells, research is still being conducted to determine if the effects they have on humans differ from actual embryonic stem cells.

Stem cells can also be found in amniotic fluid and umbilical cord blood. These stem cells have the ability to change into specialized cells like embryonic stem cells. While more research is being conducted to determine the potential of these types of stem cells, researchers already actively use these through amniocentesis procedures. In this procedure, the stem cells drawn from amniotic fluid samples of pregnant women can be screened for developmental abnormalities in a fetus.

How stem cells function

The main difference between embryonic and adult stem cells is how they function. Embryonic stem cells are more versatile. Since they can divide into more stem cells or become any type of cell in the body, they can be used to regenerate or repair a variety of diseased tissue and organs. Adult stem cells only generate the types of cells from where they are taken from in the body.

The future of stem cell research

The ability for stem cells to regenerate under the right conditions in the body or in a laboratory is why researchers and doctors have become so interested in studying them. Stem cell research is helping scientists and doctors to better understand how certain diseases occur, how to possibly generate healthy cells to replace diseased cells, and offer ways to test new drugs.

Clearly, stem cell research is showing great potential for understanding and treating a range of diseases and other health issues, but there is still a lot to learn. While there are some diseases that are showing success using stem cell treatments, many others are yet to be proven in clinical trials and should be considered highly experimental.

In our next article, various stem cell treatments, FDA regulations, and other stem cell hot topics will be explored. It will also focus on what to look for when considering stem cell therapies so people arent misled or misinformed about the benefits and risks.

For more information regarding the basics of stem cells visit these sites:

https://stemcells.nih.gov/info/basics/1.htm

https://www.mayoclinic.org/tests-procedures/bone-marrow-transplant/in-depth/stem-cells/art-20048117

Read more:
The 411 on Stem Cells: What They Are and Why It's Important to Be Educated - Legal Examiner

To Read More: The 411 on Stem Cells: What They Are and Why It’s Important to Be Educated – Legal Examiner
categoriaSpinal Cord Stem Cells commentoComments Off on The 411 on Stem Cells: What They Are and Why It’s Important to Be Educated – Legal Examiner | dataFebruary 17th, 2020
Read All

Induced Pluripotent Stem Cells Market Predicted to Witness Surge in the Near Future2018 2028 – TechNews.mobi

By daniellenierenberg

TMRR, in its recent market report, suggests that the Induced Pluripotent Stem Cells market report is set to exceed US$ xx Mn/Bn by 2029. The report finds that the Induced Pluripotent Stem Cells market registered ~US$ xx Mn/Bn in 2018 and is spectated to grow at a healthy CAGR over the foreseeable period. This Induced Pluripotent Stem Cells market study considers 2018 as the base year, 2019 as the estimated year, and 2019 2029 as the forecast timeframe.

The Induced Pluripotent Stem Cells market research focuses on the market structure and various factors (positive and negative) affecting the growth of the market. The study encloses a precise evaluation of the Induced Pluripotent Stem Cells market, including growth rate, current scenario, and volume inflation prospects, on the basis of DROT and Porters Five Forces analyses. In addition, the Induced Pluripotent Stem Cells market study provides reliable and authentic projections regarding the technical jargon.

Important regions covered in the Induced Pluripotent Stem Cells market research include Region 1 (Country 1, country 2), Region 2 (Country 1, country 2), Region 3 (Country 1, country 2) and Region 4 (Country 1, country 2).

Request For Discount On This Report @ https://www.tmrresearch.com/sample/sample?flag=D&rep_id=6245&source=atm

The Induced Pluripotent Stem Cells market study answers critical questions including:

The content of the Induced Pluripotent Stem Cells market report includes the following insights:

Request Sample Report @ https://www.tmrresearch.com/sample/sample?flag=B&rep_id=6245&source=atm

On the basis of component, the global Induced Pluripotent Stem Cells market report covers the following segments:

Notable Development

Over the past few years, fast emerging markets in the global induced pluripotent stem cells are seeing the advent of patents that unveil new techniques for reprogramming of adult cells to reach embryonic stage. Particularly, the idea that these pluripotent stem cells can be made to form any cells in the body has galvanized companies to test their potential in human cell lines. Also, a few biotech companies have intensified their research efforts to improve the safety of and reduce the risk of genetic aberrations in their approved human cell lines. Recently, this has seen the form of collaborative efforts among them.

Lineage Cell Therapeutics and AgeX Therapeutics have in December 2019 announced that they have applied for a patent for a new method for generating iPSCs. These are based on NIH-approved human cell lines, and have been undergoing clinical-stage programs in the treatment of dry macular degeneration and spinal cord injuries. The companies claim to include multiple techniques for reprogramming of animal somatic cells.

Such initiatives by biotech companies are expected to impart a solid push to the evolution of the induced pluripotent stem cells.

North America is one of the regions attracting colossal research funding and industry investments in induced pluripotent stem cells technologies. Continuous efforts of players to generate immune-matched supply of pluripotent cells to be used in disease modelling has been a key accelerator for growth. Meanwhile, Asia Pacific has also been showing a promising potential in the expansion of the prospects of the market. The rising number of programs for expanding stem cell-based therapy is opening new avenues in the market.

All the players running in the global Induced Pluripotent Stem Cells market are elaborated thoroughly in the Induced Pluripotent Stem Cells market report on the basis of R&D developments, distribution channels, industrial penetration, manufacturing processes, and revenue. In addition, the report examines, legal policies, and comparative analysis between the leading and emerging Induced Pluripotent Stem Cells market players.

Customize This Report @ https://www.tmrresearch.com/sample/sample?flag=CR&rep_id=6245&source=atm

Why choose TMRR?

Tags: Induced Pluripotent SteInduced Pluripotent Stem Cells Market Definitions and OverviewInduced Pluripotent Stem Cells Market DynamicsInduced Pluripotent Stem Cells Market Segmentation and Scope

Read more:
Induced Pluripotent Stem Cells Market Predicted to Witness Surge in the Near Future2018 2028 - TechNews.mobi

To Read More: Induced Pluripotent Stem Cells Market Predicted to Witness Surge in the Near Future2018 2028 – TechNews.mobi
categoriaSpinal Cord Stem Cells commentoComments Off on Induced Pluripotent Stem Cells Market Predicted to Witness Surge in the Near Future2018 2028 – TechNews.mobi | dataFebruary 14th, 2020
Read All

Astrocytes Show Protective Role in Early-stage ALS – Technology Networks

By daniellenierenberg

Motor neuron disease is a degenerative condition which destroys the nerve cells (motor neurons) in the brain and spinal cord, which control movement, speech, swallowing and breathing. The most common type of motor neuron disease is amyotrophic lateral sclerosis (ALS), which affects around 5,000 people in the UK at any one time.A new study found that in this disease, the motor neurons in the brain and spinal cord become sick and die when a protein, called TDP-43, misfolds and accumulates in the wrong place within the motor neurons. Conversely, when this happens in a type of cell that supports motor neurons, called astrocytes, these cells appear comparatively resistant and survive.

When these two types of cells are close together, the more-resistant astrocytes are able to protect motor neurons from the misfolded protein. This rescue-mechanism helps the motor neurons, which are needed to control muscles, live longer.

The role astrocytes have played in dealing with toxic forms of TDP-43 in motor neurons has not been previously well documented in motor neuron disease. Its exciting that weve now found that they may play an important protective role in the early-stages of this disease, explains Phillip Smethurst, lead author. This has huge therapeutic potential finding ways to harness the protective properties of astrocytes could pave the way to new treatments. This could prolong their rescue function or find a way to mimic their behavior in motor neurons so that they can protect themselves from the toxic protein.

This research also established a new model for studying motor neuron disease. This new method more closely resembles the disease in patients as it uses healthy human stem cells, derived from skin cells, and spinal cord tissue samples donated by patients with motor neuron disease, collected post-mortem.

It is thanks to the selfless donations from people with motor neuron disease, that we were able to study the interplay between motor neurons and astrocytes in conditions that closely resemble what happens in humans. These human cell models are a powerful tool for further studies of motor neuron disease and in the hunt for effective therapies. explains Katie Sidle, co-senior author.

For the first time, we have been able to create a model of sporadic motor neuron disease by essentially transferring the toxic TDP-43 protein from post-mortem tissue into healthy human stem cell-derived motor neurons and astrocytes in order to understand how each cell type responds to this insult, both in isolation and when mixed together. The insights made in this work are testament to the power of creative collaboration and interdisciplinarity. It is through many years working together as a group of clinicians, pathologists, stem cell biologists, protein biochemists and other experts, and with a joint aim of increasing knowledge about motor neuron disease (to ultimately help find a cure), that these results have been possible, says Rickie Patani, co-senior author.ReferenceSmethurst et al. (2020) Distinct responses of neurons and astrocytes to TDP-43 proteinopathy in amyotrophic lateral sclerosis. Brain. DOI: https://doi.org/10.1093/brain/awz419

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.

Link:
Astrocytes Show Protective Role in Early-stage ALS - Technology Networks

To Read More: Astrocytes Show Protective Role in Early-stage ALS – Technology Networks
categoriaSpinal Cord Stem Cells commentoComments Off on Astrocytes Show Protective Role in Early-stage ALS – Technology Networks | dataFebruary 13th, 2020
Read All

Gene associated with autism also controls growth of the embryonic brain – Newswise

By daniellenierenberg

MEDIA CONTACT

Available for logged-in reporters only

Newswise A UCLA-led study reveals a new role for a gene thats associated with autism spectrum disorder, intellectual disability and language impairment.

The gene, Foxp1, has previously been studied for its function in the neurons of the developing brain. But the new study reveals that its also important in a group of brain stem cells the precursors to mature neurons.

This discovery really broadens the scope of where we think Foxp1 is important, said Bennett Novitch, a member of theEli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLAand the senior author of the paper. And this gives us an expanded way of thinking about how its mutation affects patients.

Mutations in Foxp1 were first identified in patients with autism and language impairments more than a decade ago. During embryonic development, the protein plays a broad role in controlling the activity of many other genes related to blood, lung, heart, brain and spinal cord development. To study how Foxp1 mutations might cause autism, researchers have typically analyzed its role in the brains neurons.

Almost all of the attention has been placed on the expression of Foxp1 in neurons that are already formed, said Novitch, a UCLA professor of neurobiology who holds the Ethel Scheibel Chair in Neuroscience.

In the new study published in Cell Reports, he and his colleagues monitored levels of Foxp1 in the brains of developing mouse embryos. They found that, in normally developing animals, the gene was active far earlier than previous studies have indicated during the period when neural stem cells known as apical radial glia were just beginning to expand in numbers and generate a subset of brain cells found deep within the developing brain.

When mice lacked Foxp1, however, there were fewer apical radial glia at early stages of brain development, as well as fewer of the deep brain cells they normally produce. When levels of Foxp1 were above normal, the researchers observed more apical radial glia and an excess of those deep brain cells that appear early in development.In addition, continued high levels of Foxp1 at later stages of embryonic development led to unusual patterns of apical radial glia production of deep-layer neurons even after the mice were born.

What we saw was that both too much and too little Foxp1 affects the ability of neural stem cells to replicate and form certain neurons in a specific sequence in mice, Novitch said. And this fits with the structural and behavioral abnormalities that have been seen in human patients.

Some people, he explained, have mutations in the Foxp1 gene that blunt the activity of the Foxp1 protein, while others have mutations that change the proteins structure or make it hyperactive.

The team also found intriguing hints that Foxp1 might be important for a property specific to the developing human brain.The researchers also examined human brain tissue and discovered that Foxp1 is present not only in apical radial glia, as was seen in mice, but also in a second group of neuralstem cells called basal radial glia.

Basal radial glia are abundant in the developinghuman brain, but absent or sparse in the brains of many other animals, including mice.However, when Novitchs team elevated Foxp1 function in the brains of mice, cells resembling basal radial glia were formed. Scientists have hypothesized that basal radial glia also are connected to the size of the human brain cortex: Their presence in large quantities in the human brain may help explain why it is disproportionately larger than those of other animals.

Novitch said that although the new research does not have any immediate implications for the treatment of autism or other diseases associated with Foxp1 mutations, it does help researchers understand the underlying causes of those disorders.

In future research, Novitch and his colleagues are planning to study what genes Foxp1 regulates in apical radial glia and basal radial glia, and what roles those genes play in the developing brain.

The studys first author is Caroline Alayne Pearson, a UCLA assistant project scientist. Other authors are from the University of Texas at Austin, the University of Alabama at Birmingham and the University of Puerto Rico.

The study was funded by the National Institutes of Health, the California Institute for Regenerative Medicine, the Cancer Prevention and Research Institute of Texas, the University of Texas at Austins Marie Betzner Morrow Centennial Endowment and the UCLA Broad Stem Cell Research Centers Research Award Program, including support from the Binder Foundation.

SEE ORIGINAL STUDY

Read more here:
Gene associated with autism also controls growth of the embryonic brain - Newswise

To Read More: Gene associated with autism also controls growth of the embryonic brain – Newswise
categoriaSpinal Cord Stem Cells commentoComments Off on Gene associated with autism also controls growth of the embryonic brain – Newswise | dataFebruary 11th, 2020
Read All

Page 13«..10..12131415..2030..»


Copyright :: 2024