10 Best Stem Cell Beauty Products On The Market Today
By Dr. Matthew Watson
Fight the signs of premature aging with these stem cell skin care beauty products. A lot of companies claim to incorporate the benefits of plant and human stem cells, as well as components secreted by them, into the best stem cell beauty products on the market. Below, we present what appears (based on company claims) to be ten of the best products available today.
As a publisher of stem cell news, we havent traditionally wandered into the world of claims made by stem cell beauty products suppliers. For obvious reasons, we cannot guarantee the accuracy of the claims made by these companies or the presence of specific active agents within them.
However, we get approached daily with questions about this topic and know that people are seeking information about it from a source that: 1) Doesnt inflate the claims, and 2) Understands the science.
For this reason, we have decided to share with you what appear to be interesting skin care options, coupled with a healthy dose of warnings reminding you that the stated claims may or may not be accurate.
Kimera Labs makes the top of this list for numerous reasons. First, the companys science it is solid. Instead of being a supplier of beauty products, the company is a specialty contract research organization (CRO) focusing on regenerative medicine applications, including exosome purification. Exosomes are small vesicles (~30-100nm) that are secreted by nearly all cell types and act as intracellular mail.
Exosomes transfer DNA, RNA, and proteins to other cells, thereby altering the function of the other cells.
Second, the company has an FDA registered tissue facility in Miami, FL, where it develops pharmaceutical grade, exosome-based regenerative therapies. The company has a 6,000 sq. ft. facility in Miramar, Florida, that includes impressive features such asISO:9001/13485 certification, cleanrooms, and a variety of high-end scientific equipment.
Third, the company is run by Dr. Duncan Ross, a highly regarded scientist with a Ph.D. in Immunology from the University of Miami. Dr. Ross is also a Principal at The Kimera Society, a non-profit organization dedicated to the advancementof stem cells, regenerative medicine,and cancer immunotherapies.
For those seeking stem cell beauty products, the companys core offering is XoGlo, a product which provides growth and healing signals to guide the re-deposition of tissue and avoid the scarring that often accompanies burns or other skin damage. You can see an incredible Case Study from the company in which XoGlo was used to heal second-degree burns in a patient in approximately seven days. The product can also be used for general skin health and enhancement.
More information on the XoGlois available here.
According to the company, this facial cleanser is formulated with stem cytokines that promote the skins ability to heal itself, leaving softer and smoother skin. It also has essential fatty acids, detoxifying actives, antioxidants, and anti-inflammatory botanicals that deeply cleanse your skin of excess oil, impurities, and surface debris. This makes the skin smoother, more balanced, and hydrated.
Lifeline says that it offers a moisture serum with a formula consisting of proteins and peptides from pluripotent stem cells. It works by reversing skin aging signs and actively moisturizing the skin with its cucumber melon extracts. The serum primarily targets the reduction of wrinkles and fine lines.
At $105 for a 1 oz bottle, it is notable that the company does not mention how it sources pluripotent stem cells, leaving key questions about its active ingredients unanswered.
Heres another skin care serum on this list of stem cellbeauty products. This serum is enriched with a tissue nutrient solution (TNS) technology that reduces wrinkles and fine lines and improves skin texture and tone. TNS is formulated with matrix proteins, cytokines, soluble collagen, antioxidants, and growth factors that are essential to keeping skin healthy.
This regenerative eye creamcontains autokine-CM obtained from adult stem cells through mini-liposuction. This unique ingredient is composed of extracted cytokines, matrix proteins, and growth factors from adult stem cells that help improve the skins ability to heal. It also aids in synthesizing elastin and collagen production, thus reducing fine lines and wrinkles, improving skin tone and texture, and increasing epidermal thickness in the eye area.
Venus Skin introduced a stem cell therapy serum packed with bio-signals from bone marrow mesenchymal stem cells for stimulation of skin tissue repair and healing. This reverses aging signs and rejuvenates the feel and look of the skin. It also contains essential vitamins A, C, and E to normalize skin functions, promote collagen synthesis in the skin, and reduce the appearance of scars, respectively.
This hydrating mask possesses a stem cell culture technology that penetrates deep into the skin for intense and long-lasting hydration. This leaves the skin well-moisturized and supple. It also fills fine lines and wrinkles and restores parched skin, bringing skin moisture and smoothness back.
This intensive facial mist restores the skins elasticity and moisture with its fine liquid particles that immediately penetrate the skin. It contains APL stem cell-conditioned medium extracts that help regenerate, whiten, and hydrate the skin and minimize pores and wrinkles. The facial mist also has chamomile extracts that bring a soothing effect to the skin.
Skin Drink Phytoceuticals highlights three potent anti-aging skin care ingredients in this serum.PhytoCellTec is an ingredient that safeguards the skin stem cells longevity, fights off skin aging, and delays biological aging of cells. Derm SRC works on reducing wrinkles and fine lines, while Ellagi-C promotes skin elasticity and suppleness.
This snail serum boasts an epidermal growth factor ingredient that stimulates the skins stem cell growth and cell survival. It also has a snail mucus extract that refreshes and brightens the skin. Aside from that, the serum contains other natural ingredients, such as macadamia seed oil and hydrolyzed placenta extract, for skin hydration and nourishment.
Which of these components actually enhance skin health and complexion? Hard to say, but the ingredient list certainly is exotic.
With this list of the best beauty products, it can be tricky to know which ones will enhance skin health. Stem cells are becoming a common ingredient in skin products, but regulation of this area is sparse, making it important to be vigilant in your selection.
A steep price tag doesnt guarantee results. Claims of active ingredients do not guarantee they are present. Even the confirmed presence of an ingredient by third-party testing does not substantiate its claimed effect.
However, there are hundreds of user reviews for some of these products, so the possibility for these skin care products to improve the appearance of your skin does exist. Importantly, many of these stem cell beauty products contain an impressive range of other ingredients, so you could benefit from them due to effects unrelated to the claimed stem cell components.
When judging the efficacy of these products, the only clear answer is that you need to be your own study of one.
If you found this article valuable, subscribe to BioInformantsstem cell industry updates.We are the industry leaders in stem cell research, with research cited byThe Wall Street Journal, Xconomy, AABB, andVogue Magazine.Bringing you breaking news on an ongoing basis, join more than half a million loyal readers, including physicians, scientists, executives, investors,and philanthropists.
Let this infographic be your guide. Download it now and use it as a reference later.
10 Best Stem Cell Beauty Products On The Market Today
Glossary | stemcells.nih.gov
By Dr. Matthew Watson
Adult stem cell - See somatic stem cell.
Astrocyte - A type of supporting (glial) cell found in the nervous system.
Blastocoel - The fluid-filled cavity inside the blastocyst, an early, preimplantation stage of the developing embryo.
Blastocyst - Apreimplantationembryo consisting of a sphere made up of an outer layer of cells (thetrophoblast), a fluid-filled cavity (theblastocoel), and a cluster of cells on the interior (theinner cell mass).
Bone marrow stromal cells - A population of cells found in bone marrow that are different from blood cells.
Bone marrow stromal stem cells (skeletal stem cells) - A multipotent subset of bone marrow stromal cells able to form bone, cartilage, stromal cells that support blood formation, fat, and fibrous tissue.
Cell-based therapies - Treatment in which stem cells are induced to differentiate into the specific cell type required to repair damaged or destroyed cells or tissues.
Cell culture - Growth of cells in vitro in an artificial medium for research.
Cell division - Method by which a single cell divides to create two cells. There are two main types of cell division depending on what happens to the chromosomes: mitosis and meiosis.
Chromosome - A structure consisting of DNA and regulatory proteins found in the nucleus of the cell. The DNA in the nucleus is usually divided up among several chromosomes.The number of chromosomes in the nucleus varies depending on the species of the organism. Humans have 46 chromosomes.
Clone - (v) To generate identical copies of a region of a DNA molecule or to generate genetically identical copies of a cell, or organism; (n) The identical molecule, cell, or organism that results from the cloning process.
Cloning - See Clone.
Cord blood stem cells - See Umbilical cord blood stem cells.
Culture medium - The liquid that covers cells in a culture dish and contains nutrients to nourish and support the cells. Culture medium may also include growth factors added to produce desired changes in the cells.
Differentiation - The process whereby an unspecialized embryonic cell acquires the features of a specialized cell such as a heart, liver, or muscle cell. Differentiation is controlled by the interaction of a cell's genes with the physical and chemical conditions outside the cell, usually through signaling pathways involving proteins embedded in the cell surface.
Directed differentiation - The manipulation of stem cell culture conditions to induce differentiation into a particular cell type.
DNA - Deoxyribonucleic acid, a chemical found primarily in the nucleus of cells. DNA carries the instructions or blueprint for making all the structuresand materials the body needs to function. DNA consists of both genes and non-gene DNA in between the genes.
Ectoderm - The outermost germ layer of cells derived from the inner cell mass of the blastocyst; gives rise to the nervous system, sensory organs, skin, and related structures.
Embryo - In humans, the developing organism from the time of fertilization until the end of the eighth week of gestation, when it is called a fetus.
Embryoid bodies - Rounded collections of cells that arise when embryonic stem cells are cultured in suspension. Embryoid bodies contain cell types derived from all threegerm layers.
Embryonic germ cells - Pluripotent stem cells that are derived from early germ cells (those that would become sperm and eggs). Embryonic germ cells are thought to have properties similar to embryonic stem cells.
Embryonic stem cells - Primitive (undifferentiated) cells that are derived from preimplantation-stageembryos, are capable of dividing without differentiating for a prolonged period in culture, and are known to develop into cells and tissues of the three primary germ layers.
Embryonic stem cell line - Embryonic stem cells, which have been cultured under in vitro conditions that allow proliferation without differentiation for months to years.
Endoderm - The innermost layer of the cells derived from the inner cell mass of the blastocyst; it gives rise to lungs, other respiratory structures, and digestive organs, or generally "the gut."
Enucleated - Having had its nucleus removed.
Epigenetic - The process by which regulatory proteins can turn genes on or off in a way that can be passed on during cell division.
Feeder layer - Cells used in co-culture to maintain pluripotent stem cells. For human embryonic stem cell culture, typical feeder layers include mouse embryonic fibroblasts (MEFs) or human embryonic fibroblasts that have been treated to prevent them from dividing.
Fertilization - The joining of the male gamete (sperm) and the female gamete (egg).
Fetus - In humans, the developing human from approximately eight weeks after conception until the time of its birth.
Gamete - An egg (in the female) or sperm (in the male) cell. See also Somatic cell.
Gastrulation - The process in which cells proliferate and migrate within the embryo to transform the inner cell mass of the blastocyst stage into an embryo containing all three primary germ layers.
Gene - A functional unit of heredity that is a segment of DNA found on chromosomes in the nucleus of a cell. Genes direct the formation of an enzyme or other protein.
Germ layers - After the blastocyst stage of embryonic development, the inner cell mass of the blastocyst goes through gastrulation, a period when the inner cell mass becomes organized into three distinct cell layers, called germ layers. The three layers are the ectoderm, the mesoderm, and the endoderm.
Hematopoietic stem cell - A stem cell that gives rise to all red and white blood cells and platelets.
Human embryonic stem cell (hESC) - A type of pluripotent stem cell derived from early stage human embryos, up to and including the blastocyststage. hESCs are capable of dividing without differentiating for a prolonged period in culture and are known to develop into cells and tissues of the three primary germ layers.
Induced pluripotent stem cell (iPSC) - A type of pluripotent stem cell, similar to an embryonic stem cell, formed by the introduction of certain embryonic genes into a somatic cell.
In vitro - Latin for "in glass;" in a laboratory dish or test tube; an artificial environment.
In vitro fertilization - A technique that unites the egg and sperm in a laboratory instead of inside the female body.
Inner cell mass (ICM) - The cluster of cells inside the blastocyst. These cells give rise to the embryo and ultimately the fetus. The ICM may be used to generate embryonic stem cells.
Long-term self-renewal - The ability of stem cells to replicate themselves by dividing into the same non-specialized cell type over long periods (many months to years) depending on the specific type of stem cell.
Meiosis - The type of cell division a diploid germ cell undergoes to produce gametes (sperm or eggs) that will carry half the normal chromosome number. This is to ensure that when fertilization occurs, the fertilized egg will carry the normal number of chromosomes rather than causing aneuploidy (an abnormal number of chromosomes).
Mesenchymal stem cells - A term that is currently used to define non-blood adult stem cells from a variety of tissues, although it is not clear that mesenchymal stem cells from different tissues are the same.
Mesoderm - Middle layer of a group of cells derived from the inner cell mass of the blastocyst; it gives rise to bone, muscle, connective tissue, kidneys, and related structures.
Microenvironment - The molecules and compounds such as nutrients and growth factors in the fluid surrounding a cell in an organism or in the laboratory, which play an important role in determining the characteristics of the cell.
Mitosis - The type of cell division that allows a population of cells to increase its numbers or to maintain its numbers. The number of chromosomes in each daughter cell remains the same in this type of cell division.
Multipotent - Having the ability to develop into more than one cell type of the body. See also pluripotent and totipotent.
Neural stem cell - A stem cell found in adult neural tissue that can give rise to neurons and glial (supporting) cells. Examples of glial cells include astrocytes and oligodendrocytes.
Neurons - Nerve cells, the principal functional units of the nervous system. A neuron consists of a cell body and its processes - an axon and one or more dendrites. Neurons transmit information to other neurons or cells by releasing neurotransmitters at synapses.
Oligodendrocyte - A supporting cell that provides insulation to nerve cells by forming a myelin sheath (a fatty layer) around axons.
Parthenogenesis - The artificial activation of an egg in the absence of a sperm; the egg begins to divide as if it has been fertilized.
Passage - In cell culture, the process in which cells are disassociated, washed, and seeded into new culture vessels after a round of cell growth and proliferation. The number of passages a line of cultured cells has gone through is an indication of its age and expected stability.
Pluripotent - The state of a single cell that is capable of differentiating into all tissues of an organism, but not alone capable of sustaining full organismal development.
Scientists demonstrate pluripotency by providing evidence of stable developmental potential, even after prolonged culture, to form derivatives of all three embryonic germ layers from the progeny of a single cell and to generate a teratoma after injection into an immunosuppressed mouse.
Polar body - A polar body is a structure produced when an early egg cell, or oogonium, undergoes meiosis. In the first meiosis, the oogonium divides its chromosomes evenly between the two cells but divides its cytoplasm unequally. One cell retains most of the cytoplasm, while the other gets almost none, leaving it very small. This smaller cell is called the first polar body. The first polar body usually degenerates. The ovum, or larger cell, then divides again, producing a second polar body with half the amount of chromosomes but almost no cytoplasm. The second polar body splits off and remains adjacent to the large cell, or oocyte, until it (the second polar body) degenerates. Only one large functional oocyte, or egg, is produced at the end of meiosis.
Preimplantation - With regard to an embryo, preimplantation means that the embryo has not yet implanted in the wall of the uterus. Human embryonic stem cells are derived from preimplantation-stage embryos fertilized outside a woman's body (in vitro).
Proliferation - Expansion of the number of cells by the continuous division of single cells into two identical daughter cells.
Regenerative medicine - A field of medicine devoted to treatments in which stem cells are induced to differentiate into the specific cell type required to repair damaged or destroyed cell populations or tissues. (See also cell-based therapies).
Reproductive cloning - The process of using somatic cell nuclear transfer (SCNT) to produce a normal, full grown organism (e.g., animal) genetically identical to the organism (animal) that donated the somatic cell nucleus. In mammals, this would require implanting the resulting embryo in a uterus where it would undergo normal development to become a live independent being. The firstmammal to be created by reproductive cloning was Dolly the sheep, born at the Roslin Institute in Scotland in 1996. See also Somatic cell nuclear transfer (SCNT).
Signals - Internal and external factors that control changes in cell structure and function. They can be chemical or physical in nature.
Somatic cell - Any body cell other than gametes (egg or sperm); sometimes referred to as "adult" cells. See also Gamete.
Somatic cell nuclear transfer (SCNT) - A technique that combines an enucleated egg and the nucleus of a somatic cell to make an embryo. SCNT can be used for therapeutic or reproductive purposes, but the initial stage that combines an enucleated egg and a somatic cell nucleus is the same. See also therapeutic cloning and reproductive cloning.
Somatic (adult) stem cell - A relatively rare undifferentiated cell found in many organs and differentiated tissues with a limited capacity for both self renewal (in the laboratory) and differentiation. Such cells vary in their differentiation capacity, but it is usually limited to cell types in the organ of origin. This is an active area of investigation.
Stem cells - Cells with the ability to divide for indefinite periods in culture and to give rise to specialized cells.
Stromal cells - Connective tissue cells found in virtually every organ. In bone marrow, stromal cells support blood formation.
Subculturing - Transferring cultured cells, with or without dilution, from one culture vessel to another.
Surface markers - Proteins on the outside surface of a cell that are unique to certain cell types and that can be visualized using antibodies or other detection methods.
Teratoma - A multi-layered benign tumor that grows from pluripotent cells injected into mice with a dysfunctional immune system. Scientists test whether they have established a human embryonic stem cell (hESC) line by injecting putative stem cells into such mice and verifying that the resulting teratomas contain cells derived from all three embryonic germ layers.
Therapeutic cloning - The process of using somatic cell nuclear transfer (SCNT) to produce cells that exactly match a patient. By combining a patient's somatic cell nucleus and an enucleated egg, a scientist may harvest embryonic stem cells from the resulting embryo that can be used to generate tissues that match a patient's body. This means the tissues created are unlikely to be rejected by the patient's immune system. See also Somatic cell nuclear transfer (SCNT).
Totipotent - The state of a cell that is capable of giving rise to all types of differentiated cells found in an organism, as well as the supporting extra-embryonic structures of the placenta. A single totipotent cell could, by division in utero, reproduce the whole organism. (See also Pluripotent and Multipotent).
Transdifferentiation - The process by which stem cells from one tissue differentiate into cells of another tissue.
Trophoblast - The outer cell layer of the blastocyst. It is responsible for implantation and develops into the extraembryonic tissues, including the placenta, and controls the exchange of oxygen and metabolites between mother and embryo.
Umbilical cord blood stem cells - Stem cells collected from the umbilical cord at birth that can produce all of the blood cells in the body. Cord blood is currently used to treat patients who have undergone chemotherapy to destroy their bone marrow due to cancer or other blood-related disorders.
Undifferentiated - A cell that has not yet developed into a specialized cell type.
Read this article:
Glossary | stemcells.nih.gov
Skin Program | Harvard Stem Cell Institute (HSCI)
By Dr. Matthew Watson
Scientists in the HSCI Skin Program are using stem cells to regenerate tissue without scarring.
Because scars are made of fibrous tissue, they can seriously impair the function of an organ. To investigate how stem cells function in regenerative wound healing, cancers, and skin aging, and how they malfunction in scarring and fibrosis, we explore the fundamental roles of skin stem cells in health and disease. The insights we gain help us explore the reprogramming of skin cells to repair any part of the body.
Our scientists use a very wide range of experimental resources to explore how to target skin cancer stem cells therapeutically, and how skin stem cell health and maintenance could thwart chronological aging.
Read about George Murphy's research in the feature story Healing Without Scars.
Read about Markus Frank's work on limbal cells in the feature Can We Restore Sight?
So far, scientists in the HSCI Skin Program have:
Sign up for the monthly HSCI Newsletterto get email updates about our research.
Here is the original post:
Skin Program | Harvard Stem Cell Institute (HSCI)
Getting to the Root of Skin Stem Cells | Brigham Clinical …
By Dr. Matthew Watson
Christine Lian (back) and George Murphy (front) are building a compelling case for why skin stem cells may be at the root of skin regeneration and the development of cancer.
In the 1980s, when George Murphy, MD, was just beginning his career at the Brigham, he had the opportunity to assist Brigham reconstructive plastic surgeon Dennis Orgill, MD, PhD, and MIT materials scientist Ioannis Yannas, PhD, on the development of a biodegradable membrane they hoped would act as an artificial skin and facilitate wound healing. Made from bovine collagen and a jelly-like substance derived from sharks (glycosaminoglycan), the membrane had the capacity to thwart the formation of dysfunctional scar tissue and promote true regenerative skin healing. (Known as Integra, the membrane is used all over the world today for wound healing.) The investigators didnt realize it at the time, but they had stumbled upon the healing power of skin stem cellsseveral decades before skin stem cells had been discovered.
In the years ahead, seminal discoveries and experiments by Brigham investigators including Murphy, who is now the director of Dermatopathology, and his colleague and collaborator Christine Lian, MD, would build a compelling case for why skin stem cells may be at the root of two seemingly unrelated phenomena: skin regeneration and the development of cancer.
In 2004, Murphy began his second foray into the world of skin stem cells by working intensively with Natasha Frank, MD, of the Division of Genetics; Markus Frank, MD, of the Renal Division; and Tobias Schatton, PhD, of the Department of Dermatology. In 2007, the team pioneered a discovery that made the cover of the journal Nature: the first identification of stem cells responsible for malignant melanoma, a potentially deadly yet poorly understood form of skin cancer.
Like queen bees in a hive of hundreds of workers, relatively rare malignant skin stem cells are crucial to the genesis and maintenance of an entire tumor, said Murphy. Stem cells tend to be covert and there is a scarcity of biomarkers with which to detect them. The molecule that was discoveredABCB5could identify stem cells in normal skin and identified a cell in malignant melanoma that, although only a small component of melanoma, appeared to drive the tumor.
These insights have led to a clear and concise goal in cancer therapeutics: target and eliminate malignant stem cells. But Murphy and colleagues want to take this goal one step further by targeting precursor cancer skin stem cells before melanoma poses danger.
Melanoma is curable when its very early. But when it gets to be the volume of something potentially no larger than a lentil, it can metastasize and kill you, said Murphy. This switchfrom a curable stage to a deadly stageis critical to study.
In contrast to stem cells that have gone awry, normal skin stem cells are essential to the health and well-being of mature, functional skin. The ability to manipulate the fate of normal skin stem cells could also hold the secret to regenerative wound healing. How to control stem cell behavior and destiny, therefore, became the burning question.
Murphy and Lian credit the origins of their collaborative partnership to strategic adjacency (being in the same building) and luck.
It was both science and serendipity that brought us together, said Lian. Now that the potential problems can be seen more clearly, our goal is to home in on the stem cell epigenome in ways that will lead to new and effective therapies for our patients. Together, we are aggressively pursuing this goal.
By 2011, Lian had joined the Program in Dermatopathology, bringing with her a fundamental insight into the role of the epigenome, the external coating that envelops the DNA molecule and regulates its behavior (or misbehavior, in the case of a malignancy).
Lian had joined the Brigham in 2004 as a postdoc, where she worked on the second floor of 221 Longwood Ave., striving to bring insights from epigenomics to bear on clinical work. Lian was especially interested in melanoma, in part because of the tremendous socioeconomic impact of the disease. She soon heard about Murphywho was working just two floors above. Their proximity helped bring about a new collaboration.
That collaboration led to the creation of the Dermatopathology Stem Cell/Epigenomics Laboratory. In 2012, they published a paper together in the journal Cell, exploring the role of a critical epigenetic marka chemical punctuation mark that tells a cell how genes should be readin melanoma skin stem cells. The team found that the loss of this key epigenetic mark was a hallmark of melanoma, with both diagnostic and prognostic implications, and could be identified in precursor cells. This landmark discovery suggested that the skin stem cell epigenome may be a key to both controlling melanoma and skin regeneration.
The epigenome controls the way DNA behaves, just like a mutation. But unlike a mutation, changes to the epigenome are reversible, said Lian. This opens up exciting therapeutic possibilities and avenues to pursue.
Lian, Murphy and their colleagues are intent on identifying novel ways to target and destroy skin cancer stem cells as well as to control and regulate skin stem cells capable of regenerative healing through therapeutic modulation of the epigenome.
In addition, they are pursuing questions related to aging and transplant rejection through collaboration with multidisciplinary experts and by leveraging diverse, cutting-edge technologies, including next-generation-epigenetic sequencing, three-dimensional bioprinting, and highly multiplexed image capture to simultaneously visualize critical stem cell molecules. The lab works closely with the Harvard Stem Cell Institute, and major collaborative proposals are planned and underway in areas including regenerative wound healing, cancer prevention and epigenomic therapeutics.
Weve assembled a multidisciplinary team interested in the conjunctiva of the eye, the dental cavity, the regenerative properties of salamanders and more, said Murphy. We have found investigators across the Boston area who share their interest in the role of skin stem cells but have expertise and interests in far-ranging areas.
Lian and Murphy are optimistic that this team, with its wide-ranging expertise, will take the steps needed to understand and control those rare cells thatbothdrive cancers and hold the key to tissue regeneration.
The rest is here:
Getting to the Root of Skin Stem Cells | Brigham Clinical ...
StemFactor – Skin Growth Factor Serum
By Dr. Matthew Watson
"I started using Osmosis about two weeks ago and only off and on. I had several skin tags on my face, which a doctor want to charge 100 dollars per tag to remove. The StemFactor dried them up and I have been removing them when washing. Unbelievable. I thought I had to live with and the best part, no hyperpigmentation. Thanks!" ~ B Andrews
Esthetician Marianne Kehoe, has worked with thousands of clients and numerous products for more than 20 years. "Between Catalyst and StemFactor, the results Im seeing in my practice are phenomenal, repeatedly, according to Kehoe, including with post-operative scars and people who have been exposed to the California sun for years."
"Over the past month I have noticed a significant improvement in my skin through using Osmosis skincare. I began with a starter pack then introduced Stem Factor - this has resulted in a huge difference to both the acne prone areas as well as contributing to the overall glow of my skin. I have had problems with my skin for a number of years and in particular Osmosis Stem Factor is the only product I've found that continues to improve skin appearance." ~ Emma
Continued here:
StemFactor - Skin Growth Factor Serum
Pluripotent Stem Cells 101 Boston Children’s Hospital
By Dr. Matthew Watson
Pluripotent stem cells are master cells. Theyre able to make cells from all three basic body layers, so they can potentially produce any cell or tissue the body needs to repair itself. This master property is called pluripotency. Like all stem cells, pluripotent stem cells are also able to self-renew, meaning they can perpetually create more copies of themselves.
There are several types of pluripotent stem cells, including embryonic stem cells. At Childrens Hospital Boston, we use the broader term because pluripotent stem cells can come from different sources, and each method creates a cell with slightly different properties.
But all of them are able to differentiate, or mature, into the three primary groups of cells that form a human being:
Right now, its not clear which type or types of pluripotent stem cells will ultimately be used to create cells for treatment, but all of them are valuable for research purposes, and each type has unique lessons to teach scientists. Scientists are just beginning to understand the subtle differences between the different kinds of pluripotent stem cells, and studying all of them offers the greatest chance of success in using them to help patients.
Types of pluripotent stem cells:
All four types of pluripotent stem cells are being actively studied at Childrens.
Induced pluripotent cells (iPS cells):Scientists have discovered ways to take an ordinary cell, such as a skin cell, and reprogram it by introducing several genes that convert it into a pluripotent cell. These genetically reprogrammed cells are known as induced pluripotent cells, or iPS cells. The Stem Cell Program at Childrens Hospital Boston was one of the first three labs to do this in human cells, an accomplishment cited as the Breakthrough of the Year in 2008 by the journal Science.
iPS cells offer great therapeutic potential. Because they come from a patients own cells, they are genetically matched to that patient, so they can eliminate tissue matching and tissue rejection problems that currently hinder successful cell and tissue transplantation. iPS cells are also a valuable research tool for understanding how different diseases develop.
Because iPS cells are derived from skin or other body cells, some people feel that genetic reprogramming is more ethical than deriving embryonic stem cells from embryos or eggs. However, this process must be carefully controlled and tested for safety before its used to create treatments. In animal studies, some of the genes and the viruses used to introduce them have been observed to cause cancer. More research is also needed to make the process of creating iPS cells more efficient.
iPS cells are of great interest at Childrens, and the lab of George Q. Daley, MD, PhD, Director of Stem Cell Transplantation Program, reported creating 10 disease-specific iPS lines, the start of a growing repository of iPS cell lines.
Embryonic stem cells:Scientists use embryonic stem cell as a general term for pluripotent stem cells that are made using embryos or eggs, rather than for cells genetically reprogrammed from the body. There are several types of embryonic stem cells:
1. True embryonic stem cell (ES cells)These are perhaps the best-known type of pluripotent stem cell, made from unused embryos that are donated by couples who have undergone in vitro fertilization (IVF). The IVF process, in which the egg and sperm are brought together in a lab dish, frequently generates more embryos than a couple needs to achieve a pregnancy.
These unused embryos are sometimes frozen for future use, sometimes made available to other couples undergoing fertility treatment, and sometimes simply discarded, but some couples choose to donate them to science. For details on how theyre turned into stem cells, visit our page How do we get pluripotent stem cells?
Pluripotent stem cells made from embryos are generic and arent genetically matched to a particular patient, so are unlikely to be used to create cells for treatment. Instead, they are used to advance our knowledge of how stem cells behave and differentiate.
2. Stem cells made by somatic cell nuclear transfer (ntES cells)The term somatic cell nuclear transfer (SCNT) means, literally, transferring the nucleus (which contains all of a cells genetic instructions) from a somatic cellany cell of the bodyto another cell, in this case an egg cell. This type of pluripotent stem cell, sometimes called an ntES cell, has only been made successfully in lower animals. To make ntES cells in human patients, an egg donor would be needed, as well as a cell from the patient (typically a skin cell).
The process of transferring a different nucleus into the egg reprograms it to a pluripotent state, reactivating the full set of genes for making all the tissues of the body. The egg is then allowed to develop in the lab for several days, and pluripotent stem cells are derived from it. (Read more in How do we get pluripotent stem cells?)
Like iPS cells, ntES cells match the patient genetically. If created successfully in humans, and if proven safe, ntES cells could completely eliminate tissue matching and tissue rejection problems. For this reason, they are actively being researched at Childrens.
3. Stem cells from unfertilized eggs (parthenogenetic embryonic stem cells)Through chemical treatments, unfertilized eggs can be tricked into developing into embryos without being fertilized by sperm, a process called parthenogenesis. The embryos are allowed to develop in the lab for several days, and then pluripotent stem cells can be derived from them (for more, see How do we get pluripotent stem cells?)
If this technique is proven safe, a woman might be able to donate her own eggs to create pluripotent stem cells matching her genetically that in turn could be used to make cells that wouldnt be rejected by her immune system.
Through careful genetic typing, it might also be possible to use pES cells to create treatments for patients beyond the egg donor herself, by creating master banks of cells matched to different tissue types. In 2006, working with mice, Childrens researchers were the first to demonstrate the potential feasibility of this approach. (For details, see Turning pluripotent stem cells into treatment).
Because pES cells can be made more easily and more efficiently than ntES cells, they could potentially be ready for clinical use sooner. However, more needs to be known about their safety. Concerns have been raised that tissues derived from them might not function normally.
Read more about pluripotent stem cells by following these links:
See more here:
Pluripotent Stem Cells 101 Boston Children's Hospital
Stem Cell Therapy for the Face, Skin, and Hair Clinic …
By Dr. Matthew Watson
Unwelcome Signs of Aging
Saggy cheeks and eyelids, sallow looking skin, pronounced cellulite, thinning hair or even loss of hair those are just some examples for unpleasant changes of an aging face and body. Are these unavoidable signs of aging or do these changes of the body possibly have other reasons?
Unfortunately or rather luckily it is not possible to stop time and to spend life in eternal youth. However, premature or especially distinctive aging processes may be triggered by lifestyle, burdening circumstances, or illness.
If the body is suffering from deficiency symptoms due to chronic stress or illness, the skins biological quality and elasticity are decreasing and the underlying tissue, the muscles, and other body structures are degenerating. Thinning hair, extensive hair loss, or alopecia (circular hair loss) may also be explained by illness or age.
It is our task to determine why the body is aging ahead of time and furthermore to work against the degenerative aging processes in order to eliminate their unwelcome consequences. All our treatments are focused on rejuvenating by using the potential of the bodys own components. We especially use the impressive regenerative power of stem cells from body fat and growth factors found in the blood. Bioidentical hormones, which are structurally identical to natural hormones, support your body by rebuilding a stable hormonal balance, which is important for the bodily systems to function.
Thanks Dr. Heinrich, I again like to look in the mirror!
We offer promising therapies with stem cells and growth factors both for regeneration of skin as well as hair. Hormone deficiencies are often the reason for unwelcome changes of the body.
In most cases invasive surgical interventions such as facelifts and eyelid corrections, removing excess tissue, and hair transplants are not suitable. Instead it is more important to treat the cause of these issues and regenerate the underlying tissue and skin to gently replenish its volume.
We are strictly opposed to synthetic fillers (e.g., silicone, hyaluronic acid) since those kinds of therapies are solely used to improve the visible symptoms without having a regenerative effect and without treating the actual cause.
See the article here:
Stem Cell Therapy for the Face, Skin, and Hair Clinic ...
Types of Stem Cells A Closer Look at Stem Cells
By Dr. Matthew Watson
Tissue-specific stem cells
Tissue-specific stem cells (also referred to assomaticoradultstem cells) are more specialized than embryonic stem cells. Typically, these stem cells can generate different cell types for the specific tissue or organ in which they live.
For example, blood-forming (orhematopoietic) stem cells in the bone marrow can give rise to red blood cells, white blood cells and platelets. However, blood-forming stem cells dont generate liver or lung or brain cells, and stem cells in other tissues and organs dont generate red or white blood cells or platelets.
Some tissues and organs within your body contain small caches of tissue-specific stem cells whose job it is to replace cells from that tissue that are lost in normal day-to-day living or in injury, such as those in your skin, blood, and the lining of your gut.
Tissue-specific stem cells can be difficult to find in the human body, and they dont seem to self-renew in culture as easily as embryonic stem cells do. However, study of these cells has increased our general knowledge about normal development, what changes in aging, and what happens with injury and disease.
Read the rest here:
Types of Stem Cells A Closer Look at Stem Cells
Apple Stem Cells – The Anti-Aging skin care ingredient …
By Dr. Matthew Watson
What are Stem Cells?
Stem cells are super unique in that they have the ability to go through numerous cycles and cell divisions while maintaining the undifferentiated state. Primarily, stem cells are capable of self-renewal and can transform themselves into other cell types of the same tissue. Their crucial role is to replenish dying cells and regenerate damaged tissue. Stem cells have a limited life expectation due to environmental and intrinsic stress factors. Because their life is endangered by internal and external stresses, stem cells have to be protected and supported to delay preliminary aging. In aged bodies, the number and activity of stem cells in reduced.
Until several years ago, the tart, unappealing breed of the Swiss-grown Uttwiler Sptlauber apples, did not seem to offer anything of value. That was until Swiss scientists discovered the unusual longevity of the stem cells that kept these apples alive months after other apples shriveled and fell off their trees. In the rural region of Switzerland, home of these magical apples, it was discovered that when the unpicked apples or tree bark was punctured, Swiss Apple trees have the ability to heal themselves and last longer than other varieties. What was the secret to these apples prolonged lives?
Proven to Diminish the Signs of Aging
These scientists got to work to find out. What they revealed was that apple stem cells work just like human stem cells, they work to maintain and repair skin tissue. The main difference is that unlike apple stem cells, skin stem cells do not have a long lifespan, and once they begin depleting, the signs of aging start kicking in (in the forms of loose skin, wrinkles, the works). Time to harness these apple stem cells into anti aging skin care! Not so fast. As mentioned, Uttwiler Sptlauber apples are now very rare to the point that the extract can no longer be made in a traditional fashion. The great news is that scientists developed a plant cell culture technology, which involves breeding the apple stem cells in the laboratory.
Human stem cells on the skins epidermis are crucial to replenish the skin cells that are lost due to continual shedding. When epidermal stem cells are depleted, the number of lost or dying skin cells outpaces the production of new cells, threatening the skins health and appearance.
Like humans, plants also have stem cells. Enter the stem cells of the Uttwiler Sptlauber apple tree, whose fruit demonstrates an exceptionally long shelf-life. How can these promising stem cells help our skin?
Studies show that apple stem cells boosts production of human stem cells, protect the cell from stress, and decreases wrinkles. How does it work? The internal fluid of these plant cells contains components that help to protect and maintain human stem cells. Apple stem cells contain metabolites to ensure longevity as the tree is known for the fact that its fruit keep well over long periods of time.
When tested in vitro, the apple stem cell extract was applied to human stem cells from umbilical cords and was found to increase the number of the stem cells in culture. Furthermore, the addition of the ingredient to umbilical cord stem cells appeared to protect the cells from environmental stress such as UV light.
Apple stem cells do not have to be fed through the umbilical cord to benefit our skin! The extract derived from the plant cell culture technology is being harnessed as an active ingredient in anti aging skincare products. When delivered into the skin nanotechnology, the apple stem cells provide more dramatic results in decreasing lines, wrinkles, and environmental damage.
Currently referred to as The Fountain of Youth, intense research has proved that with just a concentration level of 0.1 % of the PhytoCellTec (apple stem cell extract) could proliferate a wealth of human stem cells by an astounding 80%! These wonder cells work super efficiently and are completely safe. Of the numerous benefits of apple stems cells, the most predominant include:
Read the original:
Apple Stem Cells - The Anti-Aging skin care ingredient ...
Stem Cell Transplants in Cancer Treatment – National …
By Dr. Matthew Watson
Stem cell transplants are procedures that restore blood-forming stem cells in people who have had theirs destroyed by the very high doses of chemotherapy or radiation therapy that are used to treat certain cancers.
Blood-forming stem cells are important because they grow into different types of blood cells. The main types of blood cells are:
You need all three types of blood cells to be healthy.
In a stem cell transplant, you receive healthy blood-forming stem cells through a needle in your vein. Once they enter your bloodstream, the stem cells travel to the bone marrow, where they take the place of the cells that were destroyed by treatment. The blood-forming stem cells that are used in transplants can come from the bone marrow, bloodstream, or umbilical cord. Transplants can be:
To reduce possible side effects and improve the chances that an allogeneic transplant will work, the donors blood-forming stem cells must match yours in certain ways. To learn more about how blood-forming stem cells are matched, see Blood-Forming Stem Cell Transplants.
Stem cell transplants do not usually work against cancer directly. Instead, they help you recover your ability to produce stem cells after treatment with very high doses of radiation therapy, chemotherapy, or both.
However, in multiple myeloma and some types of leukemia, the stem cell transplant may work against cancer directly. This happens because of an effect called graft-versus-tumor that can occur after allogeneic transplants. Graft-versus-tumor occurs when white blood cells from your donor (the graft) attack any cancer cells that remain in your body (the tumor) after high-dose treatments. This effect improves the success of the treatments.
Stem cell transplants are most often used to help people with leukemia and lymphoma. They may also be used for neuroblastoma and multiple myeloma.
Stem cell transplants for other types of cancer are being studied in clinical trials, which are research studies involving people. To find a study that may be an option for you, see Find a Clinical Trial.
The high doses of cancer treatment that you have before a stem cell transplant can cause problems such as bleeding and an increased risk of infection. Talk with your doctor or nurse about other side effects that you might have and how serious they might be. For more information about side effects and how to manage them, see the section on side effects.
If you have an allogeneic transplant, you might develop a serious problem called graft-versus-host disease. Graft-versus-host disease can occur when white blood cells from your donor (the graft) recognize cells in your body (the host) as foreign and attack them. This problem can cause damage to your skin, liver, intestines, and many other organs. It can occur a few weeks after the transplant or much later. Graft-versus-host disease can be treated with steroids or other drugs that suppress your immune system.
The closer your donors blood-forming stem cells match yours, the less likely you are to have graft-versus-host disease. Your doctor may also try to prevent it by giving you drugs to suppress your immune system.
Stem cells transplants are complicated procedures that are very expensive. Most insurance plans cover some of the costs of transplants for certain types of cancer. Talk with your health plan about which services it will pay for. Talking with the business office where you go for treatment may help you understand all the costs involved.
To learn about groups that may be able to provide financial help, go to the National Cancer Institute database, Organizations that Offer Support Services and search "financial assistance." Or call toll-free 1-800-4-CANCER (1-800-422-6237) for information about groups that may be able to help.
When you need an allogeneic stem cell transplant, you will need to go to a hospital that has a specialized transplant center. The National Marrow Donor Program maintains a list of transplant centers in the United States that can help you find a transplant center.
Unless you live near a transplant center, you may need to travel from home for your treatment. You might need to stay in the hospital during your transplant, you may be able to have it as an outpatient, or you may need to be in the hospital only part of the time. When you are not in the hospital, you will need to stay in a hotel or apartment nearby. Many transplant centers can assist with finding nearby housing.
A stem cell transplant can take a few months to complete. The process begins with treatment of high doses of chemotherapy, radiation therapy, or a combination of the two. This treatment goes on for a week or two. Once you have finished, you will have a few days to rest.
Next, you will receive the blood-forming stem cells. The stem cells will be given to you through an IV catheter. This process is like receiving a blood transfusion. It takes 1 to 5 hours to receive all the stem cells.
After receiving the stem cells, you begin the recovery phase. During this time, you wait for the blood cells you received to start making new blood cells.
Even after your blood counts return to normal, it takes much longer for your immune system to fully recoverseveral months for autologous transplants and 1 to 2 years for allogeneic or syngeneic transplants.
Stem cell transplants affect people in different ways. How you feel depends on:
Since people respond to stem cell transplants in different ways, your doctor or nurses cannot know for sure how the procedure will make you feel.
Doctors will follow the progress of the new blood cells by checking your blood counts often. As the newly transplanted stem cells produce blood cells, your blood counts will go up.
The high-dose treatments that you have before a stem cell transplant can cause side effects that make it hard to eat, such as mouth sores and nausea. Tell your doctor or nurse if you have trouble eating while you are receiving treatment. You might also find it helpful to speak with a dietitian. For more information about coping with eating problems see the booklet Eating Hints or the section on side effects.
Whether or not you can work during a stem cell transplant may depend on the type of job you have. The process of a stem cell transplant, with the high-dose treatments, the transplant, and recovery, can take weeks or months. You will be in and out of the hospital during this time. Even when you are not in the hospital, sometimes you will need to stay near it, rather than staying in your own home. So, if your job allows, you may want to arrange to work remotely part-time.
Many employers are required by law to change your work schedule to meet your needs during cancer treatment. Talk with your employer about ways to adjust your work during treatment. You can learn more about these laws by talking with a social worker.
Go here to see the original:
Stem Cell Transplants in Cancer Treatment - National ...
Stem Cell Use in Skin Care Products? – Science of Skincare
By Dr. Matthew Watson
The science behind skin care has been progressing at a faster and faster rate of speed. Twenty years ago, had you mentioned stem cell use in association with mainstream skin care, people would have stared at you as though you had three heads and steered their children in a path far around you.
Reality today paints a much cooler picture. One where stem cells are used to treat a variety of blood and bone marrow diseases, blood cancers, and immune disorders. And we are finding stem cells, both human and plant, on the ingredients lists of some very powerful and effective skin care products. Stem cell use in skin care products is coming of age.
Stem cells are a type of cell that are found in all living things and have the glorious ability to differentiate themselves into many different types of cells. They are capable of becoming any other type of cell in that type of organism and reproducing in a controlled manner. As a result, they are the building blocks of your tissues and have the unique ability to replace damaged and diseased cells. They can proliferate for long periods, dividing themselves over and over again into millions of new cells. That means they can play a pivotal role in how skin repairs itself.
Stem cells are extremely beneficial in the natural process of healing and regeneration, says Jessica Weiser, M.D., a board-certified dermatologist in New York City.
Many beauty products contain stem cells from fruits like Swiss apples, edelweiss, roses, date palms, grape, raspberry, lilac, and gotu kola that have the ability to stay fresh for long periods of times.
Human stem cells come from one of two sources: embryonic stem cells and adult (somatic) stem cells. For the case of skin care, stem cells of the adult origin are used. They remain in the body quietly in a non-dividing state for years until activated by disease or injury.
Because they play an essential role in tissue removal, stem cells residing just below the surface of the skin can help with restorative functions, such as cellular regeneration, and could play a vital role in helping to enhance our ability to repair aging skin.
You start off with an abundance of stem cells in your skin, but you lose them as you age. By the time you hit 50, youve lost about 98% of them.
The working theory is that by applying products containing stem cell extracts, you could encourage the growth of your own skins stem cells and possibly wake them up to trigger their anti-aging effects. Some research suggests that they can promote the production of collagen, which is the bodys firming protein.
Live cells need very specific conditions to remain alive and viable. Its difficult enough to maintain those conditions in a laboratory setting. Skin care products and their environments dont offer those types of conditions. When stem cells are included in skin care products, makers arent looking to provide you with live, functional cells. Extracts from the stem cells, not the actual cells themselves, are usually added to skin care products. Its not possible to maintain live stem cells in cosmetic emulsions, says Zoe Diana Draelos, a consulting professor of dermatology at the Duke University School of Medicine in Durham, North Carolina.
Most stem cell products you see on the shelf dont actually contain stem cells, but rather the proteins and amino acids that those cells secrete. Typically, if you see a product labeled as a stem cell product, youll see the stem cells key substances in the ingredients list. These include ferulic acid, ellagic acid, and quercetin. This is what your body is able to recognize and put to use to help rejuvenate and repair cells. Human stem cell byproducts (from skin or adipose tissue) seem to be the best solution for use in skin care products because of their ability to produce the same types of cellular components that your body uses naturally to maintain a youthful appearance.
Cultivating stem cells is a tedious process involving a very controlled environment without any contaminants in order to yield the most potent, stable, and pure extract. Because of this technology, the cost of stem cell products are usually greater than products without.
MDSUN is a perfect collaboration between medicine and beauty with the ability to deliver the highest quality skin care products, giving you long-lasting radiance and youth. Each formulation is effective, while free of harsh ingredients, perfumes, or chemical scent additives.
They offer multiple options incorporating powerful stem cell technology with proven effective results. The Wrinkle Smoothener reduces wrinkle depth and improves skins texture while quenching skin-damaging free radicals. It can stimulate skin repair and diminish the appearance of aging skin.
The Collagen Lift is a very potent treatment that can deliver obvious results, minimizing the appearance of wrinkles and lines, improving skin texture and tone. This luxurious gel-cream soothes redness and irritations and rejuvenates skin cells for a strong and long-lasting radiant renewal.
The Med-Eye Complex Cream visibly promotes firmness, increases blood circulation and deeply hydrates the eye area to reduce the signs of aging, lending a youthful appearance and glow.
Read more from the original source:
Stem Cell Use in Skin Care Products? - Science of Skincare
Stem Cell Skin Care – anti-aging cream and hydration Serum
By NEVAGiles23
SC21 BioTech: Stem Cell Skin Care Set
SC21 nowoffers a rejuvenating stem cell skin careset that is available to help restore aging skin. At SC21, we have been able to combine human mesenchymal stem cell growth factors, polypeptide complexes, and cytokines, with our day time anti-aging cream & evening hydration serum.
Our SC21 biotechnology scientists have developed a process to isolate potent rejuvenating factors from human stem cells. By resupplying the skin with these powerful missing factors, SC21 Day & Night Stem Cell Skin Care promotes cell renewal, boosts the production of collagen and elastin, restores aging cells, and, ultimately, provides you with more youthful looking skin.
It is important to note that as we age, the stem cell population that is vital in providing healing signals to the skin dramatically diminishes. As a result of this, the rejuvenating components the skin needs to maintain its appearance lessen. By replenishing lost peptides, cytokines & growth factors with the use of a topical product on the skin, we, through the day &night skin care set, are able to effectively re-engage the skins healing process.
The SC21 day & night stem cell skin care rejuvenation set also has a complete solution for restoring aging skin. We have, through the day anti-aging cream & night hydration serum been able to use: human mesenchymal stem cell growth factors, to regenerate human tissues; polypeptide complexes, (which penetrate the epidermis, outer layer of our skin) to send signals to the skin cells and cytokines proteins to send signals between the skin cells.
Focus Ingredient of Growth Factor Skin Care:
Mesenchymal Stem Cell (MSC) Peptide Complex = 15% (cytokines, growth factors, peptide complex)
Other Key Ingredients:
Focus Ingredient of Growth Factor Skin Care:
Mesenchymal Stem Cell (MSC) Peptide Complex = 20%(cytokines, growth factors, peptide complex)
Other Key Ingredients:
Apply 2-3 pumps to clean & dry skin.
Peptides are easier explained as signaling molecules produced by cells to instruct other cells.
As cellular messengers, cytokines influence and control our biological processes from start to finish. There are hundreds of unique cytokines in the human body. Cells talk with cytokines to repair injury, repel microbes, fight infections, and develop immunity.
Growth factors, are, on the other hand, diffusible signaling proteins that stimulate the growth of specific tissues and play a crucial role in promoting cell differentiation and division.
Many modern medical advances, including stem cell breakthroughs, are made possible due to our growing understanding of cytokines & growth factors. We use modern culture techniques (the same type used to produce human insulin and other naturally occurring substances) to grow human stem cells in the laboratory to harvest their regenerative cytokines and growth factors.
Mesenchymal stem cells (MSCs), which are traditionally found in the bone marrow, are used to improve function upon integration because they are self-renewing cells that have the capacity to differentiate, and are capable of replacing and repairing damaged tissues.
MSCs can consequently during culture, produce the following:
Our skin cells are biologically designed to continuously renew themselves, but, starting from our mid 20s, the skin cell renewal process slows down and our skin becomes thinner. This thinning causes us to be more prone to skin damage from external elements.
However, there are other factors that can contribute to our aging process, and in other cases even cause premature aging. Some of these factors include:
Follow this link:
Stem Cell Skin Care - anti-aging cream and hydration Serum
Are there enough stem cells in your knees to heal the …
By daniellenierenberg
Are there enough stem cells in your knees to heal the damage of osteoarthritis? If yes, why arent those stem cells fixing your knees now? Is it a lack of numbers?
Marc Darrow MD, JD. Thank you for reading my article. You can ask me your questions about bone marrow derived stem cells using the contact form below.
In 2011, doctors at the University of Aberdeen published research in the journal Arthritis and rheumatism that provided the first evidence that resident stem cells in the knee joint synovium underwent proliferation (multiplied) and chondrogenic differentiation (made themselves into cartilage cells) following injury.(1)
If the stem cells in your knee synovial lining are abundant and have the ability to rebuild cartilage after injury, why isnt your knee fixing itself?
One of those 40 studies was performed by researchers at theUniversity of Calgary in 2012. Among their questions, if the stem cells in the knee synovial lining are abundant and have the ability to rebuild cartilage after injury, why isnt the knee fixing itself? Here is what they published:
Since osteoarthritis leads to a progressive loss of cartilage and synovial progenitors (rebuilding) cells have the potential to contribute to articular cartilage repair, the inability of osteoarthritis synovial fluid Mesenchymal progenitor cells (stem cell growth factors) to spontaneously differentiate into chondrocytes suggests that cell-to-cell aggregation and/or communication may be impaired in osteoarthritis and somehow dampen the normal mechanism of chondrocyte replenishment from the synovium or synovial fluid. Should the cells of the synovium or synovial fluid be a reservoir of stem cells for normal articular cartilage maintenance and repair, these endogenous sources of chondro-biased cells would be a fundamental and new strategy for treating osteoarthritis and cartilage injury if this loss of aggregation & differentiation phenotype can be overcome.(2)
This research was supported in anew study from December 2017 In Nature reviews. The paper suggested that recognizing that joint-resident stem cells are comparatively abundant in the joint and occupy multiple niches (from the center of the joint to the out edges) will enable the optimization of single-stage therapeutic interventions for osteoarthritis.(3) The idea is to get these native stem cells to repair.
Now we know that there are many stem cells in the knee, when there is an injury there are more stem cells. If we can figure out how to get these stem cells turned on to the healing mode, the knee could heal itself of early stage osteoarthritis. So the problem is not the number of stem cells, BUT, communication.
This failure to communicate was also seen in other research. In 2016, another heavily cited paper, this time fromTehran University for Medical Sciences, noted that despite their larger numbers,the native stem cells act chaotically and are unable to regroup themselves into a healing mechanism and repair the bone, cartilage and other tissue. Introducing bone marrow stem cells into this environmentgets the native stem cells in line and redirects them to perform healing functions. The joint environmentis changed from chaotic to healing because of communication.(4) It should be pointed out that at the time of this article update (August 2018) 62 medical studies cited the research in this papers findings).
A recentpaper from a research team inAustralia confirms how this change of joint environment works. It starts with cell signalling a new communication network is built.
University of Iowa research published in theJournal of orthopaedic research
Serious meniscus injuries seldom heal and increase the risk for knee osteoarthritis; thus, there is a need to develop new reparative therapies. In that regard, stimulating tissue regeneration by autologous (from you, not donated) stem/progenitor cells has emerged as a promising new strategy.
(The research team) showed previously that migratory chondrogenic progenitor cells (mobile cartilage growth factors) were recruited to injured cartilage, where they showed a capability in situ (on the spot) tissue repair. Here, we tested the hypothesis that the meniscus contains a similar population of regenerative cells.
Explant studies revealed that migrating cells were mainly confined to the red zone (where the blood is and its growth factors) in normal menisci: However, these cells were capable of repopulating defects made in the white zone (the desert area where no blood flows. Migrating cell numbers increased dramatically in damaged meniscus. Relative to non-migrating meniscus cells, migrating cells were more clonogenic, overexpressed progenitor cell markers, and included a larger side population. (They were ready to heal) Gene expression profiling showed that the migrating population was more similar tochondrogenic progenitor cells (mobile cartilage growth factors) than other meniscus cells. Finally, migrating cells equaledchondrogenic progenitor cells in chondrogenic potential, indicating a capacity for repair of the cartilaginous white zone of the meniscus. These findings demonstrate that, much as in articular cartilage, injuries to the meniscus mobilize an intrinsic progenitor cell population with strong reparative potential.(6)
The intrinsic progenitor cell population with strong reparative potential are in your knee waiting to be mobilized.
So what are we to make of this research?There are a lot of stem cells in a knee waiting to repair. The problem is they are confused and not getting the correct instructions. Bone marrow stem cell therapy can fix the communication problem and begin the repair process anew.
A leading provider of bone marrow derived stem cell therapy, Platelet Rich Plasma and Prolotherapy11645 WILSHIRE BOULEVARD SUITE 120, LOS ANGELES, CA 90025
PHONE: (800) 300-9300
1 Kurth TB, Dellaccio F, Crouch V, Augello A, Sharpe PT, De Bari C. Functional mesenchymal stem cell niches in adult mouse knee joint synovium in vivo. Arthritis Rheum. 2011 May;63(5):1289-300. doi: 10.1002/art.30234.
2 Krawetz RJ, Wu YE, Martin L, Rattner JB, Matyas JR, Hart DA. Synovial Fluid Progenitors Expressing CD90+ from Normal but Not Osteoarthritic Joints Undergo Chondrogenic Differentiation without Micro-Mass Culture. Kerkis I, ed.PLoS ONE. 2012;7(8):e43616. doi:10.1371/journal.pone.0043616.
3 McGonagle D, Baboolal TG, Jones E. Native joint-resident mesenchymal stem cells for cartilage repair in osteoarthritis. Nature Reviews Rheumatology. 2017 Dec;13(12):719.
4Davatchi F, et al. Mesenchymal stem cell therapy for knee osteoarthritis: 5 years follow-up of three patients. Int J Rheum Dis. 2016 Mar;19(3):219-25.
5. Freitag J, Bates D, Boyd R, Shah K, Barnard A, Huguenin L, Tenen A.Mesenchymal stem cell therapy in the treatment of osteoarthritis: reparative pathways, safety and efficacy a review.BMC Musculoskelet Disord. 2016 May 26;17(1):230. doi: 10.1186/s12891-016-1085-9. Review.
6 Seol D, Zhou C, et al. Characteristics of meniscus progenitor cells migrated from injured meniscus. J Orthop Res. 2016 Nov 3. doi: 10.1002/jor.23472.
Read the original:
Are there enough stem cells in your knees to heal the ...
Stem Cells – MedicineNet
By daniellenierenberg
Stem cell facts
What are stem cells?
Stem cells are cells that have the potential to develop into many different or specialized cell types. Stem cells can be thought of as primitive, "unspecialized" cells that are able to divide and become specialized cells of the body such as liver cells, muscle cells, blood cells, and other cells with specific functions. Stem cells are referred to as "undifferentiated" cells because they have not yet committed to a developmental path that will form a specific tissue or organ. The process of changing into a specific cell type is known as differentiation. In some areas of the body, stem cells divide regularly to renew and repair the existing tissue. The bone marrow and gastrointestinal tract are examples of areas in which stem cells function to renew and repair tissue.
The best and most readily understood example of a stem cell in humans is that of the fertilized egg, or zygote. A zygote is a single cell that is formed by the union of a sperm and ovum. The sperm and the ovum each carry half of the genetic material required to form a new individual. Once that single cell or zygote starts dividing, it is known as an embryo. One cell becomes two, two become four, four become eight, eight become sixteen, and so on, doubling rapidly until it ultimately grows into an entire sophisticated organism composed of many different kinds of specialized cells. That organism, a person, is an immensely complicated structure consisting of many, many, billions of cells with functions as diverse as those of your eyes, your heart, your immune system, the color of your skin, your brain, etc. All of the specialized cells that make up these body systems are descendants of the original zygote, a stem cell with the potential to ultimately develop into all kinds of body cells. The cells of a zygote are totipotent, meaning that they have the capacity to develop into any type of cell in the body.
The process by which stem cells commit to become differentiated, or specialized, cells is complex and involves the regulation of gene expression. Research is ongoing to further understand the molecular events and controls necessary for stem cells to become specialized cell types.
Stem Cells:One of the human body's master cells, with the ability to grow into any one of the body's more than 200 cell types.
All stem cells are unspecialized (undifferentiated) cells that are characteristically of the same family type (lineage). They retain the ability to divide throughout life and give rise to cells that can become highly specialized and take the place of cells that die or are lost.
Stem cells contribute to the body's ability to renew and repair its tissues. Unlike mature cells, which are permanently committed to their fate, stem cells can both renew themselves as well as create new cells of whatever tissue they belong to (and other tissues).
Why are stem cells important?
Stem cells represent an exciting area in medicine because of their potential to regenerate and repair damaged tissue. Some current therapies, such as bone marrow transplantation, already make use of stem cells and their potential for regeneration of damaged tissues. Other therapies that are under investigation involve transplanting stem cells into a damaged body part and directing them to grow and differentiate into healthy tissue.
Embryonic stem cells
During the early stages of embryonic development the cells remain relatively undifferentiated (immature) and appear to possess the ability to become, or differentiate, into almost any tissue within the body. For example, cells taken from one section of an embryo that might have become part of the eye can be transferred into another section of the embryo and could develop into blood, muscle, nerve, or liver cells.
Cells in the early embryonic stage are totipotent (see above) and can differentiate to become any type of body cell. After about seven days, the zygote forms a structure known as a blastocyst, which contains a mass of cells that eventually become the fetus, as well as trophoblastic tissue that eventually becomes the placenta. If cells are taken from the blastocyst at this stage, they are known as pluripotent, meaning that they have the capacity to become many different types of human cells. Cells at this stage are often referred to as blastocyst embryonic stem cells. When any type of embryonic stem cells is grown in culture in the laboratory, they can divide and grow indefinitely. These cells are then known as embryonic stem cell lines.
Fetal stem cells
The embryo is referred to as a fetus after the eighth week of development. The fetus contains stem cells that are pluripotent and eventually develop into the different body tissues in the fetus.
Adult stem cells
Adult stem cells are present in all humans in small numbers. The adult stem cell is one of the class of cells that we have been able to manipulate quite effectively in the bone marrow transplant arena over the past 30 years. These are stem cells that are largely tissue-specific in their location. Rather than typically giving rise to all of the cells of the body, these cells are capable of giving rise only to a few types of cells that develop into a specific tissue or organ. They are therefore known as multipotent stem cells. Adult stem cells are sometimes referred to as somatic stem cells.
The best characterized example of an adult stem cell is the blood stem cell (the hematopoietic stem cell). When we refer to a bone marrow transplant, a stem cell transplant, or a blood transplant, the cell being transplanted is the hematopoietic stem cell, or blood stem cell. This cell is a very rare cell that is found primarily within the bone marrow of the adult.
One of the exciting discoveries of the last years has been the overturning of a long-held scientific belief that an adult stem cell was a completely committed stem cell. It was previously believed that a hematopoietic, or blood-forming stem cell, could only create other blood cells and could never become another type of stem cell. There is now evidence that some of these apparently committed adult stem cells are able to change direction to become a stem cell in a different organ. For example, there are some models of bone marrow transplantation in rats with damaged livers in which the liver partially re-grows with cells that are derived from transplanted bone marrow. Similar studies can be done showing that many different cell types can be derived from each other. It appears that heart cells can be grown from bone marrow stem cells, that bone marrow cells can be grown from stem cells derived from muscle, and that brain stem cells can turn into many types of cells.
Peripheral blood stem cells
Most blood stem cells are present in the bone marrow, but a few are present in the bloodstream. This means that these so-called peripheral blood stem cells (PBSCs) can be isolated from a drawn blood sample. The blood stem cell is capable of giving rise to a very large number of very different cells that make up the blood and immune system, including red blood cells, platelets, granulocytes, and lymphocytes.
All of these very different cells with very different functions are derived from a common, ancestral, committed blood-forming (hematopoietic), stem cell.
Umbilical cord stem cells
Blood from the umbilical cord contains some stem cells that are genetically identical to the newborn. Like adult stem cells, these are multipotent stem cells that are able to differentiate into certain, but not all, cell types. For this reason, umbilical cord blood is often banked, or stored, for possible future use should the individual require stem cell therapy.
Induced pluripotent stem cells
Induced pluripotent stem cells (iPSCs) were first created from human cells in 2007. These are adult cells that have been genetically converted to an embryonic stem celllike state. In animal studies, iPSCs have been shown to possess characteristics of pluripotent stem cells. Human iPSCs can differentiate and become multiple different fetal cell types. iPSCs are valuable aids in the study of disease development and drug treatment, and they may have future uses in transplantation medicine. Further research is needed regarding the development and use of these cells.
Why is there controversy surrounding the use of stem cells?
Embryonic stem cells and embryonic stem cell lines have received much public attention concerning the ethics of their use or non-use. Clearly, there is hope that a large number of treatment advances could occur as a result of growing and differentiating these embryonic stem cells in the laboratory. It is equally clear that each embryonic stem cell line has been derived from a human embryo created through in-vitro fertilization (IVF) or through cloning technologies, with all the attendant ethical, religious, and philosophical problems, depending upon one's perspective.
What are some stem cell therapies that are currently available?
Routine use of stem cells in therapy has been limited to blood-forming stem cells (hematopoietic stem cells) derived from bone marrow, peripheral blood, or umbilical cord blood. Bone marrow transplantation is the most familiar form of stem cell therapy and the only instance of stem cell therapy in common use. It is used to treat cancers of the blood cells (leukemias) and other disorders of the blood and bone marrow.
In bone marrow transplantation, the patient's existing white blood cells and bone marrow are destroyed using chemotherapy and radiation therapy. Then, a sample of bone marrow (containing stem cells) from a healthy, immunologically matched donor is injected into the patient. The transplanted stem cells populate the recipient's bone marrow and begin producing new, healthy blood cells.
Umbilical cord blood stem cells and peripheral blood stem cells can also be used instead of bone marrow samples to repopulate the bone marrow in the process of bone marrow transplantation.
In 2009, the California-based company Geron received clearance from the U. S. Food and Drug Administration (FDA) to begin the first human clinical trial of cells derived from human embryonic stem cells in the treatment of patients with acute spinal cord injury.
What are experimental treatments using stem cells and possible future directions for stem cell therapy?
Stem cell therapy is an exciting and active field of biomedical research. Scientists and physicians are investigating the use of stem cells in therapies to treat a wide variety of diseases and injuries. For a stem cell therapy to be successful, a number of factors must be considered. The appropriate type of stem cell must be chosen, and the stem cells must be matched to the recipient so that they are not destroyed by the recipient's immune system. It is also critical to develop a system for effective delivery of the stem cells to the desired location in the body. Finally, devising methods to "switch on" and control the differentiation of stem cells and ensure that they develop into the desired tissue type is critical for the success of any stem cell therapy.
Researchers are currently examining the use of stem cells to regenerate damaged or diseased tissue in many conditions, including those listed below.
References
REFERENCE:
"Stem Cell Information." National Institutes of Health.
See the original post:
Stem Cells - MedicineNet
plant stem cells – PCA SKIN
By JoanneRUSSELL25
Stem cells are a huge trend in skincare, but what do they really do for your skin? Stem cells are often called blank cells because they are undifferentiated, meaning they can be duplicated and made into any type of cell. Think of stem cells as blank scrabble pieces, they can fill in where there are needed because they have the ability to turn into specialized cells. They can boost collagen, protect against sun damage, brighten and repair damaged cells.
PCA SKIN uses plant stem cell extracts from oranges, lilac and grapes as ingredients in several products. All plant stem cells provide antioxidant protection, adding an extra boost of skin-health benefits to an established regimen. Specifically, they guard against inflammation, neutralize free radicals and reverse sun damage. Plant stem cell extracts, versus the actual stem cell, are used in skincare because they are the purest, most-stable way of ensuring the quality of the ingredient. While the actual stem cell cant survive outside of the plant, the extract is just as effective.
Skin & Human Stem Cells – BareFacedTruth.com
By LizaAVILA
We have a lot of knowledge to share with you about stem cells and their value in skin care. We thought we would start with a current review of ongoing work in human stem cell science to give you some context. In the next few days we will be getting a lot more specific about wound healing, anti-aging, and related applications.
Human Stem Cells: Introduction
Future advances in many medical fields are thought to be dependent on continued progress in stem cell research. In this section, BTF briefly looks at the future of stem cell based therapies in the treatment of traumatic injury, degenerative diseases, and other ailments, and concludes with a review of current cell based therapies (stem cell and non-stem cell) in the field of skin care.
While the possible indications for stem cell based therapies are numerous,the field of stem cell science is young and years (or decades) may pass before todays promising laboratory results translate into useful clinical treatments. Only time will tell whether successes evolve or remain frustratingly elusive. We do know that success is possible.
The first stem cell therapy was bone marrow transplantation, originally accomplished in the mid 1960s. Last year, there were more than 50,000 such transplants worldwide. In earlier years, infusion of filtered bone marrow cells was performed with stem cells comprising but a very small part of the volume. Newer techniques have made it possible to separate cellular types to enable use of much higher concentrations of stem cells.
Much progress has been made in characterizing stem cells and understanding how they function. There is much more to the story than differentiation into tissue specific cells. Recent research shows that perhaps even more important is the fact that stem cells, especially certain types of stem cells, communicate with the cells around them by producing cellular signals called cytokines, of which there are hundreds.
Cytokines trigger specific receptors on cell membranes that result in precise responses. This phenomenon is considered an essential element in the healing response of all tissues. Identifying and characterizing the large number of cytokines is an important part of stem cell research.
Not every induced response is necessarily beneficial. It is the symphony of responses that is important. How to promote helpful responses while inhibiting non-beneficial ones is a continuing focus of cellular biochemical research as well as the basis upon which drug companies spend huge resources developing drugs to either trigger or block particular cytokine receptors. Good examples in the field of dermatology are EGFR (epidermal growth factor receptor) blocking compounds for use in treating susceptible cells, most notably cancers stimulated by EGF.
Potential Treatments
Stem cell therapies hold potential to treat many conditions and diseases that affect millions of people in the U.S.
From the Laboratory to the Bedside
Going from the research laboratory to the bedside takes time. Only one month ago, the FDA granted marketing approval for the first licensed stem cell product. Derived from donated umbilical cord blood, the product contains stem cells that can restore a recipients blood cell levels and function. In the chart below, the type of cells recovered from umbilical cord blood are those designated as HSC cell. They are the exact cells responsible for the success of bone marrow transplantation.
Of particular note are the cells designated in the chart as MSC or mesenchymal stem cells. MSC cells are the focus of intense research in the treatment of a number of conditions because this type of stem cell can differentiate into a variety of cell types including bone, cartilage, muscles, nerve, and skin (fibroblast.)
Recent announcements about stem cells being used to fabricate replacement parts (bone, cartilage, heart muscle) are based on MSC research. They truly are the duct tape of the bodys repair tool box; a phrase coined because of their importance in the healing of injuries.
Research has shown MSC cells reside in a number of tissues, including the bone marrow. Through precise chemical signaling that originate from sites of injury, MSC cells have the ability to become mobile, enter the blood stream and travel through the circulation to the injury. Upon arrival, MSCs orchestrate the healing response. Local resident stem cells are also called into action, to produce more stem cells or to produce needed tissue specific cells. In large part, MSCs accomplish their tasks bio-chemically.
Secreted cytokines have been identified as themajormechanism by which MSCs perform their important reparative functions. There are hundreds of cytokines identified thus far. The healing response is an intricate and balanced process in which many cytokines participate.
Despite their inherent ability to differentiate into essentially any type of cell, embryonic stem cells are unlikely to be a major research focus in the foreseeable future. Ethical and political considerations limit the acceptability of their use. Federal regulations permit research only on existing cell lines which are few in number. It is difficult to see how this prohibition will end any time soon.
Getting Closer butNot There Yet
MSC (mesenchymal stem cell) therapies include use ofcellsanduse of MSC factors, the cytokines or chemical messengers mentioned above. Methods of administration will likely include intravenous infusion, injections into tissues or body spaces, or development of drugs that activate or block certain cytokine effects. Drugs already in development include epidermal growth factor receptor (EGFR) blockers for use in cancer treatment.
Stem Cells and Skin Health
From fetal life to death, the numbers and activity of stem cells diminish. The chart at left shows how the population of mesenchymal stem cells in the bone marrow dwindles with age.
Knowing that stem cells are important in producing differentiated daughter cells (such as fibroblasts within the dermis) and are instrumental in orchestrating the bodys response to injury, it is easy to understand how skin damage from sun exposure, gravity, smoking, trauma, toxins, even repetitive facial movement, accumulates over time.
This is one line of evidence (we will look at others) that mesenchymal stem cells (or more specifically the relative lack of same) has a lot to do with aging. Skin aging included.
Products Claiming to Activate Skin Stem Cells
The number of skin products claiming to activate human skin stem cells is large and growing. As discussed previously on BFT, a whole slew of plant derived stem cell products are being marketing, NONE of which can actually or theoretically activate anything, especially not a human stem cell.
Other products claim to have essential nutrients or antioxidants or some other magical ingredient that will suddenly make stem cells take notice and unleash their regenerative power. It is highly unlikely, except in the most extreme case of malnourishment, that any nutrient or antioxidant is deficient enough to cause a cell not to function.
These and the botanical stem cell products are marketing ploys. Human stem cells deep within the dermis will never know whether or not these substances are applied. Moisturizers and other recognized ingredients in these products can be beneficial to skin appearancebut not because a stem cell is involved.
This is worse than junk science. This is scamming.
Stem Cell Basics
By JoanneRUSSELL25
The human body comprises more than 200 types of cells, and every one of these cell types arises from the zygote, the single cell that forms when an egg is fertilized by a sperm. Within a few days, that single cell divides over and over again until it forms a blastocyst, a hollow ball of 150 to 200 cells that give rise to every single cell type a human body needs to survive, including the umbilical cord and the placenta that nourishes the developing fetus.
Each cell type has its own size and structure appropriate for its job. Skin cells, for example, are small and compact, while nerve cells that enable you to wiggle your toes have long, branching nerve fibers called axons that conduct electrical impulses.
Cells with similar functionality form tissues, and tissues organize to form organs. Each cell has its own job within the tissue in which it is found, and all of the cells in a tissue and organ work together to make sure the organ functions properly.
Regardless of their size or structure, all human cells start with these things in common:
Stem cells are the foundation of development in plants, animals and humans. In humans, there are many different types of stem cells that come from different places in the body or are formed at different times in our lives. These include embryonic stem cells that exist only at the earliest stages of development and various types of tissue-specific (or adult) stem cells that appear during fetal development and remain in our bodies throughout life.
Stem cells are defined by two characteristics:
Beyond these two things, though, stem cells differ a great deal in their behaviors and capabilities.
Embryonic stem cells are pluripotent, meaning they can generate all of the bodys cell types but cannot generate support structures like the placenta and umbilical cord.
Other cells are multipotent, meaning they can generate a few different cell types, generally in a specific tissue or organ.
As the body develops and ages, the number and type of stem cells changes. Totipotent cells are no longer present after dividing into the cells that generate the placenta and umbilical cord. Pluripotent cells give rise to the specialized cells that make up the bodys organs and tissues. The stem cells that stay in your body throughout your life are tissue-specific, and there is evidence that these cells change as you age, too your skin stem cells at age 20 wont be exactly the same as your skin stem cells at age 80.
Read more:
Stem Cell Basics
Stem Cells Can Create Skin For Burn Victims | IFLScience
By JoanneRUSSELL25
When burn victims need a skin graft they typically have to grow skin on other parts of their bodies - a process that can take weeks. A new technique uses stem cells derived from the umbilical cord to generate new skin much more quickly. The results were published in Stem Cells Translational Medicine by lead author Ingrid Garzn from the University of Granadas Department of Histology.
Not only can the stem cells develop artificial skin more quickly than regular normal skin growth, but the skin can also be stored so it is ready right when it is needed. Tens of thousands of grafts are performed each year for burn victims, cosmetic surgery patients, and for people with large wounds having difficulty healing. Traditionally, this involves taking a large patch of skin (typically from the thigh) and removing the dermis and epidermis to transplant elsewhere on the body.
The artificial skin requires the use of Wharton's jelly mesenchymal stem cells. As the name implies, Whartons jelly is a gelatinous tissue in the umbilical cord that contains uncommitted mesenchymal stemcells (MSC). The MSC is then combined with agarose(a polysaccharide polymer) and fibrin (the fibrous protein that aids in blood clotting). This yielded two results: skin and the mucosal lining of the mouth. The researchers are very pleased to have found two new uses for the stem cells of Whartons jelly, which have not previously been researched for epithelial applications.
Once the epithelial tissues have been created, researchers can store it in tissue banks. If someone is brought into the hospital following a devastating burn or accident, the tissue is ready to graft immediately; not in a few weeks. However, the stem-cell skin is not able to fully differentiate in vitro. After the graft, it has complete cell-cell junctions and will develop all of the necessary layers of normal epithelial tissue.
The MSCs are taken from the umbilical cord after the baby has been born, which poses no risk to either the mother or the child. This method is relatively inexpensive and has been shown to be more efficient than stem cells derived from bone marrow.
See the article here:
Stem Cells Can Create Skin For Burn Victims | IFLScience
Printing Skin Cells on Burn Wounds – Wake Forest School of …
By daniellenierenberg
Skin is the body's largest organ. Loss of the skin barrierresults in fluid and heat loss and the risk of infection. Thetraditional treatment for deep burns is to cover them with healthyskin harvested from another part of the body. But in cases ofextensive burns, there often isn't enough healthy skin toharvest.
During phase I of AFIRM, WFIRM scientists designed, built andtested a printer designed to print skin cells onto burn wounds. The"ink" is actually different kinds of skin cells. A scanner is usedto determine wound size and depth. Different kinds of skin cellsare found at different depths. This data guides the printer as itapplies layers of the correct type of cells to cover the wound. Youonly need a patch of skin one-tenth the size of the burn to growenough skin cells for skin printing.
During Phase II of AFIRM, the WFIRM team will explore whether atype of stem cell found in amniotic fluid and placenta (afterbirth)is effective at healing wounds. The goal of the project is to bringthe technology to soldiers who need it within the next 5 years.
This video -- with a mock hand and burn -- demonstrates the process.
Original post:
Printing Skin Cells on Burn Wounds - Wake Forest School of ...
Adult Stem Cells and Gene Therapy Save a Young Boy With …
By JoanneRUSSELL25
When people talk about something that saved their skin, they usually mean that it helped them out of a difficult situation. But a young boy in Germany has literally had his skinand his lifesaved through the use of genetically-engineered adult stem cells.
The boy suffered from a condition called junctional epidermolysis bullosa, a severe and often lethal disease in which a mutation leaves the skin cells unable to interconnect and maintain epidermal integrity. The skin blisters and falls off, and the slightest touch or abrasion can leave a patch of skin gone and a painful, difficult-to-heal wound behind. There is no cure for the disease and little other than palliative care available for sufferers of the most severe forms.
Now researchers have combined use of adult stem cells with genetic engineering to successfully treat the young boys life-threatening condition. The boys doctors in Germany called on Dr. Michele De Luca at the University of Modena and Reggio Emilia in Italy to use a technique he has developed to correct the genetic problem and grow new skin.
Over many years, Dr. De Luca has developed a method to grow skin from a patients own epidermal adult stem cells, correct the genetic mutation in the laboratory, and use the genetically-engineered adult stem cells to grow healthy new skin. Dr. De Luca and his team took a tiny patch of skin from the boy, isolated the epidermal stem cells and corrected the genetic problem in stem cell culture. Then they grew sheets of genetically-corrected skin and transplanted them onto the boy.
Reports called the boys recovery stunning, with successful replacement of 80 percent of his skin. Before the procedure, the boys doctors tried several treatments to no avail. One doctor even said, We had a lot of problems in the first days keeping this kid alive. Yet within six months of starting the process, the boy was back in school.
PRO-LIFE COLLEGE STUDENT? LifeNews is looking for interns interested in writing, social media, or video creation. Contact us today.
His skin has remained healthy and completely blister-free. According to the published reports now 21 months after the boys transplant, he loves to show off his new skin and is enjoying school, playing soccer, and being a normal kid. The research has also taught scientists much about the possibilities of using adult stem cells in combination with gene therapy for treatment of diseases.
LifeNews Note: File photo.
Read more:
Adult Stem Cells and Gene Therapy Save a Young Boy With ...