Electric fish at NMSU activate stem cells for regeneration
By LizaAVILA
Imagine the horror of a soldier losing a limb on the battlefield, or a loved one having a body part amputated due to diabetes. But, what if they could restore their limbs by activating their stem cells?
New Mexico State University biologist Graciela Unguez and a team of researchers found that electric fish, a vertebrate animal just like humans, can regenerate their tails following amputation after activating their stem cells. The findings were published in the May 2012 edition of the scientific journal, PLOS One.
"What's surprising is that as humans, we're one of the few animal species that do not readily regenerate limbs, organs or most tissues," Unguez said. "So, there's a lot of interest in how these fish do it, and what's preventing us from doing it."
Regeneration is the process of restoring lost cells, tissues or organs. According to Unguez, most animals have the ability to regenerate eyes and tails and some animals may be able to regenerate up to half of their bodies.
The researchers discovered that when they cut off up to one third of an electric fish's tail, including the spinal cord, vertebrae, muscles, skin, connective tissues and nerves, the fish would regenerate it. Unguez said the more tissue cut off, the longer the regeneration takes, but for the purpose of her study, it takes about three weeks.
"It's really exciting to us because, here's an example of an animal that can regenerate a lot of tissue types that are also found in humans," Unguez said. "So it puts into question this previous idea that those animals that can regenerate losses of many tissues do it because they do it differently than humans."
Unguez has used the electric fish as a model system to investigate the role that the nervous system plays in the fate of electrically excitable cells like muscle cells for 15 years. She noted that for many years, scientists have thought that highly regenerative animals use a mechanism of regeneration that does not involve stem cells, and this stem cell-based mechanism is well known in humans. In contrast, the stem cell-independent mechanism found in highly regenerative animals is not normally active in humans.
Unguez explained that stem cells are a small population of cells that do not mature and stay with us throughout our life, and then when called upon, they reenter the cell cycle to become muscle cells, neurons, skill cells and such.
But, what Unguez and her collaborators discovered was the opposite. The electric fish actually activated its own muscle and electric organ stem cells to regenerate. She said the adult fish regenerated unendingly with the activation of their stem cells.
"It does not negate other mechanisms, but it definitely showed that it was largely due to an activation of stem cells, just like humans have," Unguez said. "So maybe it's not as far apart, maybe some of the mechanisms involved or the events that need to be activated are more closely related than we thought."
Read this article:
Electric fish at NMSU activate stem cells for regeneration
Nobel Prize awarded for stem cell breakthroughs
By JoanneRUSSELL25
Reuters
This undated handout photo shows iPS cells derived from adult human dermal fibroblasts released by Kyoto University Professor Shinya Yamanaka at Center for iPS Cell Research and Application of Kyoto University in Kyoto, western Japan.
By Reuters
Scientists from Britain and Japan shared a Nobel Prize on Monday for the discovery that adult cells can be transformed back into embryo-like stem cells that may one day regrow tissue in damaged brains, hearts or other organs.
John Gurdon, 79, of the Gurdon Institute in Cambridge, Britain and Shinya Yamanaka, 50, of Kyoto University in Japan, discovered ways to create tissue that would act like embryonic cells, without the need to harvest embryos.
They share the $1.2 million Nobel Prize for Medicine, for work Gurdon began 50 years ago and Yamanaka capped with a 2006 experiment that transformed the field of "regenerative medicine" - the field of curing disease by regrowing healthy tissue.
"These groundbreaking discoveries have completely changed our view of the development and specialization of cells," the Nobel Assembly at Stockholm's Karolinska Institute said.
Photoblog: Click for a close-up viiew of the Nobel Prize-winning stem cell research
All of the body's tissue starts as stem cells, before developing into skin, blood, nerves, muscle and bone. The big hope for stem cells is that they can be used to replace damaged tissue in everything from spinal cord injuries to Parkinson's disease.
Stem Cell Science Q & A
By Dr. Matthew Watson
Shinya Yamanaka MD, PhD
Here are answers to frequently asked questions about induced pluripotent stem cells, or iPS cells, the type of cell that has been reprogrammed from an adult cell, such as a skin or blood cell.
What are induced pluripotent stem cells?
Induced pluripotent stem cells, or iPS cells, are a type of cell that has been reprogrammed from an adult cell, such as a skin or blood cell. iPS cells are pluripotent cells because, like embryonic stem cells, they can develop into virtually any type of cell. iPS cells are distinct from embryonic stem cells, however, because they are derived from adult tissue, rather than from embryos. iPS cells are also distinct from adult stem cells, which naturally occur in small numbers in thehuman body.
In 2006, Shinya Yamanaka developed the method for inducing skin cells from mice into becoming like pluripotent stem cells and called them iPS cells. In 2007, Yamanaka did the same with adult human skin cells.
Yamanakas experiments revealed that adult skin cells, when treated with four pieces of DNA (now called the Yamanaka factors), can induce skin cells to revert back to their pluripotent state. His discovery has since led to a variety of methods for reprogramming adult cells into stem cells that can become virtually any cell type such as a beating heart cell or a neuron that can transmit chemical signals in the brain. This allows researchers to create patient-specific celllines that can be studied and used in everything from drug therapies to regenerative medicine.
How are iPS cells different from embryonic stem cells?
iPS cells are a promising alternative to embryonic stem cells. Embryonic stem cells hold tremendous potential for regenerative medicine, in which damaged organs and tissues could be replaced or repaired. But the use of embryonic stem cells has long been controversial. iPS cells hold the same sort of promise but avoid controversy because they do not require the destruction of human embryos. Nor do they require the harvesting of adult stem cells. Rather, they simply require a small tissue sample from a living human.
Why is iPS cell technology so important?
In addition to avoiding the controversial use of embryonic stem cells, iPS cell technology also represents an entirely new platform for fundamental studies of human disease. Rather than using models made in yeast, flies or mice for disease research, iPS cell technology allows human stem cells to be created from patients with a specific disease. As a result, the iPS cells contain a complete set of the genes that resulted in that disease and thus represent the potential of a farsuperior human model for studying disease and testing new drugs and treatments. In the future, iPS cells could be used in a Petri dish to test both drug safety andefficacy for an individual patient.
Go here to see the original:
Stem Cell Science Q & A
UK, Japan scientists win Nobel for adult stem cell discovery
By Sykes24Tracey
STOCKHOLM (Reuters) - Scientists from Britain and Japan shared a Nobel Prize on Monday for the discovery that adult cells can be transformed back into embryo-like stem cells that may one day regrow tissue in damaged brains, hearts or other organs.
John Gurdon, 79, of the Gurdon Institute in Cambridge, Britain and Shinya Yamanaka, 50, of Kyoto University in Japan, discovered ways to create tissue that would act like embryonic cells, without the need to collect the cells from embryos.
They share the $1.2 million Nobel Prize for Medicine, for work Gurdon began 50 years ago and Yamanaka capped with a 2006 experiment that transformed the field of "regenerative medicine" - the search for ways to cure disease by growing healthy tissue.
"These groundbreaking discoveries have completely changed our view of the development and specialisation of cells," the Nobel Assembly at Stockholm's Karolinska Institute said.
All of the body starts as stem cells, before developing into tissue like skin, blood, nerves, muscle and bone. The big hope is that stem cells can grow to replace damaged tissue in cases from spinal cord injuries to Parkinson's disease.
Scientists once thought it was impossible to turn adult tissue back into stem cells. That meant new stem cells could only be created by taking them from embryos, which raised ethical objections that led to research bans in some countries.
As far back as 1962 Gurdon became the first scientist to clone an animal, making a healthy tadpole from the egg of a frog with DNA from another tadpole's intestinal cell. That showed that developed cells carry the information to make every cell in the body - decades before other scientists made world headlines by cloning the first mammal from adult DNA, Dolly the sheep.
More than 40 years later, Yamanaka produced mouse stem cells from adult mouse skin cells by inserting a small number of genes. His breakthrough effectively showed that the development that takes place in adult tissue could be reversed, turning adult tissue back into cells that behave like embryos.
Stem cells created from adult tissue are known as "induced pluripotency stem cells", or iPS cells. Because patients may one day be treated with stem cells from their own tissue, their bodies might be less likely to reject them.
"The eventual aim is to provide replacement cells of all kinds," Gurdon's institute explains on its website.
Read the original post:
UK, Japan scientists win Nobel for adult stem cell discovery
Nobel Winners Unlocked Cells' Unlimited Potential
By NEVAGiles23
AFP/Getty Images
John B. Gurdon (left) and Shinya Yamanaka will share the prize, worth about $1.2 million.
The two scientists who won this year's Nobel Prize in Physiology or Medicine discovered that cells in our body have the remarkable ability to reinvent themselves. They found that every cell in the human body, from our skin and bones to our heart and brain, can be coaxed into forming any other cell.
The process is called reprogramming, and its potential for new drugs and therapies is vast. If neurons or heart cells are damaged by disease or aging, then cells from the skin or blood potentially could be induced to reprogram themselves and repair the damaged tissue.
The winners John Gurdon of the Gurdon Institute in Cambridge, England, and Shinya Yamanaka of Kyoto University in Japan and the Gladstone Institute in San Francisco made their discoveries more than 40 years apart.
In 1962, Gurdon proved that a cell from a frog's stomach contained the entire blueprint to make a whole frog. When he took the cell's nucleus and popped it into a frog egg, the egg developed into a normal frog.
This method eventually was used to clone all sorts of animals, including cats, dogs, horses and, most famously, Dolly the sheep the first mammal cloned from an adult cell. Gurdon, 79, continues to study reprogramming and was working in his lab when he received the call from the Nobel committee.
But a major obstacle stood in the way of further development of these stem cells: Getting the frog's stomach cell to strip away its specialization and turn into one of the 200 or so cell types known to exist in animals always required the use of an egg.
A question hung over the field for decades: Could a specialized cell reprogram itself all on its own?
In 2006, Yamanaka and graduate student Kazutoshi Takahashi found the answer, and it sent shockwaves through biology and medicine. They demonstrated that any cell could be reset and induced to develop into another cell type. And, even more remarkably, that it took little to get the job done.
Continue reading here:
Nobel Winners Unlocked Cells' Unlimited Potential
UK, Japan scientists win Nobel for stem cell breakthroughs
By LizaAVILA
STOCKHOLM - Scientists from Britain and Japan shared a Nobel Prize on Monday for the discovery that adult cells can be transformed back into embryo-like stem cells that may one day regrow tissue in damaged brains, hearts or other organs.
John Gurdon, 79, of the Gurdon Institute in Cambridge, Britain and Shinya Yamanaka, 50, of Kyoto University in Japan, discovered ways to create tissue that would act like embryonic cells, without the need to harvest embryos.
They share the $1.2 million Nobel Prize for Medicine, for work Gurdon began 50 years ago and Yamanaka capped with a 2006 experiment that transformed the field of "regenerative medicine" - the field of curing disease by regrowing healthy tissue.
"These groundbreaking discoveries have completely changed our view of the development and specialization of cells," the Nobel Assembly at Stockholm's Karolinska Institute said.
All of the body's tissue starts as stem cells, before developing into skin, blood, nerves, muscle and bone. The big hope for stem cells is that they can be used to replace damaged tissue in everything from spinal cord injuries to Parkinson's disease.
See the rest here:
UK, Japan scientists win Nobel for stem cell breakthroughs
Stem-Cell Pioneers Gurdon, Yamanaka Win Nobel Prize
By raymumme
John B. Gurdon transferred DNA between a tadpole and a frog to clone the first animal. Shinya Yamanaka used Gurdons concept to turn ordinary skin into potent stem cells. Both won the Nobel Prize for medicine today.
Gurdon, 79, a researcher at the University of Cambridge in the U.K., and Yamanaka, 50, a professor at Kyoto University in Japan, will share the 8 million-kronor ($1.2 million) prize, the Nobel Assembly said today in Stockholm. The pairs findings have created new opportunities to study diseases and develop methods for diagnosis and therapy, the assembly said in a statement.
Gurdons feat, in 1962, paved the way in 1996 for the cloning of Dolly the sheep and, 10 years later, for Yamanaka, who turned mouse skin cells into stem cells with the potential to become any cell in the body. That achievement was lauded by some politicians and religious figures as a more ethical way to make stem cells because it doesnt destroy human life.
This field has had a long history, starting with John Gurdon, Yamanaka, who was born the same year Gurdon published his achievement, said in an interview on the Nobel Assemblys website. I was able to initiate my project because of his experiments 50 years ago.
Stem cells are found in human embryos and in some tissues and organs of adults, and have the potential to develop into different types of cells. Thats spurred scientists to look at ways of harnessing their power to treat diseases such as Alzheimers, stroke, diabetes and rheumatoid arthritis, according to the U.S. National Institutes of Health.
Gurdon showed that mature cells from specific parts of an animals body retain all the genetic information they had as immature stem cells. He took a cell from a tadpoles gut, extracted the nucleus, and inserted it into the egg cell of an adult frog whose own nucleus had been removed. That reprogrammed egg cell developed into a tadpole with the genetic characteristics of the original tadpole, and subsequent trials yielded adult frogs.
Gurdon overturned the prevailing view that as cells differentiate, they lose genes and their ability to generate other cells of any kind, said Alan Colman, the executive director of the Singapore Stem Cell Consortium, who gained his doctorate under Gurdon at Cambridge.
Hes amazingly passionate, Colman said in an interview before the award was announced. He was the sort of supervisor who you found it difficult to get appointments with, not because he was flying around the world, but because he was doing experiments all the time.
Gurdon was answering e-mails in his laboratory when he received the call from Sweden today about the prize, he said in an interview on the Nobel Assemblys website. His first reaction was, Its amazing if its really true, he said. Could it be that someones pulling your leg? That has happened before.
Gurdon will celebrate at a reception that his institute is hosting today, and then hell be back to work early tomorrow, he said at a London news conference today.
Visit link:
Stem-Cell Pioneers Gurdon, Yamanaka Win Nobel Prize
Blue Spa and Lifeline® Stem Cell Skin Care Pair up to Promote a Beauty Breakthrough and Scientific Approach to Anti …
By raymumme
Skin care meets science for stem cell education and product introduction to the only human and non-embryonic stem cell skin care line of its kind on October 25th, 2012.
Los Angeles, CA (PRWEB) October 08, 2012
Lifeline Skin Care products feature a unique combination of stem cell extracts, vitamins A, B, E, and antioxidants that work synergistically to create new healthy cells. To date, Lifeline is the only skin care line based on human non-embryonic stem cells, which give skin cells the ability to continually proliferate. The result is firmer, smoother, younger and healthier looking skin. Lifeline Skin Care is based on a patented method for ethically extracting growth factors and peptides from young, human stem cells through the use of non-fertilized eggs and never embryos. Stem cell extracts help to increase skins overall thickness, making skin less vulnerable to premature aging.
Independent clinical studies have proven 73% firmer, tighter skin, 93% improved skin hydration, 63% improved skin tone and brightness, and 67% improved appearance of lines and wrinkles with topical use. With benefits boasting similar to those of collagen injections, Lifeline Skin Care offers a collection of formulas for day and night use. Both the Defensive Day Moisturizer Serum SPF 15 and Recovery Night Moisture Serum feature unique combinations of stem cell extract, vitamins A, B, E, and antioxidants.
Stimulating the skins ability to repair itself, these products along with Blue Spa professional procedures and treatments, make a win-win combination for beauty enthusiasts wanting to achieve optimal skincare results. Owner of Blue Spa, Ronda Nofal, recently stated, We are very pleased to be the first Medi Spa in Los Angeles to offer Lifeline@ Skin Care technology to clients. The science and technology behind this product line is far beyond anything else on the market and the results speak for themselves. Our staff has been using these products for the last two months and they have noticed theyre the perfect compliment to any of our facial laser services: IPL (FotoFacial), Laser Genesis, and Titan Skin Tightening. The skin reacts beautifully when paired with dermal fillers, Vitalize Peels, and Micro-dermabrasion as well.
Members of the press and media are invited for early entry on Thursday, October 25th, 2012 between 1-4 pm for Q& A with Lifeline Skin Care expert, Linda Nelson. Additional hours have been arranged for Friday, October 26th, 2012 from 10 am-12 pm. Please directly contact Blue Spa and Lifeline Skin Cares publicity team at Jade Umbrella, to schedule interviews.
About Blue Spa: Opened in October 1999 and former home to the infamous La Reina Theater, Blue Medi Spa is modern luxury spa combining beauty, science, service, and style. Staying ahead of beauty trends and the most effective treatments, highly trained specialists have the knowledge and a decade of experience in lasers (IPL/ Titan/ Laser Genesis/ Zerona), anti-aging skin cocktails, weight loss, non-invasive body contouring, and one-step-ahead aesthetic options. Where feeling blue, never felt better
Website: http://www.bluespa.com.
About Lifeline Skin Care: Developed in 2010 by the International Stem Cell Corporation (http://www.internationalstemcell.com/), while researching cures for diabetes and Parkinsons Disease, a team of biotech scientists discovered a powerful compound for regenerating skin cells. Lifeline Skin Cares goal is to help improve the look and feel of you skin by combining the latest discoveries in the fields of stem cell biology, nanotechnology and skin cream formulation technology to create the highest quality, scientifically tested, and most effective anti-aging products. Revenue helps to fund further research into finding cures and treatments for Diabetes, Parkinsons, Liver, Eye, and other neurological diseases.
Website: http://www.lifelineskincare.com
See the article here:
Blue Spa and Lifeline® Stem Cell Skin Care Pair up to Promote a Beauty Breakthrough and Scientific Approach to Anti ...
Nobel Winner’s Stem Cells to Be Tested in Eye Disease Next Year
By LizaAVILA
Thomas Perlmann of Karolinska Institute presents Sir John B. Gurdon of Britain and Shinya Yamanaka of Japan as winners of the 2012 Nobel Prize in medicine or physiology. The prize committee at Stockholms Karonlinska institute said the discovery has revolutionized our understanding of how cells and organisms develop. Photograph by Bertil Enevag Ericson/Scanpix/AP Photo
Stem cells derived from a mouses skin won Shinya Yamanaka the Nobel Prize yesterday. Now researchers in Japan are seeking to use his pioneering technology for an even greater prize: restoring sight.
Scientists at the Riken Center for Developmental Biology in Kobe plan to use so-called induced pluripotent stem cells in a trial among patients with macular degeneration, a disease in which the retina becomes damaged, resulting in blindness, Yamanaka told reporters in San Francisco yesterday.
Companies including Marlborough, Massachusetts-based Advanced Cell Technology Inc. (ACTC) are already testing stem cells derived from human embryos. The Japanese study will be the first to use a technology that mimics the power of embryonic cells while avoiding the ethical controversy that accompanies them.
The work in that area looks very encouraging, John B. Gurdon, 79, a professor at the University of Cambridge who shared the Nobel with Yamanaka yesterday, said in an interview in London.
Yamanaka and Gurdon shared the 8 million Swedish kronor ($1.2 million) award for experiments 50 years apart that showed that mature cells retain in latent form all the DNA they had as immature stem cells, and that they can be returned to that potent state, offering the potential for a new generation of therapies against hard-to-treat diseases such as macular degeneration.
In a study published in 1962, Gurdon took a cell from a tadpoles gut, extracted the nucleus, and inserted it into the egg cell of an adult frog whose own nucleus had been removed. That reprogrammed egg cell developed into a tadpole with the genetic characteristics of the original tadpole, and subsequent trials yielded adult frogs.
Yamanaka, 50, a professor at Kyoto University, built on Gurdons work by adding four genes to a mouse skin cell, returning it to its immature state as a stem cell with the potential to become any cell in the body. He dubbed them induced pluripotent stem cells.
The technology may lead to new treatments against diseases such as Parkinsons by providing replacement cells.
The implications for regenerative medicine are obvious, R. Sanders Williams, president of the Gladstone Institutes in San Francisco, where Yamanaka is a senior investigator, said in a telephone interview. Skin cells can be converted to any other cell you want -- skin to brain or skin to heart, skin to insulin-producing.
Read the original here:
Nobel Winner’s Stem Cells to Be Tested in Eye Disease Next Year
Healthy Mice Created From Skin Stem Cells In Lab
By raymumme
October 5, 2012
Lee Rannals for redOrbit.com Your Universe Online
Japanese scientists reported in the journal Science that they have created life using stem cells made from skin.
The skin cells were used to create eggs which were then fertilized to produce baby mice, who later had their own babies.
The technique has implications that may possibly help infertile couples have children, and maybe could even allow women to overcome menopause.
About one in 10 women of childbearing age face trouble becoming a parent, according to the Centers for Disease Control and Prevention (CDC).
Last year, the scientists at Kyoto University were able to make viable sperm from stem cells. In the more recent study, the team was able to perform a similar accomplishment with eggs.
The researchers used two sources, including those collected from an embryo and skin-like cells, that were reprogrammed into becoming stem cells.
After turning the stem cells into early versions of eggs, they rebuilt an ovary by surrounding the early eggs with other types of supporting cells normally found in an ovary.
They used IVF techniques to collect the eggs, fertilize them with sperm from a male mouse and implant the fertilized egg into a surrogate mother.
Read the original here:
Healthy Mice Created From Skin Stem Cells In Lab
Skin cells may mend a broken heart: Research
By JoanneRUSSELL25
Scientists have for the first time succeeded in taking skin cells from patients with heart failure and transforming them into healthy, beating heart tissue that could one day be used to treat the condition. The researchers said there were still many years of testing and refining ahead. But the results meant they might eventually be able to reprogram patients cells to repair their own damaged hearts. We have shown that its possible to take skin cells from an elderly patient with advanced heart failure and end up with his own beating cells in a laboratory dish that are healthy and young the equivalent to the stage of his heart cells when he was just born, said Lior Gepstein from the Technion-Israel Institute of Technology, who led the work. The researchers, whose study was published in the European Heart Journal on Wednesday, said clinical trials of the technique could begin within 10 years. Heart failure is a debilitating condition in which the heart is unable to pump enough blood around the body. It has become more prevalent in recent decades as advances medical science mean many more people survive heart attacks. At the moment, people with severe heart failure have to rely on mechanical devices or hope for a transplant. Researchers have been studying stem cells from various sources for more than a decade, hoping to capitalise on their ability to transform into a wide variety of other kinds of cell to treat a range of health conditions. There are two main forms of stem cells - embryonic stem cells, which are harvested from embryos, and reprogrammed human induced pluripotent stem cells (hiPSCs), often originally from skin or blood. Gepsteins team took skin cells from two men with heart failure - aged 51 and 61 - and transformed them by adding three genes and then a small molecule called valproic acid to the cell nucleus. They found that the resulting hiPSCs were able to differentiate to become heart muscle cells, or cardiomyocytes, just as effectively as hiPSCs that had been developed from healthy, young volunteers who acted as controls for the study. The team was then able to make the cardiomyocytes develop into heart muscle tissue, which they grew in a laboratory dish together with existing cardiac tissue. Within 24 to 48 hours the two types of tissue were beating together, they said. In a final step of the study, the new tissue was transplanted into healthy rat hearts and the researchers found it began to establish connections with cells in the host tissue. We hope that hiPSCs derived cardiomyocytes will not be rejected following transplantation into the same patients from which they were derived, Gepstein said. Whether this will be the case or not is the focus of active investigation. Experts in stem cell and cardiac medicine who were not involved in Gepsteins work praised it but also said there was a lot to do before it had a chance of becoming an effective treatment. This is an interesting paper, but very early and its really important for patients that the promise of such a technique is not over-sold, said John Martin a professor of cardiovascular medicine at University College London. The chances of translation are slim and if it does work it would take around 15 years to come to clinic. Nicholas Mills, a consultant cardiologist at Edinburgh University said the technology needs to be refined before it could be used for patients with heart failure, but added: These findings are encouraging and take us a step closer to ... identifying an effective means of repairing the heart.
More here:
Skin cells may mend a broken heart: Research
Stem cells: of mice and women?
By daniellenierenberg
And rightly so: stem-cell scientists have derived many types of cells from stem-cell precursors, but have in the past struggled with sex cells. The research by a team at Kyoto University provides a powerful model into mammalian development and infertility, but it is still a long way off from being used in human therapy.
Despite this fact, it did not stop the headlines in some of today's press screaming that infertile women could one day become pregnant by creating eggs from stem cells.
Evelyn Telfer, a reproductive biologist at the University of Edinburgh, told me this study has no clinical application to humans whatsoever because the tissue used in this study were all foetal and not adult cells.
Mitinori Saitou led a team using foetal mouse tissue from embryos or skin cells to create stem cells. Those stem cells were then genetically reprogrammed to become germ cells egg precursor cells.
These were then given a cocktail of "factors" to support their growth into mature eggs. The eggs were fertilised by IVF in the lab and then implanted into surrogate mice. Three baby mice were born and grew into fertile adults.
The fact that artificially manufactured eggs have gone on to produce healthy mice which are fertile is absolutely astounding and a great step forward for science. The results are published in the journal, Science.
But there are huge differences between human and mouse cells, not to mention the medical and ethical issues surrounding human ovarian tissue to culture cells.
Further clinical trials would be necessary using adult mouse cells first before we can start projecting that we can manufacture babies, and scientists need to learn so much more about how women form eggs.
So while this is major contribution to the field of reproductive biology, the study is not a ready-made cure for women with fertility problems.
See original here:
Stem cells: of mice and women?
Life created for first time from eggs made from skin cells
By LizaAVILA
London, October 5 (ANI): Using stem cells made from skin, a Japanese team has created healthy eggs that, once fertilised, grow into normal baby mice.
These babies later had their own babies, the BBC reported.
The team at Kyoto University used stem cells from two sources: those collected from an embryo and skin-like cells, which were reprogrammed, into becoming stem cells.
The first step was to turn the stem cells into early versions of eggs.
A "reconstituted ovary" was then built by surrounding the early eggs with other types of supporting cells that are normally found in an ovary. This was transplanted into female mice. Surrounding the eggs in this environment helped them to mature.
IVF techniques were used to collect the eggs, fertilise them with sperm from a male mouse and implant the fertilised egg into a surrogate mother.
"They develop to be healthy and fertile offspring," Dr Katsuhiko Hayashi, from Kyoto University, told the BBC.
Those babies then had babies of their own, whose "grandmother" was a cell in a laboratory dish.
If the same methods could be used in people then, it could help infertile couples have children and even allow women to overcome the menopause.
But experts say many scientific and ethical hurdles must be overcome before the technique could be adapted for people.
See the original post here:
Life created for first time from eggs made from skin cells
Eggs created from stem cells in fertility breakthrough
By JoanneRUSSELL25
Professor Robert Norman, Professor of Reproductive Medicine at the University of Adelaide in Australia, said: "While this is a major contribution to knowledge, application to humans is still a long way off but for the first time the goal appears to be in sight.
In the new study, the scientists transformed skin cells into personalised stem cells, which were then fertilised via IVF and ultimately resulted in three fertile baby mice.
Safety concerns must be addressed, particularly into the long-term health of the resulting offspring, before researchers come any closer to determining whether the treatment could be viable in humans.
The researchers wrote in the latest online issue of the journal Science: "Our system serves as a robust foundation to investigate and further reconstitute female germ line development in vitro (in the laboratory), not only in mice, but also in other mammals, including humans."
Dr Allan Pacey, senior lecturer in reproduction and developmental medicine at the University of Sheffield, said: "What is remarkable about this work is the fact that, although the process is still quite inefficient, the offspring appeared healthy and were themselves fertile as adults.
"This is a great step forward, but I would urge caution as this is a laboratory study and we are still quite a long way from clinical trials taking place in humans."
Read more:
Eggs created from stem cells in fertility breakthrough
Lab-Made Mouse Eggs Raise Fertility Options
By JoanneRUSSELL25
Eggs capable of being fertilised and making babies can be created in the laboratory from skin cells, a study has shown.
Scientists successfully produced three fertile baby mice using the technique, which involves transforming ordinary skin cells into personalised stem cells.
The same Japanese team created viable mouse sperm from embryonic stem cells earlier this year.
Together both advances greatly increase the likelihood of radical and controversial future treatments for restoring fertility.
It could mean creating sperm for men whose fertility has been wiped out by cancer therapy, or reversing the menopause in women long after they have used up their natural supply of eggs.
However, many questions about safety and ethics will have to be answered first.
In August, scientists from Kyoto University in Japan announced that they had created sperm cells from mouse embryo stem cells.
Injected into mouse eggs, the sperm produced embryos which developed into healthy baby mice.
The same team, led by Dr Katsuhiko Hayashi, carried out the latest research which focused on eggs rather than sperm.
The scientists mirrored their earlier achievement by transforming stem cells from mouse embryos into eggs which could be fertilised to produce offspring.
Read more:
Lab-Made Mouse Eggs Raise Fertility Options
Eggs can be created from skin cells
By raymumme
Eggs capable of being fertilised and making babies can be created in the laboratory from skin cells, a study has shown.
Scientists successfully produced three fertile baby mice using the technique, which involves transforming ordinary skin cells into personalised stem cells.
The same Japanese team created viable mouse sperm from embryonic stem cells earlier this year.
Together, both advances greatly increase the likelihood of radical and controversial future treatments for restoring fertility. It could mean creating sperm for men whose fertility has been wiped out by cancer therapy or reversing the menopause in women long after they have used up their natural supply of eggs.
In August, scientists from Kyoto University in Japan announced that they had created sperm cells from mouse embryo stem cells. Injected into mouse eggs, the sperm produced embryos which developed into healthy baby mice.
The same team, led by Dr Katsuhiko Hayashi, carried out the latest research which focused on eggs rather than sperm. The scientists mirrored their earlier achievement by transforming stem cells from mouse embryos into eggs which could be fertilised to produce offspring. But they also took a further step by obtaining mouse pups from eggs derived from ordinary skin cells.
The researchers wrote in the latest online issue of the journal Science: "Our system serves as a robust foundation to investigate and further reconstitute female germline development in vitro (in the laboratory), not only in mice but also in other mammals, including humans."
The "germline" consists of genetic material carried in reproductive cells that can be passed onto future generations.
Dr Allan Pacey, senior lecturer in reproduction and developmental medicine at the University of Sheffield, said: "This is a very technical piece of work which pushes much further the science of how eggs are generated and how we might one day be able to routinely stimulate the new production of eggs for women who are infertile.
"What is remarkable about this work is the fact that, although the process is still quite inefficient, the offspring appeared healthy and were themselves fertile as adults. This is a great step forward but I would urge caution as this is a laboratory study and we are still quite a long way from clinical trials taking place in humans."
Original post:
Eggs can be created from skin cells
Baby Mice Born from Eggs Made from Stem Cells
By raymumme
Mouse pups from induced pluripotent stem cell-derived eggs; image courtesy of Katsuhiko Hayashi
Stem cells have been coaxed into creating everything from liver cells to beating heart tissue. Recently, these versatile cells were even used to make fertile mouse sperm, suggesting that stem cell technology might eventually be able to play a role in the treatment of human infertility.
Now two types of stem cells have been turned into viable mouse egg cells that were fertilized and eventually yielded healthy baby mice. Details of this achievement were published online October 4 in Science.
Mouse oocytes; image courtesy of Katsuhiko Hayashi
Katsuhiko Hayashi, of Kyoto Universitys School of Medicine, were able to create the eggs with embryonic stem cells as well as with induced pluripotent stem cells (formed from adult cells).
The team started with female embryonic stem cells and then coaxed them genetically to revert to an earlier developmental stage (primordial germ cell-like cells). These cells were blended with gonadal somatic cells, important in the development of sexual differentiation, to create reconstituted ovaries. The researchers then transplanted these cultured assemblages into female mice (in either the actual ovary or the kidney) for safekeeping and to allow the stem cells to mature into oocytes in a natural environment.
Healthy adult mice from litter produced from induced pluripotent stem cell-based oocytes; image courtesy of Katsuhiko Hayashi
To test the eggs fertility, the new oocytes were removed from the mice for an in vitro fertilization with mouse spermand then re-implanted into the female mice. The experimental females went on to bear normally developing and fertile offspring. The procedure was then also performed successfully with induced pluripotent stem cells from adult skin cells with similar results.
Our system serves as a robust foundation to investigate and further reconstitute female germline development in vitro, the researchers noted in their paper, not only in mice, but also in other mammals, including humans.
Read the original:
Baby Mice Born from Eggs Made from Stem Cells
Skin cells become 'grandparents'
By daniellenierenberg
4 October 2012 Last updated at 18:31 ET By James Gallagher Health and science reporter, BBC News
Stem cells made from skin have become "grandparents" after generations of life were created in experiments by scientists in Japan.
The cells were used to create eggs, which were fertilised to produce baby mice. These later had their own babies.
If the technique could be adapted for people, it could help infertile couples have children and even allow women to overcome the menopause.
But experts say many scientific and ethical hurdles must be overcome.
Stem cells are able to become any other type of cell in the body from blood to bone, nerves to skin.
Last year the team at Kyoto University managed to make viable sperm from stem cells. Now they have performed a similar feat with eggs.
They used stem cells from two sources: those collected from an embryo and skin-like cells which were reprogrammed into becoming stem cells.
I just thought wow! The science is quite brilliant
The first step, reported in the journal Science, was to turn the stem cells into early versions of eggs.
See the article here:
Skin cells become 'grandparents'
Patients' own skin cells could restore vision in elderly with macular degeneration
By LizaAVILA
Washington, October 2 (ANI): A new study has suggested that induced pluripotent stem (iPS) cells - which are derived from adult human skin cells but have embryonic properties - could soon be used to restore vision in people with macular degeneration and other diseases that affect the eye's retina.
In the study conducted by Columbia ophthalmologists and stem cell researchers, adult stem cells developed from a patient's skin cells improved the vision of blind mice.
"With eye diseases, I think we're getting close to a scenario where a patient's own skin cells are used to replace retina cells destroyed by disease or degeneration," said the study's principal investigator, Stephen Tsang, MD, PhD, associate professor of ophthalmology and pathology and cell biology.
"It's often said that iPS transplantation will be important in the practice of medicine in some distant future, but our paper suggests the future is almost here," he stated.
The advent of human iPS cells in 2007 was greeted with excitement from scientists who hailed the development as a way to avoid the ethical complications of embryonic stem cells and create patient-specific stem cells.
Like embryonic stem cells, iPS cells can develop into any type of cell. Thousands of different iPS cell lines from patients and healthy donors have been created in the last few years, but they are almost always used in research or drug screening.
In Tsang's new preclinical iPS study, human iPS cells - derived from the skin cells of a 53-year-old donor - were first transformed with a cocktail of growth factors into cells in the retina that lie underneath the eye's light-sensing cells.
The primary job of the retina cells is to nourish the light-sensing cells and protect the fragile cells from excess light, heat, and cellular debris. If the retina cells die - which happens in macular degeneration and retinitis pigmentosa - the photoreceptor cells degenerate and the patient loses vision.
Macular degeneration is a leading cause of vision loss in the elderly, and it is estimated that 30 percent of people will have some form of macular degeneration by age 75.
In their study, the researchers injected the iPS-derived retina cells into the right eyes of 34 mice that had a genetic mutation that caused their retina cells to degenerate.
Here is the original post:
Patients' own skin cells could restore vision in elderly with macular degeneration
Stem Cells Improve Visual Function in Blind Mice
By raymumme
Newswise An experimental treatment for blindness, developed from a patients skin cells, improved the vision of blind mice in a study conducted by Columbia ophthalmologists and stem cell researchers.
The findings suggest that induced pluripotent stem (iPS) cells which are derived from adult human skin cells but have embryonic properties could soon be used to restore vision in people with macular degeneration and other diseases that affect the eyes retina.
With eye diseases, I think were getting close to a scenario where a patients own skin cells are used to replace retina cells destroyed by disease or degeneration, says the studys principal investigator, Stephen Tsang, MD, PhD, associate professor of ophthalmology and pathology & cell biology. Its often said that iPS transplantation will be important in the practice of medicine in some distant future, but our paper suggests the future is almost here.
The advent of human iPS cells in 2007 was greeted with excitement from scientists who hailed the development as a way to avoid the ethical complications of embryonic stem cells and create patient-specific stem cells. Like embryonic stem cells, iPS cells can develop into any type of cell. Thousands of different iPS cell lines from patients and healthy donors have been created in the last few years, but they are almost always used in research or drug screening.
No iPS cells have been transplanted into people, but many ophthalmologists say the eye is the ideal testing ground for iPS therapies.
The eye is a transparent and accessible part of the central nervous system, and thats a big advantage. We can put cells into the eye and monitor them every day with routine non-invasive clinical exams, Tsang says. And in the event of serious complications, removing the eye is not a life-threatening event.
In Tsangs new preclinical iPS study, human iPS cells derived from the skin cells of a 53-year-old donor were first transformed with a cocktail of growth factors into cells in the retina that lie underneath the eyes light-sensing cells.
The primary job of the retina cells is to nourish the light-sensing cells and protect the fragile cells from excess light, heat, and cellular debris. If the retina cells die which happens in macular degeneration and retinitis pigmentosa the photoreceptor cells degenerate and the patient loses vision. Macular degeneration is a leading cause of vision loss in the elderly, and it is estimated that 30 percent of people will have some form of macular degeneration by age 75. Macular degeneration currently affects 7 million Americans and its incidence is expected to double by 2020.
In their study, the researchers injected the iPS-derived retina cells into the right eyes of 34 mice that had a genetic mutation that caused their retina cells to degenerate.
In many animals, the human cells assimilated into mouse retina without disruption and functioned as normal retina cells well into the animals old age. Control mice that got injections of saline or inactive cells showed no improvement in retina tests.
Go here to read the rest:
Stem Cells Improve Visual Function in Blind Mice