Page 5«..4567..1020..»

Stem Cell-Derived Cells Market Forecasted To Surpass The Value Of US$ XX Mn/Bn By 2019 – 2029 – Stock Market Funda

By daniellenierenberg

In this report, the global Stem Cell-Derived Cells market is valued at USD XX million in 2019 and is projected to reach USD XX million by the end of 2025, growing at a CAGR of XX% during the period 2019 to 2025.

Persistence Market Research recently published a market study that sheds light on the growth prospects of the global Stem Cell-Derived Cells market during the forecast period (20XX-20XX). In addition, the report also includes a detailed analysis of the impact of the novel COVID-19 pandemic on the future prospects of the Stem Cell-Derived Cells market. The report provides a thorough evaluation of the latest trends, market drivers, opportunities, and challenges within the global Stem Cell-Derived Cells market to assist our clients arrive at beneficial business decisions.

The Stem Cell-Derived Cells market report firstly introduced the basics: definitions, classifications, applications and market overview; product specifications; manufacturing processes; cost structures, raw materials and so on. Then it analyzed the worlds main region market conditions, including the product price, profit, capacity, production, supply, demand and market growth rate and forecast etc. In the end, the Stem Cell-Derived Cells market report introduced new project SWOT analysis, investment feasibility analysis, and investment return analysis.

Request Sample Report @ https://www.persistencemarketresearch.co/samples/28780

Resourceful insights enclosed in the report:

The major players profiled in this Stem Cell-Derived Cells market report include:

key players in stem cell-derived cells market are focused on generating high-end quality cardiomyocytes as well as hepatocytes that enables end use facilities to easily obtain ready-made iPSC-derived cells. As the stem cell-derived cells market registers a robust growth due to rapid adoption in stem cellderived cells therapy products, there is a relative need for regulatory guidelines that need to be maintained to assist designing of scientifically comprehensive preclinical studies. The stem cell-derived cells obtained from human induced pluripotent stem cells (iPS) are initially dissociated into a single-cell suspension and later frozen in vials. The commercially available stem cell-derived cell kits contain a vial of stem cell-derived cells, a bottle of thawing base and culture base.

The increasing approval for new stem cell-derived cells by the FDA across the globe is projected to propel stem cell-derived cells market revenue growth over the forecast years. With low entry barriers, a rise in number of companies has been registered that specializes in offering high end quality human tissue for research purpose to obtain human induced pluripotent stem cells (iPS) derived cells. The increase in product commercialization activities for stem cell-derived cells by leading manufacturers such as Takara Bio Inc. With the increasing rise in development of stem cell based therapies, the number of stem cell-derived cells under development or due for FDA approval is anticipated to increase, thereby estimating to be the most prominent factor driving the growth of stem cell-derived cells market. However, high costs associated with the development of stem cell-derived cells using complete culture systems is restraining the revenue growth in stem cell-derived cells market.

The global Stem cell-derived cells market is segmented on basis of product type, material type, application type, end user and geographic region:

Segmentation by Product Type

Segmentation by End User

The stem cell-derived cells market is categorized based on product type and end user. Based on product type, the stem cell-derived cells are classified into two major types stem cell-derived cell kits and accessories. Among these stem cell-derived cell kits, stem cell-derived hepatocytes kits are the most preferred stem cell-derived cells product type. On the basis of product type, stem cell-derived cardiomyocytes kits segment is projected to expand its growth at a significant CAGR over the forecast years on the account of more demand from the end use segments. However, the stem cell-derived definitive endoderm cell kits segment is projected to remain the second most lucrative revenue share segment in stem cell-derived cells market. Biotechnology and pharmaceutical companies followed by research and academic institutions is expected to register substantial revenue growth rate during the forecast period.

North America and Europe cumulatively are projected to remain most lucrative regions and register significant market revenue share in global stem cell-derived cells market due to the increased patient pool in the regions with increasing adoption for stem cell based therapies. The launch of new stem cell-derived cells kits and accessories on FDA approval for the U.S. market allows North America to capture significant revenue share in stem cell-derived cells market. Asian countries due to strong funding in research and development are entirely focused on production of stem cell-derived cells thereby aiding South Asian and East Asian countries to grow at a robust CAGR over the forecast period.

Some of the major key manufacturers involved in global stem cell-derived cells market are Takara Bio Inc., Viacyte, Inc. and others.

The report covers exhaustive analysis on:

Regional analysis includes

Report Highlights:

For any queries get in touch with Industry Expert @ https://www.persistencemarketresearch.co/ask-an-expert/28780

The market report addresses the following queries related to the Stem Cell-Derived Cells market:

The study objectives of Stem Cell-Derived Cells Market Report are:

To analyze and research the Stem Cell-Derived Cells market status and future forecast in United States, European Union and China, involving sales, value (revenue), growth rate (CAGR), market share, historical and forecast.

To present the Stem Cell-Derived Cells manufacturers, presenting the sales, revenue, market share, and recent development for key players.

To split the breakdown data by regions, type, companies and applications

To analyze the global and key regions Stem Cell-Derived Cells market potential and advantage, opportunity and challenge, restraints and risks.

To identify significant trends, drivers, influence factors in global and regions

To analyze competitive developments such as expansions, agreements, new product launches, and acquisitions in the Stem Cell-Derived Cells market.

Request Report Methodology @ https://www.persistencemarketresearch.co/methodology/28780

Read more:
Stem Cell-Derived Cells Market Forecasted To Surpass The Value Of US$ XX Mn/Bn By 2019 - 2029 - Stock Market Funda

To Read More: Stem Cell-Derived Cells Market Forecasted To Surpass The Value Of US$ XX Mn/Bn By 2019 – 2029 – Stock Market Funda
categoriaIPS Cell Therapy commentoComments Off on Stem Cell-Derived Cells Market Forecasted To Surpass The Value Of US$ XX Mn/Bn By 2019 – 2029 – Stock Market Funda | dataOctober 2nd, 2020
Read All

Ghosh Addresses Brentuximab Vedotin Use in Advanced Hodgkin Lymphoma – Targeted Oncology

By daniellenierenberg

Nilanjan Ghosh, MD, PhD, a medical oncologist at Levine Cancer Institute, Atrium Health in Charlotte, NC, discussed the case of a 22-year-old patients with advanced Hodgkin lymphoma.

Targeted Oncology: What is your assessment of the patient?

GHOSH: The patients serum albumin is 4.2 g/dL, so thats an issue. The fact that she has stage IV disease, and that the white cell count was high, and the lymphocyte count was low are factors leading to an International Prognostic Score [IPS] of 4. The 5-year overall survival for high IPS, based on historical data, is not as good. I dont know if this would apply as much now, but this is what we have if we use the historical data. That suggests that she is a higher-risk patient. To be honest, the IPS has not affected treatment choice as much, at least in the United States, but well see if some of the newer treatments such as brentuximab vedotin [Adcetris] plus doxorubicin/vinblastine/dacarbazine [A+AVD] have any effect on that subgroup.

What do the National Comprehensive Cancer Network guidelines recommend for stage III or IV disease?

There are 2 treatment pathways that can be followed in patients who have stage III or IV.1 One focuses on a PET-adaptive pathway, which is ABVD [adriamycin, bleomycin, vinblastine, dacarbazine], followed by AVD [adriamycin, vinblastine, dacarbazine] or BEACOPP [bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, procarbazine, prednisone]. The non-PET adaptive therapy is the other pathway and uses brentuximab vedotin and AVD or escalated BEACOPP. Escalated BEACOPP is not usually used in North America.

Which regimen was chosen in this patient?

The patient was treated with brentuximab vedotin and AVD. Interim PET scan shows a Deauville score of 3; the patient tolerated this regimen well with G-CSF support. I think most people are certainly familiar with the Deauville scoring system, so just remembering that if the uptake is less than the liver, that is considered as grade 3 response. If its uptake is moderately above or markedly above, then thats considered progressive.

What are the key findings of the ECHELON-1 study (NCT01712490)2?

ECHELON-1 evaluated brentuximab and AVD versus ABVD. The standard of care is ABVD. The most important thing to note is the dose of brentuximab, which is 1.2 mg/kg, not 1.8 mg/kg, because this is given every 2 weeks. Its mirroring when ABVD is administered.

[This was a] large study with [more than] 1200 patients. It examined patients with stage III or IV classical Hodgkin lymphoma who had relatively good performance status. The investigators did allow patients to enroll if they had measurable disease and adequate liver and renal function. There was a PET scan at the end of cycle 2; however, this was not a PET-adaptive therapy. ABVD was given for 6 cycles. There is no decrease to AVD or escalation to BEACOPP

At 3 years, the progression-free survival [PFS] rate was 83% in the treatment arm and 76% in the control arm. This is highly significant, with a P value of .005, a hazard ratio of 0.7.

Overall, subgroup analysis favors brentuximab and AVD. But the confidence intervals do cross over in some categories, especially in the regional subgroup. For some reason, ABVD seems to do better in Asia. The study, though, is not powered to determine if 1 region is better than another. So, you have to take this kind of data with a grain of salt.

Now, remember this patient was young; shes in her early 20s. In a younger age group, the A+AVD did better than ABVD. She lives in North America, so thats a region where ABVD did better. And then looking at the IPS, she had a score of 4, and thats another group in which A+AVD did better.

In general, A+AVD would probably be favored in stage IV disease. Her symptoms are associated with having extranodal sites, and in our case, the patients extranodal site was associated with the bones. Her performance status is good.

Looking at the responses in ECHELON-1, the overall response rate was 86% versus 83%, so there are small differences.

Regarding adverse effects [AEs], remember that when we think about brentuximab, we think of peripheral neuropathy. In the study, peripheral neuropathy was 67% for the treatment arm versus 42% in the ABVD arm. For diarrhea, its 27% versus 18%, and abdominal pain was slightly higher in ABVD, as well. In terms of any AEs, theyre similar; grade 3 events were more for A+AVD versus ABVD.

I will mention that initially in the protocol there was no mandate for growth factor, so most patients were treated without growth factors. There were increasing incidences of neutropenia and neutropenic fevers in the A+AVD arm. Protocol amendments were performed later and G-CSF support was introduced. It was the middle part of the program. The guidelines recommend that A+AVD should be used with G-CSF support. But the protocol for the most part didnt initiate G-CSF support except toward the end. So, we see 83 patients who [received] G-CSF support and 579 who didnt.

In terms of serious AEs, there were more associated with A+AVD. The reason I bring that up is because the majority of that protocol was already carried out without the G-CSF support. The treatment group ended up seeing more AEs and clearly there are more incidences of neuropathy with A+AVD. Drug discontinuation, however, was about the same between the groups. Deaths during treatment [were] very low, and there were more hospitalizations observed with A+AVD.

Did investigators initiate any dose delays?

Most of the dose delays were initiated because of neutropenia and febrile neutropenia. For patients who discontinued more than 1 drug because of AEs, 7% were attributed to peripheral neuropathy, which is an important AE in this treatment.

Regarding pulmonary toxicity, we would expect a bleomycin-containing regimen would have higher pulmonary toxicity. It was seen in 7% of patients with ABVD and 2% with A+AVD,

and grade 3 or more pulmonary toxicity was low in A+AVD but observed in 3% of patients with ABVD.2

How were febrile neutropenia and any neutropenia addressed in the trial?

We see a difference between patients who [received] G-CSF support versus those who didnt, regarding febrile neutropenia versus any neutropenia. In patients who developed febrile neutropenia during treatment, 11% of those who received G-CSF support experienced the AE, and 21% who did not receive G-CSF support experienced the AE.

For neutropenia any grade, 73% of patients who did not receive GCSF versus 35% of patients who did receive G-CSF support developed it. Similarly, for grade 3 or more neutropenia, 70% who did not receive G-CSF versus 29% of patients who did developed it. To me, that is the most striking observation.

In the ABVD arm, there was neutropenia observed with ABVD, and we all have had patients with ABVD where the absolute neutrophil count is low, and we still go ahead and treat. That is done in standard practice.

In terms of serious AEs, there were more serious AEs with A+AVD compared [with] ABVD, 44% versus 28%. And there were no differences in deaths.

The A+AVD regimen can cause peripheral neuropathy. But if you look at complete resolution of peripheral neuropathy, you can see that 78% of patients treated with A+AVD had complete resolution and 83% of those on ABVD had complete resolution. Patients receiving ABVD also get neuropathy primarily because of vinblastine. Improvement in neuropathy also occurred in both groups; 17% of patients had improvement, not resolution, in the A+AVD arm versus 9% in the ABVD arm. The vast majority had resolution, but many had improvement as well.

However, for ongoing neuropathy that [was] grade 1 or 2, 25% of patients in the A+AVD arm and only 11% in the ABVD group experienced this. We have to be vigilant and monitor them throughout treatment so that it doesnt get too bad, so appropriate dose reductions can be made.

The bottom line here is most neuropathy is going to go away, but there will be patients where neuropathy can persist, and that can be an annoying thing, especially for a young person. For many in long-term follow-up, theyll experience improvement in neuropathy over time, which means things are getting better, but that doesnt mean its all resolved.

References:

1. NCCN Clinical Practice Guidelines in Oncology. Hodgkin lymphoma, version 2.2020. Accessed August 26, 2020. http://bit.ly/2YAIYha

2. Connors JM, Jurczak W, Straus DJ, et al. Brentuximab vedotin with chemotherapy for stage III or IV Hodgkins lymphoma. N Engl J Med. 2018;378(4):331-344. doi:10.1056/NEJMoa1708984

Read the original post:
Ghosh Addresses Brentuximab Vedotin Use in Advanced Hodgkin Lymphoma - Targeted Oncology

To Read More: Ghosh Addresses Brentuximab Vedotin Use in Advanced Hodgkin Lymphoma – Targeted Oncology
categoriaIPS Cell Therapy commentoComments Off on Ghosh Addresses Brentuximab Vedotin Use in Advanced Hodgkin Lymphoma – Targeted Oncology | dataSeptember 29th, 2020
Read All

Researchers ID Role of Protein in Development of New Hearing Hair Cells – labmanager.com

By daniellenierenberg

A surface view of the organ of hearing (cochlea) from a mouse, using confocal microscopy. The sensory cells are named hair cells because of their apical projections (stereocilia) which move from stimulation by sound.

University of Maryland School of Medicine

Researchers at the University of Maryland School of Medicine (UMSOM) have conducted a study that has determined the role that a critical protein plays in the development of hair cells. These hair cells are vital for hearing. Some of these cells amplify sounds that come into the ear, and others transform sound waves into electrical signals that travel to the brain. Ronna Hertzano, MD, PhD, associate professor in the Department of Otorhinolaryngology Head and Neck Surgery at UMSOM and Maggie Matern, PhD, a postdoctoral fellow at Stanford University, demonstrated that the protein, called GFI1, may be critical for determining whether an embryonic hair cell matures into a functional adult hair cell or becomes a different cell that functions more like a nerve cell or neuron.

The study was published in the journalDevelopment, and was conducted by physician-scientists and researchers at the UMSOM Department of Otorhinolaryngology Head and Neck Surgery and the UMSOM Institute for Genome Sciences (IGS), in collaboration with researchers at the Sackler School of Medicine at Tel Aviv University in Israel.

Hearing relies on the proper functioning of specialized cells within the inner ear called hair cells. When the hair cells do not develop properly or are damaged by environmental stresses like loud noise, it results in a loss of hearing function.

In the United States, the prevalence of hearing loss doubles with every 10-year increase in age, affecting about half of all adults in their 70s and about 80 percent of those who are over age 85. Researchers have been focusing on describing the developmental steps that lead to a functional hair cell, in order to potentially generate new hair cells when old ones are damaged.

To conduct her latest study, Hertzano and her team utilized cutting-edge methods to study gene expression in the hair cells of genetically modified newborn mice that did not produce GFI1. They demonstrated that, in the absence of this vital protein, embryonic hair cells failed to progress in their development to become fully functional adult cells. In fact, the genes expressed by these cells indicated that they were likely to develop into neuron-like cells.

"Our findings explain why GFI1 is critical to enable embryonic cells to progress into functioning adult hair cells," said Hertzano. "These data also explain the importance of GFI1 in experimental protocols to regenerate hair cells from stem cells. These regenerative methods have the potential of being used for patients who have experienced hearing loss due to age or environmental factors like exposure to loud noise."

Hertzano first became interested in GFI1 while completing her MD, PhD at Tel Aviv University. As part of her dissertation, she discovered that the hearing loss resulting from mutations in another protein called POU4F3 appeared to largely result from a loss of GFI1 in the hair cells. Since then, she has been conducting studies to discover the role of GFI1 and other proteins in hearing. Other research groups in the field are now testing these proteins to determine whether they can be used as a "cocktail" to regenerate lost hair cells and restore hearing.

"Hearing research has been going through a Renaissance period, not only from advances in genomics and methodology, but also thanks to its uniquely collaborative nature among researchers," said Hertzano.

The new study was funded by the National Institute on Deafness and Other Communication Disorders (NIDCD) which is part of the National Institutes of Health (NIH). It was also funded by the Binational Scientific Foundation (BSF).

"This is an exciting new finding that underscores the importance of basic research to lay the foundation for future clinical innovations," said E. Albert Reece, MD, PhD, MBA, executive vice president for medical affairs, UM Baltimore, and the John Z. and Akiko K. Bowers Distinguished Professor and dean, University of Maryland School of Medicine. "Identifying the complex pathways that lead to normal hearing could prove to be the key for reversing hearing loss in millions of Americans."

- This press release was originally published on theUniversity of Maryland School of Medicine website

Originally posted here:
Researchers ID Role of Protein in Development of New Hearing Hair Cells - labmanager.com

To Read More: Researchers ID Role of Protein in Development of New Hearing Hair Cells – labmanager.com
categoriaIPS Cell Therapy commentoComments Off on Researchers ID Role of Protein in Development of New Hearing Hair Cells – labmanager.com | dataSeptember 22nd, 2020
Read All

Convergence: EMA close to finalizing guidance for advanced therapies – Regulatory Focus

By daniellenierenberg

The European Medicines Agency is on the verge of releasing revised guidance for advanced therapy medicinal products containing genetically modified cells, which includes chimeric antigen receptor (CAR)-T cell therapies.

The Guideline on quality, non-clinical and clinical aspects of medicinal products containing genetically modified cells was originally issued in 2012 but underwent revision and consultation from July 2018-July 2019. The revised version is expected to be adopted in October and published in November, according to Ana Hidalgo-Simon, MD, PhD, head of advanced therapies at EMA. She previewed the major changes at RAPS Convergence 2020.

There were an enormous number of comments on the document, Hidalgo-Simon said.The agency is also working on a Q&A document on principles of good manufacturing practices (GMP) for Advanced Therapy Medicinal Products (ATMP) starting material. There will likely be consultation on the document in 2021, she said. (RELATED: Regulation of advanced therapy medicinal products in the EU, Regulatory Focus, 16 July 2020.)

Major changesEMA chose to update the guidance to reflect the increase in clinical experience with these therapies, particularly chimeric antigen receptor-T (CAR-T) cells; to cover new categories of products, such as induced pluripotent stem (iPS) cells; and to allow for consideration of new tools for genetic modification of cells, such as genome editing technologies, she said.

The main quality updates are related to starting materials, the manufacturing process, and characterization and release. For example, the starting materials guidance will now include genome editing tools, while the manufacturing process includes a new section on comparability. The characterization and release portion of the guidance includes specific advice for CAR-T cells.

Additionally, the guidance calls for dose-finding studies to explore safety, toxicity, and anti-tumor activity at different dose levels, to define the threshold dose required for anti-tumor effect, and to define the recommended dose or range for Phase 2 studies. She said sponsors need to show a solid rationale for the criteria being used to find the dose.

The guidance also calls for Phase 3 confirmatory trials to follow a randomized controlled design, comparing the CAR-T cell therapy to a reference regimen, unless otherwise scientifically justified. Single-arm studies will continue to be allowed, but they will be the exception, Dr. Hidalgo-Simon said.

Be very careful with the design of the trials, she advised. The assumptions need to be really, very well backed.

When it comes to safety, the guidance calls for a 15-year follow period. While sponsors wont have all the answers at the time of submission, Hidalgo-Simon said they should have a plan that includes monitoring during the post-authorization period.

Hidalgo-Simon also advised sponsors to think beyond the approval process and consider what evidence will be needed to convince other stakeholders -- from patients to payers -- about the safety and efficacy of the therapy.

Avoiding development pitfallsRichard Dennett, PhD, the senior director of chemistry, manufacturing and controls regulatory affairs at PPD, also participated in the RAPS Convergence 2020 session on advanced therapies. He reviewed development points where companies can run into trouble with advanced therapies, particularly CAR-T cell products.Dennett recommended that product sponsors keep the end in mind when developing advanced therapies by focusing on the target product profile at the beginning of development. That profile includes the indication for which approval will be sought and the incidence of that indication; other considerations include mode of action, demographics, how much of the product needs to be produced, and market access and reimbursement considerations.

He also outlined several areas where developers should focus to create a watertight regulatory package, including sufficient product characterization, potency assay, impurities, formulation, stability, lack of sufficient development batches, and validation strategy.

Dennett urged developers to dive into the growing number of regulatory guidance documents for advanced therapies. In addition to the European guidance documents, developers should consultthe US Food and Drug Administrations Chemistry, Manufacturing, and Control (CMC) Information for Human Gene Therapy Investigational New Drug Applications (INDs), which was released in January 2020. (RELATED: Advanced therapies: Trip hazards on the development pathway, Regulatory Focus, 02 August 2020)

Live and breathe the guidances that are out there, Dennett advised. They allow us to understand what expectations we need to meet.

The key to success in advancing CAR-T cell therapies is the mitigation of risk, Dennett said: The biggest risk is the one that you havent thought of.RAPS 2020 Convergence

View original post here:
Convergence: EMA close to finalizing guidance for advanced therapies - Regulatory Focus

To Read More: Convergence: EMA close to finalizing guidance for advanced therapies – Regulatory Focus
categoriaIPS Cell Therapy commentoComments Off on Convergence: EMA close to finalizing guidance for advanced therapies – Regulatory Focus | dataSeptember 18th, 2020
Read All

Stem Cells Market Report, History and Forecast 2020-2027, Data Breakdown by Manufacturers, Key Regions, Types and Application – News Degree

By daniellenierenberg

Stem Cells Market Report

The research study on the Global Stem Cells Market is a thorough investigation of the value and supply chain of the market and offers all-inclusive data about the industry. The report also covers insightful information about pricing, cost, value, capacity, gross revenue, and profit margins with reference to historical analysis and forecast estimation. The report also strives to identify demands and trends in different sectors of the Stem Cells market in major geographies of the world.

The Stem Cells market has witnessed dynamic changes in trends and demands owing to the ongoing COVID-19 pandemic. The report provides a detailed outlook on how the pandemic has affected the key segments of the Stem Cells industry. The report includes an in-depth impact analysis of the COVID-19 pandemic on the overall Stem Cells industry and covers a futuristic impact scenario.

Get a sample of the report @ https://www.reportsanddata.com/sample-enquiry-form/2981

The report studies the market dynamics to identify and scrutinize the strategic initiatives and tactics undertaken by the industry players in order to gain a robust footing in the market and to achieve a substantial global position. It provides exhaustive analysis and imparts insightful data to help the readers understand the Stem Cells industry in detail and gain a competitive advantage over other players. The report also provides strategic recommendations to new and emerging players to help them formulate better entry and investment strategies.

The report covers extensive analysis of the key market players in the market, along with their business overview, expansion plans, and strategies. The key players studied in the report include:

Thermo Fisher Scientific, Agilent Technologies, Illumina, Inc., Qiagen, Oxford Nanopore Technologies, Eurofins Scientific, F. Hoffmann-La Roche, Danaher Corporation, Bio-Rad Laboratories, and GE Healthcare

The report offers a comprehensive analysis of the Stem Cells market inclusive of product portfolio, categories, applications, and a comprehensive analysis of the value chain structure. The study investigates several factors influencing the growth of the market and provides a competitive advantage to the readers.

The Stem Cells market report is an investigative study that provides insights into opportunities, limitations, and barriers encountered by the companies that influence or hinder the growth of the industry. Overall the report provides valuable information and an overview of the market scenario to gain a better understanding of the market.

Request a discount on the report @ https://www.reportsanddata.com/discount-enquiry-form/2981

Product Outlook (Revenue, USD Billion; 2017-2027)

Technology Outlook (Revenue, USD Billion; 2017-2027)

Therapy Outlook (Revenue, USD Billion; 2017-2027)

Application Outlook (Revenue, USD Billion; 2017-2027)

The report covers an extensive regional analysis and market estimation in each region and covers key geographical regions such as North America, Europe, Asia-Pacific, Latin America, and Middle East & Africa.

To read more about the report, visit @ https://www.reportsanddata.com/report-detail/stem-cells-market

Key Point Summary of the Report:

Thank you for reading our report. For further queries, please connect with us to know more about the report and its customization. Our team will ensure the report is customized accurately to meet your requirements.

Take a look at other reports from Reports and Data on PR Newswire:

Spine Biologics Market: Spine Biologics Market to Reach USD 2,629.6 Million By 2027 | CAGR: 3.9%

Isobutanol Market: Isobutanol Market to Reach USD 1555.8 Million By 2027 | CAGR: 6.4%

Hematology Analyzers and Reagents Market: Hematology Analyzers and Reagents Market to Reach USD 12.10 Billion By 2027

Isobutanol Market: Isobutanol Market to Reach USD 1555.8 Million By 2027 | CAGR: 6.4%

About Us:

Our in-house experts assist our clients with advice based on their proficiency in the market that helps them in creating a compendious database for the clients. Our team offers expert insights to clients to guide them through their business ventures. We put in rigorous efforts to keep our clientele satisfied and focus on fulfilling their demands to make sure that the end-product is what they desire. We excel in diverse fields of the market and with our services extending to competitive analysis, research and development analysis, and demand estimation among others, we can help you invest your funds in the most beneficial areas for research and development. You can rely on us to provide every significant detail you might need in your efforts to make your business flourish.

Contact Us:

John Watson

Head of Business Development

Reports and Data|Web:www.reportsanddata.com

Direct Line:+1-212-710-1370

E-mail:[emailprotected]

Connect with us:Blogs|LinkedIn|Twitter

More:
Stem Cells Market Report, History and Forecast 2020-2027, Data Breakdown by Manufacturers, Key Regions, Types and Application - News Degree

To Read More: Stem Cells Market Report, History and Forecast 2020-2027, Data Breakdown by Manufacturers, Key Regions, Types and Application – News Degree
categoriaIPS Cell Therapy commentoComments Off on Stem Cells Market Report, History and Forecast 2020-2027, Data Breakdown by Manufacturers, Key Regions, Types and Application – News Degree | dataSeptember 12th, 2020
Read All

Innovative treatments for heart failure – Open Access Government

By daniellenierenberg

Concerning heart failure (HF), the current COVID-19 pandemic is having a dramatic effect on the daily life of each individual, ranging from social distancing measures applied in most countries to getting severely diseased due to the virus. Cardiovascular Disease (CVD) is among the most common conditions in people that die of the infection. The burden of CVD accounts for over 60 million people in the EU alone, therefore, it is the leading cause of death in the world.

Although COVID-19 shows us the direct impact of a potential treatment for peoples health, CVD is a stealthy pandemic killer. HF is a chronic disease condition in which the heart is not able to fill properly or efficiently pump blood throughout your body, caused by different stress conditions including myocardial infarction, atherosclerosis, diabetes and high blood pressure. Several measures are commonly used to treat heart disease, such as lifestyle changes and medications like beta-blockers and ACE inhibitors, yet these typically only slow down the progression of the disease.

Biomedical research is exploring new avenues by combining scientific insights with new technologies to overcome chronic diseases like HF. Among the most appealing and promising technologies are the use of cardiac tissue engineering and extracellular vesicles-mediated repair strategies.

Upon an initial cell loss post-infarction, it is appealing to replace this massive loss in contractile cells for new cells and thereby not treating patients symptoms, but repairing the cause of the disease. Cardiac cell therapy has been pursued for many years with variable results in small initial trials upon injection into patients. Different cell types have been used to help the myocardium in need, but the most promising approaches aim to use induced pluripotent cells (iPS) from reprogrammed cells from the patient themselves that can be directed towards contractile myocardial cells. These cells in combination with natural materials, in which the cells are embedded in the heart, can be used for tissue engineering strategies (1). Together with different international partners, Sluijters team are trying to develop strategies to use these iPS-derived contractile cells for myocardial repair via direct myocardial injection (H2020-Technobeat-66724) or to make a scaffold that can be used as a personalised biological ventricular assist device (H2020-BRAV-874827). A combination of engineering and biology to mimic the native myocardium aims to replace the chronically ill tissue for healthy and well-coupled heart tissue that can enhance the contractile performance of the heart.

Recently, a Dutch national programme started, called RegMedXB, in which the reparative treatment of the heart is aimed to be performed outside the patients body. During the time the heart is outside the body; the patient is connected to the heart-lung machine, and after restoring function, it will be re-implanted. The so-called Cardiovascular Moonshot aims to create a therapy that best suits the individual patient, by having their heart beating in a bioreactor, outside the body. Although it sounds very futuristic, many small lessons will be learned to feet novel therapeutic insights.

The initial injection of stem cells did result in a nice improvement of myocardial performance. We have now learned that rather than these delivered cells helping the heart themselves, the release of small lipid carriers called extracellular vesicles (EVs) (2) from these cells occur. These EVs carry different biological molecules, including nucleotides, proteins and lipids, and are considered to be the bodies nanosized messengers for communication. The use of stem cell-derived EVs are now being explored as a powerful means to change the course of the disease. Via these small messengers, natural biologics are delivered to diseased cells and thereby help them to overcome the stressful circumstances. EVs carry reparative signals that can be transferred to the diseased heart and thereby change the course of heart disease in some patients.

Within the EVICARE program (3) (H2020-ERC-725229), Sluijters team are using stem cell-derived EVs to change the response of the heart to injury. Also, to understand which heart cells and processes are being affected, they use materials to facilitate a slow release of biomaterials over an extended period rather than a single dose, which is probably essential for a chronic disease like HF. For now, improved blood flow is the main aim but the team have seen other effects as well, such as cardiovascular cell proliferation (4) by which the heart cells themselves start to repair the organ.

The use of EVs basically aims to enhance the endogenous repair mechanisms of the heart. These natural carriers can be mimicked with synthetic materials, or used as a hybrid of the two, thereby creating an engineered nanoparticle, that is superior in the intracellular delivery of genetic materials. The possibility of loading different biological materials allows a further tuning of its effectiveness and use in different disease conditions, creating a new off-the-shelf delivery system for nanomedicine to treat cancer and CVD (H2020-Expert-825828).

As is true of the current COVID-19 pandemic, HF is also a growing chronic disease that affects millions of people worldwide. The chronic damaged myocardium needs reparative strategies in the future to lower the social burden for patients, but also to keep the economic consequences affordable. New scientific insights with cutting edge technological developments will help to address these needs of CVD patients and their families.

References

(1) Madonna R, Van Laake LW, Botker HE, Davidson SM, De Caterina R, Engel FB, Eschenhagen T, Fernandez-Aviles F, Hausenloy DJ, Hulot JS, Lecour S, Leor J, Menasch P, Pesce M, Perrino C, Prunier F, Van Linthout S, Ytrehus K, Zimmermann WH, Ferdinandy P, Sluijter JPG. ESC Working Group on Cellular Biology of the Heart: position paper for Cardiovascular Research: tissue engineering strategies combined with cell therapies for cardiac repair in ischaemic heart disease and heart failure. Cardiovasc Res. 2019 Mar 1;115(3):488-500.

(2) Sluijter JPG, Davidson SM, Boulanger, CM, Buzs EI, de Kleijn DPV, Engel FB, Giricz Z, Hausenloy DJ, Kishore R, Lecour S, Leor J, Madonna R, Perrino C, Prunier F, Sahoo S, Schiffelers RM, Schulz R, Van Laake LW, Ytrehus K, Ferdinandy P. Extracellular vesicles in diagnostics and therapy of the ischaemic heart: Position Paper from the Working Group on Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc Res. 2018 Jan 1;114(1):19-34.

(3) https://www.sluijterlab.com/extracellular-vesicle-inspired-ther

(4) Maring JA, Lodder K, Mol E, Verhage V, Wiesmeijer KC, Dingenouts CKE, Moerkamp AT, Deddens JC, Vader P, Smits, AM, Sluijter JPG, Goumans MJ. Cardiac Progenitor Cell-Derived Extracellular Vesicles Reduce Infarct Size and Associate with Increased Cardiovascular Cell Proliferation. J Cardiovasc Transl Res. 2019 Feb;12(1):5-17.

Please note: this is a commercial profile.

Editor's Recommended Articles

Original post:
Innovative treatments for heart failure - Open Access Government

To Read More: Innovative treatments for heart failure – Open Access Government
categoriaIPS Cell Therapy commentoComments Off on Innovative treatments for heart failure – Open Access Government | dataSeptember 9th, 2020
Read All

Japan Approves iPS Cell Therapy Trial for Spinal Cord …

By daniellenierenberg

The Japanese governments health ministry has given the go-ahead for a trial of human induced pluripotent stem cells to treat spinal cord injury, Reutersreports today (February 18).Researchers at Keio University plan to recruit four adults who have sustained recent nerve damage in sports or traffic accidents.

Its been 20 years since I started researching cell treatment. Finally we can start a clinical trial, Hideyuki Okano of Keio University School of Medicine told a press conference earlier today, The Japan Timesreports. We want to do our best to establish safety and provide the treatment to patients.

The teams intervention involves removing differentiated cells from patients and reprogramming them via human induced pluripotent stem cells (iPSCs) into neural cells. Clinicians will then inject about 2 million of these cells into each patients site of injury. The approach has been successfully tested in a monkey, which recovered the ability to walk after paralysis, according to the Times.

Its not the first time Japan has approved the use of iPSCs in clinical trials. Last year, researchers at Kyoto University launched a trial using the cells to treat Parkinsons disease. And in 2014, a team at the RIKEN Center for Developmental Biology led the first transplant of retina cells grown from iPSCs to treat a patients eye disease.

Read the original:
Japan Approves iPS Cell Therapy Trial for Spinal Cord ...

To Read More: Japan Approves iPS Cell Therapy Trial for Spinal Cord …
categoriaIPS Cell Therapy commentoComments Off on Japan Approves iPS Cell Therapy Trial for Spinal Cord … | dataSeptember 7th, 2020
Read All

Optimized Freezing Solutions for Clinical Application of Cell Therapy Products – Technology Networks

By daniellenierenberg

AMSBIO has announced new additions and certifications for its range of clinical grade, chemically defined cryopreservation excipient solutions STEM-CELLBANKER and HSC-BANKER.

STEM-CELLBANKER DMSO Free GMP grade is a new chemically defined freezing solution that does not contain DMSO as an anti-freezing agent. It was developed for customers who prefer not to use DMSO-containing cryopreservation solution due to the intended application of the samples. STEM-CELLBANKER DMSO Free GMP grade is manufactured in compliance with JPN, EU, US, and PIC/S GMP guidelines.

STEM-CELLBANKER is a chemically defined freezing media optimized for stem cells and iPS cells storage, as well as fragile primary cells. Published data supports its ability to cryopreserve organoids and tissues to allow the recovery of viable cells. STEM-CELLBANKER GMP grade is manufactured in compliance with JPN, EU, US, and PIC/S GMP guidelines. Free from animal derived components this popular cryopreservation medium contains only chemically defined USP, EP and JP grade ingredients. Available in both DMSO containing and DMSO-Free formulations, STEM-CELLBANKER is an optimal freezing solution for basic research and is finding widespread use in the clinical application of cell therapy products.

Manufactured to be completely free of serum and animal derived components, HSC-BANKER contains only European or US Pharmacopoeia graded ingredients making it suitable for storage of hematopoietic stem cells developed for cell therapy applications.

Recently the master files of HSC-BANKER were accepted by the Center for Biologics Evaluation and Research (CBER) within the US FDA (Food and Drug Administration). Master files are submissions to the FDA used to provide confidential, detailed information about facilities, processes, or articles used in the manufacturing, processing, packaging, and storing of human drug products. Beneficially they allow researchers to reference material without disclosing Master file contents to those parties.

HSC-BANKER is supplied ready-to-use and requires no special devices, such as a controlled rate freezer, in order to achieve consistently high viabilities following resuscitation from cryopreservation, even over extended long-term storage. HSC-BANKER significantly increases cell viability while maintaining cell pluripotency, normal karyotype and proliferation ability after freeze-thaw. Evaluated for endotoxins, pH, osmolarity and mycoplasma contaminants to ensure GMP equivalent quality. HSC-BANKER is part of the CELLBANKER range of cryopreservation media for cells, organoids and tissues.

Read more:
Optimized Freezing Solutions for Clinical Application of Cell Therapy Products - Technology Networks

To Read More: Optimized Freezing Solutions for Clinical Application of Cell Therapy Products – Technology Networks
categoriaIPS Cell Therapy commentoComments Off on Optimized Freezing Solutions for Clinical Application of Cell Therapy Products – Technology Networks | dataSeptember 3rd, 2020
Read All

Stem Cell-Derived Cells Market Forecast to 2025: Global Industry Analysis by Top Players, Types, Key Regions and Applications – The Scarlet

By daniellenierenberg

The global Stem Cell-Derived Cells market study presents an all in all compilation of the historical, current and future outlook of the market as well as the factors responsible for such a growth. With SWOT analysis, the business study highlights the strengths, weaknesses, opportunities and threats of each Stem Cell-Derived Cells market player in a comprehensive way. Further, the Stem Cell-Derived Cells market report emphasizes the adoption pattern of the Stem Cell-Derived Cells across various industries.

The Stem Cell-Derived Cells market report examines the operating pattern of each player new product launches, partnerships, and acquisitions has been examined in detail.

Request Sample Report @ https://www.persistencemarketresearch.co/samples/28780

key players in stem cell-derived cells market are focused on generating high-end quality cardiomyocytes as well as hepatocytes that enables end use facilities to easily obtain ready-made iPSC-derived cells. As the stem cell-derived cells market registers a robust growth due to rapid adoption in stem cellderived cells therapy products, there is a relative need for regulatory guidelines that need to be maintained to assist designing of scientifically comprehensive preclinical studies. The stem cell-derived cells obtained from human induced pluripotent stem cells (iPS) are initially dissociated into a single-cell suspension and later frozen in vials. The commercially available stem cell-derived cell kits contain a vial of stem cell-derived cells, a bottle of thawing base and culture base.

The increasing approval for new stem cell-derived cells by the FDA across the globe is projected to propel stem cell-derived cells market revenue growth over the forecast years. With low entry barriers, a rise in number of companies has been registered that specializes in offering high end quality human tissue for research purpose to obtain human induced pluripotent stem cells (iPS) derived cells. The increase in product commercialization activities for stem cell-derived cells by leading manufacturers such as Takara Bio Inc. With the increasing rise in development of stem cell based therapies, the number of stem cell-derived cells under development or due for FDA approval is anticipated to increase, thereby estimating to be the most prominent factor driving the growth of stem cell-derived cells market. However, high costs associated with the development of stem cell-derived cells using complete culture systems is restraining the revenue growth in stem cell-derived cells market.

The global Stem cell-derived cells market is segmented on basis of product type, material type, application type, end user and geographic region:

Segmentation by Product Type

Segmentation by End User

The stem cell-derived cells market is categorized based on product type and end user. Based on product type, the stem cell-derived cells are classified into two major types stem cell-derived cell kits and accessories. Among these stem cell-derived cell kits, stem cell-derived hepatocytes kits are the most preferred stem cell-derived cells product type. On the basis of product type, stem cell-derived cardiomyocytes kits segment is projected to expand its growth at a significant CAGR over the forecast years on the account of more demand from the end use segments. However, the stem cell-derived definitive endoderm cell kits segment is projected to remain the second most lucrative revenue share segment in stem cell-derived cells market. Biotechnology and pharmaceutical companies followed by research and academic institutions is expected to register substantial revenue growth rate during the forecast period.

North America and Europe cumulatively are projected to remain most lucrative regions and register significant market revenue share in global stem cell-derived cells market due to the increased patient pool in the regions with increasing adoption for stem cell based therapies. The launch of new stem cell-derived cells kits and accessories on FDA approval for the U.S. market allows North America to capture significant revenue share in stem cell-derived cells market. Asian countries due to strong funding in research and development are entirely focused on production of stem cell-derived cells thereby aiding South Asian and East Asian countries to grow at a robust CAGR over the forecast period.

Some of the major key manufacturers involved in global stem cell-derived cells market are Takara Bio Inc., Viacyte, Inc. and others.

The report covers exhaustive analysis on:

Regional analysis includes

Report Highlights:

Buy the report at a discounted rate!!! Exclusive offer!!!

Request Report Methodology @ https://www.persistencemarketresearch.co/methodology/28780

The Stem Cell-Derived Cells market report offers a plethora of insights which include:

The Stem Cell-Derived Cells market report answers important questions which include:

The Stem Cell-Derived Cells market report considers the following years to predict the market growth:

For any queries get in touch with Industry Expert @ https://www.persistencemarketresearch.co/ask-an-expert/28780

Why Choose Stem Cell-Derived Cells Market Report?

Stem Cell-Derived Cells Market Reportfollows a multi- disciplinary approach to extract information about various industries. Our analysts perform thorough primary and secondary research to gather data associated with the market. With modern industrial and digitalization tools, we provide avant-garde business ideas to our clients. We address clients living in across parts of the world with our 24/7 service availability.

See the original post here:
Stem Cell-Derived Cells Market Forecast to 2025: Global Industry Analysis by Top Players, Types, Key Regions and Applications - The Scarlet

To Read More: Stem Cell-Derived Cells Market Forecast to 2025: Global Industry Analysis by Top Players, Types, Key Regions and Applications – The Scarlet
categoriaIPS Cell Therapy commentoComments Off on Stem Cell-Derived Cells Market Forecast to 2025: Global Industry Analysis by Top Players, Types, Key Regions and Applications – The Scarlet | dataAugust 30th, 2020
Read All

Cell Therapy Processing Market is Booming Worldwide to Show Significant Growth by 2026 Cell Therapies Pty Ltd,Invitrx Inc.,Lonza Ltd,Merck & Co.,…

By daniellenierenberg

Cell therapy is the administration of living cells to replace a missing cell type or to offer a continuous source of a necessary factor to achieve a truly meaningful therapeutic outcome. There are different forms of cell therapy, ranging from transplantation of cells derived from an individual patient or from another donor. The manufacturing process of cell therapy requires the use of different products such as cell lines and instruments. These cell therapies are used for the treatment of various diseases such as cardiovascular disease and neurological disorders.

Get Sample PDF of Report @https://www.premiummarketinsights.com/sample/AMR00026846

Key Players:

Cell Therapies Pty Ltd,Invitrx Inc.,Lonza Ltd,Merck & Co., Inc. (FloDesign Sonics),NantWorks, LLC,Neurogeneration, Inc.,Novartis AG,Plasticell Ltd.,Regeneus Ltd,StemGenex, Inc.

Increase in the incidence of cardiovascular diseases, rise in the demand for chimeric antigen receptor (CAR) T cell therapy, increase in the R&D for the advancement in the research associated with cell therapy, increase in the potential of cell therapies in the treatment of diseases associated with lungs using stem cell therapies, and rise in understanding of the role of stem cells in inducing development of functional lung cells from both embryonic stem cells (ESCs) & induced pluripotent stem (iPS) cells are the key factors that fuel the growth of the cell therapy processing market.

Moreover, increase in a number of clinical studies relating to the development of cell therapy processing, rise in adoption of regenerative drug, introduction of novel technologies for cell therapy processing, increase in government investments for cell-based research, increase in number of GMP-certified production facilities, large number of oncology-oriented cell-based therapy clinical trials, and rise in the development of allogeneic cell therapy are other factors that augment the growth of the market. However, high-costs associated with the cell therapies, and bottlenecks experienced by manufacturers during commercialization of cell therapies are expected to hinder the growth of the market.

The cell therapy processing market is segmented into offering type, application, and region. By type, the market is categorized into products, services, and software. The application covered in the segment include cardiovascular devices, bone repair, neurological disorders, skeletal muscle repair, cancer, and others. On the basis of region, the market is analyzed across North America (U.S., Canada, and Mexico), Europe (Germany, France, UK, Italy, Spain, and rest of Europe), Asia-Pacific (Japan, China, India, and rest of Asia-Pacific), and LAMEA (Latin America, Middle East, and Africa).

Avail Discount on this[emailprotected]: https://www.premiummarketinsights.com/discount/AMR00026846

KEY MARKET SEGMENTS

By Offering Type Products Services Software

By Application Cardiovascular Devices Bone Repair Neurological Disorders Skeletal Muscle Repair Cancer Others

By Region

North Americao U.S.o Canadao Mexico Europeo Germanyo Franceo UK

Key question and answered in the report include:

About Premium market insights:

Premiummarketinsights.comis a one stop shop of market research reports and solutions to various companies across the globe. We help our clients in their decision support system by helping them choose most relevant and cost effective research reports and solutions from various publishers. We provide best in class customer service and our customer support team is always available to help you on your research queries.

Sameer Joshi Call: US: +1-646-491-9876, Apac: +912067274191Email:[emailprotected]

Continued here:
Cell Therapy Processing Market is Booming Worldwide to Show Significant Growth by 2026 Cell Therapies Pty Ltd,Invitrx Inc.,Lonza Ltd,Merck & Co.,...

To Read More: Cell Therapy Processing Market is Booming Worldwide to Show Significant Growth by 2026 Cell Therapies Pty Ltd,Invitrx Inc.,Lonza Ltd,Merck & Co.,…
categoriaIPS Cell Therapy commentoComments Off on Cell Therapy Processing Market is Booming Worldwide to Show Significant Growth by 2026 Cell Therapies Pty Ltd,Invitrx Inc.,Lonza Ltd,Merck & Co.,… | dataAugust 22nd, 2020
Read All

On the move at the OneAZ, Spencer Fane, UArizona – AZ Big Media

By daniellenierenberg

OneAZ Credit Union names Ken Bauer SVP

OneAZ Credit Union announced Ken Bauer as senior vice president, Credit Administration.

Bauer oversees OneAZs mortgage, business and commercial banking teams, emphasizing efficiency and excellence to help the organization succeed. He joined OneAZ Credit Union in 2020, bringing 20 years of experience in commercial banking with local and national banks and credit unions.

Established in 1951, OneAZ Credit Union is owned by its members and serves Arizona with 20 locations and more than 140,000 members

Spencer Fane LLP announced Kelly Mooney has joined the firm as of counsel. She will be part of the Tax, Trusts, & Estates practice group and work out of the firms Phoenix office.

Mooneys practice focuses on handling complex matters related to federal taxation, working with attorneys in other practice groups to structure transactions that comply with federal tax law, offer tax relief when applicable, and provide tax-efficient results for her clients. She regularly assists clients with tax planning and analysis for partnerships, LLCs, and corporations; real estate joint ventures organized as LLCs and general and limited partnerships; and individuals.

Spencer Fane understands that tax issues impact virtually every aspect of business, investment, and personal wealth management, said Andy Federhar, Spencer Fane office managing partner in Phoenix. We understand our clients needs to assist them with finding the best solutions to favorably handle their tax liability, and Kellys experience in handling these matters through collaborative analysis fits well with our firms approach to client service.

Mooney has an accomplished track record of representing clients before the Internal Revenue Service and other taxing authorities on ruling requests, civil controversy cases, and collection matters. Her work has included successfully negotiating the settlement of several complex and multiyear IRS examinations and cases involving the imposition of trust fund penalties and contested claims for refund.

The University of Arizona College of Nursing has announced key new appointments, promotions, honors, awards and other notable items in recent weeks, including:

After a national search, the UArizona College of Nursing has named Kelley Wilson, DNP, MSN, CMSRN, as the new program director of the colleges Master of Science for Entry to the Profession of Nursing (MEPN) program. Dr. Wilson joins the college from Georgetown Universitys School of Nursing and Health Studies, where she had been serving as program director for the schools Bachelor of Science in Nursing program. She assumed her new role on July 13.

Dr. Wilson brings a wealth of experience in teaching and developing courses and academic programs, said Connie Miller, DNP, RNC-OB, CNE, clinical associate professor and chair, General Nursing and Health Education Division. She has solid experience in mentoring and leading teams, in addition to proven track record of service and scholarship. We look forward to welcoming her to our MEPN team.

Aleeca Bell, PhD, RN, CNM, joined the College of Nursing in mid-July. Dr. Bell most recently was an associate professor at the University of Illinois at Chicago (UIC), College of Nursing, Department of Women Children and Family Health Science. At UIC, she also earned her masters degree in nursing in midwifery in 1998, practiced as a certified nurse midwife, and earned a doctorate in nursing in 2009. In addition, she was a postdoctoral fellow there from 2009-11.

Dr. Bells research in translational, multidisciplinary and biobehavioral clinical studies focuses on the intersection of perinatal mother-infant health outcomes and the underlying oxytocin system. Oxytocin is a hormone that acts on organs in womens bodies and as a chemical messenger in the brain, controlling key aspects of the reproductive system, including childbirth, lactation and some behavior. This includes womens childbirth experience, intrapartum medical interventions, the endogenous oxytocin system (hormonal, genetic and epigenetic), maternal postnatal mood/anxiety and caregiving attitudes, newborn behaviors and mother-infant interaction. Learn more.

Tracy E. Crane, PhD, a College of Nursing assistant professor, has focused much of her career on cancer survivorship. She is co-director of the Behavioral Measurements and Interventions Shared Resource at the UArizona Cancer Center and a member of the UArizona Data Science Institute. Shes also co-chair of the cancer prevention and control behavioral science working group for NRG Oncology, a research non-profit led by faculty at Columbia University, NYU Langone Health, the University of Michigan and UArizona.

With a research focus on improving adherence to healthy lifestyle behaviors in cancer survivors and their informal caregivers, Dr. Crane has developed interventions geared toward extending lifespans of post-treatment ovarian cancer survivors and telephone counseling to improve diet and physical activity in Latina cancer patients. In early 2020, Dr. Crane extended her expertise across the Atlantic when she helped researchers at Gustave Roussy, Europes largest cancer center, fine-tune a new cancer study, Motivating to Exercise and Diet, and Educating to Healthy Behaviors After Breast Cancer (MEDEA).

In keeping with Dr. Cranes previous research, MEDEA aims to compare the effect of a personalized telephone-based health education weight-loss program based on motivational coaching, exercise and diet, compared with a standard health educational program control on fatigue of overweight or obese breast cancer patients. Learn more.

According to new research from College of Nursing Associate Professor Ruth Taylor-Piliae, PhD, RN, FAHA, tai chi can be beneficial to the psychological well-being for adults suffering from cardiovascular disease. Published in June in the European Journal of Cardiovascular Nursing, Dr. Taylor-Piliaes review and meta-analysis of more than a dozen studies on the topic found that the exercise eased stress, anxiety, depression and psychological distress for those who practiced the mind-body exercise that emphasizes concentration on posture, relaxation and breathing, using a soothing series of set movements. Go to the UArizona Health Sciences Connect website for a video on her research. Learn more.

Three cardiologists recently joined the University of Arizona Sarver Heart Center. Arka Chatterjee, MD, Talal Moukabary, MD, and Madhan Sundaram, MBBS, joined the faculty of the UArizona College of Medicine Tucson and are now seeing patients at Banner University Medical Center Tucson.

With the addition of Drs. Chatterjee, Moukabary and Sundaram we continue the rapid growth in cardiovascular medicine at the University of Arizona and Banner UMC Tucson and we enhance our ability to provide highly personalized and expert care in the most advanced cardiology procedures to our patients, said Nancy K. Sweitzer, MD, PhD, director of the UArizona Sarver Heart Center, professor of medicine and chief of the Division of Cardiology in the Department of Medicine at the college.

These three physicians not only bring experience in electrophysiology, coronary and peripheral interventions and minimally invasive valve replacement, but they will expand the research offerings of the Sarver Heart Center in important areas of cardiology. This will allow us to bring the latest advances in heart disease treatment to the people of Southern Arizona, added Dr. Sweitzer.

Drs. Chatterjee and Moukabary are associate professors and Dr. Sundaram is an assistant professor of medicine.

In addition, Dr. Chatterjee is associate director of the Structural Heart Program at Banner UMC Tucson. He is board certified in interventional cardiology, cardiovascular disease, internal medicine and echocardiography. Dr. Chatterjee is experienced in transcatheter therapies for valvular disease and other congenital/structural heart defects. He has completed more than 200 transcatheter aortic valve replacement (TAVR) procedures. He finds the best part of working in the structural heart team is the synergy that occurs when a multidisciplinary team of expert providers works together to identify the ideal treatment for each patients unique case. Dr. Chatterjees research interests include outcomes research after coronary, structural and adult congenital interventions, and advances in structural and device therapies for heart disease.

Dr. Moukabary is a cardiac electrophysiologist (a cardiologist specializing in heart rhythm disorders or arrhythmias). He is an expert in computer modeling of cardiac arrhythmia, imaging in the cardiac electrophysiology lab, cell-based arrhythmia therapy and clinical cardiac electrophysiology. He is board certified in clinical cardiac electrophysiology and internal medicine. Dr. Moukabarys research interests include use of stem cell and iPS (induced pluripotent stem) cell therapies for heart rhythm disorders.

Dr. Sundaram is director of the Banner UMC Tucson Cardiac Catheterization Lab and Endovascular Services. He is board certified in interventional cardiology, cardiovascular disease, echocardiography and internal medicine. His clinical interests include complex coronary interventions, chronic total occlusions, endovascular peripheral interventions, interventions for acute pulmonary embolism and structural heart disease interventions. His research interests include cardiac interventions in older adults and clinical trials in coronary artery disease, peripheral artery disease and pulmonary embolism.

Read the original here:
On the move at the OneAZ, Spencer Fane, UArizona - AZ Big Media

To Read More: On the move at the OneAZ, Spencer Fane, UArizona – AZ Big Media
categoriaIPS Cell Therapy commentoComments Off on On the move at the OneAZ, Spencer Fane, UArizona – AZ Big Media | dataAugust 20th, 2020
Read All

Increasing Number of iPS Cell Therapies Tested in Clinical …

By daniellenierenberg

In a surgical procedure last month, neurosurgeons from Kyoto University implanted 2.4 million cells into the brain of a patient with Parkinsons disease. The cellsderived from peripheral blood cells of an anonymous donorhad been reprogrammed into induced pluripotent stem cells (iPSCs) and then into dopaminergic precursor cells, which researchers hope will boost dopamine levels and ameliorate the patients symptoms.

The procedure is the most recent attempt by clinicians to test whether iPSCs can treat disease. In recent years, Japanese scientists have launched several clinical studies to examine their efficacy in heart disease and macular degeneration of the eye. And other researchers around the globe are exploring ways to turn the cells into treatments for everything from endometriosis to spinal cord injury. The initial foray into clinical trials raises hopes that the technology will bear fruit 12 years after its Nobel Prizewinning discovery.

Im excited that theyre trying to move it to the clinical level, because the iPS field does at some point need to start demonstrating that [these cells] have regenerative potential, says Jalees Rehman of the University of Illinois at Chicago. But the move towards clinical work is also revealing the difficulties of developing therapies. Its a learning curve, he adds.

So far, only a handful of patients have undergone iPSC-based treatments. In 2014, a woman with macular degeneration of the eye received a transplant of iPSC-based retinal cells derived from her own cells. The woman treated showed no apparent improvement in her vision, but the safety of the iPSC-derived cells was confirmed, writes Jun Takahashi, a stem cell biologist at Kyoto University who helped derive the dopaminergic precursor cells implanted into the Parkinsons disease patient. It was his wife, Masayo Takahashi of the RIKEN Center for Developmental Biology, who created the retinal cells used in that trial.

Last year, five patients were treated for the same eye condition with iPSC-derived retinal cells, which were taken from different donors. One of them patients developed a serious, but non-lifethreatening, reaction to the transplant, forcing doctors to remove it, according to the Japan Times.

More clinical studies are underway: Next year, heart surgeons plan to implant sheets of iPSC-derived cardiomyocytes into the hearts of three patients with heart disease, and Takahashi hopes to treat six more patients with Parkinsons disease by 2022. These are all in the earliest phases of testing. It is too early to say something [about the cells efficacy] in our trial, he adds.

While some researchers are waiting for the results of clinical studies to determine whether iPSCs have regenerative potential, others are racing ahead with preclinical studies presenting ever more ways on how to use them therapeutically. For instance, April Pyle, a stem cell biologist at the University of California, Los Angeles, recently developed an approach she believes is promising in treating Duchenne muscular dystrophy, a devastating disease caused by a mutation in the gene encoding the muscle-strengthening protein dystrophin. She and her colleagues used CRISPR-Cas9 to repair the gene in human iPSCs, turned them into skeletal muscle cells, and injected them into the muscle of dystrophin-deficient mice. We [could] actually see that weve restored dystrophin in pockets of the muscle, she explains.

I think its really just the beginning, she says. I think that were finally seeing the payoff for all of the hard work . . . and there will be many more trials to follow from these initial studies.

By now, researchers have figured out how to coax iPSCs to grow into most known cell types, Rehman says. But to get these cells to take on the roles of mature cells in a new tissue environment is another issue. In the heart, for instance, researchers have found that new stem cells have to be electrically aligned with the other cells. Experiments on human iPSC-derived heart muscle cells in culture show that by subjecting them to electrically induced contractions as they develop, the cells mature faster, suggesting that they become more able to handle the adult workload in vivo. How to integrate the new cells so they will survive in injured or diseased tissue is another question. Do you need a special matrix, a gel, a patch, an organoid, to ensure the success of these cells long term? Rehman asks. These challenges are faced in all the organs.

Researchers have been relying on monkey models to evaluate the efficacy of engraftment procedures before testing them in human patients, explains Takahashi. Last year, his team demonstrated on monkeys that human iPSCderived dopaminergic neurons stably integrated into existing brain tissue, where they produced dopamine and ultimately improved Parkinsonian symptoms.

The closer we get to [clinical] applications, the more we obviously realize the challenges that lie ahead.

Jalees Rehman, University of Illinois at Chicago

Another challenge with the implantation of iPSC-derived tissue is the ever-present risk that the cells might trigger cancer, because they stem from a cell type that is by nature highly proliferative. To avoid this, Takahashi and his colleagues filter the implanted cells to eliminate undifferentiated ones that are most prone to overgrowth, and also test the cell lines for tumorgenicity by implanting a sample into mice.

Still, we cannot completely eliminate the possibility of tumor formation, notes Tetsuo Maruyama, an associate professor of obstetrics and gynecology from Keio University School of Medicine. He thinks that such procedures should focus on non-essential organs, such as the eye or the uterus, for instance. He recently succeeded in deriving healthy uterine cells from iPSCs and plans to use these to study how endometriosis occurs, and also to generate human endometrium that could eventually be used clinically.

Another concern researchers have frequently raised are the immunosuppressive drugs that patients require if the iPSCs are derived from cells other than the patients own. Takahashis patient with Parkinsons, for instance, will be on immunosuppressants for a year, possibly making the patient less able to fight off infections and cancer. But despite the risks, many researchers have opted to use allogeneic stem cellsthose from a donorforemost because the approach will save time, cost, and labor when the time comes to scale up such treatments for commercialization. It is important when you think about industrialization, Takahashi writes in an email.

The possibility to create off the shelf iPSC therapies has also attracted industry, not just academics. For instance, Australia-based biotech company Cynata Therapeutics recently concluded a Phase I trial using iPSC-derived mesenchymal stem cells to treat graft-versus-host disease (GVHD). The condition occurs after bone marrow transplants when immune cells of the donor recognize cells in the recipients body as foreign and attack them, often resulting in death. But mesenchymal stem cells, which can mature into a variety of cell types, suppress the proliferation and activation of the donors T cells, explains Kilian Kelly, the companys vice president for product development. The company produced these cells by starting from iPSCs, reprogramming them in to an intermediary cell called a mesenchymoangioblast, and then directing them to become mesenchymal cells.

The trial, which the company claims is the worlds first to use iPSCs, administered the cells intravenously to 15 patients with GVHD who had previously failed to respond to steroid treatment and as such faced a grim prognosis. Although its too soon to evaluate efficacy, Kelly says, he sees it as a positive sign that 14 of them showed a notable improvement in their condition. And conveniently, immune rejection isnt an issue with mesenchymal stem cells because they dont express the donor-specific antigens that trigger rejection. So that means that we can use cells from a single iPS [cell] bank to treat essentially anybody, says Kelly.

Developing off-the-shelf treatments is also vastly more cost effective than maturing iPSC-derived cells for individual patients, adds Ross McDonald, the companys CEO. He points to personalized T-cell immunotherapiestwo of which have been recently FDA-approvedwhich can nearly$500,000 per patient. Its too soon to predict how much his product might cost, he adds.

This is one reason why several groups are developing banks of iPSCs that can be used to develop regenerative therapies at scale. For instance, the Japanese government decided to put around $250 million towards developing an iPSC stock for biomedical research. The donors from whom these cells are derived were carefully selected with immune compatibility in mind: the bank is designed to encompass a diverse set of commonly present human leukocyte antigen (HLA) types, so that they are broadly representative of the majority of the population. Then, implantation will require only a minimum amount of immune suppression. This is kind of a middle ground between using patient-specific cells and cells chosen at random, explains Amanda Mack, director of iPSC reprogramming at Fujifilm Cellular Dynamics, a Wisconsin-based company that grows human cells for biomedical research.

Together, the cells will be immunocompatible with almost 70 percent of the Japanese population, says Maruyama. This might be more difficult for countries such as the US, where the genetic makeup is more diverse, but similar efforts are also underway there. For instance, Macks company aims to develop a bank of iPSCs that are matched to a majority of the US population.

While efforts like these continue, researchers around the world are still figuring out the nuts and bolts of applying these cells therapeutically. The closer we get to [clinical] applications, the more we obviously realize the challenges that lie ahead, says Rehman. I think thats a very normal process for scientific discovery.

View original post here:
Increasing Number of iPS Cell Therapies Tested in Clinical ...

To Read More: Increasing Number of iPS Cell Therapies Tested in Clinical …
categoriaIPS Cell Therapy commentoComments Off on Increasing Number of iPS Cell Therapies Tested in Clinical … | dataAugust 17th, 2020
Read All

Stem Cell-Derived Cells Market Forecasted To Surpass The Value Of US$ XX Mn/Bn By 2019 2029 – Owned

By daniellenierenberg

Persistence Market Research recently published a market study that sheds light on the growth prospects of the global Stem Cell-Derived Cells market during the forecast period (20XX-20XX). In addition, the report also includes a detailed analysis of the impact of the novel COVID-19 pandemic on the future prospects of the Stem Cell-Derived Cells market. The report provides a thorough evaluation of the latest trends, market drivers, opportunities, and challenges within the global Stem Cell-Derived Cells market to assist our clients arrive at beneficial business decisions.

The Stem Cell-Derived Cells market study is a well-researched report encompassing a detailed analysis of this industry with respect to certain parameters such as the product capacity as well as the overall market remuneration. The report enumerates details about production and consumption patterns in the business as well, in addition to the current scenario of the Stem Cell-Derived Cells market and the trends that will prevail in this industry.

Request Sample Report @ https://www.persistencemarketresearch.co/samples/28780

What pointers are covered in the Stem Cell-Derived Cells market research study?

The Stem Cell-Derived Cells market report Elucidated with regards to the regional landscape of the industry:

The geographical reach of the Stem Cell-Derived Cells market has been meticulously segmented into United States, China, Europe, Japan, Southeast Asia & India, according to the report.

The research enumerates the consumption market share of every region in minute detail, in conjunction with the production market share and revenue.

Also, the report is inclusive of the growth rate that each region is projected to register over the estimated period.

The Stem Cell-Derived Cells market report Elucidated with regards to the competitive landscape of the industry:

The competitive expanse of this business has been flawlessly categorized into companies such as

key players in stem cell-derived cells market are focused on generating high-end quality cardiomyocytes as well as hepatocytes that enables end use facilities to easily obtain ready-made iPSC-derived cells. As the stem cell-derived cells market registers a robust growth due to rapid adoption in stem cellderived cells therapy products, there is a relative need for regulatory guidelines that need to be maintained to assist designing of scientifically comprehensive preclinical studies. The stem cell-derived cells obtained from human induced pluripotent stem cells (iPS) are initially dissociated into a single-cell suspension and later frozen in vials. The commercially available stem cell-derived cell kits contain a vial of stem cell-derived cells, a bottle of thawing base and culture base.

The increasing approval for new stem cell-derived cells by the FDA across the globe is projected to propel stem cell-derived cells market revenue growth over the forecast years. With low entry barriers, a rise in number of companies has been registered that specializes in offering high end quality human tissue for research purpose to obtain human induced pluripotent stem cells (iPS) derived cells. The increase in product commercialization activities for stem cell-derived cells by leading manufacturers such as Takara Bio Inc. With the increasing rise in development of stem cell based therapies, the number of stem cell-derived cells under development or due for FDA approval is anticipated to increase, thereby estimating to be the most prominent factor driving the growth of stem cell-derived cells market. However, high costs associated with the development of stem cell-derived cells using complete culture systems is restraining the revenue growth in stem cell-derived cells market.

The global Stem cell-derived cells market is segmented on basis of product type, material type, application type, end user and geographic region:

Segmentation by Product Type

Segmentation by End User

The stem cell-derived cells market is categorized based on product type and end user. Based on product type, the stem cell-derived cells are classified into two major types stem cell-derived cell kits and accessories. Among these stem cell-derived cell kits, stem cell-derived hepatocytes kits are the most preferred stem cell-derived cells product type. On the basis of product type, stem cell-derived cardiomyocytes kits segment is projected to expand its growth at a significant CAGR over the forecast years on the account of more demand from the end use segments. However, the stem cell-derived definitive endoderm cell kits segment is projected to remain the second most lucrative revenue share segment in stem cell-derived cells market. Biotechnology and pharmaceutical companies followed by research and academic institutions is expected to register substantial revenue growth rate during the forecast period.

North America and Europe cumulatively are projected to remain most lucrative regions and register significant market revenue share in global stem cell-derived cells market due to the increased patient pool in the regions with increasing adoption for stem cell based therapies. The launch of new stem cell-derived cells kits and accessories on FDA approval for the U.S. market allows North America to capture significant revenue share in stem cell-derived cells market. Asian countries due to strong funding in research and development are entirely focused on production of stem cell-derived cells thereby aiding South Asian and East Asian countries to grow at a robust CAGR over the forecast period.

Some of the major key manufacturers involved in global stem cell-derived cells market are Takara Bio Inc., Viacyte, Inc. and others.

The report covers exhaustive analysis on:

Regional analysis includes

Report Highlights:

Request Report Methodology @ https://www.persistencemarketresearch.co/methodology/28780

Exclusive details pertaining to the contribution that every firm has made to the industry have been outlined in the study. Not to mention, a brief gist of the company description has been provided as well.

Substantial information subject to the production patterns of each firm and the area that is catered to, has been elucidated.

The valuation that each company holds, in tandem with the description as well as substantial specifications of the manufactured products have been enumerated in the study as well.

The Stem Cell-Derived Cells market research study conscientiously mentions a separate section that enumerates details with regards to major parameters like the price fads of key raw material and industrial chain analysis, not to mention, details about the suppliers of the raw material. That said, it is pivotal to mention that the Stem Cell-Derived Cells market report also expounds an analysis of the industry distribution chain, further advancing on aspects such as important distributors and the customer pool.

The Stem Cell-Derived Cells market report enumerates information about the industry in terms of market share, market size, revenue forecasts, and regional outlook. The report further illustrates competitive insights of key players in the business vertical followed by an overview of their diverse portfolios and growth strategies.

For any queries get in touch with Industry Expert @ https://www.persistencemarketresearch.co/ask-an-expert/28780

Some of the Major Highlights of TOC covers:

Continue reading here:
Stem Cell-Derived Cells Market Forecasted To Surpass The Value Of US$ XX Mn/Bn By 2019 2029 - Owned

To Read More: Stem Cell-Derived Cells Market Forecasted To Surpass The Value Of US$ XX Mn/Bn By 2019 2029 – Owned
categoriaIPS Cell Therapy commentoComments Off on Stem Cell-Derived Cells Market Forecasted To Surpass The Value Of US$ XX Mn/Bn By 2019 2029 – Owned | dataAugust 16th, 2020
Read All

Opportunities in the Global Induced Pluripotent Stem Cell (iPS Cell) Industry – PRNewswire

By daniellenierenberg

DUBLIN, Aug. 11, 2020 /PRNewswire/ -- The "Global Induced Pluripotent Stem Cell (iPS Cell) Industry Report" report has been added to ResearchAndMarkets.com's offering.

Since the discovery of induced pluripotent stem cells (iPSCs) a large and thriving research product market has grown into existence, largely because the cells are non-controversial and can be generated directly from adult cells. It is clear that iPSCs represent a lucrative market segment because methods for commercializing this cell type are expanding every year and clinical studies investigating iPSCs are swelling in number.

Therapeutic applications of iPSCs have surged in recent years. 2013 was a landmark year in Japan because it saw the first cellular therapy involving the transplant of iPSCs into humans initiated at the RIKEN Center in Kobe, Japan. Led by Masayo Takahashi of the RIKEN Center for Developmental Biology (CDB), it investigated the safety of iPSC-derived cell sheets in patients with macular degeneration. In another world-first, Cynata Therapeutics received approval in 2016 to launch the world's first formal clinical trial of an allogeneic iPSC-derived cell product (CYP-001) for the treatment of GvHD. Riding the momentum within the CAR-T field, Fate Therapeutics is developing FT819, its off-the-shelf iPSC-derived CAR-T cell product candidate. Numerous physician-led studies using iPSCs are also underway in Japan, a leading country for basic and applied iPSC applications.

iPS Cell Commercialization

Methods of commercializing induced pluripotent stem cells (iPSCs) are diverse and continue to expand. iPSC cell applications include, but are not limited to:

Since the discovery of iPSC technology in 2006, significant progress has been made in stem cell biology and regenerative medicine. New pathological mechanisms have been identified and explained, new drugs identified by iPSC screens are in the pipeline, and the first clinical trials employing human iPSC-derived cell types have been initiated. The main objectives of this report are to describe the current status of iPSC research, patents, funding events, industry partnerships, biomedical applications, technologies, and clinical trials for the development of iPSC-based therapeutics.

Key Topics Covered:

1. Report Overview

2. Introduction

3. History of Induced Pluripotent Stem Cells (IPSCS)

4. Research Publications on IPSCS

5. IPSCS: Patent Landscape

6. Clinical Trials Involving IPSCS

7. Funding for IPSC

8. Generation of Induced Pluripotent Stem Cells: An Overview

9. Human IPSC Banking

10. Biomedical Applications of IPSCS

11. Other Novel Applications of IPSCS

12. Deals in the IPSCS Sector

13. Market Overview

14. Company Profiles

For more information about this report visit https://www.researchandmarkets.com/r/kpc95y

About ResearchAndMarkets.comResearchAndMarkets.com is the world's leading source for international market research reports and market data. We provide you with the latest data on international and regional markets, key industries, the top companies, new products and the latest trends.

Media Contact:

Research and Markets Laura Wood, Senior Manager [emailprotected]

For E.S.T Office Hours Call +1-917-300-0470 For U.S./CAN Toll Free Call +1-800-526-8630 For GMT Office Hours Call +353-1-416-8900

U.S. Fax: 646-607-1907 Fax (outside U.S.): +353-1-481-1716

SOURCE Research and Markets

http://www.researchandmarkets.com

Visit link:
Opportunities in the Global Induced Pluripotent Stem Cell (iPS Cell) Industry - PRNewswire

To Read More: Opportunities in the Global Induced Pluripotent Stem Cell (iPS Cell) Industry – PRNewswire
categoriaIPS Cell Therapy commentoComments Off on Opportunities in the Global Induced Pluripotent Stem Cell (iPS Cell) Industry – PRNewswire | dataAugust 11th, 2020
Read All

Stem Cell-Derived Cells Market is Projected to Reach US$XX by the end of 2019 2029 – 3rd Watch News

By daniellenierenberg

Global Stem Cell-Derived Cells market Research presents a Comprehensive scenario Which can be segmented according to producers, product type, applications, and areas. This segmentation will provide deep-dive analysis of the Stem Cell-Derived Cells business for identifying the growth opportunities, development tendencies and factors limiting the development of the marketplace. This report features forecast market information based on previous and present Stem Cell-Derived Cells industry scenarios and growth facets. Each of the Essential regions coated in Stem Cell-Derived Cells report are North America, Europe, Asia-Pacific, South America, Middle East and Africa. The Stem Cell-Derived Cells market share and market prognosis of every region from 2020-2027 are presented within this report. A deep study of Stem Cell-Derived Cells marketplace dynamics will help the market aspirants in identifying the business opportunities that will lead to accumulation of earnings. This segment can efficiently determine the Stem Cell-Derived Cells hazard and key market driving forces.

Request Sample Report @ https://www.persistencemarketresearch.co/samples/28780

The Stem Cell-Derived Cells report is segmented to provide a clear and Precise view of this international Stem Cell-Derived Cells market statistics and market quotes. Stem Cell-Derived Cells report Information represented in the form of graphs, charts, and statistics will show the Stem Cell-Derived Cells growth rate, volume, goal customer analysis. This report presents the significant data to all Stem Cell-Derived Cells business aspirants which will facilitate useful business decisions.

key players in stem cell-derived cells market are focused on generating high-end quality cardiomyocytes as well as hepatocytes that enables end use facilities to easily obtain ready-made iPSC-derived cells. As the stem cell-derived cells market registers a robust growth due to rapid adoption in stem cellderived cells therapy products, there is a relative need for regulatory guidelines that need to be maintained to assist designing of scientifically comprehensive preclinical studies. The stem cell-derived cells obtained from human induced pluripotent stem cells (iPS) are initially dissociated into a single-cell suspension and later frozen in vials. The commercially available stem cell-derived cell kits contain a vial of stem cell-derived cells, a bottle of thawing base and culture base.

The increasing approval for new stem cell-derived cells by the FDA across the globe is projected to propel stem cell-derived cells market revenue growth over the forecast years. With low entry barriers, a rise in number of companies has been registered that specializes in offering high end quality human tissue for research purpose to obtain human induced pluripotent stem cells (iPS) derived cells. The increase in product commercialization activities for stem cell-derived cells by leading manufacturers such as Takara Bio Inc. With the increasing rise in development of stem cell based therapies, the number of stem cell-derived cells under development or due for FDA approval is anticipated to increase, thereby estimating to be the most prominent factor driving the growth of stem cell-derived cells market. However, high costs associated with the development of stem cell-derived cells using complete culture systems is restraining the revenue growth in stem cell-derived cells market.

The global Stem cell-derived cells market is segmented on basis of product type, material type, application type, end user and geographic region:

Segmentation by Product Type

Segmentation by End User

The stem cell-derived cells market is categorized based on product type and end user. Based on product type, the stem cell-derived cells are classified into two major types stem cell-derived cell kits and accessories. Among these stem cell-derived cell kits, stem cell-derived hepatocytes kits are the most preferred stem cell-derived cells product type. On the basis of product type, stem cell-derived cardiomyocytes kits segment is projected to expand its growth at a significant CAGR over the forecast years on the account of more demand from the end use segments. However, the stem cell-derived definitive endoderm cell kits segment is projected to remain the second most lucrative revenue share segment in stem cell-derived cells market. Biotechnology and pharmaceutical companies followed by research and academic institutions is expected to register substantial revenue growth rate during the forecast period.

North America and Europe cumulatively are projected to remain most lucrative regions and register significant market revenue share in global stem cell-derived cells market due to the increased patient pool in the regions with increasing adoption for stem cell based therapies. The launch of new stem cell-derived cells kits and accessories on FDA approval for the U.S. market allows North America to capture significant revenue share in stem cell-derived cells market. Asian countries due to strong funding in research and development are entirely focused on production of stem cell-derived cells thereby aiding South Asian and East Asian countries to grow at a robust CAGR over the forecast period.

Some of the major key manufacturers involved in global stem cell-derived cells market are Takara Bio Inc., Viacyte, Inc. and others.

The report covers exhaustive analysis on:

Regional analysis includes

Report Highlights:

Request Report Methodology @ https://www.persistencemarketresearch.co/methodology/28780

The Stem Cell-Derived Cells report cover following data points:

Part 1: This part enlists the global Stem Cell-Derived Cells marketplace Overview, covering the simple market debut, market analysis by kind, applications, and areas. Stem Cell-Derived Cells industry states and prognosis (2020-2027) is presented in this part. Additionally, Stem Cell-Derived Cells market dynamics saying the chances, market risk, and key driving forces are studied.

Part 2: This part covers Stem Cell-Derived Cells manufacturers profile based On their small business overview, product type, and application. Additionally, the sales volume, Stem Cell-Derived Cells product price, gross margin analysis, and Stem Cell-Derived Cells market share of every player is profiled in this report.

Part 3 and Part 4: This part presents the Stem Cell-Derived Cells competition Based on earnings, earnings, and market share of each producer. Part 4 covers the Stem Cell-Derived Cells market scenario based on regions. Region-wise Stem Cell-Derived Cells sales and growth (2015-2019) is studied in this report.

America and Europes Stem Cell-Derived Cells industry by countries. Under this Stem Cell-Derived Cells revenue, market share of those nations like USA, Canada, and Mexico is provided. Under Europe Stem Cell-Derived Cells report contains, the countries such as Germany, UK, France, Russia, Italy, Russia and their sales and growth is coated.

Part 7, Part 8 and Part 9: These 3 sections covers Stem Cell-Derived Cells The earnings and expansion in these regions are presented in this Stem Cell-Derived Cells industry report.

For any queries get in touch with Industry Expert @ https://www.persistencemarketresearch.co/ask-an-expert/28780

Part 10 and Part 11: This component depicts the Stem Cell-Derived Cells marketplace Share, earnings, sales by product type and application. The Stem Cell-Derived Cells sales growth seen during 2012-2020 is covered in this report.

Related to Stem Cell-Derived Cells market (2020-2027) for every region. The sales channels including indirect and direct Stem Cell-Derived Cells advertising, traders, distributors, and future trends are presented in this report.

Part 14 and Part 15: These components present Stem Cell-Derived Cells market key Research findings and judgment, research methodology, and data sources are covered.

Therefore, Global Stem Cell-Derived Cells report is a complete blend covering all The very important market aspects.

Continued here:
Stem Cell-Derived Cells Market is Projected to Reach US$XX by the end of 2019 2029 - 3rd Watch News

To Read More: Stem Cell-Derived Cells Market is Projected to Reach US$XX by the end of 2019 2029 – 3rd Watch News
categoriaIPS Cell Therapy commentoComments Off on Stem Cell-Derived Cells Market is Projected to Reach US$XX by the end of 2019 2029 – 3rd Watch News | dataJuly 10th, 2020
Read All

Research and therapy with induced pluripotent stem cells …

By daniellenierenberg

Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:86172.

CAS PubMed Article Google Scholar

Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:66376.

CAS PubMed Article Google Scholar

Boland MJ, Hazen JL, Nazor KL, Rodriguez AR, Gifford W, Martin G, et al. Adult mice generated from induced pluripotent stem cells. Nature. 2009;461:914.

CAS PubMed Article Google Scholar

Kang L, Wang J, Zhang Y, Kou Z, Gao S. iPS cells can support full-term development of tetraploid blastocyst-complemented embryos. Cell Stem Cell. 2009;5:1358.

CAS PubMed Article Google Scholar

Zhao XY, Li W, Lv Z, Liu L, Tong M, Hai T, et al. iPS cells produce viable mice through tetraploid complementation. Nature. 2009;461:8690.

CAS PubMed Article Google Scholar

Shi Y, Inoue H, Wu JC, Yamanaka S. Induced pluripotent stem cell technology: a decade of progress. Nat Rev Drug Discov. 2017;16:11530.

CAS PubMed Article Google Scholar

Hasegawa K, Pomeroy JE, Pera MF. Current technology for the derivation of pluripotent stem cell lines from human embryos. Cell Stem Cell. 2010;6:52131.

CAS PubMed Article Google Scholar

Taylor CJ, Bolton EM, Bradley JA. Immunological considerations for embryonic and induced pluripotent stem cell banking. Philos Trans R Soc Lond Ser B Biol Sci. 2011;366:231222.

CAS Article Google Scholar

Devolder K. To be, or not to be? Are induced pluripotent stem cells potential babies, and does it matter? EMBO Rep. 2009;10:12857.

CAS PubMed PubMed Central Article Google Scholar

Fadel HE. Developments in stem cell research and therapeutic cloning: Islamic ethical positions, a review. Bioethics. 2012;26:12835.

PubMed Article Google Scholar

Abad M, Mosteiro L, Pantoja C, Canamero M, Rayon T, Ors I, et al. Reprogramming in vivo produces teratomas and iPS cells with totipotency features. Nature. 2013;502:3405.

CAS PubMed Article Google Scholar

Knoepfler PS. Deconstructing stem cell tumorigenicity: a roadmap to safe regenerative medicine. Stem Cells. 2009;27:10506.

CAS PubMed PubMed Central Article Google Scholar

Hentze H, Soong PL, Wang ST, Phillips BW, Putti TC, Dunn NR. Teratoma formation by human embryonic stem cells: evaluation of essential parameters for future safety studies. Stem Cell Res. 2009;2:198210.

PubMed Article Google Scholar

Tan Y, Ooi S, Wang L. Immunogenicity and tumorigenicity of pluripotent stem cells and their derivatives: genetic and epigenetic perspectives. Curr Stem Cell Res Ther. 2014;9:6372.

CAS PubMed PubMed Central Article Google Scholar

Simonson OE, Domogatskaya A, Volchkov P, Rodin S. The safety of human pluripotent stem cells in clinical treatment. Ann Med. 2015;47:37080.

PubMed Article Google Scholar

Ayala FJ. Cloning humans? Biological, ethical, and social considerations. Proc Natl Acad Sci U S A. 2015;112:887986.

CAS PubMed PubMed Central Article Google Scholar

Taylor CJ, Peacock S, Chaudhry AN, Bradley JA, Bolton EM. Generating an iPSC bank for HLA-matched tissue transplantation based on known donor and recipient HLA types. Cell Stem Cell. 2012;11:14752.

CAS PubMed Article Google Scholar

Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S, et al. A more efficient method to generate integration-free human iPS cells. Nat Methods. 2011;8:40912.

CAS PubMed Article Google Scholar

Lowry WE, Richter L, Yachechko R, Pyle AD, Tchieu J, Sridharan R, et al. Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci U S A. 2008;105:28838.

CAS PubMed PubMed Central Article Google Scholar

Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:191720.

CAS PubMed Article Google Scholar

Sayed N, Liu C, Wu JC. Translation of human-induced pluripotent stem cells: from clinical trial in a dish to precision medicine. J Am Coll Cardiol. 2016;67:216176.

PubMed PubMed Central Article Google Scholar

Yamanaka S. Induced pluripotent stem cells: past, present, and future. Cell Stem Cell. 2012;10:67884.

CAS PubMed Article Google Scholar

Trounson A, DeWitt ND. Pluripotent stem cells progressing to the clinic. Nat Rev Mol Cell Biol. 2016;17:194200.

CAS PubMed Article Google Scholar

Eguchi T, Kuboki T. Cellular reprogramming using defined factors and microRNAs. Stem Cells Int. 2016. https://doi.org/10.1155/2016/7530942.

Article CAS Google Scholar

Moradi S, Asgari S, Baharvand H. Concise review: harmonies played by microRNAs in cell fate reprogramming. Stem Cells. 2014;32:315.

CAS PubMed Article Google Scholar

Ichida JK, Blanchard J, Lam K, Son EY, Chung JE, Egli D, et al. A small-molecule inhibitor of TGF- signaling replaces Sox2 in reprogramming by inducing Nanog. Cell Stem Cell. 2009;5:491503.

CAS PubMed PubMed Central Article Google Scholar

Huangfu D, Maehr R, Guo W, Eijkelenboom A, Snitow M, Chen AE, et al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol. 2008;26:7957.

CAS PubMed PubMed Central Article Google Scholar

Li Y, Zhang Q, Yin X, Yang W, Du Y, Hou P, et al. Generation of iPSCs from mouse fibroblasts with a single gene, Oct4, and small molecules. Cell Res. 2011;21:196204.

CAS PubMed Article Google Scholar

Hou P, Li Y, Zhang X, Liu C, Guan J, Li H, et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science. 2013;341:6514.

CAS PubMed Article Google Scholar

Moradi S, Sharifi-Zarchi A, Ahmadi A, Mollamohammadi S, Stubenvoll A, Gunther S, et al. Small RNA sequencing reveals Dlk1-Dio3 locus-embedded MicroRNAs as major drivers of ground-state pluripotency. Stem Cell Rep. 2017;9:208196.

CAS Article Google Scholar

Greve TS, Judson RL, Blelloch R. MicroRNA control of mouse and human pluripotent stem cell behavior. Ann Rev Cell Dev Biol. 2013;29:21339.

CAS Article Google Scholar

Moradi S, Braun T, Baharvand H. miR-302b-3p promotes self-renewal properties in leukemia inhibitory factor-withdrawn embryonic stem cells. Cell J. 2018;20:6172.

PubMed Google Scholar

Lee YJ, Ramakrishna S, Chauhan H, Park WS, Hong S-H, Kim K-S. Dissecting microRNA-mediated regulation of stemness, reprogramming, and pluripotency. Cell Regen. 2016;5:2.

Article CAS Google Scholar

Hassani SN, Moradi S, Taleahmad S, Braun T, Baharvand H. Transition of inner cell mass to embryonic stem cells: mechanisms, facts, and hypotheses. Cell Mol Life Sci. 2019;76:87392.

CAS PubMed Article Google Scholar

Zhu S, Li W, Zhou H, Wei W, Ambasudhan R, Lin T, et al. Reprogramming of human primary somatic cells by OCT4 and chemical compounds. Cell Ctem Cell. 2010;7:6515.

CAS Article Google Scholar

Esteban MA, Wang T, Qin B, Yang J, Qin D, Cai J, et al. Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Ctem Cell. 2010;6:719.

CAS Article Google Scholar

Xie M, Tang S, Li K, Ding S. Pharmacological reprogramming of somatic cells for regenerative medicine. Acc Chem Res. 2017;50:120211.

CAS PubMed Article Google Scholar

Ma X, Kong L, Zhu S. Reprogramming cell fates by small molecules. Protein Cell. 2017;8:32848.

CAS PubMed PubMed Central Article Google Scholar

Yoshioka N, Gros E, Li HR, Kumar S, Deacon DC, Maron C, et al. Efficient generation of human iPSCs by a synthetic self-replicative RNA. Cell Stem Cell. 2013;13:24654.

CAS PubMed Article Google Scholar

Yakubov E, Rechavi G, Rozenblatt S, Givol D. Reprogramming of human fibroblasts to pluripotent stem cells using mRNA of four transcription factors. Biochem Biophys Res Commun. 2010;394:18993.

CAS PubMed Article PubMed Central Google Scholar

Lee AS, Tang C, Rao MS, Weissman IL, Wu JC. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med. 2013;19:9981004.

CAS PubMed PubMed Central Article Google Scholar

Gore A, Li Z, Fung HL, Young JE, Agarwal S, Antosiewicz-Bourget J, et al. Somatic coding mutations in human induced pluripotent stem cells. Nature. 2011;471:637.

CAS PubMed PubMed Central Article Google Scholar

Mayshar Y, Ben-David U, Lavon N, Biancotti JC, Yakir B, Clark AT, et al. Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell. 2010;7:52131.

CAS PubMed Article PubMed Central Google Scholar

Tompkins JD, Hall C, Chen VC, Li AX, Wu X, Hsu D, et al. Epigenetic stability, adaptability, and reversibility in human embryonic stem cells. Proc Natl Acad Sci U S A. 2012;109:125449.

CAS PubMed PubMed Central Article Google Scholar

Amps K, Andrews PW, Anyfantis G, Armstrong L, Avery S, Baharvand H, et al. Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nat Biotechnol. 2011;29:113244.

CAS PubMed Article PubMed Central Google Scholar

Liang G, Zhang Y. Genetic and epigenetic variations in iPSCs: potential causes and implications for application. Cell Stem Cell. 2013;13:14959.

CAS PubMed PubMed Central Article Google Scholar

Steyer B, Bu Q, Cory E, Jiang K, Duong S, Sinha D, et al. Scarless genome editing of human pluripotent stem cells via transient puromycin selection. Stem Cell Rep. 2018;10:64254.

CAS Article Google Scholar

Giacalone JC, Sharma TP, Burnight ER, Fingert JF, Mullins RF, Stone EM, et al. CRISPR-Cas9-based genome editing of human induced pluripotent stem cells. Curr Protoc Stem Cell Biol. 2018;44:5B7.

PubMed PubMed Central Google Scholar

Zhang XH, Tee LY, Wang XG, Huang QS, Yang SH. Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol Ther Nucleic Acids. 2015;4:e264.

CAS PubMed PubMed Central Article Google Scholar

Guidance for human somatic cell therapy and gene therapy. Hum Gene Ther. 2001;12:30314.

Daley GQ, Hyun I, Apperley JF, Barker RA, Benvenisty N, Bredenoord AL, et al. Setting global standards for stem cell research and clinical translation: the 2016 ISSCR guidelines. Stem Cell Rep. 2016;6:78797.

Original post:
Research and therapy with induced pluripotent stem cells ...

To Read More: Research and therapy with induced pluripotent stem cells …
categoriaIPS Cell Therapy commentoComments Off on Research and therapy with induced pluripotent stem cells … | dataJuly 8th, 2020
Read All

Hitachi and ThinkCyte to Develop an AI-driven Cell Analysis | ARC Advisory – ARC Viewpoints

By daniellenierenberg

Hitachi, Ltd and ThinkCyte, Inc. announced that they have entered into a collaboration focused on developing an artificial intelligence (AI)-driven cell analysis and sorting system. Hitachi and ThinkCyte are promoting collaboration with pharmaceutical companies and research institutes working in the field of regenerative medicine and cell therapy to expedite the development of the system toward commercialization.

Founded in 2016 and headquartered in Tokyo, Japan, ThinkCyte, is a biotechnology company that develops life science research, diagnostics, and treatments using integrated multidisciplinary technologies. It has been performing research and development focused on high-throughput single cell analysis and sorting technology to precisely analyze and isolate target cells. ThinkCyte has developed the Ghost Cytometry technology to achieve high-throughput and high-content single cell sorting and has been conducting collaborative research projects with multiple pharmaceutical companies and research institutes to utilize this technology in life science and medical fields.

Hitachi has been providing large-scale automated induced pluripotent stem (iPS) cell culture equipment, cell processing facilities (CPFs), manufacturing execution systems(MES), and biosafety cabinets among other products to pharmaceutical companies and research institutes, and has developed a value chain to meet a variety of customer needs in the regenerative medicine and cell therapy industry. Hitachi has also been carrying out collaborative research projects with universities, research institutes, and other companies to develop core technologies for pharmaceutical manufacturing instruments and in vitro diagnostic medical devices, prototyping for mass production, and working on manufacturing cost reduction and the development of stable and reliable instruments.

Hitachi and ThinkCyte have initiated a joint development of the AI-driven cell analysis and sorting system based on their respective technologies, expertise, and know-how. By combining ThinkCyte's high-throughput and high-content label-free single cell sorting technology and Hitachi's know-how and capability to producing stably operative instruments on a large scale, the two companies will together develop a novel reliable system to enable high-speed label-free cell isolation with high accuracy, which has been difficult to achieve with the existing cell sorting techniques, and to realize stable, low-cost and large-scale production of cells for regenerative medicine and cell therapy.

Hitachi and ThinkCyte will further advance partnerships with pharmaceutical companies and research institutes that have been developing and manufacturing regenerative medicines and cell therapy products in Japan and other countries where demand is expected to be significant, such as North America, in order to make this technology a platform for the production of regenerative medicines and cell therapy products.

Read this article:
Hitachi and ThinkCyte to Develop an AI-driven Cell Analysis | ARC Advisory - ARC Viewpoints

To Read More: Hitachi and ThinkCyte to Develop an AI-driven Cell Analysis | ARC Advisory – ARC Viewpoints
categoriaIPS Cell Therapy commentoComments Off on Hitachi and ThinkCyte to Develop an AI-driven Cell Analysis | ARC Advisory – ARC Viewpoints | dataJuly 6th, 2020
Read All

Hitachi and ThinkCyte announce collaboration to develop an AI-driven cell analysis and sorting system – BioSpace

By daniellenierenberg

TOKYO, July 1, 2020 /PRNewswire/ --Hitachi, Ltd.(TSE: 6501, "Hitachi") and ThinkCyte, Inc. ("ThinkCyte") today announced that they have entered into a collaboration focused on developing an artificial intelligence (AI)-driven cell analysis and sorting system. Hitachi provides a broad range of solutions such as automated cell culture technologies to pharmaceutical companies in the value chain*1 of the regenerative medicine and cell therapy industry. Through the addition of this cell analysis and sorting system to the value chain, Hitachi continues contributing to cost reductions in the manufacturing of regenerative medicine and cell therapy products.Further, Hitachi and ThinkCyte are promoting collaboration with pharmaceutical companies and research institutes working in the field of regenerative medicine and cell therapy to expedite the development of the system toward commercialization.

The practical applications of regenerative medicine and cell therapy using cells for treatment have been expanding rapidly with the first regulatory approval of CAR-T*2 therapy for leukemia in 2017 in the United States and 2019 in Japan. The global market for regenerative medicine and cell therapy is expected to grow from US$ 5.9 billion (JPY 630 billion) in 2020 to US$ 35.4 billion (JPY 3.8 trillion) in 2025*3. In order to scale up treatment using regenerative medicine and cell therapy products, it is critical to ensure consistent selection and stable supply of high quality cells in large quantities and at a low costs.

Hitachi has been providing large-scale automated induced pluripotent stem (iPS) cell culture equipment, cell processing facilities (CPFs), manufacturing execution systems(MES), and biosafety cabinets among other products to pharmaceutical companies and research institutes, and has developed a value chain to meet a variety of customer needs in the regenerative medicine and cell therapy industry. Hitachi has also been carrying out collaborative research projects with universities, research institutes, and other companies to develop core technologies for pharmaceutical manufacturing instruments and in vitro diagnostic medical devices, prototyping for mass production, and working on manufacturing cost reduction and the development of stable and reliable instruments.

ThinkCyte has been performing research and development focused on high-throughput single cell analysis and sorting technology to precisely analyze and isolate target cells. While such single cell analysis and sorting technologies are vital to life science and medical research, it has been thought impossible to achieve high-throughput cell sorting based on high-content image information of every single cell. ThinkCyte has developed the world's first Ghost Cytometrytechnology to achieve high-throughput and high-content single cell sorting*4and has been conducting collaborative research projects with multiple pharmaceutical companies and research institutes to utilize this technology in life science and medical fields.

Hitachi and ThinkCyte have initiated a joint development of the AI-driven cell analysis and sorting system based on their respective technologies, expertise, and know-how. By combining ThinkCyte's high-throughput and high-content label-free single cell sorting technology and Hitachi's know-how and capability to producing stably operative instruments on a large scale, the two companies will together develop a novel reliable system to enable high-speed label-free cell isolation with high accuracy, which has been difficult to achieve with the existing cell sorting techniques, and to realize stable, low-cost and large-scale production of cells for regenerative medicine and cell therapy.

Hitachi and ThinkCyte will further advance partnerships with pharmaceutical companies and research institutes that have been developing and manufacturing regenerative medicines and cell therapy products in Japan and other countries where demand is expected to be significant, such as North America, in order to make this technology a platform for the production of regenerative medicines and cell therapy products. At the same time, taking advantage of the high-speed digital processing technologies cultivated through the development of information and communication technology by the Hitachi group, Hitachi will integrate this safe and highly reliable instrument in its value chain for regenerative medicine and contribute to the growth of the regenerative medicine and cell therapy industry.

Note:

*1. Cell manufacturing processes, including cultivation, selection, modification, preservation, product quality control, etc.

*2. Chimeric Antigen Receptor T cells that have been genetically engineered to produce an artificial T-cell receptor for use in immunotherapy.

*3. Division of Regenerative Medicine, Japan Agency for Medical Research and Development, The final report for market research on regenerative medicine and gene therapy (2020).

*4. S, Ota et al., Ghost Cytometry, Science, 360, 1246-1251 (2018).

About the AI-driven cell analysis and cell sorting technologyThinkCyte has developed high-throughput image-based cell sorting technology based on the Ghost Cytometry technology by integrating the principles of advanced imaging technology, machine learning, and microfluidics. By applying structured illumination to cell imaging, structural information of a single cell can be converted to one-dimensional waveforms for high-throughput data analysis. Based on the judgment of a machine-learning (AI) model developed using the waveform data, target cells are isolated in a microfluidic device with high throughput and with minimal damage to the cells.

This data analysis approach eliminates time-consuming image reconstruction processes and allows high-throughput image-based single cell sorting, enabling the discrimination of cells that were previously considered difficult to distinguish by the human eye. Conventional cell sorting methods rely on the use of labels such as cell surface markers for cell sorting; in contrast, ThinkCyte's technology can sort cells without such labels by employing this unique approach. In addition to the field of regenerative medicine and cell therapy, this technology can also revolutionize drug discovery and in vitrodiagnostics fields.

About Hitachi, Ltd.Hitachi, Ltd. (TSE: 6501), headquartered in Tokyo, Japan, is focused on its Social Innovation Business that combines information technology (IT), operational technology (OT) and products. The company's consolidated revenues for fiscal year 2019 (ended March 31, 2020) totaled 8,767.2 billion yen ($80.4 billion), and it employed approximately 301,000 people worldwide. Hitachi drives digital innovation across five sectors - Mobility, Smart Life, Industry, Energy and IT - through Lumada, Hitachi's advanced digital solutions, services, and technologies for turning data into insights to drive digital innovation. Its purpose is to deliver solutions that increase social, environmental and economic value for its customers. For more information on Hitachi, please visit the company's website at https://www.hitachi.com.

About ThinkCyte, Inc.ThinkCyte, headquartered in Tokyo, Japan, is a biotechnology company, which developsinnovative life science research, diagnostics,and treatmentsusingintegrated multidisciplinary technologies, founded in 2016. The company focuses on the research and development of drug discovery, cell therapy, and diagnostic platforms using its proprietary image-based high-throughput cell sorting technology In June 2019, the company was selected for J-Startup by the Ministry of Economy, Trade and Industry of Japan. For more information on ThinkCyte, please visit the company's website at https://thinkcyte.com.

ContactsHitachi, Ltd.Analytical Systems Division, Healthcare Division, Smart Life Business Management Divisionhttps://www8.hitachi.co.jp/inquiry/healthcare/en/general/form.jsp

ThinkCyte, Inc.https://thinkcyte.com/contact

View original content to download multimedia:http://www.prnewswire.com/news-releases/hitachi-and-thinkcyte-announce-collaboration-to-develop-an-ai-driven-cell-analysis-and-sorting-system-301086729.html

SOURCE ThinkCyte, Inc.

Read the original:
Hitachi and ThinkCyte announce collaboration to develop an AI-driven cell analysis and sorting system - BioSpace

To Read More: Hitachi and ThinkCyte announce collaboration to develop an AI-driven cell analysis and sorting system – BioSpace
categoriaIPS Cell Therapy commentoComments Off on Hitachi and ThinkCyte announce collaboration to develop an AI-driven cell analysis and sorting system – BioSpace | dataJuly 1st, 2020
Read All

Global Stem Cells Market 2019 | How The Industry Will Witness Substantial Growth In The Upcoming Years | Exclusive Report By MRE – Cole of Duty

By daniellenierenberg

This report will definitely help you make well informed decisions related to the stem cell market. The stem cell therapy market includes large number of players that are involved in development of stem cell therapies of the treatment of various diseases. Mesoblast Ltd. (Australia), Aastrom Biosciences, Inc. (U.S.), Celgene Corporation (U.S.), and StemCells, Inc. (U.S.) are the key players involved in the development of stem cell therapies across the globe.

The global stem cells market is expected to grow at an incredible CAGR of 25.5% from 2018to 2024and reach a market value of US$ 586 billion by 2025. The emergence of Induced Pluripotent Stem (iPS) cells as an alternative to ESCs (embryonic stem cells), growth of developing markets, and evolution of new stem cell therapies represent promising growth opportunities for leading players in this sector.

You Can Browse Full Report @: https://www.marketresearchengine.com/reportdetails/global-stem-cells-market-analysis-report

Due to the increased funding from Government and Private sector and rising global awareness about stem cell therapies and research are the main factors which are driving this market. A surge in therapeutic research activities funded by governments across the world has immensely propelled the global stem cells market. However, the high cost of stem cell treatment and stringent government regulations against the harvesting of stem cells are expected to restrain the growth of the global stem cells market.

The stem cell therapy market includes large number of players that are involved in development of stem cell therapies of the treatment of various diseases. Mesoblast Ltd. (Australia), Aastrom Biosciences, Inc. (U.S.), Celgene Corporation (U.S.), and StemCells, Inc. (U.S.) are the key players involved in the development of stem cell therapies across the globe.

This market research report categorizes the stem cell therapy market into the following segments and sub-segments:

The Global Stem Cell Market this market is segmented on the basis of Mode of Therapy, Therapeutic Applications and Geography.

By Mode of Therapy this market is segmented on the basis of Allogeneic Stem Cell Therapy Market and Autologous Stem Cell Therapy Market. Allogeneic Stem Cell Therapy Market this market is segmented on the basis of CVS Diseases, CNS Diseases, GIT diseases, Eye Diseases, Musculoskeletal Disorders, Metabolic Diseases, Immune System Diseases, Wounds and Injuries and Others. Autologous Stem Cell Therapy Market this market is segmented on the basis of GIT Diseases, Musculoskeletal Disorders, CVS Diseases, CNS Diseases, Wounds and Injuries and Others. By Therapeutic Applications this market is segmented on the basis of Musculoskeletal Disorders, Metabolic Diseases, Immune System Diseases, GIT Diseases, Eye Diseases, CVS Diseases, CNS Diseases, Wounds and Injuries and Others.

By Regional Analysis this market is segmented on the basis of North America, Europe, Asia-Pacific and Rest of the World.

Request Sample Report @: https://www.marketresearchengine.com/reportdetails/global-stem-cells-market-analysis-report

Table of Contents

1 INTRODUCTION

2 Research Methodology

2.1 Research Data2.1.1 Secondary Data2.1.1.1 Key Data From Secondary Sources2.1.2 Primary Data2.1.2.1 Key Data From Primary Sources2.1.2.2 Breakdown of Primaries2.2 Market Size Estimation2.2.1 Bottom-Up Approach2.2.2 Top-Down Approach2.3 Market Breakdown and Data Triangulation2.4 Research Assumptions

3 Executive Summary

4 Premium Insights

5 Market Overview

6 Industry Insights

7 Global Stem Cell Therapy Market, By Type

8 Global Stem Cell Therapy Market, By Therapeutic Application

9 Global Stem Cell Therapy Market, By Cell Source

10 Stem Cell Therapy Market, By Region

11 Competitive Landscape

12 Company Profiles

12.1 Introduction

12.1.1 Geographic Benchmarking

12.2 Osiris Therapeutics, Inc.

12.3 Medipost Co., Ltd.

12.4 Anterogen Co., Ltd.

12.5 Pharmicell Co., Ltd.

12.6 Holostem Terapie Avanzate Srl

12.7 JCR Pharmaceuticals Co., Ltd.

12.8 Nuvasive, Inc.

12.9 RTI Surgical, Inc.

12.10 Allosource

Other Related Market Research Reports:

Specialty Enzymes Market Size Worth US$ 5.5 Billion By 2022

Single Use Bioprocessing Market Size is Projected to be Around US$ 5.50 Billion By 2022

Single-cell Analysis Market is Expected to Grow US$ 3 Billion By 2022

Media Contact

Company Name: Market Research Engine

Contact Person: John Bay

Email: [emailprotected]

Phone: +1-855-984-1862

Country: United States

Website: https://www.marketresearchengine.com/

Excerpt from:
Global Stem Cells Market 2019 | How The Industry Will Witness Substantial Growth In The Upcoming Years | Exclusive Report By MRE - Cole of Duty

To Read More: Global Stem Cells Market 2019 | How The Industry Will Witness Substantial Growth In The Upcoming Years | Exclusive Report By MRE – Cole of Duty
categoriaIPS Cell Therapy commentoComments Off on Global Stem Cells Market 2019 | How The Industry Will Witness Substantial Growth In The Upcoming Years | Exclusive Report By MRE – Cole of Duty | dataJune 26th, 2020
Read All

Induced Pluripotent Stem Cells (iPS) – UCLA Broad Stem …

By daniellenierenberg

iPSC are derived from skin or blood cells that have been reprogrammed back into an embryonic-like pluripotent state that enables the development of an unlimited source of any type of human cell needed for therapeutic purposes. For example, iPSC can be prodded into becoming beta islet cells to treat diabetes, blood cells to create new blood free of cancer cells for a leukemia patient, or neurons to treat neurological disorders.

In late 2007, a BSCRC team of faculty, Drs. Kathrin Plath, William Lowry, Amander Clark, and April Pyle were among the first in the world to create human iPSC. At that time, science had long understood that tissue specific cells, such as skin cells or blood cells, could only create other like cells. With this groundbreaking discovery, iPSC research has quickly become the foundation for a new regenerative medicine.

Using iPSC technology our faculty have reprogrammed skin cells into active motor neurons, egg and sperm precursors, liver cells, bone precursors, and blood cells. In addition, patients with untreatable diseases such as, ALS, Rett Syndrome, Lesch-Nyhan Disease, and Duchenne's Muscular Dystrophy donate skin cells to BSCRC scientists for iPSC reprogramming research. The generous participation of patients and their families in this research enables BSCRC scientists to study these diseases in the laboratory in the hope of developing new treatment technologies.

View original post here:
Induced Pluripotent Stem Cells (iPS) - UCLA Broad Stem ...

To Read More: Induced Pluripotent Stem Cells (iPS) – UCLA Broad Stem …
categoriaIPS Cell Therapy commentoComments Off on Induced Pluripotent Stem Cells (iPS) – UCLA Broad Stem … | dataJune 23rd, 2020
Read All

Page 5«..4567..1020..»


Copyright :: 2024