Page 44«..1020..43444546..5060..»

Stem Cell Therapy Market by Treatment,Application,End Users and Geography Forecast To 2026 – Good Night, Good Hockey

By daniellenierenberg

Stem Cell Therapy Market is expected to reach 202.77 billion by 2026 from XX billion in 2018 at CAGR of XX %.REQUEST FOR FREE SAMPLE REPORT:https://www.maximizemarketresearch.com/request-sample/522

Stands for use of stem cells to treat or prevent disease or condition.Bone marrow transplant and some therapies derived from umbilical cord blood are mainly used in stem cell therapy. Advancement, in order to establish new sources for stem cells, and to apply stem-cell treatments for neurodegenerative diseases and conditions such as diabetes, heart disease, and other conditions, are increased in recent years.

The report study has analyzed revenue impact of covid-19 pandemic on the sales revenue of market leaders, market followers and disrupters in the report and same is reflected in our analysis.

Stem Cell Therapy Market Researchers are making efforts to discover novel methods to create human stem cells. This will increase the demand as well as supply for stem cell production and potential investigation in disease management. Increasing investment & research grants for developing safe and effective stem cell therapy products, the growing patient base for target diseases, concentrated product pipelines, increasing approval of the new clinical trials, rapid technological advancement in genomics, and the rising awareness about the stem cell are expected to drive the growth of the Stem Cell Therapy solutions market during the forecast period.

However, improper infrastructure, insufficient storage systems, nascent technology in underdeveloped economies, Ethical issues related to an embryonic stem cell, low patient acceptance rate, Difficulty in the preservation of stem cell are expected to restrain the market growth. North America is expected to be the largest growing region by 2026; the reason behind that is extensive funding by Government. However, Emerging countries like India, china, Korea have low growth rate as compared to Developed regions in 2017 but increase in awareness about stem cell therapy will lead the Asia Pacific to generate a significant level of revenue by 2026.

Key Highlights of Stem Cell Therapy Market report

Detailed quantitative analysis of the current and future trends from 2017 to 2026, which helps to identify the prevailing market opportunities.Comprehensive analysis of factors instrumental in changing the market scenario, rising prospective opportunities, market shares, core competencies in terms of market development, growth strategies and identification of key companies that can influence this market on a global and regional scale.Assessment of Market definition along with the identification of key drivers, restraints opportunities and challenges for this market during the forecast period.Complete analysis of micro-markets with respect to individual growth trends, prospects, and contributions to the overall Stem Cell Therapy Solutions market.Stem Cell Therapy market analysis and comprehensive segmentation with respect to the Application, End users, Treatment, and geography to assist in strategic business planning.Stem Cell Therapy market analysis and forecast for five major geographies-North America, Europe, Asia Pacific, Middle East & Africa, Latin America, and their key regions.For company profiles, 2017 has been considered as the base year. In cases, wherein information was unavailable for the base year, the years prior to it have been considered.

Research Methodology:

The market is estimated by triangulation of data points obtained from various sources and feeding them into a simulation model created individually for each market. The data points are obtained from paid and unpaid sources along with paid primary interviews with key opinion leaders (KOLs) in the market. KOLs from both, demand and supply side were considered while conducting interviews to get an unbiased idea of the market. This exercise was done at a country level to get a fair idea of the market in countries considered for this study. Later this country-specific data was accumulated to come up with regional numbers and then arrive at a global market value for the stem cell therapy market.Key Players in the Stem Cell Therapy Market are:

Chiesi Farmaceutici S.P.A Are:Gamida CellReNeuron Group, plcOsiris Therapeutics, Inc.Stem Cells, Inc.Vericel Corporation.Mesoblast, Ltd.

Key Target Audience:

Stem Cell Associations and OrganizationsGovernment Research Boards and OrganizationsResearch and consulting firmsStem Cell Therapy Market InvestorsHealthcare Service Providers (including Hospitals and Diagnostic Centers)Stem Cell Therapeutic Product Manufacturing OrganizationsResearch LabsClinical research organizations (CROs)Stem Cell Therapy Marketing PlayersPharmaceutical Product Manufacturing CompaniesScope of the Stem Cell Therapy Market Report:

Stem Cell Therapy market research report categorizes the Stem Cell Therapy market based on Application, End users, Treatment, and geography (region wise). Market size by value is estimated and forecasted with the revenues of leading companies operating in the Stem Cell Therapy market with key developments in companies and market trends.Stem Cell Therapy Market, By Treatments:

Allogeneic Stem Cell TherapyAutologous Stem Cell Therapy

Stem Cell Therapy Market, By End Users:

HospitalsAmbulatory Surgical Centers

Stem Cell Therapy Market, By Application:

OncologyCentral Nervous System DiseasesEye DiseasesMusculoskeletal DiseasesWound & InjuriesMetabolic DisordersCardiovascular DisordersImmune System DisordersStem Cell Therapy Market, By Geography:

North AmericaEuropeAsia PacificMiddle East & AfricaLatin America

Available Customization:

With the given market data, Maximize Market Research offers customization of report and scope of the report as per the requirement

Regional Analysis:

Breakdown of the North America stem cell therapy marketBreakdown of the Europe stem cell therapy marketBreakdown of the Asia Pacific stem cell therapy marketBreakdown of the Middle East & Africa stem cell therapy marketBreakdown of the Latin America stem cell therapy market

Browse Full Report with Facts and Figures Report at:https://www.maximizemarketresearch.com/market-report/stem-cell-therapy-market/522/

About Us:

Maximize Market Research provides B2B and B2C market research on 20,000 high growth emerging technologies & opportunities in Chemical, Healthcare, Pharmaceuticals, Electronics & Communications, Internet of Things, Food and Beverages, Aerospace and Defense and other manufacturing sectors.

Contact info:

Name: Vikas Godage

Organization: MAXIMIZE MARKET RESEARCH PVT. LTD.

Email: sales@maximizemarketresearch.com

Contact: +919607065656/ +919607195908

Website:www.maximizemarketresearch.com

Excerpt from:
Stem Cell Therapy Market by Treatment,Application,End Users and Geography Forecast To 2026 - Good Night, Good Hockey

To Read More: Stem Cell Therapy Market by Treatment,Application,End Users and Geography Forecast To 2026 – Good Night, Good Hockey
categoriaBone Marrow Stem Cells commentoComments Off on Stem Cell Therapy Market by Treatment,Application,End Users and Geography Forecast To 2026 – Good Night, Good Hockey | dataAugust 11th, 2020
Read All

Covid-19 Impact on Global Orthopedic Regenerative Medicine Market Rapid Growth By 2019 2027 | Curasan, Inc., Carmell Therapeutics Corporation, Anika…

By daniellenierenberg

Latest released the research study on Global Orthopedic Regenerative Medicine Market, offers a detailed overview of the factors influencing the global business scope. Orthopedic Regenerative Medicine Market research report shows the latest market insights, current situation analysis with upcoming trends and breakdown of the products and services. The report provides key statistics on the market status, size, share, growth factors of the Orthopedic Regenerative Medicine. The study covers emerging players data, including: competitive landscape, sales, revenue and global market share of top manufacturers are Curasan, Inc., Carmell Therapeutics Corporation, Anika Therapeutics, Inc., Conatus Pharmaceuticals Inc., Histogen Inc., Royal Biologics, Ortho Regenerative Technologies, Inc., Swiss Biomed Orthopaedics AG, Osiris Therapeutics, Inc., and Octane Medical Inc.

Definition:

Orthopedic Regenerative Medicine strategy sends messages to the customers or subscribers in predefined schedule. However, other forms of media can also be used in Orthopedic Regenerative Medicine. It is the most common form of marketing as multiple messages can be sent in low costs. Orthopedic Regenerative Medicine is used to achieve business objectives such as increasing sales, maintaining communications with customers while saving the business time. Moreover, the users can personalize each of the email messages and increase conversion rate.

Market Drivers

Market Trend

Opportunities

Challenges

Detailed Segmentation:

By Procedure Cell TherapyTissue EngineeringBy Cell TypeInduced Pluripotent Stem Cells (iPSCs)Adult Stem CellsTissue Specific Progenitor Stem Cells (TSPSCs),Mesenchymal Stem Cells (MSCs)Umbilical Cord Stem Cells (UCSCs)Bone Marrow Stem Cells (BMSCs)By SourceBone MarrowUmbilical Cord BloodAdipose TissueAllograftsAmniotic FluidBy ApplicationsTendons RepairCartilage RepairBone RepairLigament RepairSpine RepairOthers

Analyst at CMI have conducted special survey and have connected with opinion leaders and Industry experts from various region to minutely understand impact on growth as well as local reforms to fight the situation. A special chapter in the study presents Impact Analysis of COVID-19 on Global Orthopedic Regenerative Medicine Market along with tables and graphs related to various country and segments showcasing impact on growth trends.

o North America (United States, Canada, and Mexico)

o Europe (Germany, France, UK, Russia, and Italy)

o Asia-Pacific (China, Japan, Korea, India, and Southeast Asia)

o South America (Brazil, Argentina, Colombia)

o Middle East and Africa (Saudi Arabia, UAE, Egypt, Nigeria, and South Africa)

Download PDF Brochure of Research Report @https://www.coherentmarketinsights.com/insight/request-pdf/3566

Strategic Points Covered in Table of Content of Global Orthopedic Regenerative Medicine Market:

Chapter 1: Introduction, market driving force product Objective of Study and Research Scope the Orthopedic Regenerative Medicine market

Chapter 2: Exclusive Summary the basic information of the Orthopedic Regenerative Medicine Market.

Chapter 3: Displaying the Market Dynamics- Drivers, Trends and Challenges of the Orthopedic Regenerative Medicine

Chapter 4: Presenting the Orthopedic Regenerative Medicine Market Factor Analysis Porters Five Forces, Supply/Value Chain, PESTEL analysis, Market Entropy, Patent/Trademark Analysis.

Chapter 5: Displaying market size by Type, End User and Region 2014-2019

Chapter 6: Evaluating the leading manufacturers of the Orthopedic Regenerative Medicine market which consists of its Competitive Landscape, Peer Group Analysis

Chapter 7: To evaluate the market by segments, by countries and by manufacturers with revenue share and sales by key countries (2019-2027).

Chapter 8 & 9: Displaying the Appendix, Methodology and Data Source

Finally, Orthopedic Regenerative Medicine Market is a valuable source of guidance for individuals and companies in decision framework.

Data Sources & Methodology

The primary sources involves the industry experts from the Global Orthopedic Regenerative Medicine Market including the management organizations, processing organizations, analytics service providers of the industrys value chain. All primary sources were interviewed to gather and authenticate qualitative & quantitative information and determine the future prospects.

In the extensive primary research process undertaken for this study, the primary sources Postal Surveys, telephone, Online & Face-to-Face Survey were considered to obtain and verify both qualitative and quantitative aspects of this research study. When it comes to secondary sources Companys Annual reports, press Releases, Websites, Investor Presentation, Conference Call transcripts, Webinar, Journals, Regulators, National Customs and Industry Associations were given primary weight-age.

Get Discount on This Premium Report @https://www.coherentmarketinsights.com/insight/request-discount/3566

What benefits does CMI research study is going to provide?

Definitively, this report will give you an unmistakable perspective on every single reality of the market without a need to allude to some other research report or an information source. Our report will give all of you the realities about the past, present, and eventual fate of the concerned Market.

Thanks for reading this article; you can also get individual chapter wise section or region wise report version like North America, Europe or Southeast Asia.

About Author:

Coherent Market Insights is a global market intelligence and consulting organization focused on assisting our plethora of clients achieve transformational growth by helping them make critical business decisions. We are headquartered in India, having office at global financial capital in the U.S. Our client base includes players from across all business verticals in over 150 countries worldwide. We are uniquely positioned to help businesses around the globe deliver practical and lasting results through various recommendations about operational improvements, technologies, emerging market trends and new working methods.

Mr Raj ShahCoherent Market Insights 1001 4th Ave,#3200 Seattle, WA 98154, U.S.Phone +1-206-701-6702sales@coherentmarketinsights.com

See the rest here:
Covid-19 Impact on Global Orthopedic Regenerative Medicine Market Rapid Growth By 2019 2027 | Curasan, Inc., Carmell Therapeutics Corporation, Anika...

To Read More: Covid-19 Impact on Global Orthopedic Regenerative Medicine Market Rapid Growth By 2019 2027 | Curasan, Inc., Carmell Therapeutics Corporation, Anika…
categoriaBone Marrow Stem Cells commentoComments Off on Covid-19 Impact on Global Orthopedic Regenerative Medicine Market Rapid Growth By 2019 2027 | Curasan, Inc., Carmell Therapeutics Corporation, Anika… | dataAugust 11th, 2020
Read All

Tevogen Bio Announces Partnership With Preeminent Scientist Professor Neal Flomenberg, MD, to Investigate Proprietary T-Cell Therapy for Treatment of…

By daniellenierenberg

METUCHEN, N.J., Aug. 10, 2020 /PRNewswire/ --Tevogen Bio announces a joint partnership with renowned bone-marrow transplant expertNeal Flomenberg, M.D., Professor and Chair of the Department of Medical Oncology at Thomas Jefferson University, with the intent to evaluate Tevogen' s proprietary antigen-specific T cell technology as a potential treatment for COVID-19 and influenza-A patients.

This collaboration aims to harness Tevogen's proprietary immunotherapy platform and Dr. Flomenberg's expertise and research prowess to investigate potential treatments for viral infections.

Dr. Flomenberg has been at the forefront of immunogenetics and immunology for more than four decades. "Tevogen's technology resonated with me as there have been several groups who have used T cells to treat patients after bone-marrow transplants. The idea of utilizing T cell therapies to potentially treat COVID-19 and other viruses is truly remarkable," Flomenberg said. "I'm enthusiastic about moving forward with an investigation of Tevogen's technologies."

Tevogen CEO Ryan Saadi, M.D., M.P.H., is leading the new biotech's efforts. "Our work has been to pioneer T cell therapies that can be abundantly and efficiently reproduced to develop an affordable and scalable cellular treatment for the biggest global health threats, including COVID-19, influenza, and a variety of cancers. We are very excited about Dr. Flomenberg's contribution to our efforts and hope to initiate our investigational study soon."

In addition to developing its potential therapies, Tevogen is committed to organizational and manufacturing efficiency. This should allow it to engage in affordable innovation to the benefit of all patients.

About Tevogen Bio

Tevogen Bio was formed after decades of research by its contributors to concentrate and leverage their expertise, spanning multiple sectors of the health care industry, to help address some of the most common and deadly illnesses known today. The company's mission is to provide curative and preventative treatments that are affordable and scalablein order to positively impact global public health.

About Dr. Neal Flomenberg

Dr. Neal Flomenberg is the Chairman of Medical Oncology at Jefferson University in Philadelphia and also heads the Hematologic Malignancies, Blood and Marrow Transplantation (BMT) Program. Throughout his more than four decades of practice, he has maintained a longstanding interest in the immunogenetics and immunology of stem cell transplantation, with the goal of making transplantation safer and more widely available. Dr. Flomenberg developed an approach to bone-marrow transplants that uses half-matched relatives as donors, a breakthrough that assures that the majority of blood and bone-marrow cancer patients can benefit from this potentially curative treatment.

Media Contacts:

Mark Irion[emailprotected]

Katelyn Petroka [emailprotected]

SOURCE Tevogen Bio

Read more here:
Tevogen Bio Announces Partnership With Preeminent Scientist Professor Neal Flomenberg, MD, to Investigate Proprietary T-Cell Therapy for Treatment of...

To Read More: Tevogen Bio Announces Partnership With Preeminent Scientist Professor Neal Flomenberg, MD, to Investigate Proprietary T-Cell Therapy for Treatment of…
categoriaBone Marrow Stem Cells commentoComments Off on Tevogen Bio Announces Partnership With Preeminent Scientist Professor Neal Flomenberg, MD, to Investigate Proprietary T-Cell Therapy for Treatment of… | dataAugust 10th, 2020
Read All

Boy, 4, may look fighting fit but only has months to live – unless you can save him – Mirror Online

By daniellenierenberg

His name means brave in Hindi. And for four year-old Veer Gudhka that couldnt be more appropriate.

For while the bubbly little boy might look fighting fit, he actually has just months to live.

Veer suffers from a rare blood disorder called Fanconi anaemia, which results in a decreased production of all types of blood cells.

But a stem cell donor will save his life.

In a heartfelt video message, the plucky toddler asks Sunday Mirror readers: Please be my life-saver? Will you be my superhero?

And today his family are appealing to those from BAME communities to help by signing up to the Anthony Nolan stem cell register.

Mum Kirpa and dad Nirav know the odds are stacked against them getting that all-important call because they are of Indian descent.

While 69 per cent of Northern European patients find the best possible stem cell match from a stranger, this drops to just 20 per cent for those with black, Asian or ethnic minority backgrounds.

Currently only two per cent of the population is on the UK stem cell register.

And with Asians making up just six per cent of the UK population, there is a smaller pool of potential donors.

Veer was diagnosed with the blood disorder last August, after he started suffering from extreme fatigue, and was referred for tests.

Doctors said he would need a stem cell transplant within three years for a chance of survival.

They hoped to buy Veer some time by putting him on steroids to boost his blood counts. But his condition has deteriorated fast.

Recent tests at Great Ormond Street Hospital in London show he now has just three to four months to find a donor.

Kirpa and Nirav were both tested, along with Veers six-year-old sister Suhani, but none of them were a match.

A search on the global stem cell register also drew a blank.

And his dad has been trying to encourage his fellow countrymen and women in India to join the register.

They have even signed up a female battalion of the Indian Army.

Kirpa, 37, from Harrow, London, said: We just feel so scared were going to lose our cheeky, amazing little boy. To look at Veer you wouldnt know hes critically ill.

Like his name, hes been brave from the start. Hes undergone countless tests and hospital visits but has had a constant smile on his face.

"He knows he needs a superhero to step forward, but his optimism and enthusiasm are infectious and keep us all going.

She added: Going on the register is incredibly quick and donating cells if you match someone in need is painless.

You can join the Anthony Nolan stem cell register today.

Nine out of 10 people donate their stem cells through the bloodstream in a simple IV process called peripheral blood stem cell collection.

One in 10 will have their stem cells collected via the bone marrow itself, while under general anaesthetic. Doctors transplant the new, healthy cells via the patients bloodstream, where they begin to grow and create healthy red blood cells, white blood cells and platelets.

A perfect match from a donor can mean a lifelong cure.

Veers dad Nirav, 40, said: I only learned about the Anthony Nolan stem cell register two years ago and even then I assumed it would involve long and painful procedures.

We need to raise awareness to save lives in every community.

Read the rest here:
Boy, 4, may look fighting fit but only has months to live - unless you can save him - Mirror Online

To Read More: Boy, 4, may look fighting fit but only has months to live – unless you can save him – Mirror Online
categoriaBone Marrow Stem Cells commentoComments Off on Boy, 4, may look fighting fit but only has months to live – unless you can save him – Mirror Online | dataAugust 10th, 2020
Read All

Global Cell Therapy Technologies Market : Industry Analysis and Forecast (2019-2026) by Product, Technique, End Users and Region. – Good Night, Good…

By daniellenierenberg

Global Cell Therapy Technologies Marketwas valued US$ 12 billion in 2018 and is expected to reach US$ 35 billion by 2026, at CAGR of 12.14 %during forecast period.

The objective of the report is to present comprehensive assessment projections with a suitable set of assumptions and methodology. The report helps in understanding Global Cell Therapy Technologies Market dynamics, structure by identifying and analyzing the market segments and projecting the global market size. Further, the report also focuses on the competitive analysis of key players by product, price, financial position, growth strategies, and regional presence. To understand the market dynamics and by region, the report has covered the PEST analysis by region and key economies across the globe, which are supposed to have an impact on market in forecast period. PORTERs analysis, and SVOR analysis of the market as well as detailed SWOT analysis of key players has been done to analyze their strategies. The report will to address all questions of shareholders to prioritize the efforts and investment in the near future to the emerging segment in the Global Cell Therapy Technologies Market.

The report study has analyzed revenue impact of covid-19 pandemic on the sales revenue of market leaders, market followers and disrupters in the report and same is reflected in our analysis.

Global Cell Therapy Technologies Market: Overview

Cell therapy is a transplantation of live human cells to replace or repair damaged tissue and/or cells. With the help of new technologies, limitless imagination, and innovative products, many different types of cells may be used as part of a therapy or treatment for different types of diseases and conditions. Celltherapy technologies plays key role in the practice of medicine such as old fashioned bone marrow transplants is replaced by Hematopoietic stem cell transplantation, capacity of cells in drug discovery. Cell therapy overlap with different therapies like, gene therapy, tissue engineering, cancer vaccines, regenerative medicine, and drug delivery. Establishment of cell banking facilities and production, storage, and characterization of cells are increasing volumetric capabilities of the cell therapy market globally. Initiation of constructive guidelines for cell therapy manufacturing and proven effectiveness of products, these are primary growth stimulants of the market.

REQUEST FOR FREE SAMPLE REPORT:https://www.maximizemarketresearch.com/request-sample/31531

Global Cell Therapy Technologies Market: Drivers and Restraints

The growth of cell therapy technologies market is highly driven by, increasing demand for clinical trials on oncology-oriented cell-based therapy, demand for advanced cell therapy instruments is increasing, owing to its affordability and sustainability, government and private organization , investing more funds in cell-based research therapy for life-style diseases such as diabetes, decrease in prices of stem cell therapies are leading to increased tendency of buyers towards cell therapy, existing companies are collaborating with research institute in order to best fit into regulatory model for cell therapies.Moreover, Healthcare practitioners uses stem cells obtained from bone marrow or blood for treatment of patients with cancer, blood disorders, and immune-related disorders and Development in cell banking facilities and resultant expansion of production, storage, and characterization of cells, these factors will drive the market of cell therapy technologies during forecast period.

On the other hand, the high cost of cell-based research and some ethical issue & legally controversial, are expected to hamper market growth of Cell Therapy Technologies during the forecast period

AJune 2016, there were around 351 companies across the U.S. that were engaged in advertising unauthorized stem cell treatments at their clinics. Such clinics boosted the revenue in this market.in August 2017, the U.S. FDA announced increased enforcement of regulations and oversight of clinics involved in practicing unapproved stem cell therapies. This might hamper the revenue generation during the forecast period; nevertheless, it will allow safe and effective use of stem cell therapies.

Global Cell Therapy Technologies Market: Segmentation Analysis

On the basis of product, the consumables segment had largest market share in 2018 and is expected to drive the cell therapy instruments market during forecast period at XX % CAGR owing to the huge demand for consumables in cell-based experiments and cancer research and increasing number of new product launches and consumables are essential for every step of cell processing. This is further expected to drive their adoption in the market. These factors will boost the market of Cell Therapy Technologies Market in upcoming years.

On the basis of process, the cell processing had largest market share in 2018 and is expected to grow at the highest CAGR during the forecast period owing to in cell processing stage,a use of cell therapy instruments and media at highest rate, mainly in culture media processing. This is a major factor will drive the market share during forecast period.

Global Cell Therapy Technologies Market: Regional Analysis

North America to held largest market share of the cell therapy technologies in 2018 and expected to grow at highest CAGR during forecast period owing to increasing R&D programs in the pharmaceutical and biotechnology industries. North America followed by Europe, Asia Pacific and Rest of the world (Row).

DO INQUIRY BEFORE PURCHASING REPORT HERE:https://www.maximizemarketresearch.com/inquiry-before-buying/31531

Scope of Global Cell Therapy Technologies Market

Global Cell Therapy Technologies Market, by Product

Consumables Equipment Systems & SoftwareGlobal Cell Therapy Technologies Market, by Cell Type

Human Cells Animal CellsGlobal Cell Therapy Technologies Market, by Process Stages

Cell Processing Cell Preservation, Distribution, and Handling Process Monitoring and Quality ControlGlobal Cell Therapy Technologies Market, by End Users

Life Science Research Companies Research InstitutesGlobal Cell Therapy Technologies Market, by Region

North America Europe Asia Pacific Middle East & Africa South AmericaKey players operating in the Global Cell Therapy Technologies Market

Beckman Coulter, Inc. Becton Dickinson and Company GE Healthcare Lonza Merck KGaA MiltenyiBiotec STEMCELL Technologies, Inc. Terumo BCT, Inc. Thermo Fisher Scientific, Inc. Sartorius AG

MAJOR TOC OF THE REPORT

Chapter One: Cell Therapy Technologies Market Overview

Chapter Two: Manufacturers Profiles

Chapter Three: Global Cell Therapy Technologies Market Competition, by Players

Chapter Four: Global Cell Therapy Technologies Market Size by Regions

Chapter Five: North America Cell Therapy Technologies Revenue by Countries

Chapter Six: Europe Cell Therapy Technologies Revenue by Countries

Chapter Seven: Asia-Pacific Cell Therapy Technologies Revenue by Countries

Chapter Eight: South America Cell Therapy Technologies Revenue by Countries

Chapter Nine: Middle East and Africa Revenue Cell Therapy Technologies by Countries

Chapter Ten: Global Cell Therapy Technologies Market Segment by Type

Chapter Eleven: Global Cell Therapy Technologies Market Segment by Application

Chapter Twelve: Global Cell Therapy Technologies Market Size Forecast (2019-2026)

Browse Full Report with Facts and Figures of Cell Therapy Technologies Market Report at:https://www.maximizemarketresearch.com/market-report/global-cell-therapy-technologies-market/31531/

About Us:

Maximize Market Research provides B2B and B2C market research on 20,000 high growth emerging technologies & opportunities in Chemical, Healthcare, Pharmaceuticals, Electronics & Communications, Internet of Things, Food and Beverages, Aerospace and Defense and other manufacturing sectors.

Contact info:

Name: Vikas Godage

Organization: MAXIMIZE MARKET RESEARCH PVT. LTD.

Email: sales@maximizemarketresearch.com

Contact: +919607065656/ +919607195908

Website:www.maximizemarketresearch.com

More:
Global Cell Therapy Technologies Market : Industry Analysis and Forecast (2019-2026) by Product, Technique, End Users and Region. - Good Night, Good...

To Read More: Global Cell Therapy Technologies Market : Industry Analysis and Forecast (2019-2026) by Product, Technique, End Users and Region. – Good Night, Good…
categoriaBone Marrow Stem Cells commentoComments Off on Global Cell Therapy Technologies Market : Industry Analysis and Forecast (2019-2026) by Product, Technique, End Users and Region. – Good Night, Good… | dataAugust 10th, 2020
Read All

T cells, B cells and the range of the human bodys immune response A simple decoder – ThePrint

By daniellenierenberg

Text Size:A- A+

New Delhi: Human immunity and its components have never been the topic of such breathless discussion for such a long time. But then, there has never been a time like the Covid-19 pandemic.

Between serological surveys (that check the level of antibodies against the SARS-CoV-2 virus in blood), rapid antigen tests (that test for the part of the virus that kickstarts immune mechanisms) and the quest for vaccines, the immune system is very much in.

That is also why lymphocytes (a class of white blood cells), especially the ones known as T-cells are the flavour of the season. They are probably the single most important component of the immune system; though given the perfectly synchronised working of the defence mechanism of the body, it may be a little unfair to designate any one as more important than the another.

T-cells play a plethora of roles in immunity as killer cells that can attack an infected cell and kill it along with the infecting agent, and as suppressor cells that modulate the level of functioning of other lymphocytes. They also have a starring role in the production of antibodies, a function performed by the other variant of lymphocytes called the B cells.

Latest research in Nature shows that presence of T-cells from earlier encounters with coronaviruses could have an important role to play in the bodys immune response, and therefore, a better understanding of it is crucial for the development of a vaccine.

The published data discussed here indicate that patients with severe COVID-19 can have either insufficient or excessive T cell responses. It is possible, therefore, that disease might occur in different patients at either end of this immune response spectrum, in one case from virus-mediated pathology and in the other case from T cell-driven immunopathology.

However, it is unclear why some patients respond too little and some patients too much, and whether the strength of the T cell response in the peripheral blood reflects the T cell response intensity in the respiratory tract and other SARS-CoV-2-infected organs, wrote the researchers from the University of Pennsylvania. They called for more research on the topic.

We are deeply grateful to our readers & viewers for their time, trust and subscriptions.

Quality journalism is expensive and needs readers to pay for it. Your support will define our work and ThePrints future.

SUBSCRIBE NOW

Turns out, antibodies may or may not last, but T-cells are the new superheroes with the potential to possibly save the planet.

Also read: T Cells the unsung immune warriors that takeover after coronavirus antibodies wane

Immunity is of two kinds innate and acquired.

The defence mechanisms that the body is born with is known an innate immunity. This includes something as simple as the ability of the skin to prevent inner, more vulnerable tissues, from coming in contact with the external environment.

Acquired immunity, as the name suggests, is something that develops over time through exposure to pathogens or disease causing agents like virus and bacteria. Acquired immunity kicks in either through antibodies (this is known as humoral immunity) or through cells programmed to destroy invading organisms by causing the dissolution of the very cells that have been infected.

White blood cells (WBC) play a crucial role in immunity. There are five different kinds of WBCs eosinophil, basophil, neutrophil, monocyte and lymphocyte. Among these, the most important are lymphocytes, which include the T lymphocytes and the B lymphocytes. However, the others also have important roles to play as supporting cast. For the present discussion, we are concentrating on lymphocytes.

Also read: Immunity boosters are a myth why you shouldnt believe claims that promise to fight Covid

Structurally, under a microscope, very little differentiates a T-lymphocyte from a B lymphocyte. Both varieties are formed in the bone marrow from stem cells, get trained in different organs and then lodge themselves in the lymph nodes from where they are deployed when the occasion arises.

The training is important. It teaches the cells not to start attacking the bodys own cells. T-cells get trained antenatally (during pregnancy) and for some time after that in the thymus, a small gland present between the lungs only till puberty. B cells are trained in the foetal liver and bone marrow.

When a pathogen invades, specific chemicals unique to it (often proteins or complex carbohydrates) activate the bodys immune system. This activator, which is a unique feature of the invading pathogen, is the antigen. This is what the rapid antigen test looks for.

When an antigen has been detected, the T-cells troop out of the lymph node in an activated form and travel to the affected areas to take on the infection. The activated cells, called the Killer T cells, attach themselves to the membrane of the infected cell and with help of cytotoxic chemicals, kill the cell and destroy the invader with it. This is cell-mediated immunity. It is the basis of what happens when transplanted organs are rejected.

The thymus training teaches T-cells to ignore the antigens that are present within the body and not attack them. When that lesson is forgotten, because of genetic or environmental reasons, an autoimmune disorder is triggered.

Antigens set in motion a different pathway in the B lymphocytes. These enlarge and start duplicating very rapidly to form many clones, all of which, on maturity, start producing antibodies. The whole process happens very fast.

Antibodies are protein molecules that are present in the plasma, the matrix of the blood in which the cells float. Not all T-cells though turn into cytotoxic killers. Some become what are known as helper T cells, to go and further activate B lymphocytes to produce antibodies. In fact, without these helper cells, the antibody output is not quite sufficient to combat the invading particle.

Antibodies can directly kill the invader using a number of different mechanisms at their disposal. They can also activate a set of proteins present in the blood plasma that in turn can attack the invader using their own pathways.

Once the infection has been tackled, some of the B lymphocytes are tucked away with information about how this was done. These are memory cells that remain dormant until the next invasion happens. These ensure that when an infection recurs, the response is expedited, magnified and is longer lasting. This is the principle behind vaccination to teach the body to identify and combat a pathogen so that when a future infection happens, the response is stronger.

Also read:An Oxford immunologist breaks down how the universitys vaccine works against Covid-19

Subscribe to our channels on YouTube & Telegram

News media is in a crisis & only you can fix it

You are reading this because you value good, intelligent and objective journalism. We thank you for your time and your trust.

You also know that the news media is facing an unprecedented crisis. It is likely that you are also hearing of the brutal layoffs and pay-cuts hitting the industry. There are many reasons why the medias economics is broken. But a big one is that good people are not yet paying enough for good journalism.

We have a newsroom filled with talented young reporters. We also have the countrys most robust editing and fact-checking team, finest news photographers and video professionals. We are building Indias most ambitious and energetic news platform. And we arent even three yet.

At ThePrint, we invest in quality journalists. We pay them fairly and on time even in this difficult period. As you may have noticed, we do not flinch from spending whatever it takes to make sure our reporters reach where the story is. Our stellar coronavirus coverage is a good example. You can check some of it here.

This comes with a sizable cost. For us to continue bringing quality journalism, we need readers like you to pay for it. Because the advertising market is broken too.

If you think we deserve your support, do join us in this endeavour to strengthen fair, free, courageous, and questioning journalism, please click on the link below. Your support will define our journalism, and ThePrints future. It will take just a few seconds of your time.

Support Our Journalism

Here is the original post:
T cells, B cells and the range of the human bodys immune response A simple decoder - ThePrint

To Read More: T cells, B cells and the range of the human bodys immune response A simple decoder – ThePrint
categoriaBone Marrow Stem Cells commentoComments Off on T cells, B cells and the range of the human bodys immune response A simple decoder – ThePrint | dataAugust 10th, 2020
Read All

Global Multiple Myeloma Treatment Market-Industry Analysis and forecast 2019 2027: By Application, Type, and Region. – Good Night, Good Hockey

By daniellenierenberg

Global Multiple Myeloma Treatment Marketsize was valued US$ XX Mn. in 2019 and the total revenue is expected to grow at 11.34% from 2019 to 2027, reaching nearly US$ XX Mn.

The report study has analyzed the revenue impact of COVID -19 pandemic on the sales revenue of market leaders, market followers, and market disrupters in the report, and the same is reflected in our analysis.

Multiple myeloma, also known as Kahlers disease, is a type of blood cancer of plasma cells that are found in the bone marrow. Multiple myeloma causes cancer cells to accrue in the bone marrow, where they attack the strong blood cells.

Multiple myeloma treatments have developed significantly above the last decade. New multiple myeloma treatments have provided efficient survival rates between myeloma patients. It has been also observed that the future drug pipeline of multiple myeloma is promising, biological drugs and stem cell-based therapies are likely to fuel the multiple myeloma treatment market in the upcoming years. On the other hand, the costs of radiotherapeutic equipment implementation, a limited number of target patients population, strict legal regulations are expected to hamper the market growth. Likewise, the MMR report contains a detailed study of factors that will drive and restrain the growth of the multiple myeloma treatment market globally.

Multiple Myeloma accounts for approximately 2.5% of the cancer-related deaths globally and is the second most major type of blood cancer next to Hodgkins Lymphoma. According to the World Cancer Research Fund, in 2018, above 159500 cases of multiple myeloma were diagnosed with the condition, where the occurrence rate among women and men was found in the ratio 1.2:1. The onset of the disease occurs after the age of 60. In recent times, the age of onset is drastically decreasing. In the year 2001, only two medications were available for treating multiple myeloma but now in 2020, 18 medicines are available. Moreover, there are over 25 FDA-approved drugs for treating multiple myeloma with therapeutics such as pomalidomide, carfilzomib, panobinostat, and ixazomib. The availability of new medications has given new hope for better treatments and better results and thus affecting the growth of the market as well. However, the survival of patients with a limited response while receiving treatment with primary immunodeficiency therapy remains poor and is one of the major challenges.

The MMR report covers the segments in the multiple myeloma treatment market such as type and application. By application, the hospital is expected to continue to hold the largest XX.85% share in multiple myeloma treatments market thanks to growing specialist doctors providing the best chance of long term survival.

North Americas multiple myeloma treatments market was valued at US$ XX.26 Mn. in 2019 and is expected to reach a value of US$ XX.13 Mn. by 2027, with a CAGR of 9.3%. The number of patients in the U.S is growing YoY with nearly 14600 new cases diagnosed annually. In 2017 alone there were approximately 142000 patients diagnosed for multiple myeloma.

Europe and the South African population are prone to develop multiple myeloma when compared with Asian economies. Though, the population in the APAC region outwits Europe and Africa. Further, growing the adoption rate of novel therapies, coupled with the support from the government along with non-government organizations and improving the survival of multiple myeloma patients.

The research study includes the profiles of leading players operating in the global multiple myeloma treatment market. Eli Lilly Company acquired ARMO Biosciences to develop immunotherapies for the treatment of cancer, hypercholesterolemia, inflammatory, and fibrosis diseases.

The objective of the report is to present a comprehensive analysis of the Global Multiple Myeloma Treatment Market including all the stakeholders of the industry. The past and current status of the industry with forecasted market size and trends are presented in the report with the analysis of complicated data in simple language. The report covers all the aspects of the industry with a dedicated study of key players that includes market leaders, followers, and new entrants. PORTER, SVOR, PESTEL analysis with the potential impact of micro-economic factors of the market has been presented in the report. External as well as internal factors that are supposed to affect the business positively or negatively have been analyzed, which will give a clear futuristic view of the industry to the decision-makers.The report also helps in understanding Global Multiple Myeloma Treatment Market dynamics, structure by analyzing the market segments and projects the Global Multiple Myeloma Treatment Market size. Clear representation of competitive analysis of key players by Application, price, financial position, Product portfolio, growth strategies, and regional presence in the Global Multiple Myeloma Treatment Market make the report investors guide.Scope of the Global Multiple Myeloma Treatment Market

Global Multiple Myeloma Treatment Market, by Applications

Hospitals Clinics Cancer Treatment and Rehabilitation CentersGlobal Multiple Myeloma Treatment Market, by Type

Proteasome Inhibitors Immunomodulatory Agents (IMiDs) Histone Deacetylase (HDAC) Inhibitors Immunotherapy Cytotoxic ChemotherapyGlobal Multiple Myeloma Treatment Market, by Region

Asia Pacific North America Europe South America Middle East & AfricaKey players operating in Global Multiple Myeloma Treatment Market

Celgene Corporation Janssen Biotech, Inc. Bristol-Myers Squibb Company Novartis AG Cellectar Biosciences Inc. Millennium Pharmaceuticals Amgen, Inc. bbVie Genzyme Corporation Juno Therapeutics Eli Lilly and Company Glenmark Pharma

Global Multiple Myeloma Treatment Market Request For View Sample Report Page : @https://www.maximizemarketresearch.com/request-sample/65671About Us:

Maximize Market Research provides B2B and B2C market research on 20,000 high growth emerging technologies & opportunities in Chemical, Healthcare, Pharmaceuticals, Electronics & Communications, Internet of Things, Food and Beverages, Aerospace and Defense and other manufacturing sectors.

Contact info:Name: Vikas GodageOrganization: MAXIMIZE MARKET RESEARCH PVT. LTD.Email: sales@maximizemarketresearch.comContact: +919607065656 / +919607195908Website:www.maximizemarketresearch.com

Link:
Global Multiple Myeloma Treatment Market-Industry Analysis and forecast 2019 2027: By Application, Type, and Region. - Good Night, Good Hockey

To Read More: Global Multiple Myeloma Treatment Market-Industry Analysis and forecast 2019 2027: By Application, Type, and Region. – Good Night, Good Hockey
categoriaBone Marrow Stem Cells commentoComments Off on Global Multiple Myeloma Treatment Market-Industry Analysis and forecast 2019 2027: By Application, Type, and Region. – Good Night, Good Hockey | dataAugust 10th, 2020
Read All

Cell Therapy Market: Study Navigating the Future Growth Outlook | Osiris Therapeutics, NuVasive, Vericel Corporation – Chelanpress

By daniellenierenberg

Cell Therapy Industry Report focuses on Market Influence Factors, Growth Drivers, Restraints, Trends and Opportunities so that Market Players can face any challenges and take advantage of Lucrative Prospects available in the Global Cell Therapy market.

The Covid-19 (coronavirus) pandemic is impacting society and the overall economy across the world. The impact of this pandemic is growing day by day as well as affecting the supply chain. The COVID-19 crisis is creating uncertainty in the stock market, massive slowing of supply chain, falling business confidence, and increasing panic among the customer segments. The overall effect of the pandemic is impacting the production process of several industries including Medical Device, Pharmaceutical, Healthcare and many more. Trade barriers are further restraining the demand- supply outlook. As government of different regions have already announced total lockdown and temporarily shutdown of industries, the overall production process being adversely affected; thus, hinder the overall Cell Therapy Market globally. This report on Cell Therapy Market provides the analysis on impact on Covid-19 on various business segments and country markets. The report also showcase market trends and forecast to 2027, factoring the impact of Covid -19 Situation.

Request Sample Copy of Cell Therapy Market at: https://www.theinsightpartners.com/sample/TIPRE00009666/

The Emerging Players in the Cell Therapy Market includes Kolon TissueGene, Inc., MEDIPOST, JCR Pharmaceuticals Co. Ltd., Stemedica Cell Technologies, Inc., Osiris Therapeutics, Inc., NuVasive, Inc., Fibrocell Science, Inc., Vericel Corporation, Cells for Cells, Celgene Corporation, etc.

Cell Therapy Market Definitions and Overview:

Cell therapy (CT) is the process of transplanting human cells to replace or repair damaged tissue or cells. Various methods can be used to carry out cell therapy. For instance, hematopoietic stem cell transplantation, also known as bone marrow transplant, is the most widely used cell therapy. It is used to treat a variety of blood cancers and blood-related conditions.

Cell therapy market is expected to grow due to factors such as increasing the biotechnology industry, rising healthcare expenditure, growing incidences of chronic diseases, and others. The market is expected to have growth opportunities in the emerging region as they are developing their genetic sectors rapidly.

The research provides answers to the following key questions:

Competitive scenario:

The study assesses factors such as segmentation, description, and applications of Cell Therapy industries. It derives accurate insights to give a holistic view of the dynamic features of the business, including shares, profit generation, thereby directing focus on the critical aspects of the business.

Scope of the Report

The research on the Cell Therapy market focuses on mining out valuable data on investment pockets, growth opportunities, and major market vendors to help clients understand their competitors methodologies. The research also segments the Cell Therapy market on the basis of end user, product type, application, and demography for the forecast period 20212027. Comprehensive analysis of critical aspects such as impacting factors and competitive landscape are showcased with the help of vital resources, such as charts, tables, and infographics.

Cell Therapy Market Segmented by Region/Country: North America, Europe, Asia Pacific, Middle East & Africa, and Central & South America

Major highlights of the report:

All-inclusive evaluation of the parent market

Evolution of significant market aspects

Industry-wide investigation of market segments

Assessment of market value and volume in past, present, and forecast years

Evaluation of market share

Study of niche industrial sectors

Tactical approaches of market leaders

Lucrative strategies to help companies strengthen their position in the market

Interested in purchasing this Report? Click here @ https://www.theinsightpartners.com/buy/TIPRE00009666/

Thanks for reading this article; you can also customize this report to get select chapters or region-wise coverage with regions such as Asia, North America, and Europe.

About Us:

The Insight Partners is a one stop industry research provider of actionable intelligence. We help our clients in getting solutions to their research requirements through our syndicated and consulting research services. We are committed to provide highest quality research and consulting services to our customers. We help our clients understand the key market trends, identify opportunities, and make informed decisions with our market research offerings at an affordable cost.

We understand syndicated reports may not meet precise research requirements of all our clients. We offer our clients multiple ways to customize research as per their specific needs and budget

Contact Us:

The Insight Partners,

Phone: +1-646-491-9876

Email: [emailprotected]

Read the original post:
Cell Therapy Market: Study Navigating the Future Growth Outlook | Osiris Therapeutics, NuVasive, Vericel Corporation - Chelanpress

To Read More: Cell Therapy Market: Study Navigating the Future Growth Outlook | Osiris Therapeutics, NuVasive, Vericel Corporation – Chelanpress
categoriaBone Marrow Stem Cells commentoComments Off on Cell Therapy Market: Study Navigating the Future Growth Outlook | Osiris Therapeutics, NuVasive, Vericel Corporation – Chelanpress | dataAugust 10th, 2020
Read All

CELLECTAR BIOSCIENCES : Management’s Discussion and Analysis of Financial Condition and Results of Operations (form 10-Q) – marketscreener.com

By daniellenierenberg

Overview

We are a clinical stage biopharmaceutical company focused on the discovery,development and commercialization of drugs for the treatment of cancer. We aredeveloping proprietary drugs independently and through research and developmentcollaborations. Our core objective is to leverage our proprietary phospholipiddrug conjugate (PDC) delivery platform to develop PDCs that are designed tospecifically target cancer cells and deliver improved efficacy and better safetyas a result of fewer off-target effects. Our PDC platform possesses thepotential for the discovery and development of the next generation ofcancer-targeting treatments, and we plan to develop PDCs both independently andthrough research and development collaborations. The COVID-19 pandemic hascreated uncertainties in the expected timelines for clinical stagebiopharmaceutical companies such as us, and because of such uncertainties, it isdifficult for us to accurately predict expected outcomes at this time. We havenot yet experienced any significant impacts as a result of the pandemic and havecontinued to enroll patients in our clinical trials. However, COVID-19 mayimpact our future ability to recruit patients for clinical trials, obtainadequate supply of CLR 131 and obtain additional financing.

Our lead PDC therapeutic, CLR 131 is a small-molecule PDC designed to providetargeted delivery of iodine-131 directly to cancer cells, while limitingexposure to healthy cells. We believe this profile differentiates CLR 131 frommany traditional on-market treatment options. CLR 131 is the company's leadproduct candidate and is currently being evaluated in a Phase 2 study inrelapsed/refractory (r/r) B-cell malignancies, including multiple myeloma (MM),chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL),lymphoplasmacytic lymphoma/Waldenstrom's macroglobulinemia (LPL/WM), marginalzone lymphoma (MZL), mantle cell lymphoma (MCL), and diffuse large B-celllymphoma (DLBCL).CLR 131 is also being evaluated in a Phase 1 dose escalationstudy in pediatric solid tumors and lymphoma. The U.S. Food and DrugAdministration ("FDA") granted CLR 131 Fast Track Designation for both r/r MMand r/r DLBCL and Orphan Drug Designation (ODD) of MM, LPL/WM, neuroblastoma,rhabdomyosarcoma, Ewing's sarcoma and osteosarcoma. CLR 131 was also grantedRare Pediatric Disease Designation (RPDD) for the treatment of neuroblastoma,rhabdomyosarcoma, Ewing's sarcoma and osteosarcoma. Most recently, the EuropeanCommission granted an ODD for r/r MM.

Our product pipeline also includes one preclinical PDC chemotherapeutic program(CLR 1900) and several partnered PDC assets. The CLR 1900 Series is beingtargeted for solid tumors with a payload that inhibits mitosis (cell division) avalidated pathway for treating cancers.

We have leveraged our PDC platform to establish four collaborations featuringfive unique payloads and mechanisms of action. Through research and developmentcollaborations, our strategy is to generate near-term capital, supplementinternal resources, gain access to novel molecules or payloads, accelerateproduct candidate development and broaden our proprietary and partnered productpipelines.

Our PDC platform provides selective delivery of a diverse range of oncologicpayloads to cancerous cells, whether a hematologic cancer or solid tumor, aprimary tumor, or a metastatic tumor and cancer stem cells. The PDC platform'smechanism of entry does not rely upon specific cell surface epitopes or antigensas are required by other targeted delivery platforms. Our PDC platform takesadvantage of a metabolic pathway utilized by all tumor cell types in all stagesof the tumor cycle. Tumor cells modify specific regions on the cell surface as aresult of the utilization of this metabolic pathway. Our PDCs bind to theseregions and directly enter the intracellular compartment. This mechanism allowsthe PDC molecules to accumulate over time, which enhances drug efficacy, and toavoid the specialized highly acidic cellular compartment known as lysosomes,which allows a PDC to deliver molecules that previously could not be delivered.Additionally, molecules targeting specific cell surface epitopes face challengesin completely eliminating a tumor because the targeted antigens are limited inthe total number on the cell surface, have longer cycling time frominternalization to being present on the cell surface again and available forbinding and are not present on all of the tumor cells in any cancer. This meansa subpopulation of tumor cells always exist that cannot be targeted by therapiestargeting specific surface epitopes. In addition to the benefits provided by themechanism of entry, PDCs offer the ability to conjugate payload molecules innumerous ways, thereby increasing the types of molecules selectively deliveredvia the PDC.

The PDC platform features include the capacity to link with almost any molecule,provide a significant increase in targeted oncologic payload delivery and theability to target all types of tumor cells. As a result, we believe that we cangenerate PDCs to treat a broad range of cancers with the potential to improvethe therapeutic index of oncologic drug payloads, enhance or maintain efficacywhile also reducing adverse events by minimizing drug delivery to healthy cells,and increasing delivery to cancerous cells and cancer stem cells.

We employ a drug discovery and development approach that allows us toefficiently design, research and advance drug candidates. Our iterative processallows us to rapidly and systematically produce multiple generations ofincrementally improved targeted drug candidates.

In June 2020, the European Medicines Agency (EMA) granted us Small andMedium-Sized Enterprise status by the EMA's Micro, Small and Medium-sizedEnterprise office. SME status allows us to participate in significant financialincentives that include a 90% to 100% EMA fee reduction for scientific advice,clinical study protocol design, endpoints and statistical considerations,quality inspections of facilities and fee waivers for selective EMA pre andpost-authorization regulatory filings, including orphan drug and PRIMEdesignations. We are also eligible to obtain EMA certification of quality andmanufacturing data prior to review of clinical data. Other financial incentivesinclude EMA-provided translational services of all regulatory documents requiredfor market authorization, further reducing the financial burden of the marketauthorization process.

A description of our PDC product candidates follows:

Our lead PDC therapeutic, CLR 131 is a small-molecule, PDC designed to providetargeted delivery of iodine-131 directly to cancer cells, while limitingexposure to healthy cells. We believe this profile differentiates CLR 131 frommany traditional on-market treatments and treatments in development. CLR 131 iscurrently being evaluated in a Phase 2 study in r/r B-cell lymphomas, and twoPhase 1 dose-escalating clinical studies, one in r/r MM and one in r/r pediatricsolid tumors and lymphoma. The initial Investigational New Drug (IND)application was accepted by the FDA in March 2014 with multiple INDs submittedsince that time. Initiated in March 2017, the primary goal of the Phase 2 studyis to assess the compound's efficacy in a broad range of hematologic cancers.The Phase 1 study is designed to assess the compound's safety and tolerabilityin patients with r/r MM (to determine maximum tolerated dose) and was initiatedin April 2015. The FDA previously accepted our IND application for a Phase 1open-label, dose escalating study to evaluate the safety and tolerability of asingle intravenous administration of CLR 131 in up to 30 children andadolescents with cancers including neuroblastoma, sarcomas, lymphomas (includingHodgkin's lymphoma) and malignant brain tumors. This study was initiated duringthe first quarter of 2019. These cancer types were selected for clinical,regulatory and commercial rationales, including the radiosensitive nature andcontinued unmet medical need in the r/r setting, and the rare diseasedeterminations made by the FDA based upon the current definition within theOrphan Drug Act.

In December 2014, the FDA granted ODD for CLR 131 for the treatment of MM.Multiple myeloma is an incurable cancer of the plasma cells and is the secondmost common form of hematologic cancers. In 2018, the FDA granted ODD and RPDDfor CLR 131 for the treatment of neuroblastoma, rhabdomyosarcoma, Ewing'ssarcoma and osteosarcoma. The FDA may award priority review vouchers to sponsorsof rare pediatric disease products that meet its specified criteria. The keycriteria to receiving a priority review voucher is that the disease beingtreated is life-threatening and that it primarily effects individuals under theage of 18. Under this program, a sponsor who receives an approval for a drug orbiologic for a rare pediatric disease can receive a priority review voucher thatcan be redeemed to receive a priority review of a subsequent marketingapplication for a different product. Additionally, these priority reviewvouchers can be exchanged or sold to other companies for them to use thevoucher. In May 2019, the FDA granted Fast Track designation for CLR 131 for thetreatment of multiple myeloma in July 2019 for the treatment of DLBCL, inSeptember, CLR 131 received Orphan Drug Designation from the European Union forMultiple Myeloma, and in January 2020, the FDA granted Orphan Drug Designationfor CLR 131 in lymphoplasmacytic lymphoma (LPL).

Phase 2 Study in Patients with r/r select B-cell Malignancies

In February 2020, we announced positive data from our Phase 2 CLOVER-1 study inpatients with relapsed/refractory B-cell lymphomas. Relapsed/Refractory MM andnon-Hodgkin lymphoma (NHL) patients were treated with three different doses(<50mCi, ~50mCi and ~75mCi total body dose (TBD). The <50mCi total body dose wasa deliberately planned sub-therapeutic dose. CLR 131 achieved the primaryendpoint for the study. Patients with r/r MM who received the highest dose ofCLR 131 showed a 42.8% overall response rate (ORR). Those who received ~50mCiTBD had a 26.3% ORR with a combined rate of 34.5% ORR (n=33) while maintaining awell-tolerated safety profile. Patients in the studies were elderly with amedian age of 70, and heavily pre-treated, with a median of five prior lines oftreatment (range: 3 to 17), which included immunomodulatory drugs, proteasomeinhibitors and CD38 antibodies for the majority of patients. Additionally, amajority of the patients (53%) were quad refractory or greater and 44% of alltreated multiple myeloma patients were triple class refractory. 100% of allevaluable patients (n=43) achieved clinical benefit (primary outcome measure) asdefined by having stable disease or better. 85.7% of multiple myeloma patientsreceiving the higher total body dose levels of CLR 131 experienced tumorreduction. The 75mCi TBD demonstrated positive activity in both high-riskpatients and triple class refractory patients with a 50% and 33% ORR,respectively.

Patients with r/r NHL who received ~50mCi TBD and the ~75mCi TBD had a 42% and43% ORR, respectively and a combined rate of 42%. These patients were alsoheavily pre-treated, having a median of three prior lines of treatment (range, 1to 9) with the majority of patients being refractory to rituximab and/oribrutinib. The patients had a median age of 70 with a range of 51 to 86. Allpatients had bone marrow involvement with an average of 23%. In addition tothese findings, subtype assessments were completed in the r/r B-cell NHLpatients. Patients with DLBCL demonstrated a 30% ORR with one patient achievinga complete response (CR), which continues at nearly 24 months post-treatment.The ORR for CLL/SLL/MZL patients was 33%. Current data from our Phase 2 CLOVER-1clinical study show that four LPL/WM patients demonstrated 100% ORR with onepatient achieving a CR which continues at nearly 27 months post-treatment. Thismay represent an important improvement in the treatment of relapsed/refractoryLPL/WM as we believe no approved or late-stage development treatments forsecond- and third-line patients have reported a CR. LPL/WM is a rare, indolentand incurable form of NHL that is composed of a patient population in need ofnew and better treatment options.

The most frequently reported adverse events in r/r MM patients were cytopenias,which followed a predictable course and timeline. The frequency of adverseevents have not increased as doses were increased and the profile of cytopeniasremains consistent. Importantly, these cytopenias have had a predictable patternto initiation, nadir and recovery and are treatable. The most common grade ?3events at the highest dose (75mCi TBD) were hematologic toxicities includingthrombocytopenia (65%), neutropenia (41%), leukopenia (30%), anemia (24%) andlymphopenia (35%). No patients experienced cardiotoxicities, neurologicaltoxicities, infusion site reactions, peripheral neuropathy, allergic reactions,cytokine release syndrome, keratopathy, renal toxicities, or changes in liverenzymes. The safety and tolerability profile in patients with r/r NHL wassimilar to r/r MM patients except for fewer cytopenias of any grade. Based uponCLR 131 being well tolerated across all dose groups and the observed responserate, especially in difficult to treat patients such as high risk and tripleclass refractory or penta-refractory, and corroborating data showing thepotential to further improve upon current ORRs and durability of thoseresponses, the study has been expanded to test a two-cycle dosing optimizationregimen of CLR 131.

In July 2016, we were awarded a $2,000,000National Cancer Institute (NCI)Fast-Track Small Business Innovation Research grant to further advance theclinical development of CLR 131. The funds are supporting the Phase 2 studyinitiated in March 2017 to define the clinical benefits of CLR 131 in r/r MM andother niche hematologic malignancies with unmet clinical need. These nichehematologic malignancies include Chronic Lymphocytic Leukemia, Small LymphocyticLymphoma, Marginal Zone Lymphoma, Lymphoplasmacytic Lymphoma and DLBCL. Thestudy is being conducted in approximately 10 U.S. cancer centers in patientswith orphan-designated relapse or refractory hematologic cancers. The study'sprimary endpoint is clinical benefit response (CBR), with additional endpointsof ORR, progression free survival (PFS,) median Overall Survival (mOS) and othermarkers of efficacy following a single 25.0 mCi/m2 dose of CLR 131, with theoption for a second 25.0 mCi/m2dose approximately 75-180 days later. Based onthe performance results from Cohort 5 of our Phase 1 study in patients with r/rMM, reviewed below, we have modified the dosing regimen of this study to afractionated dose of 15.625 mCi/m2 administered on day 1 and day 8.

In May 2020, we announced that the FDA granted Fast Track Designation for CLR131 in LPL/WM in patients having received two prior treatment regimens or more.

Phase 1 Study in Patients with r/r Multiple Myeloma

In February 2020, we announced the successful completion of our Phase 1 doseescalation study. Data from the study demonstrated that CLR 131 was safe andtolerated at total body dose of approximately 90mCi in r/r MM. The Phase 1multicenter, open-label, dose-escalation study was designed to evaluate thesafety and tolerability of CLR 131 administered as a 30-minute I.V. infusion,either as a single bolus dose or as two fractionated doses. The r/r multiplemyeloma patients in this study received single cycle doses ranging fromapproximately 20mCi to 90mCi total body dose. To date, an independent DataMonitoring Committee determined that all doses have been safe and well-toleratedby patients.

CLR 131 in combination with dexamethasone is currently under investigation inadult patients with r/r MM. Patients must have been refractory to or relapsedfrom at least one proteasome inhibitor and at least one immunomodulatory agent.The clinical study is a standard three-plus-three dose escalation safety studyto determine the maximum tolerable dose. Multiple myeloma is an incurable cancerof the plasma cells and is the second most common form of hematologic cancers.Secondary objectives include the evaluation of therapeutic activity by assessingsurrogate efficacy markers, which include M protein, free light chain (FLC), PFSand OS. All patients have been heavily pretreated with an average of five priorlines of therapy. CLR 131 was deemed by an Independent Data Monitoring Committee(IDMC) to be safe and tolerable up to its planned maximum single, bolus dose of31.25 mCi/m2. The four single dose cohorts examined were: 12.5 mCi/m2(~25mCiTBD), 18.75 mCi/m2 (~37.5mCi TBD), 25 mCi/m2(~50mCi TBD), and 31.25mCi/m2(~62.5mCi TBD), all in combination with low dose dexamethasone (40 mgweekly). Of the five patients in the first cohort, four achieved stable diseaseand one patient progressed at Day 15 after administration and was taken off thestudy. Of the five patients admitted to the second cohort, all five achievedstable disease however one patient progressed at Day 41 after administration andwas taken off the study. Four patients were enrolled to the third cohort and allachieved stable disease. In September 2017, we announced results for cohort 4,showing that a single infusion up to 30-minutes of 31.25mCi/m2 of CLR 131 wassafe and tolerated by the three patients in the cohort. Additionally, all threepatients experienced CBR with one patient achieving a partial response (PR). Weuse the International Myeloma Working Group (IMWG) definitions of response,which involve monitoring the surrogate markers of efficacy, M protein and FLC.The IMWG defines a PR as a greater than or equal to 50% decrease in FLC levels(for patients in whom M protein is unmeasurable) or 50% or greater decrease in Mprotein. The patient experiencing a PR had an 82% reduction in FLC. This patientdid not produce M protein, had received seven prior lines of treatment includingradiation, stem cell transplantation and multiple triple combination treatmentsincluding one with daratumumab that was not tolerated. One patient experiencingstable disease attained a 44% reduction in M protein. In January 2019, weannounced that the pooled mOS data from the first four cohorts was 22.0 months.In late 2018, we modified this study to evaluate a fractionated dosing strategyto potentially increase efficacy and decrease adverse events.

Following the determination that all prior dosing cohorts were safe andtolerated, we initiated a cohort 7 utilizing a 40mCi/m2 fractionated doseadministered 20mCi/m2 (~40mCi TBD) on days 1 and day 8. Cohort 7 was the highestpre-planned dose cohort and subjects have completed the evaluation period. Finalstudy report and study close-out will be completed later this year.

In May 2019, we announced that the FDA granted Fast Track Designation for CLR131 in fourth line or later r/r MM. CLR 131 is our small-moleculeradiotherapeutic PDC designed to deliver cytotoxic radiation directly andselectively to cancer cells and cancer stem cells. It is currently beingevaluated in our ongoing CLOVER-1 Phase 2 clinical study in patients withrelapsed or refractory multiple myeloma and other select B-cell lymphomas.

Phase 1 Study in r/r Pediatric Patients with select Solid tumors, Lymphomas andMalignant Brain Tumors

In December 2017 the Division of Oncology at the FDA accepted our IND and studydesign for the Phase 1 study of CLR 131 in children and adolescents with selectrare and orphan designated cancers. This study was initiated during the firstquarter of 2019. In December 2017, we filed an IND application for r/r pediatricpatients with select solid tumors, lymphomas and malignant brain tumors. ThePhase 1 clinical study of CLR 131 is an open-label, sequential-group,dose-escalation study evaluating the safety and tolerability of intravenousadministration of CLR 131 in up to 30 children and adolescents with cancersincluding neuroblastoma, sarcomas, lymphomas (including Hodgkin's lymphoma) andmalignant brain tumors. Secondary objectives of the study are to identify therecommended Phase 2 dose of CLR 131 and to determine preliminary antitumoractivity (treatment response) of CLR 131 in children and adolescents. In 2018,the FDA granted OD and RPDD for CLR 131 for the treatment of neuroblastoma,rhabdomyosarcoma, Ewing's sarcoma and osteosarcoma. Should any of theseindications reach approval, the RPDD would enable us to receive a priorityreview voucher. Priority review vouchers can be used by the sponsor to receivepriority review for a future New Drug Application ("NDA") or Biologic LicenseApplication ("BLA") submission, which would reduce the FDA review time from 12months to six months. Currently, these vouchers can also be transferred or soldto another entity.

Phase 1 Study in r/r Head and Neck Cancer

In August 2016, the University of Wisconsin Carbone Cancer Center ("UWCCC") wasawarded a five-year Specialized Programs of Research Excellence ("SPORE") grantof $12,000,000 from the National Cancer Institute and the National Institute ofDental and Craniofacial Research to improve treatments and outcomes for head andneck cancer, HNC, patients. HNC is the sixth most common cancer across the worldwith approximately 56,000 new patients diagnosed every year in the U.S. As a keycomponent of this grant, the UWCCC researchers completed testing of CLR 131 invarious animal HNC models and initiated the first human clinical trial enrollingup to 30 patients combining CLR 131 and external beam radiation with recurrentHNC in Q4 2019. This clinical trial was suspended due to the COVID-19 pandemicbut has now been reopened for enrolment.

We believe our PDC platform has potential to provide targeted delivery of adiverse range of oncologic payloads, as exemplified by the product candidateslisted below, that may result in improvements upon current standard of care("SOC") for the treatment of a broad range of human cancers:

Research and development expense. Research and development expense consist ofcosts incurred in identifying, developing and testing, and manufacturing productcandidates, which primarily include salaries and related expenses for personnel,cost of manufacturing materials and contract manufacturing fees paid to contractmanufacturers and contract research organizations, fees paid to medicalinstitutions for clinical trials, and costs to secure intellectual property. TheCompany analyzes its research and development expenses based on four categoriesas follows: clinical project costs, preclinical project costs, manufacturing andrelated costs, and general research and development costs that are not allocatedto the functional project costs, including personnel costs, facility costs,related overhead costs and patent costs.

General and administrative expense. General and administrative expense consistsprimarily of salaries and other related costs for personnel in executive,finance and administrative functions. Other costs include insurance, costs forpublic company activities, investor relations, directors' fees and professionalfees for legal and accounting services.

Three Months Ended June 30, 2020 and 2019

Research and Development. Research and development expense for the three monthsended June 30, 2020 was approximately $2,465,000 compared to approximately$1,810,000 for the three months ended June 30, 2019.

The following table is an approximate comparison summary of research anddevelopment costs for the three months ended June 30, 2020 and June 30, 2019:

General research and development costs 1,018,000 384,000 634,000

The overall increase in research and development expense of $655,000, or 36%,was primarily a result of increased general research and development costsresulting from increased personnel related costs and in clinical project costs.Manufacturing and related costs decreased due to a decrease in materialsproduction processes and related costs. Pre-clinical study costs were relativelyconsistent.

General and administrative. General and administrative expense for the threemonths ended June 30, 2020 was approximately $1,157,000, compared toapproximately $1,391,000 in the three months ended June 30, 2019. The decreaseof approximately $234,000, or 17%, was primarily a result of lower stock-basedcompensation expense.

Six Months Ended June 30, 2020 and 2019

Research and Development. Research and development expense for the six monthsended June 30, 2020 was approximately $5,082,000 compared to approximately$4,118,000 for the six months ended June 30, 2019.

The following table is a comparison summary of research and development costsfor the six months ended June 30, 2020 and June 30, 2019:

General research and development costs 1,779,000 914,000 865,000

The overall increase in research and development expense of approximately$964,000, or 23%, was primarily a result of increased general research anddevelopment costs resulting from increased personnel related costs and inclinical project costs. Manufacturing and related costs decreased due to adecrease in materials production processes and related costs. Pre-clinical studycosts were relatively consistent.

General and Administrative. General and administrative expense for the sixmonths ended June 30, 2020 was approximately $2,499,000, compared toapproximately $2,712,000 in the six months ended June 30, 2019. The decrease ofapproximately $213,000, or 8%, was primarily a result of lower stock-basedcompensation expense.

Liquidity and Capital Resources

As of June 30, 2020, we had cash and cash equivalents of approximately$22,450,000 compared to $10,615,000 as of December 31, 2019. This increase wasdue primarily to the approximately $18,300,000 of net proceeds received inconnection with the June 5, 2020 public offering. Net cash used in operatingactivities during the six months ended June 30, 2020 was approximately$6,562,000.

Our cash requirements have historically been for our research and developmentactivities, finance and administrative costs, capital expenditures and overallworking capital. We have experienced negative operating cash flows sinceinception and have funded our operations primarily from sales of common stockand other securities. As of June 30, 2020, we had an accumulated deficit ofapproximately $119,251,000.

We believe that the cash balance is adequate to fund our basic budgetedoperations for at least 12 months from the filing of these financial statements.However, our future results of operations involve significant risks anduncertainties. Our ability to execute our operating plan beyond that timedepends on our ability to obtain additional funding via the sale of equityand/or debt securities, a strategic transaction or otherwise. We plan toactively pursue all available financing alternatives; however, there can be noassurance that we will obtain the necessary funding. Other than theuncertainties regarding our ability to obtain additional funding, there arecurrently no known trends, demands, commitments, events or uncertainties thatare likely to materially affect our liquidity. Because we have had recurringlosses and negative cash flows from operating activities, and in light of ourexpected expenditures, the report of our independent auditors with respect tothe financial statements as of December 31, 2019 and for the year ended December31, 2019 contains an explanatory paragraph as to the potential inability tocontinue as a going concern. This opinion indicated at that time, thatsubstantial doubt existed regarding our ability to remain in business.

Edgar Online, source Glimpses

Continued here:
CELLECTAR BIOSCIENCES : Management's Discussion and Analysis of Financial Condition and Results of Operations (form 10-Q) - marketscreener.com

To Read More: CELLECTAR BIOSCIENCES : Management’s Discussion and Analysis of Financial Condition and Results of Operations (form 10-Q) – marketscreener.com
categoriaBone Marrow Stem Cells commentoComments Off on CELLECTAR BIOSCIENCES : Management’s Discussion and Analysis of Financial Condition and Results of Operations (form 10-Q) – marketscreener.com | dataAugust 10th, 2020
Read All

The Trouble With CRISPR The Strand – Strand

By daniellenierenberg

CRISPR is a catchy acronym that originally described a naturally occurring gene editing tool, derived from a bacterial defense mechanism against viruses. Its the name on everybodys lips in the intersecting realms of science, medicine, ethics, and politics. From the moment of its discovery, CRISPR-Cas9 looked like a miraculous solution to all of the problems that gene editing efforts have experienced over decades of trial and error. This revolutionary new gene editing technique has opened the doors to both massive scientific progress and ethical controversy. Now more than ever, were seeing that CRISPR still has massive kinks to work out. Can we ever fully understand the social and scientific implications of gene editing, and should we use it in humans before we learn how to properly harness it?

What is gene editing?

The 20th century saw genetic scientists increasingly focus their pursuits on the sub-microscopic. As science delved deeper into the human body in an attempt to uncover the molecular minutiae of life, the possibility of reaching into the cell and manipulating its genetic material began to look more and more real. Even by the 1950s, evidence had been mounting for decades that deoxyribonucleic acid (DNA), an unassuming molecule residing in a central cellular compartment called the nucleus, was the physical genetic material that passed information from parent to child. Finally, in 1953, landmark work by Kings College biochemist Rosalind Franklin allowed Cambridge researchers to reveal the structure of DNA and confirm its role in heredity once and for all.

Starting from a hesitant foundation, molecular genetics exploded in both scope and popularity over subsequent decades. With the secrets of heredity increasingly out in the open, human ambition demanded that we try to bend DNA to our willand now we can. These days, targeted gene editing techniques revolve around artificially-engineered molecular tools known as nucleases, whose earliest use was in 1996not even 50 years after the discovery of DNAs structure. Engineered nucleases are often described as molecular scissors. Fundamentally, they have two main parts: one part that finds and grabs onto the target DNA within a cell, and one part that snips a piece out of that DNA.

How CRISPR works

CRISPR is similar to other directed nucleases, but its much better at its job. The CRISPR part is secondary to the systems gene editing applications; the truly important discovery, which Jennifer Doudna made in 2012, was a protein that she called CRISPR-associated protein 9, or Cas9. This protein is the nuclease tool, the pair of molecular scissors that finds, sticks to, and snips target DNAand its more accurate than anything weve ever seen before.

In bacteria, CRISPR is a section of the genome that acts as an immune memory, storing little snippets of different viruses genetic material as DNA after failed infections, like trophies. When a once-active virus attempts to invade a bacterium, the mobile helper Cas9 copies down the relevant snippet from CRISPR in the form of ribonucleic acid, or RNA. RNA is a molecule thats virtually identical to DNA, except for one extra oxygen atom. Because of this property, the RNA sequence that Cas9 holds can pair exactly, nucleotide by nucleotide, with the viral targets DNA, making it extremely efficient at finding that DNA. With a freshly transcribed RNA guide, the bacterium can deploy Cas9 to findand cut outthe corresponding section of viral genetic material, rendering the attacker harmless.

The existence of CRISPR in bacteria was old news by 2012, but Doudnas discovery of Cas9s function was revolutionary. With a little creativity and ingenuity, such a simple and accurate nuclease can be modified to be much more than just a pair of scissors. Using synthetic RNA guides and certain tweaks, Cas9 can be used to remove specific genes, cause new insertions to genomes, tag DNA sequences with fluorescent probes, and much more.

The possibilities seem endless.What if we could go into the body of a human affected by a hereditary disease and change that persons DNA to cure them? What if we could modify reproductive germ cells in human bodies (which give rise to sperm and eggs), or make targeted genetic edits in the very first cell of an embryo? Nine months of division and multiplication later, that cell would give rise to a human being whose very nature has been deliberately tweakedand their childrens nature, and their childrens. With the accuracy and accessibility of the CRISPR/Cas9 system, these ideas arent hypotheticals. In 2019, CRISPR edits in bone marrow stem cells were successfully used to cure sickle cell anemia in a Mississippi woman. Beta thalassaemia, another genetic disease of the blood, has also been treated this way. In 2018, Chinese scientist He Jiankui even claimed that he had conferred HIV immunity upon twin girls using embryonic editing.

CRISPRs complications

At first glance, CRISPR looks like a miraclebut it isnt perfect. What if some cells were affected by edits, but others werent, creating a strange genetic mosaic in a human body? What if, in trying to modify a specific gene, we accidentally hit a different section of DNA nearby? What if we got the right gene, but it also affected a different part of the body that we didnt know about?

These problems arent hypotheticals either. So-called mosaicism and off-target editing are huge concerns among CRISPR scientists. Mosaicism is of particular concern in embryonic editing. Though CRISPR injections are carried out when an embryo is single-celled, CRISPR doesnt always appear to work until after several rounds of cell divisionand it doesnt work in every cell. If not all the cells in the body are affected by gene editing that is intended to eliminate a genetic disease, the disease could remain in the body. It may be possible to combat mosaicism with faster gene editing (so that cells dont replicate before theyve had a chance to become CRISPR-modified), altering sperm and egg cells before they meet to form an embryo, and developing more precise CRISPR gene editing which is in itself a challenge, thanks to off-target editing.

In nature, a little bit of off-target editing could actually make the CRISPR-Cas9 defense system stronger with the principle of redundancy. Flexibility in the form of imprecision could allow a bacterium to neutralize viruses whose exact genetic sequences have not yet been encountered: viruses related to, but not identical to, previous attackers. In clinical and therapeutic applications, on the other hand, precision is everything. And unfortunately, as time passes, CRISPRs level of precision seems further and further off. Preprints released just this year reveal that the frequency and magnitude of CRISPRs off-target edits in human cells may be worse than we had previously known. Large proportions of cells with massive unwanted DNA deletions, losses of entire chromosomes in experimental embryos, and shuffling of genetic sequences were observed.

Of course, not only do scientists need to avoid off-target edits, but they also need to know when such undesired edits have occurred. Off-target effects can be detected by genome sequencing and computer prediction tools, but theres no perfect way to do it yetthere may still be editing misses that were, well, missing. Off-target edits themselves could be minimized by altering the RNA transcript that Cas9 carries to make it more accurate, altering Cas9 itself, or reducing the actual amount of Cas9 protein released into the cell (though this could also reduce on-target effects). Replacing Cas9 itself with other Cas variants, like smaller and more easily deliverable CasX and CasY proteins, is a promising possibility for more efficient editing, but these candidates still run into many of the same problems as Cas9. More strategies are constantly being discovered, proposed, and explored, but were still nowhere near perfect.

Perhaps most importantly, even barring any purely technical problems, is that humans remain in sheer ignorance of much of the extent and consequences of pleiotropy, a phenomenon where a genes presence or deletion has more than one effect in the human body. Even genes whose function we think we know well might have totally unexpected additional functions. On the other side of the coin, we dont have a comprehensive understanding of how many different genetic contributors there are to any given trait or disease, much less where they lie in the genome. We dont understand the way that thousands of variations across the entire genome contribute to appearance, personality, and health. Assuming that some genes are good and others are bad is morally dangerous, and scientifically reprehensible. In reality, we are not ready for genetic determinism, and may never be.

A great responsibility

Humanity has discovered a great power, but we all know what comes with great power. Questions of which edits are necessary for health (is mild Harlequin syndrome a disease or a cosmetic concern?), whether edits are ethical (should autism and homosexuality be considered curable conditions?), and the possibility of designer babies, among others, are pertinent and require thorough discussion. We also need to realize that making these types of changes isnt our decision until we can get CRISPR right, and understand the genome well enough to target particular phenotypes. Though most scientists are aware of the difficulties of CRISPR and its use is generally tightly regulated, some scientistsand laypeopleare less careful. He Jiankuis apparent miracle HIV cure led to his arrest and imprisonment for unapproved and unethical practice. Its no great surprise that his work likely fell prey to off-target effects and mosaicism; even if he got it right, his intended change could alter cognitive function, and who knows what else?

Non-scientists are getting involved too: in 2018, self-proclaimed biohacker Josiah Zayner publicly injected his own arm with what he claimed was muscle-enhancing CRISPR. Though Zayner is one of the most vocal, hes not the only one of his kind. Quieter biohackers, untrained people without a scientific background or a good understanding of how CRISPR can go wrong, are attempting to edit themselves and even their pets.

Laypeople have an unquestionable place in science: the scientific discipline needs fresh perspectives and creativity that stuffy academics cant offer. CRISPR is still in its infancy, though. Before we know much, much more about its capabilities and consequences, there can be no place for black market gene editing kits, rogue scientists altering human embryonic and germline DNA, or basement geneticists injecting Cas9 into their dogs. Who can say what effects these interventions might have, not just on edited individuals, but on the futures of entire species?

Some say that gene editing is an act of hubris, destined to backfire spectacularly and horrendously. Others believe that its our responsibility to use CRISPR to improve lives. Which of these opinions is true depends on how science walks a narrow tightrope, though Im inclined to agree with the latterand add that our responsibility is not just to master gene editing, but to make clear and public its many faults and failings. The truth, in all its complexity, needs to overcome pop sciences oversimplification and sensationalism. Promising new advances and techniques are on the horizon, but we have a long way to go. Gene editing is no joke; humanity is playing with fire. With an incredibly accurate and accessible nuclease making its way into labs and garages across the world (while its flaws continue to be uncovered year by year), it is more important than ever for the world to understand and discuss the long-reaching consequences and responsible use of gene editing technology. CRISPR is not a miracle, but gene editing may very well be the future of humanityand its on us to keep it under control.

See the original post here:
The Trouble With CRISPR The Strand - Strand

To Read More: The Trouble With CRISPR The Strand – Strand
categoriaBone Marrow Stem Cells commentoComments Off on The Trouble With CRISPR The Strand – Strand | dataAugust 10th, 2020
Read All

Scientists say a man with HIV is the first to reach long-term remission without a bone marrow transplant, but their peers are sceptical – Business…

By daniellenierenberg

Brazilian researchers announced that a 36-year-old man in Brazil is HIV-free after receiving a cocktail of antiviral drugs.

If true, this unidentified case, detailed at the medical conference AIDS 2020, would be the first instance of long-term remission from HIV without a stem cell or bone marrow transplant.

But the researchers peers are sceptical, since anti-retroviral therapy, which is used to queel HIV and prevent it from developing into AIDS, has been the standard treatment for all HIV-positive people since the treatment was invented in 1995.

There will be a lot of buzz, a lot of controversy about this part everyones going to be sceptical, HIV researcher Dr. Steve Deeks told the New York Times. Am I sceptical? Of course. Am I intrigued? Absolutely.

According to the research team at the Federal University of So Paulo, the man was diagnosed with HIV in 2012 and began taking the typical antiretroviral drugs.

In 2016, he joined a clinical trial where he was given three additional drugs, including maraviroc and nicotinamide, for 11 months, in an aggressive treatment designed to flush the virus out of his body.

The man returned to the standard anti-retroviral therapy after the trial ended, and stopped taking all anti-retroviral drugs in March 2019. Every three weeks since March 2019, his blood has been tested.

The fact that he tested negative for HIV is not remarkable in itself anyone religiously taking anti-retroviral therapy for more than six months will reach an undetectable viral load.

But in this case, the researchers said they found no trace of dormant HIV-infected cells in his system.These latent cells can become active as soon as treatment stops, making people sick again.

The researchers announced that virus-detecting blood tests did not show any remaining traces of HIV in the mans blood. The man also did not show any signs of having antibodies to the virus.

Prior to this, just two people had been cured of HIV.

First was the Berlin Patient, an American man named Timothy Ray Brown, who received a bone marrow transplant in 2007 in Berlin, Germany.

Brown had leukemia, and required a bone marrow transplant to survive. His doctors sought bone marrow from someone with an HIV-resistant gene. Post-transplant, Brown suffered a series of health issues, he needed to be put in a medically induced coma, and nearly died. But not only was his cancer gone, so was his HIV. He is still alive today, with no HIV, and no need for the anti-retroviral therapy that HIV-positive people must take habitually.

In 2019, the London Patient, a man named Adam Castillejo, became the second person ever to enter long-term remission from HIV. Castillejo, who was treated in London, England, had two bone marrow transplants. His recovery process was less intense, assuaging scientists concerns that Brown had only been cured because of the massive destruction to his immune system, which also rid him of HIV.

Deeks said that independent lab results will be needed to confirm these results. The Brazilian research team has offered to send the mans blood samples to other labs.

When HIV enters the body, it inserts genetic material into the DNA of its hosts immune cells. This forces the cells to make copies of the virus. Some active HIV-infected cells are created, and some latent HIV-infected cells are created. These cells are infected with HIV but are not actively producing new HIV, according to the NIH.

But there is a difference between testing negative for HIV, as some people do after taking medication that makes their HIV undetectable, and having zero traces of HIV in your RNA or DNA. In the first instance the virus is controlled within the body, but in the second instance it is entirely removed from the body.

Many researchers have announced they have cured HIV in their patients, only for the disease to return a short while later.

A baby in Mississippi stopped taking antiretroviral medication at 18 months, researchers eagerly announced that the virus was gone, and then two years later, in 2014, researchers detected HIV in the child again. In 2013, two Boston patients received bone marrow transplants, and headlines declared that they had been cured, only for the virus to resurface again.

The So Paulo Patient has gone 66 weeks without showing signs of the virus.

Read more:

Case of HIV patient in remission raises hopes for future AIDS cure

Doctors say experimental treatment may have rid man of HIV

There is no virus there that we can measure. Second HIV patient in remission becomes new hope for a cure

Site highlights each day to your inbox.

Follow Business Insider Australia on Facebook, Twitter, LinkedIn, and Instagram.

Go here to see the original:
Scientists say a man with HIV is the first to reach long-term remission without a bone marrow transplant, but their peers are sceptical - Business...

To Read More: Scientists say a man with HIV is the first to reach long-term remission without a bone marrow transplant, but their peers are sceptical – Business…
categoriaBone Marrow Stem Cells commentoComments Off on Scientists say a man with HIV is the first to reach long-term remission without a bone marrow transplant, but their peers are sceptical – Business… | dataJuly 10th, 2020
Read All

Fate Therapeutics Announces FDA Clearance of IND Application for First-ever iPSC-derived CAR T-Cell Therapy – GlobeNewswire

By daniellenierenberg

FT819 CAR T-cell Product Candidate Derived from Clonal Master iPSC Line with Novel CD19-specific 1XX CAR Integrated into TRAC Locus

Phase 1 Clinical Study will Evaluate FT819 for Patients with Advanced B-cell Leukemias and Lymphomas

SAN DIEGO, July 09, 2020 (GLOBE NEWSWIRE) -- Fate Therapeutics, Inc. (NASDAQ: FATE), a clinical-stage biopharmaceutical company dedicated to the development of programmed cellular immunotherapies for cancer and immune disorders, announced today that the U.S. Food and Drug Administration (FDA) has cleared the Companys Investigational New Drug (IND) application for FT819, an off-the-shelf allogeneic chimeric antigen receptor (CAR) T-cell therapy targeting CD19+ malignancies. FT819 is the first-ever CAR T-cell therapy derived from a clonal master induced pluripotent stem cell (iPSC) line, and is engineered with several first-of-kind features designed to improve the safety and efficacy of CAR T-cell therapy. The Company plans to initiateclinical investigation of FT819for the treatment of patients with relapsed / refractory B-cell malignancies, including chronic lymphocytic leukemia (CLL), acute lymphoblastic leukemia (ALL), and non-Hodgkin lymphoma (NHL).

The clearance of our IND application for FT819 is a ground-breaking milestone in the field of cell-based cancer immunotherapy. Our unique ability to produce CAR T cells from a clonal master engineered iPSC line creates a pathway for more patients to gain timely access to therapies with curative potential, said Scott Wolchko, President and Chief Executive Officer of Fate Therapeutics. Four years ago, we first set out under our partnership with Memorial Sloan Kettering led by Dr. Michel Sadelain to improve on the revolutionary success of patient-derived CAR T-cell therapy and bring an off-the-shelf paradigm to patients, and we are very excited to advance FT819 into clinical development.

FT819 was designed to specifically address several limitations associated with the current generation of patient- and donor-derived CAR T-cell therapies. Under a collaboration with Memorial Sloan Kettering Cancer Center (MSK) led by Michel Sadelain, M.D., Ph.D., Director, Center for Cell Engineering, and Head, Gene Expression and Gene Transfer Laboratory at MSK, the Company incorporated several first-of-kind features into FT819 including:

The multi-center Phase 1 clinical trial of FT819 is designed to determine the maximum tolerated dose of FT819 and assess its safety and clinical activity in up to 297 adult patients across three types of B-cell malignancies (CLL, ALL, and NHL). Each indication will enroll independently and evaluate three dose-escalating treatment regimens: Regimen A as a single dose of FT819; Regimen B as a single dose of FT819 with IL-2 cytokine support; and Regimen C as three fractionated doses of FT819. For each indication and regimen, dose-expansion cohorts of up to 15 patients may be enrolled to further evaluate the clinical activity of FT819.

At the American Association for Cancer Research (AACR) Virtual 2020 Meeting, the Company presented preclinical data demonstrating FT819 is comprised of CD8 T cells with uniform 1XX CAR expression and complete elimination of endogenous TCR expression. Additionally, data from functional assessments showed FT819 has antigen-specific cytolytic activity in vitro against CD19-expressing leukemia and lymphoma cell lines that is comparable to that of healthy donor-derived CAR T cells, and persists and maintains tumor clearance in the bone marrow in an in vivo disseminated xenograft model of lymphoblastic leukemia.

Fate Therapeutics has an exclusive license for all human therapeutic use to U.S. Patent No. 10,370,452 pursuant to its license agreement with MSK1, which patent covers compositions and uses of effector T cells expressing a CAR, where such T cells are derived from a pluripotent stem cell including an iPSC. In addition to the patent rights licensed from MSK, the Company owns an extensive intellectual property portfolio that broadly covers compositions and methods for the genome editing of iPSCs using CRISPR and other nucleases, including the use of CRISPR to insert a CAR in the TRAC locus for endogenous transcriptional control.

1 Fate Therapeutics haslicensedintellectual propertyfrom MSK on which Dr. Sadelain is aninventor.As a result of the licensing arrangement, MSK has financial interests related to Fate Therapeutics.

About Fate Therapeutics iPSC Product PlatformThe Companys proprietary induced pluripotent stem cell (iPSC) product platform enables mass production of off-the-shelf, engineered, homogeneous cell products that can be administered with multiple doses to deliver more effective pharmacologic activity, including in combination with cycles of other cancer treatments. Human iPSCs possess the unique dual properties of unlimited self-renewal and differentiation potential into all cell types of the body. The Companys first-of-kind approach involves engineering human iPSCs in a one-time genetic modification event and selecting a single engineered iPSC for maintenance as a clonal master iPSC line. Analogous to master cell lines used to manufacture biopharmaceutical drug products such as monoclonal antibodies, clonal master iPSC lines are a renewable source for manufacturing cell therapy products which are well-defined and uniform in composition, can be mass produced at significant scale in a cost-effective manner, and can be delivered off-the-shelf for patient treatment. As a result, the Companys platform is uniquely capable of overcoming numerous limitations associated with the production of cell therapies using patient- or donor-sourced cells, which is logistically complex and expensive and is subject to batch-to-batch and cell-to-cell variability that can affect clinical safety and efficacy. Fate Therapeutics iPSC product platform is supported by an intellectual property portfolio of over 300 issued patents and 150 pending patent applications.

About Fate Therapeutics, Inc.Fate Therapeutics is a clinical-stage biopharmaceutical company dedicated to the development of first-in-class cellular immunotherapies for cancer and immune disorders. The Company has established a leadership position in the clinical development and manufacture of universal, off-the-shelf cell products using its proprietary induced pluripotent stem cell (iPSC) product platform. The Companys immuno-oncology product candidates include natural killer (NK) cell and T-cell cancer immunotherapies, which are designed to synergize with well-established cancer therapies, including immune checkpoint inhibitors and monoclonal antibodies, and to target tumor-associated antigens with chimeric antigen receptors (CARs). The Companys immuno-regulatory product candidates include ProTmune, a pharmacologically modulated, donor cell graft that is currently being evaluated in a Phase 2 clinical trial for the prevention of graft-versus-host disease, and a myeloid-derived suppressor cell immunotherapy for promoting immune tolerance in patients with immune disorders. Fate Therapeutics is headquartered in San Diego, CA. For more information, please visit http://www.fatetherapeutics.com.

Forward-Looking StatementsThis release contains "forward-looking statements" within the meaning of the Private Securities Litigation Reform Act of 1995 including statements regarding the advancement of and plans related to the Company's product candidates and clinical studies, the Companys progress, plans and timelines for the clinical investigation of its product candidates, the therapeutic potential of the Companys product candidates including FT819, and the Companys clinical development strategy for FT819. These and any other forward-looking statements in this release are based on management's current expectations of future events and are subject to a number of risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in or implied by such forward-looking statements. These risks and uncertainties include, but are not limited to, the risk of difficulties or delay in the initiation of any planned clinical studies, or in the enrollment or evaluation of subjects in any ongoing or future clinical studies, the risk that the Company may cease or delay preclinical or clinical development of any of its product candidates for a variety of reasons (including requirements that may be imposed by regulatory authorities on the initiation or conduct of clinical trials or to support regulatory approval, difficulties in manufacturing or supplying the Companys product candidates for clinical testing, and any adverse events or other negative results that may be observed during preclinical or clinical development), the risk that results observed in preclinical studies of FT819 may not be replicated in ongoing or future clinical trials or studies, and the risk that FT819 may not produce therapeutic benefits or may cause other unanticipated adverse effects. For a discussion of other risks and uncertainties, and other important factors, any of which could cause the Companys actual results to differ from those contained in the forward-looking statements, see the risks and uncertainties detailed in the Companys periodic filings with the Securities and Exchange Commission, including but not limited to the Companys most recently filed periodic report, and from time to time in the Companys press releases and other investor communications.Fate Therapeutics is providing the information in this release as of this date and does not undertake any obligation to update any forward-looking statements contained in this release as a result of new information, future events or otherwise.

Contact:Christina TartagliaStern Investor Relations, Inc.212.362.1200christina@sternir.com

View original post here:
Fate Therapeutics Announces FDA Clearance of IND Application for First-ever iPSC-derived CAR T-Cell Therapy - GlobeNewswire

To Read More: Fate Therapeutics Announces FDA Clearance of IND Application for First-ever iPSC-derived CAR T-Cell Therapy – GlobeNewswire
categoriaBone Marrow Stem Cells commentoComments Off on Fate Therapeutics Announces FDA Clearance of IND Application for First-ever iPSC-derived CAR T-Cell Therapy – GlobeNewswire | dataJuly 10th, 2020
Read All

BCLI: KOL Event Gives Overview of the use of NurOwn in Alzheimer’s Disease; Raising Valuation to $25/Share – Zacks Small Cap Research

By daniellenierenberg

By David Bautz, PhD

NASDAQ:BCLI

READ THE FULL BCLI RESEARCH REPORT

Business Update

KOL Event for Alzheimers Program

On July 8, 2020, BrainStorm Cell Therapeutics, Inc. (NASDAQ:BCLI) conducted a Key Opinion Leader (KOL) webinar to discuss the companys upcoming Phase 2a clinical trial of NurOwn in patients with Alzheimers Disease (AD). The event included presentations by two of the lead investigators for the upcoming trial, Dr. Philip Scheltens, Professor of Cognitive Neurology and Director of the Alzheimer Centre at VU University Medical Center in Amsterdam, Netherlands, and Dr. Bruno Dubois, Professor of Neurology at the Neurological Institute of the Salptrire University Hospital in Paris, France. The presentation can be found here.

The companys Phase 2a trial (BCT-201-EU) is expected to enroll approximately 40 patients with prodromal to mild AD. It will be taking place at medical centers in France and the Netherlands. To be eligible for the trial, patients must have been diagnosed with prodromal to mild dementia at least six months prior to enrollment. In addition, patients must score between 20-30 on the Mini-Mental State Exam (MMSE) and have a Clinical Dementia Rating (CDR) global score of 0.5-1.0. The MMSE is a series of questions that are designed to assess a patients mental skills, with the maximum score being 30 points and a score of 20-24 suggesting mild dementia. The CDR is a scale used to characterize six domains of cognitive and functional performance with a score of 0.5 suggesting very mild dementia and a score of 1.0 suggesting mild dementia.

The primary objective of the trial is to assess the safety and tolerability of three intrathecal injections of NurOwn in AD patients. Following bone marrow aspiration during a 10-week run-in period, patients will be treated three times with NurOwn, with eight weeks between treatments. Follow-up visits will occur 12 and 26 weeks following the final injection of NurOwn for a total trial length of 52 weeks. The following figure gives an overview of the trial design.

Cerebrospinal fluid (CSF) and serum will be collected prior to treatment and again at Weeks 0, 8, and 16 to assess changes in various neurotropic, neurodegenerative, and inflammatory factors (e.g., VEGF, HGF, NfL, NfH, MCP-1, IL-6), markers associated with amyloid deposition (e.g., a40, a42), and markers of tau protein levels (e.g., p-tau, t-tau). Additional clinical outcome measures will be analyzed through administration of the following tests:

Clinical Dementia Rating ScaledSum of Boxes (CDR-SB)

Free and Cued Selective Reminding Test (FCSRT)

Neuropsychological Test Battery (NTB)

Delis-Kaplan Executive Function System (D-KEFS) subtests

Mini Mental State Examination(MMSE)

AmsterdamInstrumentalActivitiesofDailyLivingQuestionnaire-ShortVersion(A-IADL-Q-SV)

Alzheimers Disease

Alzheimers disease (AD) is the most common form of dementia in older adults. The disease is named after Dr. Alois Alzheimer, who identified the first case in a 50-year-old woman named Auguste Deter in 1902. Dr. Alzheimer followed her case until her death in 1906, at which point he first publicly reported on it (Alzheimer, 1907).

After Ms. Deters death, Dr. Alzheimer examined her brain and found many abnormal clumps (now known as amyloid plaques) and tangled bundles of fibers (now known as neurofibrillary tangles). Over the next five years, 11 similar cases were reported in the medical literature, with some of them already using the term Alzheimers disease (Berchtold et al., 1998).

The most common early symptom of AD is a gradually worsening ability to remember new information. This is due to neurons associated with forming new memories dying off first. As neurons in other parts of the brain die, individuals experience different symptoms, which include:

Memory loss that disrupts daily life

Inability to plan or solve problems

Difficulty completing familiar tasks

Confusion with location and time

Difficulty with visual images and spatial relationships

Problems with words in speaking or writing

Withdrawal from social activities

Changes in mood, including apathy and depression

Each person progresses through AD at a different rate, and little is known about how or why there is such a marked variation, thus predicting how it will affect someone is quite difficult. One thing that is common to everyone diagnosed with AD is that his or her cognitive and functional abilities will gradually decline. As the disease progresses symptoms can include confusion, irritability, aggression, mood swings, and long-term memory loss. In the final advanced stage of the disease, people need help with the basic activities of living (e.g., bathing, dressing, eating, and using the restroom), they lose the ability to communicate, fail to recognize loved ones, and eventually become bed bound and reliant on round-the-clock care (Frstl et al., 1999). The inability to move makes them more prone to infections, including pneumonia, which are often a contributing factor to the death of those with AD.

Competing Theories for the Cause of Alzheimers

The root cause of Alzheimers is still unknown; however, it is likely to involve a number of different factors as opposed to being due to one single cause. These factors are likely a combination of genetic, environmental, and lifestyle. There are a number of hypotheses that exist to explain the cause of the disease, with the two dominant hypotheses focused on amyloid and tau.

Amyloid hypothesis: This hypothesis proposes that extracellular beta-amyloid deposits are the fundamental cause of the disease (Hardy et al., 1991). Beta-amyloid is a fragment of the larger protein amyloid precursor protein (APP), mutations of which are known to cause FAD. Several lines of evidence support the amyloid hypothesis: 1) the location of APP is on chromosome 21, while those with Down Syndrome (trisomy 21) almost all show signs of AD by 40 years of age (Lott et al., 2005); 2) APOE4 is a major genetic risk factor for AD, and while apolipoproteins enhance the breakdown of beta-amyloid, some isoforms are less capable of performing this task than others, leading to more beta-amyloid buildup on the brain (Polvikoski et al., 1995); 3) mice that harbor a mutant form of APP develop amyloid plaques and Alzheimers-like pathology (Games et al., 1995). Lastly, amyloid plaques are readily identifiable by microscopy in the brains of AD patients (Tiraboschi et al., 2004). While the brains of many older individuals develop some plaques, the brains of AD patients show severe pathological changes specifically within the temporal neocortex (Bouras et al., 1994).

Tau hypothesis: Tau is a protein located mainly within the axonal compartment of neurons and is an important element in microtubule stabilization and neurite outgrowth. In AD, a proportion of tau protein becomes abnormally phosphorylated, dissociates from axonal microtubules, and accumulates in paired helical filaments inside the neuron (Goedert et al., 1991). When this occurs, the microtubules disintegrate causing the collapse of the neurons transport system (Igbal et al., 2005). Just as with beta-amyloid plaques, tau tangles are readily observable in the brains of those affected by AD.

In addition to amyloid and tau, inflammation has been an underappreciated and often overlooked mediator in patients with AD (Akiyama et al., 2000). A multitude of inflammatory markers are found in AD patients brains and a number of studies have shown a link between chronic inflammation and an increased risk of developing AD (Walker et al., 2017; Tao et al., 2018). Thus, a treatment such as NurOwn that can decrease inflammatory mediators could prove beneficial in AD patients.

On Track to Repot Topline Data from Phase 3 ALS Trial in 4Q20

On July 2, 2020, BrainStorm announced that all doses have been administered in the pivotal Phase 3 trial ofrecen NurOwn in patients with amyotrophic lateral sclerosis (ALS) and that it remains on track to report topline data in the fourth quarter of 2020.

The ongoing randomized, double blind, placebo controlled, multi-dose Phase 3 clinical trial is testing the ability of NurOwn to alter disease progression as measured by the ALSFRS-R (NCT03280056). Cells were extracted once from each patient prior to treatment, with all administrations of NurOwn derived from the same extraction of cells due to a cryopreservation process the company developed for long-term storage of mesenchymal stem cells (MSC). Just as with the companys prior studies, there was a 3-month run-in period prior to the first treatment with two additional NurOwn treatments occurring two and four months following the first treatment. The company is focusing the trial on faster-progressing ALS patients since those patients demonstrated superior outcomes in the Phase 2 trial of NurOwn.

BrainStorm Joins Russell 2000 and Russell 3000; Granted SME Status by EMA

On June 23, 2020, BrainStorm announced that its shares would be included in the Russell 2000 Index and the Russell 3000 Index. The annual reconstitution of the Russell indexes is done to capture the 4,000 largest U.S. stocks by market capitalization.

On June 15, 2020, BrainStorm announced that the company has been granted Small and Medium-Sized Enterprise (SME) status by the European Medicines Agency (EMA). SME status allows the company to participate in a number of financial incentives including a 90-100% reduction in the EMA fee for scientific advice, clinical study protocol design, endpoints and statistical considerations, quality inspections of facilities, and fee waivers for selective EMA pre- and post-authorization regulatory filings, including Orphan Drug and PRIME designations.

Conclusion

Were excited about the potential for NurOwn in AD and we look forward to the initiation of the Phase 2a trial later in 2020. We have recently made a few changes to our model, including the inclusion of NurOwn in AD and lowering of the discount rate from 20% to 15% for all indications. We model for the company to file for approval of NurOwn in AD in 2026 and to be granted approval in 2027. We currently estimate peak sales of over $2 billion for NurOwn in AD in both the U.S. and E.U. Using a 25% probability of approval leads to an NPV of $113 million. Combined with the NPV for NurOwn in ALS ($700 million) and MS ($41 million) along with the companys current cash position and potential cash from warrants leads to a valuation for the company of a bit less than $900 million. Dividing by the companys current fully diluted share count of 35.7 million leads to a valuation of $25 per share.

SUBSCRIBE TO ZACKS SMALL CAP RESEARCHtoreceive our articles and reports emailed directly to you each morning. Please visit ourwebsitefor additional information on Zacks SCR.

DISCLOSURE: Zacks SCR has received compensation from the issuer directly, from an investment manager, or from an investor relations consulting firm, engaged by the issuer, for providing research coverage for a period of no less than one year. Research articles, as seen here, are part of the service Zacks provides and Zacks receives quarterly payments totaling a maximum fee of $40,000 annually for these services. Full Disclaimer HERE.

Visit link:
BCLI: KOL Event Gives Overview of the use of NurOwn in Alzheimer's Disease; Raising Valuation to $25/Share - Zacks Small Cap Research

To Read More: BCLI: KOL Event Gives Overview of the use of NurOwn in Alzheimer’s Disease; Raising Valuation to $25/Share – Zacks Small Cap Research
categoriaBone Marrow Stem Cells commentoComments Off on BCLI: KOL Event Gives Overview of the use of NurOwn in Alzheimer’s Disease; Raising Valuation to $25/Share – Zacks Small Cap Research | dataJuly 10th, 2020
Read All

Ziopharm Oncology Announces Initiation of Phase 1 Trial Evaluating Rapid Personalized Manufacturing CAR-T Technology in Patients with Relapsed CD19+…

By daniellenierenberg

BOSTON, July 09, 2020 (GLOBE NEWSWIRE) -- Ziopharm Oncology, Inc. (Ziopharm or the Company) (Nasdaq:ZIOP), today announced the initiation of a phase 1 clinical trial to evaluate CD19-specific CAR-T, using its Rapid Personalized Manufacturing (RPM) technology, as an investigational treatment for patients with relapsed CD19+ leukemias and lymphomas. The trial is now open for enrollment at The University of Texas MD Anderson Cancer Center.

In this trial, the Company utilizes its non-viral Sleeping Beauty genetic engineering technology to infuse CAR-T the day after electroporation. Ziopharms RPM CD19-specific CAR-T therapy results from the stable, non-viral insertion of DNA into the genome of resting T cells to co-express the chimeric antigen receptor (CAR), membrane-bound IL-15 (mbIL15) and a safety switch.

We are pleased to expand the scope of our clinical development with MD Anderson, as we seek to evaluate our RPM technology using CD19-specific CAR-T cells, said Laurence Cooper, M.D., Ph.D., Chief Executive Officer of Ziopharm. RPM is a promising manufacturing solution, as T cells from the bloodstream are genetically reprogramed with DNA plasmids from the Sleeping Beauty system and then simply administered the next day.

Our CAR-T therapy can be administered at low cell doses, which may control cytokine release syndrome and is appealing for the treatment of patients including those with CD19-expressing malignancies that have relapsed after allogeneic bone marrow transplantation (BMT). There are limited effective treatment options for such patients as evidenced by the low rate of remission and poor long-term survival, Dr. Cooper added.

Up to 24 patients with advanced CD19+ leukemias and lymphomas who have relapsed after allogeneic BMT will be enrolled in this investigator-initiated trial (NCT03579888). The primary endpoint of the study is to determine the safety and maximum tolerated dose of donor-derived genetically modified CD19-specific T cells manufactured using the RPM process. An additional study is planned through Ziopharms joint venture with Eden BioCell to evaluate the RPM technology using patient-derived (autologous) CD19-specific CAR-T in Greater China.

Research reveals three-year survival for adults with CD19+ acute lymphoblastic leukemia after allogeneic BMT ranges from 30% to 65%.1 For patients with other CD19+ cancers, allogeneic BMT can provide three-year survival rates between 30% to 75%.1 Few patients experience a durable remission following allogeneic BMT, regardless of the treatment modality, with some having a median survival of only 2 to 3 months.2

About Ziopharm Oncology, Inc.Ziopharm is developing non-viral and cytokine-driven cell and gene therapies that weaponize the bodys immune system to treat the millions of people globally diagnosed with a solid tumor each year. With its multiplatform approach, Ziopharm is at the forefront of immuno-oncology with a goal to treat any type of solid tumor. Ziopharms pipeline is built for commercially scalable, cost effective T-cell receptor T-cell therapies based on its non-viral Sleeping Beauty gene transfer platform, a precisely controlled IL-12 gene therapy, and rapidly manufactured Sleeping Beauty-enabled CD19-specific CAR-T program. The Company has clinical and strategic collaborations with the National Cancer Institute, The University of Texas MD Anderson Cancer Center and Regeneron Pharmaceuticals. For more information, please visit http://www.ziopharm.com.

Forward-Looking Statements DisclaimerThis press release contains forward-looking statements as defined in the Private Securities Litigation Reform Act of 1995, as amended. Forward-looking statements are statements that are not historical facts, and in some cases can be identified by terms such as "may," "will," "could," "expects," "plans," "anticipates," and "believes." These statements include, but are not limited to, statements regarding the progress, design and timing of the Company's research and development programs, the potential benefits of the Companys therapies, and the Companys expectations regarding the number of patients in its clinical trials. Although Ziopharms management team believes that the expectations reflected in such forward-looking statements are reasonable, investors are cautioned that forward-looking information and statements are subject to various risks and uncertainties, many of which are difficult to predict and generally beyond the control of Ziopharm, that could cause actual results and developments to differ materially from those expressed in, or implied or projected by, the forward-looking information and statements. These risks and uncertainties include among other things, changes in our operating plans that may impact our cash expenditures, the uncertainties inherent in research and development, future clinical data and analysis, including whether any of Ziopharms product candidates will advance further in the preclinical research or clinical trial process, including receiving clearance from the U.S. Food and Drug Administration or equivalent foreign regulatory agencies to conduct clinical trials and whether and when, if at all, they will receive final approval from the U.S. FDA or equivalent foreign regulatory agencies and for which indication; the strength and enforceability of Ziopharms intellectual property rights; competition from other pharmaceutical and biotechnology companies as well as risk factors discussed or identified in the public filings with the Securities and Exchange Commission made by Ziopharm, including those risks and uncertainties listed in Ziopharms Quarterly Report on Form 10-Q filed by Ziopharm with the Securities and Exchange Commission. We are providing this information as of the date of this press release, and Ziopharm does not undertake any obligation to update or revise the information contained in this press release whether as a result of new information, future events or any other reason.

Investor Relations Contacts:Ziopharm Oncology:Chris TaylorVP, Investor Relations and Corporate CommunicationsT: 617.502.1881E: ctaylor@ziopharm.com

LifeSci Advisors:Mike MoyerManaging DirectorT: 617.308.4306E: mmoyer@lifesciadvisors.com

Media Relations Contact:LifeSci Communications:Patrick BurseyT: 646.876.4932E: pbursey@lifescicomms.com

1 D'Souza A, Fretham C. Current Uses and Outcomes of Hematopoietic Cell Transplantation (HCT): CIBMTR Summary Slides, 2018. Available at https://www.cibmtr.org

2 Keil F, Prinz E, Kalhs P, et al. Treatment of leukemic relapse after allogeneic stem cell transplantation with cytotoreductive chemotherapy and/or immunotherapy or second transplants. Leukemia 2001; 15:355-361.

Read more:
Ziopharm Oncology Announces Initiation of Phase 1 Trial Evaluating Rapid Personalized Manufacturing CAR-T Technology in Patients with Relapsed CD19+...

To Read More: Ziopharm Oncology Announces Initiation of Phase 1 Trial Evaluating Rapid Personalized Manufacturing CAR-T Technology in Patients with Relapsed CD19+…
categoriaBone Marrow Stem Cells commentoComments Off on Ziopharm Oncology Announces Initiation of Phase 1 Trial Evaluating Rapid Personalized Manufacturing CAR-T Technology in Patients with Relapsed CD19+… | dataJuly 10th, 2020
Read All

Thriving Growth of Hematopoietic Stem Cells Transplantation Market Forecast 2020 with leading players Escape Therapeutics, Lonza Group, Regen…

By daniellenierenberg

Due to the pandemic, we have included a special section on the Impact of COVID 19 on the Hematopoietic Stem Cells Transplantation Market which would mention How the Covid-19 is affecting the Hematopoietic Stem Cells Transplantation Industry, Market Trends and Potential Opportunities in the COVID-19 Landscape, Covid-19 Impact on Key Regions and Proposal for Hematopoietic Stem Cells Transplantation Players to Combat Covid-19 Impact.

Hematopoietic stem cell transplantation (HSCT) includes the intravenous infusion of autologous or allogeneic stem cells composed from bone marrow, or umbilical cord blood, peripheral blood to reestablish hematopoietic purpose in patients whose bone marrow or immune system is dented or flawed.

Request for sample report:

https://www.reportconsultant.com/request_sample.php?id=70734

Report Consultant has recently added a new Report on Hematopoietic Stem Cells Transplantation Market into its largest Database. It gives the complete report on trends, growth, and opportunity, restraint. Along with this, it delivers a comprehensive description of the key players of different regions.

Leading Players Hematopoietic Stem Cells Transplantation Market:

Escape Therapeutics, Lonza Group, Regen BioPharma Inc, Cesca Therapeutics Inc., Cryo-Save AG, CBR Systems, Inc., Pluristem Therapeutics Inc., China Cord Blood Corporation, and ViaCord Inc.

It contains an enormous database containing numerous market segments and sub-segments. The study also provides importance on the latest daises along with the effect of certain platforms on market growth.

Ask for Discount on This Report:

https://www.reportconsultant.com/ask_for_discount.php?id=70734

Market Segmentation: The market is segmented on the basis of type, application, and region.

Market Segmentation by Type:

Market Segmentation by Application:

Market Segmentation by Regions:

To achieve this, the Report Consultant has given prime importance to the exploration techniques for global clients and potential clients. Reaching out towards global clients has become a vital part to succeed in the Hematopoietic Stem Cells Transplantation Market. It offers SWOT analysis to identify the various significant business parameters such as strengths, weaknesses, threats, and opportunities which support to decision-makers to formulate the data-driven decisions in businesses.

Buy an exclusive Report:

https://www.reportconsultant.com/checkout?id=70734

Reasons for buying this research report:

About us:

Report Consultant A global leader in analytics, research, and advisory that can assist you to renovate your business and modify your approach. With us, you will learn to take decisions intrepidly. We make sense of drawbacks, opportunities, circumstances, estimations, and information using our experienced skills and verified methodologies.

Our research reports will give you an exceptional experience of innovative solutions and outcomes. We have effectively steered businesses all over the world with our market research reports and are outstandingly positioned to lead digital transformations. Thus, we craft greater value for clients by presenting advanced opportunities in the global market.

Contact us:

Rebecca Parker

(Report Consultant)

Contact No: +81-368444299

[emailprotected]

http://www.reportconsultant.com

Read the original:
Thriving Growth of Hematopoietic Stem Cells Transplantation Market Forecast 2020 with leading players Escape Therapeutics, Lonza Group, Regen...

To Read More: Thriving Growth of Hematopoietic Stem Cells Transplantation Market Forecast 2020 with leading players Escape Therapeutics, Lonza Group, Regen…
categoriaBone Marrow Stem Cells commentoComments Off on Thriving Growth of Hematopoietic Stem Cells Transplantation Market Forecast 2020 with leading players Escape Therapeutics, Lonza Group, Regen… | dataJuly 8th, 2020
Read All

Breakthrough study demonstrates the ‘re-awakening’ of the ovaries and achieves pregnancy in woman with premature ovarian failure using stem cells -…

By daniellenierenberg

LONDON, July 6, 2020 /PRNewswire/ -- IVIRMA, a global network of fertility clinics and world-leading pioneer in fertility research, are presenting a breakthrough study at the 36th Congress of the European Society of Human Reproduction and Embryology (ESHRE) today, demonstrating the possibility of 're-awakening' the ovaries in women under 40 (38 years and below) with the lowest reproductive reserve at the ovarian level.1 The ASCOT technique (involving infusion of stem cells in the ovarian artery), which has recently been shown to be successful in low-responder patients, has now shown it can achieve pregnancy in a woman with premature ovarian failure (POF).1

The study, 'Bone marrow derived stem cells restore ovarian function and fertility in premature ovarian insufficiency women. Interim report of a randomized trial: mobilization versus ovarian injection',1 which is still ongoing, includes two study arms: one using the ASCOT technique, that is, the infusion of stem cells in the ovarian artery* and, second, a less invasive option consisting of mobilising the stem cells, and allowing them to reach the ovaries through the bloodstream directly. The preliminary results have shown that ovarian follicle development was achieved in both groups, with some patients re-starting menstruation, and a decrease in menopausal symptoms. As a result of this procedure, embryos were obtained in 2 out of the 10 participants, and even one pregnancy through the ASCOT technique was achieved.

Dr. Diaz, Medical Director, IVI London, a leading fertility specialist and co-pioneer of the world's first womb transplant, commented, "We are truly excited by these very promising results achieving ovary re-awakening and pregnancy using stem cells in a woman who previously may not have had the option to conceive using her own eggs. We continually strive to pioneer on the cutting-edge of fertility research, as we know how harrowing it can be for every person struggling to conceive. These new techniques may give us potential new options for women with premature ovarian failure, in addition to those with low ovarian reserve."

It is estimated that 1 in 100 women under 40 years of age suffer from premature ovarian failure (POF) in the UK. 2.5% of all patients with POF are adolescents.2 This premature cessation of ovarian activity is one of the most challenging scenarios in terms of reproduction and can be devastating. Now, thanks to the findings of this study, led by Dr. Sonia Herraiz, researcher at the IVI Foundation-IIS la Fe, Spain and Dr. Nuria Pellicer, gynaecologist at Hospital la Fe in Valencia, Spain, there might be hope for women suffering from this fertility issue.

Dr. Nuria Pellicer, Gynaecologist, Hospital la Fe, Valencia, Spain added, "So far, we obtained embryos in 2 of the 10 patients included and one 37-week pregnancy in the ASCOT arm, in patients with almost no chance of successful pregnancy with classic in vitro fertilisation procedures. We found that both arms promoted the development of follicles, and some patients have even recovered their menstruation, thus reducing menopausal symptoms However, these are preliminary results of an ongoing study, so we remain cautious until the study is complete. We aim to develop a technique that is as minimally invasive as possible over time and standardise it so that it can be implemented in all our clinics. We would like to make it possible to offer any woman who wishes to become a mother the possibility of doing so, even when her reproductive circumstances are unfavourable."

"This is a very encouraging line of research in which we will continue to work with a single goal: to improve assisted reproduction techniques and treatments in order to obtain the best results, however difficult the reproductive prognosis may seem," concluded Dr. Herraiz, researcher at the IVI Foundation-IIS, la Fe, Spain.

More About the Study1

In addition to this research, IVI are presenting three more studies at the ESHRE Congress:

These new techniques and other research conducted by IVI is translated and applied to the treatments available in their clinics across the world, which is in turn reflected in the achieved results. The London clinic has achieved 71.4% clinical pregnancy rates per embryos transferred in women under the age of 386 and recent data shows that with PGT-A genetic screening the evolutive pregnancy rate is 57% in women undergoing treatment at IVI London as compared to the national average of 42%.7 Furthermore, 100% of these pregnancies have been achieved through single embryo transfer, eliminating chances of multiple pregnancy and the complications that arise with it.7

More about the ASCOT technique development: 3 babies and 6 pregnancies achieved so far in low-responder patients

To date, 3 babies and 6 pregnancies have been achieved using the ASCOT technique for ovarian rejuvenation in low-responder patients with low ovarian reserve, pioneered by IVIRMA Global. The technique involves transplanting bone marrow-derived stem cells (BMDSC) into the ovarian artery, achieving a partial reversal of ageing of the ovary, the organ responsible for ovulation, and activating the dormant follicles that would otherwise remain arrested in the ovary. After its first phase in animal models to test the effectiveness of the technique with stem cells, this study went to its second phase in low-responder patients. A total of 20 patients had their stem cells mobilized, extracted from peripheral blood and implanted back into the ovary in order to reverse the ageing process and activate the dormant follicles. This technique has improved ovarian function biomarkers in 81% of low responder patients. In addition, spontaneous pregnancies occurred. In view of the success of this phase, the next stage was undertaken, which consisted of recruiting women under 38 years of age, this time with early ovarian failure (a situation with a worse reproductive prognosis that of low responders). From here the above-mentioned study arose.

IVIRMA Global and IVI London, UK

IVI was founded in 1990, as the first medical institution in Spain fully dedicated to Assisted Reproduction. Since then it has helped with the birth of more than 200,000 babies thanks to the application of the latest Assisted Reproduction technologies. In early 2017, IVI merged with RMANJ, becoming the largest Assisted Reproduction group in the world. It currently has more than 65 clinics in 9 countries and is the leading centre for Reproductive Medicine. In 2016 IVI opened its doors in London, located in the heart of the medical district.www.rmanetwork.comhttps://ivi-fertility.co.uk/

References

Logo - https://mma.prnewswire.com/media/1200377/IVI_Logo.jpg

Read more here:
Breakthrough study demonstrates the 're-awakening' of the ovaries and achieves pregnancy in woman with premature ovarian failure using stem cells -...

To Read More: Breakthrough study demonstrates the ‘re-awakening’ of the ovaries and achieves pregnancy in woman with premature ovarian failure using stem cells -…
categoriaBone Marrow Stem Cells commentoComments Off on Breakthrough study demonstrates the ‘re-awakening’ of the ovaries and achieves pregnancy in woman with premature ovarian failure using stem cells -… | dataJuly 8th, 2020
Read All

Seven ‘Sure’ Ways to Get Cancer – Curetoday.com

By daniellenierenberg

One cancer survivor looks at all the ways they might have gotten cancer, and wonders if any of those risk factors will factor into recurrence.

William Ramshaw resides in the expansive Pacific Northwest. He is a six-year survivor of pancreatic cancer and has written a memoir Gut Punched! Facing Pancreatic Cancer.

So, what would someone do to get cancer?

Use tobacco. Both my parents smoked packs a day. My brother chews. One of my best friends chain-smoked. I used to tell him, Dennis, this is going to kill you. He laughed. It did. Lost to esophageal cancer. Given those ominous Surgeon Generals Warnings, all caps and bolded, along with horrendous TV infomercials, I am mystified why people still use tobacco, but they do. Nicotine addiction is an awful thing.

Being overweight. Ok, this one is closer to home. Before getting pancreatic cancer, I had been a big guy. Not blimp-sized mind you but carrying pounds I didnt need. Post-surgery, I lost a third of my body weight, about 100 pounds. I have no butt. Yes, I can now wear those skinny jeans. Also, due to being replumbed, I cant even gain weight. Still, I wouldnt recommend my weight loss program to anyone. Its barbaric.

Getting too much sun. Growing up I plowed our orchard in my cutoffs with no shirt. By the end of summer, I was toasted brown. Looking back, I hope the layer of dirt shielded me from getting too many rays. Excess UV light is known to cause skin cancer. So far so good. I dont have any skin lesions yet.

Exposure to bad stuff. It seems everything I buy anymore comes with a warning such-and-such may cause cancer. I do pay attention but find myself unable to avoid exposure to everything that might be bad for me. At this point, I think breathing causes cancer. Should I stop breathing?

Breathing asbestos. Im a goner here too. As a former Navy-guy, I worked down in the boiler room. Hot as hell right there among gigantic steam pipes all encased in asbestos. Thankfully, so far, I have nothing other than a persistent cough and no lung cancer.

Worse draw an inside straight. (Also known as a gutshot or belly buster draw, where you have a straight but are missing the card in the middle.) While I dont play poker, getting cancer is a lot like drawing an inside straight. Our genes get messed up. Maybe we got them from a long-dead ancestor. One clicks over and we find ourselves with a losing cancer hand. Im not sure what happened in my case. My tumor was not genetically profiled. I wish it had been so I would better understand my odds at this point. Will I get another shot at a losing hand?

I know this in jest as no one tries or wants to get cancer. But its interesting to think about everything that causes cancer. Sadly, there are dozens of things. Cancer aside, I am indeed fortunate (and thankful) to be here.

Read more:
Seven 'Sure' Ways to Get Cancer - Curetoday.com

To Read More: Seven ‘Sure’ Ways to Get Cancer – Curetoday.com
categoriaBone Marrow Stem Cells commentoComments Off on Seven ‘Sure’ Ways to Get Cancer – Curetoday.com | dataJuly 8th, 2020
Read All

Vor bags $110M to move engineered cell therapy into the clinic – FierceBiotech

By daniellenierenberg

CAR-T treatments and other immunotherapies have changed the treatment of some blood cancers, but they can target healthy cells as well as cancer cells, causing nasty side effects. Vor Biopharma is working on an engineered stem cell solution, and its raised $110 million to move its lead program into the clinic.

The Cambridge, Massachusetts-based company is developing the treatment, VOR33, for patients with acute myeloid leukemia (AML) whose disease has worsened despite undergoing chemotherapy or a stem cell transplant.

Thats the setting in which a lot of targeted agents are used. The trouble is, a great number of the targeted agents tend to failnot because they are not efficacious, but because the drug is too toxic for the patients bone marrow, Vor CEO Robert Ang told Fierce Biotech.

Fierce Innovation Awards: Life Sciences Edition 2020

Submit your entry to demonstrate innovative technologies and services that have the potential to make the greatest impact for biotech and pharma companies.

The drugs home in on healthy cells as well as cancerous ones because they express the same proteins. This leads to myelosuppression, which means the bone marrow doesnt make enough white blood cells, platelets or red blood cells for the patient to survive, Ang said.

RELATED: Neon CBO Robert Ang jumps ship to take the helm at Vor Biopharma

Vors treatment is made from hematopoietic, or blood-forming, stem cells from healthy donors. The company uses gene editing to get rid of cancer drug targets in those cells that are biologically redundant, which means deleting them doesnt cause any harm. That target is CD33, in the case of VOR33.

Were trying to make the marrow treatment resistant such that the only cells that are expressing CD33 should be cancer cells, Ang said. We should be able to target them much more specifically, while minimizing the collateral damage that typically happens with these drugs.

RELATED: 5AM, JJDC get in on $42M series A round for cell therapy player Vor Biopharma

Vor believes its treatments could boost the reach of targeted therapies by improving their efficacy and increasing the amount of time patients can undergo those treatments.

And thats not all. In addition to protecting these transplants and the blood cells they produce from targeted drugs, Vor thinks its approach could change the way we think about bone marrow transplant.

To some degree, transplants have been relatively decentralized and less controlled A lot of hospitals develop their own unique practices as to what they think works and how to handle cells and process them, Ang said. Our product will be regulated by the FDA, so we will be able to provide controls and the proper manufacturing steps to ensure were making the best quality product for patients.

The series B will push VOR33 into clinical trials in the first half of 2021, a target the companys on track to meet despite the COVID-19 pandemic. And Vor plans to expand its portfolio beyond CD33, starting with an umbrella of targets in the myeloid space, namely in acute myeloid leukemia, myelodysplastic syndromes and related diseases.

But we are also looking beyond that to other cancers where there are similar potentially biologically redundant targets we could pursue, said Ang, who took the companys helm in August 2019.

Since then, Vor has grown from a staff of six to 50, and its about to move into new digs in west Cambridge as it moves VOR33 toward the clinic. Its got the backing of RA Capital Management, Fidelity, 5AM Ventures, Johnson & Johnson Innovation, Osage University Partners, PureTech Health, the Pagliuca Family Office and Alexandria Venture Investments to do it all.

Read more here:
Vor bags $110M to move engineered cell therapy into the clinic - FierceBiotech

To Read More: Vor bags $110M to move engineered cell therapy into the clinic – FierceBiotech
categoriaBone Marrow Stem Cells commentoComments Off on Vor bags $110M to move engineered cell therapy into the clinic – FierceBiotech | dataJuly 7th, 2020
Read All

200 ALS Patients Finish Dosing in Phase 3 Trial of NurOwn Cell Therapy – ALS News Today

By daniellenierenberg

Patient dosing has finished in the pivotal Phase 3 trial assessing the safety and efficacy of repeat administrations of NurOwn, acell-based therapy forpeople with amyotrophic lateral sclerosis (ALS), BrainStorm Cell Therapeutics, the therapys developer, announced.

The Phase 3 trial (NCT03280056), which enrolled about 200 participants, is underway at six U.S. sites: the University of California, Irvine;Cedars-Sinai Medical Center;California Pacific Medical Center;Massachusetts General Hospital; the University of Massachusetts Medical School; and the Mayo Clinic.

Patients were randomly assigned to either three doses of NurOwn or a placebo, both administered every other month by injections directly into the spinal canal (intrathecal) over a period of four months.

The studys main goal is to assess the safety and efficacy of NurOwn, as measured by changes in the amyotrophic lateral sclerosis functional rating scale (ALSFRS-R) score seen at 28 weeks (seven months) following the first treatment. ALSFRS-R assess such daily life abilities as swallowing, speaking, dressing and washing oneself, climbing stairs, and turning over in bed.

Secondary goals include treatment effects on the levels of several disease biomarkers, as found in samples of patients blood and cerebrospinal fluid (the liquid circulating in the brain and spinal cord).

BrainStorm expects top-line trial data to be available before the end of the year.

Completion of participant dosing in this clinical trial is an important milestone and brings us a step closer to potentially filing a biologics license application to make MSC-NTF cells [NurOwn] available to people with ALS, Chaim Lebovits, CEO of BrainStorm, said in the companyspress release.

NurOwn is a cell-based therapy that usesmesenchymal stem cells (MSCs) cells that are able to give rise to nearly all tissues found in the body, including bones, muscles, and connective tissue isolated from a patients own bone marrow.

After isolation, MSCs are grown in a lab dish and differentiated into cells that produce high levels of neurotrophic factors compounds that promote the growth and survival of nerve cells. The modified cells are then returned to patients through an injection into spinal canal.

Brainstorm is also investigating the potential of NurOwn treat other neurological disorders, including multiple sclerosis (MS), Huntingtons disease, Parkinsons disease, and autism spectrum disorder.

The open-label Phase 2 trial (NCT03799718) assessing three doses of NurOwn in people with progressive MSmay still be recruitingat two sites in the U.S. The cell-based therapy has not yet entered clinical testing for other disorders.

Joana holds a BSc in Biology, a MSc in Evolutionary and Developmental Biology and a PhD in Biomedical Sciences from Universidade de Lisboa, Portugal. Her work has been focused on the impact of non-canonical Wnt signaling in the collective behavior of endothelial cells cells that made up the lining of blood vessels found in the umbilical cord of newborns.

Total Posts: 0

Ana holds a PhD in Immunology from the University of Lisbon and worked as a postdoctoral researcher at Instituto de Medicina Molecular (iMM) in Lisbon, Portugal. She graduated with a BSc in Genetics from the University of Newcastle and received a Masters in Biomolecular Archaeology from the University of Manchester, England. After leaving the lab to pursue a career in Science Communication, she served as the Director of Science Communication at iMM.

Read more from the original source:
200 ALS Patients Finish Dosing in Phase 3 Trial of NurOwn Cell Therapy - ALS News Today

To Read More: 200 ALS Patients Finish Dosing in Phase 3 Trial of NurOwn Cell Therapy – ALS News Today
categoriaBone Marrow Stem Cells commentoComments Off on 200 ALS Patients Finish Dosing in Phase 3 Trial of NurOwn Cell Therapy – ALS News Today | dataJuly 7th, 2020
Read All

Hematopoietic Stem Cells Transplantation (HSCT) Market: Future Innovation Ways That, Growth & Profit Analysis, Forecast By 2026 – 3rd Watch News

By daniellenierenberg

Hematopoietic Stem Cells Transplantation (HSCT) Marketreport provides in-depth COVID19 impact analysis ofMarket Overview, Product Scope, Market Drivers, Trends, Opportunities,Market Driving Force and Market Risks. It also profile the topmost prime manufacturers (Kite Pharma, Thermo Fisher Scientific, CellGenix Technologie Transfer, Cesca Therapeutics, R&D Systems) are analyzed emphatically by competitive landscape contrast, with respect toPrice, Sales,Capacity, Import, Export, Consumption, Gross, Gross Margin, Revenue and Market Share. Hematopoietic Stem Cells Transplantation (HSCT) industry breakdown data are shown at the regional level, to show the sales, revenue and growth by regions.Hematopoietic Stem Cells Transplantation (HSCT) Market describe Hematopoietic Stem Cells Transplantation (HSCT) Sales Channel,Distributors, Customers, Research Findings and Conclusion, Appendix and Data Source.

Key Target Audience of Hematopoietic Stem Cells Transplantation (HSCT) Market:Manufacturers of Hematopoietic Stem Cells Transplantation (HSCT), Raw material suppliers, Market research and consulting firms, Government bodies such as regulating authorities and policy makers, Organizations, forums and alliances related to Hematopoietic Stem Cells Transplantation (HSCT) market.

Get Free Sample PDF (including full TOC, Tables and Figures)of Hematopoietic Stem Cells Transplantation (HSCT)[emailprotected]https://www.researchmoz.us/enquiry.php?type=S&repid=2039940

In-Depth Qualitative Analyses Include Identification and Investigation Of The Following Aspects:Hematopoietic Stem Cells Transplantation (HSCT) Market Structure, Growth Drivers, Restraints and Challenges, Emerging Product Trends & Market Opportunities, Porters Fiver Forces.

Summary of Hematopoietic Stem Cells Transplantation (HSCT) Market:Hematopoietic stem cell transplants (HSCT) present to a valid treatment for several congenital and other hematopoietic system disorders, post chemotherapy, and immune sensitive diseases. HSCT is also preferred for replacement of cellular components and deficient cells. The indications for HSCT thus are wide; the most frequent indication as per reported by Worldwide Network for Blood and Marrow Transplantation Group (WNBT) (2013) is lymphoproliferative disorder (53.2% of all HSCT), 12% of whom received allogeneic and the rest received autologous transplant. Plasma cell disorders are the most frequent indication in this group. A multitude of literature published by researchers and organizations demonstrate that autologous transplant own a greater edge against allogeneic HSCT.

Over 30 years of studies in the field of blood-forming stem cells i.e. hematopoietic stem cells (HSC), researchers have developed significant understanding to use HSCs as a therapy. At present, no type of stem cell, adult, embryonic or fetal has attained such sufficient status. Hematopoietic stem cell transplantation (HSCT) is now routinely used for treating patients with malignant and non-malignant disorders of blood and the immune system. Currently, researchers have observed that through animal studies HSCs have the ability to form other cells such as blood vessels, muscles, and bone. Further application of this approach it may eventually be able to treat a wide array of conditions and replace ailing tissues. However, despite the vast experience with HSCs, researchers face major barriers in expanding their use beyond the replacement of immune and blood cells.

Hematopoietic stem cells are unable to proliferate and differentiate in-vitro. Researchers have yet to evolve an accurate method to differentiate stem cells from other cells derived from blood or bone marrow. Once such technical barriers are overcome, the avenues for realizing the full potential of HSCT. The type of transplant a person receives depends on several different factors, including the type and course of the disease, availability of suitable donors, and the patients overall health. There are three different sources of hematopoietic stem cells such as bone marrow, peripheral blood stem cells, and umbilical cord blood. The stem cell source used for a given transplant depends upon the underlying disease, the type of transplant (allogeneic or autologous), and size of the patient.

On the basis on the end users/applications,this report focuses on the status and outlook for major applications/end users, sales volume, market share and growth rate of Hematopoietic Stem Cells Transplantation (HSCT) market foreach application, including-

Leukemia Lymphoproliferative Disorders Solid Tumors Non-Malignant Disorders Others

On the basis of product,this report displays the sales volume, revenue (Million USD), product price, market share and growth rate ofeach type, primarily split into-

Autologous Transplant Allogenic Transplant

Do You Have Any Query Or Specific Requirement? Ask to Our Industry[emailprotected]https://www.researchmoz.us/enquiry.php?type=E&repid=2039940

Important Hematopoietic Stem Cells Transplantation (HSCT) Market Data Available In This Report:

Contact:

ResearchMozMr. Rohit Bhisey,Tel: +1-518-621-2074USA-Canada Toll Free: 866-997-4948Email:[emailprotected]

Browse More Reports Visit @https://bit.ly/2Sepby2

Read more here:
Hematopoietic Stem Cells Transplantation (HSCT) Market: Future Innovation Ways That, Growth & Profit Analysis, Forecast By 2026 - 3rd Watch News

To Read More: Hematopoietic Stem Cells Transplantation (HSCT) Market: Future Innovation Ways That, Growth & Profit Analysis, Forecast By 2026 – 3rd Watch News
categoriaBone Marrow Stem Cells commentoComments Off on Hematopoietic Stem Cells Transplantation (HSCT) Market: Future Innovation Ways That, Growth & Profit Analysis, Forecast By 2026 – 3rd Watch News | dataJuly 7th, 2020
Read All

Page 44«..1020..43444546..5060..»


Copyright :: 2024