Stem Cell Banking Market to witness an impressive growth during the forecast pe – News by aeresearch
By daniellenierenberg
The latest Stem Cell Banking market research report offers a top to bottom analysis of this business sphere in terms of potential industry size, supply chain, growth dynamics, opportunity analysis, and competitive landscape. Furthermore, it extends through abstracts on various industry segments, inclusive of a rundown of the business scenario across the various regional markets. Additionally, the study provide insights into to the impact of Covid-19 pandemic and recommends strategies that could maximize ROI amid these uncertain times.
Key areas covered in the Covid-19 impact assessment:
An overview of the regional analysis:
Request Sample Copy of this Report @ https://www.aeresearch.net/request-sample/341604
Other important inclusions in the Stem Cell Banking market report:
Key Questions Answered in The Report:
What will the Stem Cell Banking market growth rate?
What are the key factors driving the global Stem Cell Banking market?
Who are the key manufacturers in Stem Cell Banking market space?
What are the market opportunities and overview of the Stem Cell Banking market?
What are sales, revenue, and price analysis of top manufacturers of Stem Cell Banking market?
What are the Stem Cell Banking market opportunities and threats faced by the vendors in the global Stem Cell Banking Industry?
What are sales, revenue, and price analysis by types and applications of Stem Cell Banking Industry?
Request Customization on This Report @ https://www.aeresearch.net/request-for-customization/341604
Go here to read the rest:
Stem Cell Banking Market to witness an impressive growth during the forecast pe - News by aeresearch
How Hematopoietic Stem Cell Transplantation (HSCT) Market Will Dominate In Coming Years? Report Covering Products, Financial Information,…
By daniellenierenberg
The Global Hematopoietic Stem Cell Transplantation (HSCT) Market report offers key insights into the worldwide Hematopoietic Stem Cell Transplantation (HSCT) market. It presents a holistic overview of the market, with an in-depth summary of the markets leading players. The report is inclusive of indispensable information related to the leading competitors in this business sector and carefully analyzes the micro- and macro-economic market trends. The latest report specializes in studying primary and secondary market drivers, market share, the leading market segments, and comprehensive geographical analysis. Vital information about the key market players and their key business strategies, such as mergers & acquisitions, collaborations, technological innovation, and trending business policies, is one of the key components of the report.
Get a sample of the report @ https://www.reportsanddata.com/sample-enquiry-form/3627
The report covers extensive analysis of the key market players in the market, along with their business overview, expansion plans, and strategies. The key players studied in the report include:
China Cord Blood Corp, Pluristem Therapeutics Inc., CBR Systems Inc CellGenix Technologie Transfer GmbH, Cryo-Save AG Kite Pharma Inc., Regen Biopharma Inc., ViaCord Inc., BiolineRx, Cynata Therapeutics, Cesca Therapeutics Inc, Lonza Group Ltd, TiGenix N.V., Bluebird Bio, Cellular Dynamics International, and Escape Therapeutics Inc., among others.
Furthermore, our market analysts have drawn focus to the significant impact of the COVID-19 pandemic on the global Hematopoietic Stem Cell Transplantation (HSCT) market and its key segments and sub-segments. The grave aftereffects of the pandemic on the global economy, and subsequently, on this particular business sphere, have been enumerated in this section of the report. The report considers the key market-influencing parameters, delivering a detailed future impact assessment. The Hematopoietic Stem Cell Transplantation (HSCT) market has been devastated by the pandemic, which has culminated in drastic changes to the market dynamics and demand trends.
In market segmentation by types of Hematopoietic Stem Cell Transplantation (HSCT), the report covers-
In market segmentation by applications of the Hematopoietic Stem Cell Transplantation (HSCT), the report covers the following uses-
Request a discount on the report @ https://www.reportsanddata.com/discount-enquiry-form/3627
Moreover, the research report thoroughly examines the size, share, and market volume of the Hematopoietic Stem Cell Transplantation (HSCT) industry in the historical years to forecast the same valuations over the forecast duration. It offers exhaustive SWOT analysis, Porters Five Forces analysis, feasibility analysis, and investment return analysis of the Hematopoietic Stem Cell Transplantation (HSCT) market, assessed using certain effective analytical tools. The report also provides strategic recommendations to market entrants to help them navigate around the entry-level barriers.
The global Hematopoietic Stem Cell Transplantation (HSCT) market is geographically categorized into:
The following timeline is considered for market estimation:
Historical Years: 2017-2018
Base Year: 2019
Estimated Year: 2020
Forecast Years: 2020-2027
Key Coverage of the Report:
To read more about the report, visit@ https://www.reportsanddata.com/report-detail/hematopoietic-stem-cell-transplantation-hsct-market
Thank you for reading our report. For further information or queries regarding the report, please get in touch with us. Our team will make sure your report is tailored according to your requirements.
About Us:
Our in-house experts assist our clients with advice based on their proficiency in the market that helps them in creating a compendious database for the clients. Our team offers expert insights to clients to guide them through their business ventures. We put in rigorous efforts to keep our clientele satisfied and focus on fulfilling their demands to make sure that the end-product is what they desire. We excel in diverse fields of the market and with our services extending to competitive analysis, research and development analysis, and demand estimation among others, we can help you invest your funds in the most beneficial areas for research and development. You can rely on us to provide every significant detail you might need in your efforts to make your business flourish.
Contact Us:
John Watson
Head of Business Development
Reports and Data|Web: http://www.reportsanddata.com
Direct Line:+1-212-710-1370
E-mail: [emailprotected]
Read more from the original source:
How Hematopoietic Stem Cell Transplantation (HSCT) Market Will Dominate In Coming Years? Report Covering Products, Financial Information,...
Know all about types of blood cancer, its symptoms, diagnosis and treatment – DNA India
By daniellenierenberg
Blood cancer is a disorder that affects the production as well as the normal functioning of blood cells. The process of normal blood cell development is disturbed because of the uncontrolled growth of abnormal blood cells. These abnormal or cancerous cells disrupt the normal functions of blood components such as preventing bleeding and defending infections.
Blood Cancer (Haematopoietic malignancies) is one of the top 10 cancers in India and as per the latest Cancer Report of ICMR, it is estimated that by 2025 nearly 1.38 lakh people would be affected. Currently, around 1.25 lakh people are suffering from the disease which constitutes 9% of total cancers in the country.
While speaking about blood cancer, Dr Divya Bansal, Consultant - Clinical Hematology and Stem Cell Transplant, HCMCT Manipal Hospitals, New Delhi, said, "Blood is a liquid medium present throughout the body and not confined to a defined area, which makes blood cancers and their treatment very different from solid-organ cancers. There is a limited role of surgery and radiation therapy in the treatment of blood cancers, as they are thermosensitive."
She continued, "Chemotherapy treatment for blood cancers is much more intense in comparison to solid cancers and hence, their side effects. Also, the staging of blood cancers is very different from solid cancers and concept of metastasis is not applicable for blood cancers."
"In the case of blood cancers, prognostic risk stratification is important. Bone marrow transplant has a limited role in solid cancers but remains the curative treatment for blood cancers. This difference has actually led to the development of a completely different speciality for treatment of blood cancers i.e. Haemato-oncology, all over the world," Dr Divya Bansal added.
Meanwhile, in order for us to understand the types of blood cancers, its symptoms and treatment, Dr Divya Bansal carefully explained each one and helped us list them out.
Take a look.
Types of blood cancers
Leukaemia
This is caused by the fast production of abnormal white blood cells, and these abnormal are seen in blood and the bone marrow. A large number of abnormal WBCs are unable to defend infections.
Lymphoma
This is a type of blood cancer that involves the lymphatic system. Abnormal lymphocytes turn into lymphoma cells that multiply and get accumulated in the lymph nodes. Gradually, these cancer cells impair the immune system.
Myeloma
This affects the plasma cells, the cells that produce antibodies against disease in the body. Myeloma cells disturb the normal development of antibodies and make the body susceptible to infection.
Symptoms
- Fever- Weight loss- Loss of appetite- Bony pains- Bleeding from any sites- Generalised weakness and fatigue- Night sweats- Nodular swelling around the neck, axilla or groin- Abdominal swelling
Diagnosis
One can get the disease diagnosed with the help of a blood test, bone marrow aspiration, and biopsy. In cases of lymphoma, one must opt for a lymph node biopsy. Other options include PET-CT, specialized tests such as Flowcytometry or Immunohistochemistry, Fluorescent in situ hybridization (FISH), Karyotyping and Next-generation sequencing (NGS) which is the latest technique of diagnosing and risk stratification of blood cancers.
Treatment
Chemotherapy
An oral or injectable drug that travels in the bloodstream throughout the body and kills the cancer cells. It damages cancer cells and stops division and growth of it, leading to their death.
Immunotherapy
It refers to agents that use the bodys immune system to help fight diseases such as blood cancer. It can work directly with your bodys immune system to stop or slow the growth of cancer cells. Biologic therapies include substances made by the body or in a lab. Cytokines, Gene therapy, and Immunomodulators, and Monoclonal antibodies are the main types of immunotherapy.
Targeted therapy
Therapies that target a certain genetic mutation known to occur in a specific blood cancer is called targeted therapy. Here, we target a protein that is present in cancer cells due to mutation. As soon as a mutation is identified, we can develop a treatment to target that target. Destroying cancer cells is the main aim of this therapy.
Bone Marrow Transplantation (BMT)
It is a procedure where a damaged or non-functional bone marrow cells are replaced by healthy multipotent hematopoietic stem cells.
Overall, BMT remains the only curative treatment for most of the blood cancers. There are two types of bone marrow transplant procedure used in the treatment of blood cancers -- Autologous BMT, when patient's own stem cells are infused back after high dose chemotherapy, and, Allogenic BMT, when the source of stem cells is a healthy donor, either related or unrelated.
A few blood cancers if treated promptly and effectively can be managed well and even cured.
Examples of blood cancers which can be cured include Acute Promyelocytic leukaemia, Chronic myeloid leukaemia, Hairy cell leukaemia, and Paediatric Acute lymphoblastic leukaemia.
View post:
Know all about types of blood cancer, its symptoms, diagnosis and treatment - DNA India
Cellect Biotechnology Commences Collaboration with XNK Therapeutics to Advance Novel NK Cell-Based Therapies; Adds Another Partner for its Functional…
By daniellenierenberg
TipRanks
America goes to the polls on Tuesday (well, actually, America has been early voting for a few weeks, now), and while Democrat Joe Biden has a solid lead in the polls, there is some of evidence that President Trump may still win a second term. Finally, with all of the early voting, mass absentee ballots, and possible extended counting deadlines, we might not know on Tuesday night who the winner is.Its a situation made of uncertainty, and financial markets dont like that. Which brings us to dividend stocks. Investors want a pad, something to protect their portfolio in case of a market drop, and dividends offer just that. These profit-sharing payments to stockholders provide a steady income stream, that typically stays reliable even in a modest downturn. Wall Streets analysts have been doing some of the footwork for us, pinpointing dividend-paying stocks that have kept up high yields, at least 8% to be exact. Opening up theTipRanks database, we examine the details behind those payments to find out what else makes these stocks compelling buys.Altria Group, Inc. (MO)Well start with Altria Group, the tobacco company best known for its iconic Marlboro cigarettes. Altria, like many of the so-called sin stocks, is one of the markets dividend champions, with a long history of reliable, high-yielding payments. The company has benefited from a psychological quirk of human nature during such a wild year as 2020: People will hunker down if necessary, but they wont give up their small pleasures.Cigarettes are exactly that, and even though overall smoking rates have been declining in recent years, Altria saw stable financial results in the last few quarters. The first and second quarters both showed $1.09 in earnings, well above the 97 cents expected in Q1 and modest beat against Q2s $1.06 forecast. Revenues hit $5.06 billion in Q2, in-line with the two previous quarters.Looking ahead, analysts expect Altria to post $1.15 per share in earnings on $5.5 billion in revenues when it reports Q3 results. That report is due out tomorrow morning. Meeting those results will help Altria maintain its dividend although the company has a long-standing, very public, commitment to do just that. Altria has kept its dividend reliable for the past 12 years, and for the last payment, made it September, the company even slightly raised the payout by 2.4%. The current dividend is 86 cents per common share, or $3.44 annualized, and yields an impressive 8.8%.Looking at Altria in the lead-up to the Q3 report, Deutsche Bank analyst Stephen Powers writes, [We] are positively biased on company fundamentals as we approach MO's results next weekreinforced by healthy scanned channel demand intraquarter across MO's core tobacco businesses, with particular strength in cigarettes driven by the Marlboro brand we believe continued operational execution in its core business will enable MO to more credibly position itself as a stable core tobacco investmentPowers rates the stock as a Buy, and his $51 price target implies a 37% upside for the coming year. (To watch Powers track record, click here)Overall, Altria has a Moderate Buy rating from the analyst consensus, based on 3 Buys and 2 Holds set in recent weeks. The stocks current share price is $37.04, and the average price target of $46 suggests a 24% one-year upside. (See MO stock analysis on TipRanks)American Finance Trust (AFIN)Next on our list is a Real Estate Investment Trust, a REIT. These companies are known for their high dividends, a fact resulting from a quirk of tax regulation. REITs are required to return a certain percentage of profits directly to shareholders, and dividends are one of the surest means of compliance. AFIN, which focuses its portfolio on single- and multi-tenant service-retail properties, is typical for its niche.And its niche has been solid. AFIN boasts major companies like Home Depot, Lowes, and Dollar General among its top ten tenants, and announced earlier this month that it has collected over 91% of its third quarter rents. Looking ahead to Q3 results next week, EPS is expected at 23 cents, a 15% increase from Q2. The company offers a monthly dividend, at a rate of 7.1 cents per common share, instead of the more common quarterly payments. The monthly format allows some flexibility in managing adjustments to the payout rate; in April, AFIN reduced the dividend from 9 cents to 7.1 as part of efforts to manage the corona crisis effects on business. The current payment annualizes to 85.2 cents per share, and yields a robust 14.7%. This is more than 7x higher than the average dividend yield found among S&P 500 companies.B. Riley analyst Bryan Maher notes the difficulties that AFIN has faced, as a property owner and manager during an economic downturn, but is confident in the companys ability to meet the challenges.Like most REIT's, AFIN has been impacted by the COVID-19 pandemic, which is not surprising given its portfolio has a large number of service retail assets. However, 71% of the portfolio is necessity-focused retail, with the balance being distribution and office properties. As such, AFIN collected 84% of cash rents due in 2Q20, including 96% of the cash rent due from its top 20 tenants. Cash rent collection for July improved to 88%. AFIN has been proactive in working with certain tenants to negotiate rent deferrals/credits Maher noted. To this end, Maher rates AFIN stock a Buy, and gives it a $10 price target. At current trading levels, this implies a strong one-year upside potential of 76%. (To watch Mahers track record, click here)AFIN is priced at $5.69, and its average target matches Mahers, at $10. The stock has a Moderate Buy from the analyst consensus, based on an even split between Buy and Hold reviews. (See AFIN stock analysis on TipRanks)Golub Capital BDC (GBDC)Last but not least is Golub Capital, a business development company and asset manager. Golub works with middle market companies, providing solutions for financing and lending. The company boasts a market cap of $2.2 billion, as well as over $30 billion in capital under management.In the months since the corona virus crisis hit the economy, Golub has seen a depressed share price and high volatility in its earnings. The stock is down 28% year-to-date. Earnings, which collapsed in 4Q19, have been bouncing in 2020. The first quarter showed 33 cent per share, while the Q2 figure came in at 28 cents. Looking ahead, the forecast expects a repeat of the second quarter EPS figure, 28 cents. Revenues have been just as volatile; the first quarter saw a deep net loss, but Q2 saw the top line bounce back to $145 million. This was the highest quarterly revenue figure in the past year.Golub believes in keeping up the dividend for investors, offering not only a reliable regular payment but also periodic special dividends. The company adjusted the payment earlier this year, both to keep it affordable during the coronavirus crisis and to keep the yield from getting too high. The result was a 12% cut, making the current payment 29 cents per common share quarterly. This still gives a high yield of 9.16%, which compares well to the 2.5% average found among finance sector peers.Finian OShea, from Well Fargo, notes that Golub has recently announced a $2 billion unsecured debt issue, a move that gives the company plenty of liquidity in a difficult time. He writes, GBDC isnt paying a hefty premium for unsecureds to begin with... We think the improved flexibility and longer tenor of unsecureds make them an attractive addition to the right side of the balance sheet, and see it as a vote of confidence in GBDCs underlying portfolio.OShea reiterates his Overweight (i.e. Buy) rating on this stock. His price target, at $13.50, indicates room for a modest 6% upside. (To watch OSheas track record, click here)Like AFIN above, Golub Capital has a Moderate Buy consensus rating, with 1 each Buy and Hold reviews. The stocks average price target matches OSheas, at $13.50. (See Golubs stock analysis at TipRanks)To find good ideas for dividend stocks trading at attractive valuations, visit TipRanks Best Stocks to Buy, a newly launched tool that unites all of TipRanks equity insights.Disclaimer: The opinions expressed in this article are solely those of the featured analysts. The content is intended to be used for informational purposes only. It is very important to do your own analysis before making any investment.
Here is the original post:
Cellect Biotechnology Commences Collaboration with XNK Therapeutics to Advance Novel NK Cell-Based Therapies; Adds Another Partner for its Functional...
NexImmune Establishes Research Initiative with City of Hope to Focus on Novel Immunotherapeutic Approaches to Acute Myeloid Leukemia – Stockhouse
By daniellenierenberg
GAITHERSBURG, Md., Oct. 27, 2020 (GLOBE NEWSWIRE) -- NexImmune, a clinical-stage biotechnology company developing unique non-genetically-engineered T cell immunotherapies, announced today that it has signed a research initiative related to its AIM nanoparticle technology with City of Hope, a world-renowned independent research and treatment center for cancer, diabetes and other life-threatening diseases.
City of Hope is a participating clinical site in the ongoing Phase 1/2 study of NEXI-001. The cancer center will leverage both patient samples from the ongoing NexImmune Phase 1/2 clinical study of NEXI-001 in acute myeloid leukemia (AML) patients with relapsed disease after allogeneic stem cell transplantation and the center’s tumor repository bank of primary leukemia samples, one of the largest collections in the world, to drive the research.
NEXI-001 is a cellular product candidate that contains populations of naturally occurring CD8+ T cells directed against multiple antigen targets for AML, and it is the first clinical product generated by the Company’s AIM nanoparticle technology.
NexImmune has developed a unique and versatile technology platform that lends itself very effectively to important areas of ongoing research in the field of AML,” said Guido Marcucci, M.D., Chair and Professor with City of Hope’s Department of Hematologic Malignancies Translational Science. Our collective goal is to translate future research findings into new, more effective T cell immunotherapies to the benefit of these very difficult to treat patients.”
A key objective of the research will focus on the identification of new antigen targets that are expressed on both leukemic blasts as well as leukemic stem cells, and those which represent survival proteins to both. Once identified, these antigen targets will be loaded on NexImmune AIM-nanoparticles to expand antigen-specific CD8+ T cells, and evaluated in pre-clinical models for anti-tumor potency, tumor-specific killing, and response durability.
In addition, the research initiative will aim to further understand different mechanisms of tumor escape, such as tumor antigen and human leukocyte antigen (HLA) downregulation due to immune pressure.
Research between NexImmune and City of Hope will inform a scientific understanding of how the immune system can address certain tumor escape mechanisms to more effectively fight aggressive cancers like AML, and how this might be accomplished with NexImmune’s AIM technology and T cell products,” said Monzr Al Malki, M.D., Director of City of Hope’s Unrelated Donor BMT Program and Haploidentical Transplant Program and an Associate Clinical Professor with Department of Hematology and Hematopoietic Cell Transplantation. Based on our current clinical experience with this technology, we’re excited to learn what more this research will tell us.”
City of Hope is a world-class clinical research institution that has built one of the largest banks of leukemia samples in the world,” said Han Myint, M.D., NexImmune Chief Medical Officer. The depth of expertise that Drs. Marcucci, Al Malki and their team bring to this research initiative will help NexImmune continue to develop innovative products that can help patients with AML and other hard-to-treat cancers.”
City of Hope is a leader in bone marrow transplantation . More than 16,000 stem cell and bone marrow transplants have been performed at City of Hope, and more than 700 are performed annually. City of Hope’s BMT program is the only one in the nation that has had one-year survival above the expected rate for 15 consecutive years, based on analysis by the Center for International Blood and Marrow Transplant Research.
About NexImmune NexImmune is a clinical-stage biotechnology company developing unique approaches to T cell immunotherapies based on its proprietary Artificial Immune Modulation (AIM) technology. The AIM technology is designed to generate a targeted T cell-mediated immune response and is initially being developed as a cell therapy for the treatment of hematologic cancers. AIM nanoparticles (AIM-np) act as synthetic dendritic cells to deliver immune-specific signals to targeted T cells and can direct the activation or suppression of cell-mediated immunity. In cancer, AIM-expanded T cells have demonstrated best-in-class anti-tumor properties as characterized by in vitro analysis, including a unique combination of anti-tumor potency, antigen target-specific killing, and long-term T cell persistence. The modular design of the AIM platform enables rapid expansion across multiple therapeutic areas, with both cell therapy and injectable products.
NexImmune’s two lead T cell therapy programs, NEXI-001 and NEXI-002, are in Phase 1/2 clinical trials for the treatment of relapsed AML after allogeneic stem cell transplantation and multiple myeloma refractory to > 3 prior lines of therapy, respectively. The Company’s pipeline also has additional preclinical programs, including cell therapy and injectable product candidates, for the treatment of oncology, autoimmune disorders, and infectious diseases.
For more information, visit http://www.neximmune.com.
Media Contact: Mike Beyer Sam Brown Inc. Healthcare Communications 312-961-2502 mikebeyer@sambrown.com
Investor Contact: Chad Rubin Solebury Trout +1-646-378-2947 crubin@soleburytrout.com
See original here:
NexImmune Establishes Research Initiative with City of Hope to Focus on Novel Immunotherapeutic Approaches to Acute Myeloid Leukemia - Stockhouse
Somatic Mutations in UBA1 and Severe Adult-Onset Autoinflammatory Disease – DocWire News
By daniellenierenberg
This article was originally published here
N Engl J Med. 2020 Oct 27. doi: 10.1056/NEJMoa2026834. Online ahead of print.
ABSTRACT
BACKGROUND: Adult-onset inflammatory syndromes often manifest with overlapping clinical features. Variants in ubiquitin-related genes, previously implicated in autoinflammatory disease, may define new disorders.
METHODS: We analyzed peripheral-blood exome sequence data independent of clinical phenotype and inheritance pattern to identify deleterious mutations in ubiquitin-related genes. Sanger sequencing, immunoblotting, immunohistochemical testing, flow cytometry, and transcriptome and cytokine profiling were performed. CRISPR-Cas9-edited zebrafish were used as an in vivo model to assess gene function.
RESULTS: We identified 25 men with somatic mutations affecting methionine-41 (p.Met41) in UBA1, the major E1 enzyme that initiates ubiquitylation. (The gene UBA1 lies on the X chromosome.) In such patients, an often fatal, treatment-refractory inflammatory syndrome develops in late adulthood, with fevers, cytopenias, characteristic vacuoles in myeloid and erythroid precursor cells, dysplastic bone marrow, neutrophilic cutaneous and pulmonary inflammation, chondritis, and vasculitis. Most of these 25 patients met clinical criteria for an inflammatory syndrome (relapsing polychondritis, Sweets syndrome, polyarteritis nodosa, or giant-cell arteritis) or a hematologic condition (myelodysplastic syndrome or multiple myeloma) or both. Mutations were found in more than half the hematopoietic stem cells, including peripheral-blood myeloid cells but not lymphocytes or fibroblasts. Mutations affecting p.Met41 resulted in loss of the canonical cytoplasmic isoform of UBA1 and in expression of a novel, catalytically impaired isoform initiated at p.Met67. Mutant peripheral-blood cells showed decreased ubiquitylation and activated innate immune pathways. Knockout of the cytoplasmic UBA1 isoform homologue in zebrafish caused systemic inflammation.
CONCLUSIONS: Using a genotype-driven approach, we identified a disorder that connects seemingly unrelated adult-onset inflammatory syndromes. We named this disorder the VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome. (Funded by the NIH Intramural Research Programs and the EU Horizon 2020 Research and Innovation Program.).
PMID:33108101 | DOI:10.1056/NEJMoa2026834
Read the original post:
Somatic Mutations in UBA1 and Severe Adult-Onset Autoinflammatory Disease - DocWire News
Covid-19 Impact On Orthopedic Regenerative Medicine Market 2020 Future Development, Manufacturers, Trends, Share, Size And Forecast to 2027 |…
By daniellenierenberg
The report on Global Orthopedic Regenerative Medicine Market is a dependable point of reference heralding high accuracy business decisions on the basis of thorough research and observation by seasoned research professionals at CMI Research. The report on global Orthopedic Regenerative Medicine market evidently highlights the causal factors such as demand analysis, trend examination, and technological milestones besides manufacturing activities that have been systematically touched upon to instigate systematic growth projection.
This CMI Research report on global Orthopedic Regenerative Medicine market systematically studies and follows noteworthy progresses across growth trends, novel opportunities as well as drivers and restraints that impact growth prognosis.
Free Sample Report + All Related Graphs & Charts @:https://www.coherentmarketinsights.com/insight/request-sample/3566
Which market players and aspiring new entrants may witness seamless entry?
Curasan, Inc., Carmell Therapeutics Corporation, Anika Therapeutics, Inc., Conatus Pharmaceuticals Inc., Histogen Inc., Royal Biologics, Ortho Regenerative Technologies, Inc., Swiss Biomed Orthopaedics AG, Osiris Therapeutics, Inc., and Octane Medical Inc.
Predicting Scope: Global Orthopedic Regenerative Medicine Market, 2020-2027
Elaborate research proposes global Orthopedic Regenerative Medicine market is likely to experience an impressive growth through the forecast span, 2020-2027, ticking a robust CAGR of xx% USD. The Orthopedic Regenerative Medicine market is anticipated to demonstrate a whopping growth with impressive CAGR valuation. The Orthopedic Regenerative Medicine market is also likely to maintain the growth spurt showing signs of steady recovery.
For appropriate analysis of all the market relevant information as well emerging trends and historical developments in the Orthopedic Regenerative Medicine market, CMI Research has referred to various primary and secondary research practices and contributing factors.
Regional Overview: Global Orthopedic Regenerative Medicine Market
The report specifically sheds light upon note-worthy business discretion, popular trends investment probabilities aligning with budding opportunities as well as breakthrough developments in policies and monetary inclination echoing investor preferences in Orthopedic Regenerative Medicine space.
Competitive Landscape: Global Orthopedic Regenerative Medicine Market
Further in the report, readers are presented with minute details pertaining to significant company profiles, product development, on pricing, production and vital information on raw material and equipment developments also form crucial report contents in this CMI Research report.
Have Any Query? Ask Our Expert @: https://www.coherentmarketinsights.com/insight/request-customization/3566
Segmentation Based on Orthopedic Regenerative Medicine Market Types:
By Procedure Cell TherapyTissue EngineeringBy Cell TypeInduced Pluripotent Stem Cells (iPSCs)Adult Stem CellsTissue Specific Progenitor Stem Cells (TSPSCs),Mesenchymal Stem Cells (MSCs)Umbilical Cord Stem Cells (UCSCs)Bone Marrow Stem Cells (BMSCs)By SourceBone MarrowUmbilical Cord BloodAdipose TissueAllograftsAmniotic FluidBy ApplicationsTendons RepairCartilage RepairBone RepairLigament RepairSpine RepairOthers
Global Orthopedic Regenerative Medicine Market Size & Share, By Regions and Countries/Sub-regions:
Asia Pacific: China, Japan, India, and Rest of Asia Pacific
Europe: Germany, the UK, France, and Rest of Europe
North America: the US, Mexico, and Canada
Latin America: Brazil and Rest of Latin America
Middle East & Africa: GCC Countries and Rest of Middle East & Africa
The regional analysis segment is a highly comprehensive part of the report on the global Orthopedic Regenerative Medicine market. This section offers information on the sales growth in these regions on a country-level Orthopedic Regenerative Medicine market.
The historical and forecast information provided in the report span between2020 and 2027. The report provides detailed volume analysis and region-wise market size analysis of the market.
Report Investment, a Priority: Explains CMI Research
This report also helps market participants to organize R&D activities aligning with exact market requirements
The report resonates critical findings on decisive factors such as downstream needs and requirement specifications as well as upstream product and service development
The report aids in reader comprehension of the market based on dual parameters of value and volume.
This CMI Research initiated research output on Orthopedic Regenerative Medicine market is a ready-to-refer handbook of noteworthy cues for easy adoption by market players and stakeholders
CMI Research skillfully underpins a vivid segment analysis of the global Orthopedic Regenerative Medicine market, rendering appropriate inputs about the revenue generation capabilities of each segment.
Buy this research report @: https://www.coherentmarketinsights.com/insight/buy-now/3566
Thanks for reading our report. If you have any further questions, please contact us. Our team will provide you with the report tailored to your needs.
About Us:
Coherent Market Insightsis a prominent market research and consulting firm offering action-ready syndicated research reports, custom market analysis, consulting services, and competitive analysis through various recommendations related to emerging market trends, technologies, and potential absolute dollar opportunity.
Contacts Us: +1-206-701-6702Email:[emailprotected]Web:https://www.coherentmarketinsights.com/
11-year-old urgently needs a bone marrow transplant after being diagnosed with life-threatening condition – Leicestershire Live
By daniellenierenberg
An 11-year-old girl is in urgent need of a bone marrow transplant after being diagnosed with a rare, life-threatening condition.
Arya Lloyd, who was born in the Leicester Royal Infirmary, started to complain of abdominal pain and aches in her back and ribs during the summer.
Her father, Geraint said "she had always been fit and healthy" and did well in sports. So it was a shock to him and his wife, Arya's mother Brundha, when she was diagnosed with aplastic anaemia in late July this year.
Aplastic anaemia, also known as bone marrow failure, is a rare disease affecting the blood whereby the bone marrow and stem cells do not produce enough blood cells.
Arya then went on to have two bone marrow biopsies after her diagnosis.
"Her blood count continued to drop and that's why it is so important to get a donor match," Geraint said.
But finding a match will be a challenge. Arya, whose mother is of Indian heritage and father is Caucasian, will wait longer to find a suitable match due to her dual heritage.
Currently, those of Asian, Black or mixed ethnic background have a 20 per cent chance of finding the best possible match from an unrelated donor, compared with the 70 per cent chance of finding a match for Caucasian patients.
Arya and her parents, who a currently live in Cambridge are "staying positive" while Arya undergoes immunosuppressive treatment at St Mary's Hospital in Paddington.
Geraint told LeicestershireLive: She has been really brave and she just gets on with it. I wish it was me rather than her going through all this but she's optimistic."
The 11-year-old schoolgirl is expected to be discharged from the hospital this week and has spent her time keeping in touch with friends and catching up with homework when she can.
It has now been 22 days since she was admitted to hospital where she has been able to stay with her mother. Due to Covid-19 restrictions, the pair have had to stay in an isolated room and unable to see Geraint who has kept in touch through video calls.
"It's been really difficult, our whole world has been turned upside-down but we need to be optimistic and find a match," Geraint said.
The family is now urging people to come forward and join the bone marrow donor register.
"It's very urgent and so important that particularly people of Indian and mixed heritage join the register as they are hugely underrepresented," Geraint said.
So far, no suitable match has been found for Arya and it will take several months to determine the effects of the treatment she is currently having.
Following the immunosuppressive treatment, Arya will be infection-prone and have to be careful to avoid any trauma or injury due to her low blood count. This also leaves her in the category of people who are at higher risk from Covid-19.
While Arya and her family continue to adjust and stay positive, they need your help.
Joining the bone marrow donor register is simple and can be done from home by ordering a swab kit that is then sent back and analysed.
You can find out more about Arya's story and how to join the register at http://www.dkms.org.uk/en/arya.
Read the original post:
11-year-old urgently needs a bone marrow transplant after being diagnosed with life-threatening condition - Leicestershire Live
Cynata looking to revolutionise stem cell therapy – The West Australian
By daniellenierenberg
Ongoing studies of Cynata Therapeutics Cymerus stem cell products are beginning to reveal a wide range of commercial possibilities for the ASX-listed companys cutting edge biotechnology that it is looking to apply to a multitude of ailments from the treatment of osteoarthritis and heart attacks through to COVID-19.
In its most advanced trials to date, Cynata will soon embark on a Phase 3 trial of its CYP-004 product, the companys mesenchymal stem cell or MSC product developed to treat osteoarthritis. The 448 person trial is being sponsored by The University of Sydney and will be funded by a project grant from the Australian Government National Health and Medical Research Council.
The company is also progressing on multiple other fronts developing a range of Cymerus MSC therapeutics with the CYP-001 product being another lead candidate. CYP-001 is being developed to treat acute graft-versus-host disease, or GVHD an affliction suffered by bone marrow transplant recipients. GVHD can develop from donated bone marrow that does not take well to a recipients body which triggers an immune response, attacking the host.
Presently, GVHD is treated with steroid therapy however sufferers tend to have a very low survival rate, with less than 20 per cent of patients living for more than two years and few alternate treatment pathways are available.
This looks set to change following Phase 1 trial of Cynatas CYP-001 product on a cohort of patients which saw the survival rate of sufferers of GVHD triple to 60 per cent over a two-year period. The company is now moving CYP-001 into Phase 2 testing and towards commercialisation with partner and shareholder, Fujifilm Corporation.
The matchup with the Japanese-based multi-national is already paying dividends with Cynata receiving an upfront US$3 million payment with further staged payments and royalties to follow in a licensing deal potentially worth more than US$50 million in the longer term.
Stem cells are the building blocks of the human body - essentially the cells from which all other cells are derived and under the right conditions, they can divide to produce more cells sometimes known as Daughter cells. These Daughter cells can become new stem cells or more specialised cells such as blood, bone or even the cells that make up brain or heart tissue.
When appropriately manipulated, stem cells have the potential to treat a range of diseases and aid in the healing and recovery of patients suffering both disease and trauma.
There are a limited number of sources of stem cells - embryonic stem cells, perinatal stem cells and adult stem cells.
Embryonic stem cells are thought to be the most useful and versatile but only harvestable in very small quantities. Perinatal stem cells found in amniotic fluid and umbilical cord blood are also only harvestable in limited quantities although their potential is yet to be fully understood.
Adult stem cells, found in bone marrow or fat, were previously thought to be only useful in producing a limited range of specialised cells with multiple donors required to generate practical amounts of therapeutical medicines.
However, ongoing research shows that by utilising a form of genetic reprogramming, mature cells can be re-programmed to behave like embryonic stem cells. These manipulated cells are called induced pluripotent stem cells, or iPSCs which is where Cynatas Cymerus technology comes into the picture.
Cynatas proprietary Cymerus technology uses iPSCs and a precursor cell called a mesenchymoangioblast to manufacture MSC therapies at a commercial scale without the need for multiple donors. This is where the Cymerus platform diverges from similar therapies, doing away with the need for multiple donors and overcoming a bottleneck in the generation of its product.
Other Cynata MSC products in development include a therapy to assist in the treatment and recovery of heart attacks, which is also showing promise according to the company. Another Cynata product undergoing pre-clinical trials with potential application in the treatment of lung disease is idiopathic pulmonary fibrosis, or IPF. Cynatas research in lung diseases has an unexpected spin-off in that its MSCs may assist in a patients recovery of COVID-19 according to the company. This application is being pursued in a clinical trial in COVID-19 patients presently being conducted in NSW.
These latest results with Cymerus MSCs add to the large body of evidence on the potency of these cells and their potential utility in treating a wide range of devastating diseases. IPF represents an enormous unmet medical need, as existing treatment options have only modest effects on disease progression and survival rates.
Cynatas is now modelling potential MSC therapies to treat various other afflictions too including critical limb ischemia, asthma, sepsis, cytokine release syndrome and diabetic wounds.
In the world of biotechnology, you really only have to produce one winner to attract a longing stare from the big biotechs who can swallow you whole with their massive cheque books with a range of targets and opportunities in its armoury that look to be developing well, dont be surprised if Cynata eventually disappears under the giant footprint of one of the big biotechs.
Is your ASX listed company doing something interesting? Contact: matt.birney@wanews.com.au
Continue reading here:
Cynata looking to revolutionise stem cell therapy - The West Australian
Cell Harvesting Systems Market: Increasing demand for stem cell transplantation along with stem cell-based therapy to drive the market – BioSpace
By daniellenierenberg
Cell Harvesting Systems: Introduction
Read Report Overview - https://www.transparencymarketresearch.com/cell-harvesting-systems-market.html
Market Dynamics of Global Cell Harvesting Systems Market
Request Brochure of Report - https://www.transparencymarketresearch.com/sample/sample.php?flag=B&rep_id=79522
Request for Analysis of COVID-19 Impact on Cell Harvesting Systems Market- https://www.transparencymarketresearch.com/sample/sample.php?flag=covid19&rep_id=1645
Cell Harvesting Systems Market: Segmentation
Request for Custom Research - https://www.transparencymarketresearch.com/sample/sample.php?flag=CR&rep_id=1645
Asia Pacific Cell Harvesting Systems Market to Expand Rapidly
Pre Book Cell Harvesting Systems Market Report - https://www.transparencymarketresearch.com/checkout.php?rep_id=1645<ype=S
Browse more Reports by Transparency Market Research:
Nucleic Acid Extraction Reagents Market: https://www.transparencymarketresearch.com/nucleic-acid-extraction-reagents-market.html
Osseointegration Implants Market: https://www.transparencymarketresearch.com/osseointegration-implants-market.html
Pancreatic Cancer Diagnostics Market: https://www.transparencymarketresearch.com/pancreatic-cancer-diagnostics-market.html
About Us
Transparency Market Research is a next-generation market intelligence provider, offering fact-based solutions to business leaders, consultants, and strategy professionals.
Our reports are single-point solutions for businesses to grow, evolve, and mature. Our real-time data collection methods along with ability to track more than one million high growth niche products are aligned with your aims. The detailed and proprietary statistical models used by our analysts offer insights for making right decision in the shortest span of time. For organizations that require specific but comprehensive information we offer customized solutions through ad hoc reports. These requests are delivered with the perfect combination of right sense of fact-oriented problem solving methodologies and leveraging existing data repositories.
TMR believes that unison of solutions for clients-specific problems with right methodology of research is the key to help enterprises reach right decision.
Contact
Mr. Rohit BhiseyTransparency Market Research
State Tower,
90 State Street,
Suite 700,
Albany NY - 12207
United States
USA - Canada Toll Free: 866-552-3453
Email: sales@transparencymarketresearch.com
Website: https://www.transparencymarketresearch.com/
Read the original:
Cell Harvesting Systems Market: Increasing demand for stem cell transplantation along with stem cell-based therapy to drive the market - BioSpace
The lymphatic system 2: structure and function of the lymphoid organs – Nursing Times
By daniellenierenberg
The lymphoid organs purpose is to provide immunity for the body. This second article in a six-part series explains the primary and secondary lymphoid organs and their clinical significance and structure. It comes with a self-assessment enabling you to test your knowledge after reading it
This article is the second in a six-part series about the lymphatic system. It discusses the role of the lymphoid organs, which is to develop and provide immunity for the body. The primary lymphoid organs are the red bone marrow, in which blood and immune cells are produced, and the thymus, where T-lymphocytes mature. The lymph nodes and spleen are the major secondary lymphoid organs; they filter out pathogens and maintain the population of mature lymphocytes.
Citation: Nigam Y, Knight J (2020) The lymphatic system 2: structure and function of the lymphoid organs. Nursing Times [online]; 116: 11, 44-48.
Authors: Yamni Nigam is professor in biomedical science; John Knight is associate professor in biomedical science; both at the College of Human and Health Sciences, Swansea University.
This article discusses the major lymphoid organs and their role in developing and providing immunity for the body. The lymphoid organs include the red bone marrow, thymus, spleen and clusters of lymph nodes (Fig 1). They have many functional roles in the body, most notably:
The red bone marrow and thymus are considered to be primary lymphoid organs, because the majority of immune cells originate in them.
Bone marrow is a soft, gelatinous tissue present in the central cavity of long bones such as the femur and humerus. Blood cells and immune cells arise from the bone marrow; they develop from immature stem cells (haemocytoblasts), which follow distinct developmental pathways to become either erythrocytes, leucocytes or platelets. Stem cells rapidly multiply to make billions of blood cells each day; this process is known as haematopoiesis and is outlined in Fig 2.
To ensure there is a continuous production and differentiation of blood cells to replace those lost to function or age, haematopoietic stem cells are present through adulthood. In the embryo, blood cells are initially made in the yolk sac but, as development of the embryo proceeds, this function is taken over by the spleen, lymph nodes and liver. Later in gestation, the bone marrow takes over most haematopoietic functions so that, at birth, the whole skeleton is filled with red bone marrow.
Red bone marrow produces all erythrocytes, leucocytes and platelets. Haematopoietic stem cells in the bone marrow follow either the myeloid or lymphoid lineages to create distinct blood cells (Fig2); these include myeloid progenitor cells (monocytes, macrophages, neutrophils, basophils, eosinophils, erythrocytes, dendritic cells and platelets), and lymphoid progenitor cells (T-lymphocytes, B-lymphocytes and natural killer cells).
Some lymphoid cells (lymphocytes) begin life in the red bone marrow and become fully formed in the lymphatic organs, including the thymus, spleen and lymph nodes. As puberty is reached and growth slows down, physiological conversion occurs, changing red bone marrow to yellow bone marrow. This entire process is completed by the age of 25years, when red bone marrow distribution shows its adult pattern in the bones.
The pattern is characterised by:
However, under particular conditions, such as severe blood loss or fever, the yellow marrow may revert back to red marrow (Malkiewicz and Dziedzic 2012).
Any disease or disorder that poses a threat to the bone marrow can affect many body systems, especially if it prevents stem cells from turning into essential cells. Those known to damage the marrows productive ability and destroy stem cells include:
A growing number of diseases can be treated with a bone marrow transplant or haematopoietic stem cell transfer; this is often achieved by harvesting suitable donor stem cells from the posterior iliac crests of the hip bone, where the concentration of red bone marrow is highest.
The thymus gland is a bi-lobed, pinkish-grey organ located just above the heart in the mediastinum, where it rests below the sternum (breastbone). Structurally, the thymus resembles a small bow tie, which gradually atrophies (shrinks) with age. In pre-pubescents, the thymus is a relatively large and very active organ that, typically, weighs around 40g, but in a middle-aged adult it may have shrunk sufficiently to be difficult to locate. By 20 years of age, the thymus is 50% smaller than it was at birth, and by 60years of age it has shrunk to a sixth of its original size (Bilder, 2016); this is called thymic involution
Each of the two lobes of the thymus is surrounded by a capsule, within which are numerous small lobules typically measuring 2-3mm in width which are held together by loose connective tissue. Each lobule consists of follicles that are composed of a framework of thyomsin-secreting epithelial cells and a population of T-lymphocytes; these cells are commonly referred to as T-cells (the T denotes their origin as mature cells from the thymus). Lobules have two distinct areas:
In addition to being a major lymphoid organ, the thymus is also recognised as part of the endocrine system because it secretes a family of hormones collectively referred to as thymosin; this is a group of several structurally related hormones secreted by the thymic epithelial cells. These hormones are essential for normal immune function and many members of the thymosin family are used therapeutically to treat cancers, infections and diseases such as multiple sclerosis (Severa et al, 2019).
T-cells originate as haematopoietic stem cells from the red bone marrow (Fig2). A population of these haematopoietic stem cells infiltrate the thymus, dividing further within the cortical regions of the lobules then migrating into the medullary regions to mature into active T-cells; this process of T-cell maturation is controlled by the hormone thymosin. A proportion of these mature T-cells continually migrate from the thymus into the blood and other lymphoid organs (spleen and lymph nodes), where they play a major role in the bodys specific immune responses (which will be discussed in detail in part 3 of this series). The importance of these cells is apparent in patients who have depleted T-cell populations, such as those infected with HIV.
One of the most important functions of the thymus is programming T-cells to recognise self antigens through a process called thymic education. This process allows mature T-cells to distinguish foreign, and therefore potentially pathogenic, material from antigens that belong to the body. It has been demonstrated that removal of the thymus may lead to an increase in autoimmune diseases, as this ability to recognise self is diminished (Sherer et al, 1999).
Diseases of the thymus include thymic cancer and myasthenia gravis (MG). MG occurs when the thymus produces antibodies that block or destroy the muscle-receptor sites, causing the muscles to become weak and easily tired. It most commonly affects muscles that control the eyes and eyelids, resulting in droopy eyelids and difficulty making facial expressions; chewing, swallowing and speaking also become difficult. MG can affect people of any age, but typically starts in women aged <40years and men aged >60years.
In most cases of either MG or thymic cancer, thymectomy is recommended. Patients who have had a thymectomy may develop an immunodeficiency known as Good syndrome, which increases their susceptibility to bacterial, fungal and viral opportunistic pathogens; this condition is, however, relatively rare.
The spleen and lymph nodes are two major secondary lymphoid organs that play key roles in:
When foreign antigens reach these organs, they initiate lymphocyte activation and subsequent clonal expansion and maturation of these important white blood cells. Mature lymphocytes can then leave the secondary organs to enter the circulation, or travel to other areas, and target foreign antigens.
The spleen is the largest lymphoid organ. Situated in the upper left hypochondriac region of the abdominal cavity, between the diaphragm and the fundus of the stomach, it primarily functions as a filter for the blood, bringing it into close contact with scavenging phagocytes (white blood cells in the spleen that will seek out and eat any pathogens in the blood) and lymphocytes.
Due to its extensive vascularisation, the spleen is a dark-purplish oval-shaped organ; in adults it is approximately 12cm long, 7cm wide and weighs around 150g. However, the size of the spleen can vary with circumstance: it diminishes in starvation, after heavy exercise and following severe haemorrhage (Gujar et al, 2017), and recent investigations indicate an increase in size in well-fed individuals and during the ingestion of food (Garnitschnig et al, 2020).
The spleen (Fig3) is enclosed in a dense, fibro-elastic capsule that protrudes into the organ as trabeculae; these trabeculae constitute the organs framework. Blood enters the spleen from the splenic artery and leaves via the splenic vein, both of which are at the hilum; the splenic vein eventually becomes a tributary of the hepatic portal vein.
The spleen is made up of two regions:
White pulp is a mass of germinal centres of dividing B-lymphocytes (B-cells), surrounded by T-cells and accessory cells, including macrophages and dendritic cells; these cells are arranged as lymphatic nodules around branches of the splenic artery. As blood flows into the spleen via the splenic artery, it enters smaller, central arteries of the white pulp, eventually reaching the red pulp. The red pulp is a spongy tissue, accounting for 75% of the splenic volume (Pivkin et al, 2016); it consists of blood-filled venous sinuses and splenic cords.
Splenic cords are made up of red and white blood cells and plasma cells (antibody-producing B-cells); therefore, the red pulp primarily functions as a filtration system for the blood, whereas the white pulp is where adaptive T- and B-cell responses are mounted. The colour of the white pulp is derived from the closely packed lymphocytes and the red pulps colour is due to high numbers of erythrocytes (Stewart and McKenzie, 2002).
The spleen has three major functions:
The spleens main immunological function is to remove micro-organisms from circulation. The lymphatic nodules are arranged as sleeves around the blood vessels, bringing blood into the spleen. Within the white pulp are splenic nodules called Malpighian corpuscles, which are rich in B-cells, so this portion of lymphoid tissue is quick to respond to foreign antigenic stimulation by producing antibodies. The walls of the meshwork of sinuses in the red pulp also contain phagocytes that engulf foreign particles and cell debris, effectively filtering and removing them from circulation.
In the spleens destruction of old and senescent red blood cells, they are digested by phagocytic macrophages in the red pulp. The haemoglobin is then split apart into haem and globin. The globin is broken down into its constituent amino acids, which can be utilised in the synthesis of a new protein. Haem consists of an iron atom surrounded four non-iron (pyrrole) rings.
The iron is removed and transported to be stored as ferritin, then reused to make new haemoglobin in the red bone marrow; macrophages convert the pyrrole rings into the green pigment biliverdin and then into the yellow pigment bilirubin. Both are transported to the liver bound to plasma albumin. Bilirubin, the more toxic pigment, is conjugated in the liver to form a less toxic compound, which is excreted in bile.
The red pulp partly serves to store a large reserve of the bodys platelets up to a third of the total platelet supply. In some animals particularly athletic mammals such as horses, greyhounds and foxes the spleen is also an important reservoir of blood, which is released into circulation during times of stress to improve aerobic performance. In humans, however, the spleen contributes only a small percentage of blood cells into active circulation under physiological stress; the total stored blood volume is believed to be only 200-250ml (Bakovic et al, 2005). The capsule of the spleen may contract following haemorrhage, releasing this reserve into circulation in the body.
The spleen also plays a minor role in haematopoiesis: usually occuring in foetuses of up to five months gestation, erythrocytes, along with the bone marrow, are produced by the spleen.
As the spleen is the largest collection of lymphoid tissue in the body, infections that cause white blood cell proliferation and antigenic stimulation may cause germinal centres in the organ to expand, resulting in its enlargement (splenomegaly). This happens in many diseases for example, malaria, cirrhosis and leukaemia. The spleen is not usually palpable, but an enlarged spleen is palpable during deep inspiration. Enlargement may also be caused by any obstruction in blood flow, for example in the hepatic portal vein.
The anatomical position of the spleen coincides with the left tenth rib. Given its proximity to the abdominal wall, it is one of the most commonly injured organs in blunt abdominal trauma. The spleen is a fragile organ and, due to its highly vascularised nature, any injury causing rupture will rapidly lead to severe intraperitoneal haemorrhage; death may result due to massive blood loss and shock.
A moderate splenic injury may be managed conservatively, but an extensively burst or ruptured spleen may be treated by complete and prompt removal (splenectomy). However, current data supports successful non-operative management of many traumatic splenic injuries, with the intention of reducing the need for complete removal (Armstrong et al, 2019).
Patients being treated for certain malignant diseases may also require a partial or total splenectomy and, although other structures such as the bone marrow and liver can take over some of the functions that are usually carried out by the spleen, such patients may be at increased risk of infection. With an overwhelming post-splenectomy infection, there is also an increased risk of sepsis, which is associated with significant morbidity and mortality. Infection is usually with encapsulated pathogens, including Streptococcus pneumoniae, Haemophilus influenzae and Neisseria meningitidis. Clinical guidelines to help reduce the risk of infection advocate education about infection prevention, vaccination and antibiotic prophylaxis (Arnott et al, 2018).
Swollen lymph nodes and a fever are sure signs that the body is mounting an effective immune response against an offending pathogen
Lymph nodes vary in size and shape, but are typically bean-shaped structures found clustered at specific locations throughout the body. Although their size varies, each node has a characteristic internal structure (Fig4).
The central portions of the lymph node are essential to its function; here, there are large numbers of fixed macrophages, which phagocytose foreign material such as bacteria on contact, and populations of B- and T-cells. Lymph nodes are crucial to most antibody-mediated immune responses: when the phagocytic macrophages trap pathogenic material, that material is presented to the lymphocytes so antibodies can be generated.
Each lymph node is supplied by one or more afferent lymphatic vessels, which deliver crude, unmodified lymph directly from neighbouring tissues. A healthy, fully functioning node removes the majority of pathogens from the lymph before the fluid leaves via one or more efferent lymphatic vessels. In addition to its lymphatic supply, each lymph node is supplied with blood via a small artery; the artery delivers a variety of leucocytes, which populate the inner regions of the node.
When infection is present, the lymph nodes become increasingly metabolically active and their oxygen requirements increase. A small vein carries deoxygenated blood away from each node and returns it to the major veins. In times of infection, this venous blood may carry a variety of chemical messengers (cytokines) that are produced by the resident leucocytes in the nodes. These cytokines act as general warning signals, alerting the body to the potential threat and activating a variety of specific immune reactions.
The structure of a lymph node is not unlike that of the spleen. Each lymph node is divided into several regions:
During infection, antibody-producing B-cells begin to proliferate in the germinal centres, causing the affected lymph nodes to enlarge and become palpable and tender. Some of the cytokines released are pyrogenic (meaning they cause fever) and act directly on the thermoregulatory centre in the hypothalamus to increase body temperature. As the majority of human pathogens divide optimally at around 37C, this increase in body temperature serves to slow down bacterial replication, allowing the infection to be dealt with more efficiently by the immune system. Swollen lymph nodes and a fever are both sure signs that the body is mounting an effective immune response against the offending pathogen; this will be discussed in more detail in part 3 of this series.
Other types of lymphatic tissue also exist. Mucosa-associated lymphoid tissue (MALT) is positioned to protect the respiratory and gastrointestinal tracts from invasion by microbes. The following are made up of MALT:
The tonsils are aggregates of lymphatic tissue strategically located to prevent foreign material and pathogens from entering the body. The palatine tonsils are in the pharynx, the lingual tonsils in the oral cavity and the pharyngeal tonsils (adenoids) are at the back of the nasal cavity; as a result of this, the tonsils themselves are at high risk of infection and inflammation (tonsillitis). This will also be discussed further in part 3.
Armstrong RA et al (2019) Successful non-operative management of haemodynamically unstable traumatic splenic injuries: 4-year case series in a UK major trauma centre. European Journal of Trauma and Emergency Surgery; 45: 5, 933-938.
Arnott A et al (2018) A registry for patients with asplenia/hyposplenism reduces the risk of infections with encapsulated organisms. Clinical Infectious Diseases; 67: 4, 557-561.
Bakovi D et al (2005) Effect of human splenic contraction on variation in circulating blood cell counts. Clinical and Experimental Pharmacology and Physiology; 32: 11, 944-951.
Bilder G (2016) Human Biological Aggin: From Macromolecules to Organ Systems. Wiley.
Garnitschnig L et al (2020) Postprandial dynamics of splenic volume in healthy volunteers. Physiological Reports; 8: 2, e14319.
Gujar S et al (2017) A cadaveric study of human spleen and its clinical significance. National Journal of Clinical Anatomy; 6: 1, 35-41.
Makiewicz A, Dziedzic M (2012) Bone marrow reconversion: imaging of physiological changes in bone marrow. Polish Journal of Radiology; 77: 4, 45-50.
Pivkin IV et al (2016) Biomechanics of red blood cells in human spleen and consequences for physiology and disease. Proceedings of the National Academy of Sciences of the United States of America; 113: 28, 7804-7809.
Severa M et al (2019) Thymosins in multiple sclerosis and its experimental models: moving from basic to clinical application. Multiple Sclerosis and Related Disorders; 27: 52-60.
Sherer Y et al (1999) The dual relationship between thymectomy and autoimmunity: the kaleidoscope of autoimmune disease. In: Paul S (ed) Autoimmune Reactions. Contemporary Immunology. Totowa, NJ: Humana Press.
Stewart IB, McKenzie DC (2002) The human spleen during physiological stress. Sports Medicine; 32: 6, 361-369.
See the original post:
The lymphatic system 2: structure and function of the lymphoid organs - Nursing Times
Study: Poverty Linked to Higher Risk of Death Among Children with Cancer Undergoing Stem Cell Transplantation – PRNewswire
By daniellenierenberg
WASHINGTON, Oct. 26, 2020 /PRNewswire/ --Despite the increasing use and promise of hematopoietic cell transplantation (HCT) as curative therapy for children with cancer and other life-threatening diseases, new research suggests that children transplanted for cancer are more likely to die from treatment-related complications if they live in poorer neighborhoods. The study, published today in the journal Blood, also found that having Medicaid versus private insurance, another marker of poverty, was associated with a higher chance of dying. Researchers say the results underscore the need to better understand and mitigate the effects of poverty and other social determinants of health on pediatric cancer care.
Hematopoietic cell transplantation, also called stem cell or bone marrow transplantation, is a treatment option for patients with blood cancers such as leukemia or lymphoma, as well as certain non-malignant conditions such as sickle cell disease or immunodeficiencies. It is only accessible at some medical centers. Together with radiation therapy or chemotherapy, HCT is designed to increase the chance of eliminating the cancerous or abnormal blood cells, and of restoring normal blood cell production.
The data revealed that children under the age of 18 with cancer who live in communities with high poverty rates had a 34% greater risk of treatment-related mortality following HCT compared with children in low-poverty areas. Even after adjusting for a child's disease and transplant-related factors, the data revealed children on Medicaid had a 23% greater risk of dying from any cause within five years of undergoing HCT and a 28% greater risk of treatment-related mortality when compared to children with private insurance.
"Our study shows that even after children with cancer have successfully accessed this high-resource treatment at specialized medical centers, those who are exposed to poverty are still at higher risk of dying of complications after treatment and of dying overall," said lead author Kira Bona, MD, MPH, Attending Physician, Dana-Farber/Boston Children's Cancer and Blood Disorders Center. "Simply providing the highest quality complex medical care to children who are vulnerable from a social perspective is inadequate if our goal is to cure every child with cancer."
One in five children in the U.S. lives in a household with an income below the federal poverty level. While previous studies have shown an association between household poverty and poorer outcomes in HCT procedures generally, there are limited data on how poverty influences the success of HCT in children specifically.
Dr. Bona and her team sought to fill this gap by reviewing outcomes data for pediatric allogeneic transplant recipients from the Center for International Blood and Marrow Transplant Research Database, the largest available repository of HCT outcomes. The researchers looked at two cohorts of patients: 2,053 children with malignant disease and 1,696 children with non-malignant disease, who underwent a first HCT between 2006 and 2015. Neighborhood poverty exposure was defined according to U.S. Census definitions as living within a ZIP code in which 20% or more of the residents live below 100% of the Federal Poverty Level. They also stratified patients by type of insurance and used Medicaid as a proxy measure for household level poverty. The researchers looked at pediatric patients' overall survival defined as the time from HCT until death from any cause, as well as relapse, transplant-related mortality, acute and chronic graft-versus-host disease, and infection in the first 100 days following HCT.
Interestingly, neighborhood poverty or having Medicaid insurance did not seem to affect outcomes, including overall survival, relapse, or infection, among children transplanted for non-malignant diseases such as sickle cell disease. Dr. Bona said the study does not explain why this might be and more research is needed; however, it is possible that physicians and families of children with non-malignant conditions who face social health challenges may elect to avoid intensive HCT procedures.
One study limitation is its reliance on proxy measures of household poverty (ZIP code and Medicaid insurance) that do not provide insight into specific aspects of an individual child's socioeconomic exposures and the home environment in which they live that may interfere with their ability to navigate the health care system. Dr. Bona says researchers and clinicians have historically not considered social determinants of health as being as important as biological variables in specialized cancer care and so have not collected data on these factors as part of research. She says this is a missed opportunity.
"We as a field need to recognize that non-biological variables such as your exposure to poverty and other social determinants of health matter just as much as many of the biological variables we pay close attention to when thinking about outcomes for children, and these variables must be collected systematically for research if we want to optimize the care and outcomes of the children we serve," Dr. Bona said.
If future studies could collect more nuanced measures of poverty such as household material hardship (e.g., food insecurity, access to heat and electricity, housing insecurity, transportation insecurity) or language barriers, targeted interventions in the form of assistance programs could potentially help mitigate social hardships and improve the overall care of children with cancer.
Blood(www.bloodjournal.org), the most cited peer-reviewed publication in the field of hematology, is available weekly in print and online. Blood is a journal of the American Society of Hematology (ASH) (www.hematology.org).
SOURCE American Society of Hematology/Blood Journal
See the original post here:
Study: Poverty Linked to Higher Risk of Death Among Children with Cancer Undergoing Stem Cell Transplantation - PRNewswire
Mesenchymal Stem Cells Market Augmented Expansion to Be Registered by 2020-2025 – Eurowire
By daniellenierenberg
The research report on Mesenchymal Stem Cells Market gives thorough insights regarding various key trends that shape the industry expansion with regards to regional perspective and competitive spectrum. Furthermore, the document mentions the challenges and potential restrains along with latent opportunities which may positively impact the market outlook in existing and untapped business spaces. Moreover, it presents the case studies, including the ones related to COVID-19 pandemic, to convey better understanding of the industry to all the interested parties.
The recent market trend of increasingly using Mesenchymal Stem Cells for understanding the development of a disease extensively fuel the growth of this market in the coming years. Another trend that will aid the growth of the global Mesenchymal Stem Cells market is the escalating demand for personalized medicine. Extensive investments are being made by various organizations, pharmaceutical companies, and governments for the research and development of drugs, and this is another trend that is benefiting the growth of the global Mesenchymal Stem Cells market. This is because Mesenchymal Stem Cells techniques enable researchers to compare Mesenchymal Stem Cells changes between disease samples and normal samples. Public health can thus be analyzed as the changes in Mesenchymal Stem Cells are influenced by internal biological system and environment directly.
Request a sample of this premium research: https://www.bigmarketresearch.com/request-sample/3921426?utm_source=Nilesh-EW
The report covers extensive analysis of the key market players in the market, along with their business overview, expansion plans, and strategies. The key players studied in the report include: Advanced Cell Technology Incorporated, Stem cell technologies Inc., Stemedica Cell Technologies, Inc., Cyagen Biosciences Inc., EMD Millipore Corporation, ScienCell Research Laboratories., Cytori Therapeutics Inc., Cell Applications, Inc., Axol Bioscience Ltd., Aastrom Biosciences, BrainStorm Cell Therapeutics., R&D Systems, Inc., Genlantis, Inc., Celprogen, Inc..
Mesenchymal Stem Cells Market Segmentation:
In market segmentation by types of Mesenchymal Stem Cells, the report covers-
Bone MarrowUmbilical Cord BloodPeripheral BloodLung TissueSynovial TissuesAmniotic FluidsAdipose Tissues
In market segmentation by applications of the Mesenchymal Stem Cells, the report covers the following uses-
InjuriesDrug DiscoveryCardiovascular InfractionOthers
Regional Analysis for Mesenchymal Stem Cells Market-:
1) North America- (United States, Canada)
2) Europe- (Germany, France, UK, Italy, Russia, Spain, Netherlands, Switzerland, Belgium)
3) Asia Pacific- (China, Japan, Korea, India, Australia, Indonesia, Thailand, Philippines, Vietnam)
4) Middle East & Africa- (Turkey, Saudi Arabia, United Arab Emirates, South Africa, Israel, Egypt, Nigeria)
5) Latin America- (Brazil, Mexico, Argentina, Colombia, Chile, Peru)
The report provides insights on the following pointers :
Market Penetration: Comprehensive information on the product portfolios of the top players in the Supply Chain Analytics market.
Product Development/Innovation: Detailed insights on the upcoming technologies, R&D activities, and product launches in the market
Competitive Assessment: In-depth assessment of the market strategies, geographic and business segments of the leading players in the market
Market Development: Comprehensive information about emerging markets. This report analyzes the market for various segments across geographies
Market Diversification: Exhaustive information about new products, untapped geographies, recent developments, and investments in the Supply Chain Analytics market
NOTE: Our analysis involves the study of the market taking into consideration the impact of the COVID-19 pandemic. Please get in touch with us to get your hands on an exhaustive coverage of the impact of the current situation on the market. Our expert team of analysts will provide as per report customized to your requirement.
Request a discount on standard prices of this premium research: https://www.bigmarketresearch.com/request-for-discount/3921426?utm_source=Nilesh-EW
Table of Content
Chapter 1 Mesenchymal Stem Cells Introduction and Market Overview
Chapter 2 Executive Summary
Chapter 3 Industry Chain Analysis
Chapter 4 Global Mesenchymal Stem Cells Market, by Type
Chapter 5 Mesenchymal Stem Cells Market, by Application
Chapter 6 Global Mesenchymal Stem Cells Market Analysis by Regions
Chapter 7 North America Mesenchymal Stem Cells Market Analysis by Countries
Chapter 8 Europe Mesenchymal Stem Cells Market Analysis by Countries
Chapter 9 Asia Pacific Mesenchymal Stem Cells Market Analysis by Countries
Chapter 10 Middle East and Africa Mesenchymal Stem Cells Market Analysis by Countries
Chapter 11 South America Mesenchymal Stem Cells Market Analysis by Countries
Chapter 12 Competitive Landscape
Chapter 13 Industry Outlook
Chapter 14 Global Mesenchymal Stem Cells Market Forecast
Chapter 15 New Project Feasibility Analysis
About Us:
Big Market Research has a range of research reports from various domains across the world. Our database of reports of various market categories and sub-categories would help to find the exact report you may be looking for.
Contact us:
Mr. Abhishek Paliwal
Big Market Research
5933 NE Win Sivers Drive, #205, Portland,
OR 97220 United States
Direct: +1-971-202-1575
Toll Free: +1-800-910-6452
E-mail: [emailprotected]
The rest is here:
Mesenchymal Stem Cells Market Augmented Expansion to Be Registered by 2020-2025 - Eurowire
UPMC nurse practitioner hailed ‘healthcare hero’ on live TV – Altoona Mirror
By daniellenierenberg
Mirror photo by Patrick Waksmunski / Johnathan Dodson, an intensive care unit nurse practitioner who treats COVID-19 patients at UPMC Altoona, recently met the woman who donated the stem cells that helped him overcome leukemia.
A few weeks ago, nurse practitioner and former leukemia patient Johnathan Dodson interrupted a reporters phone interview to give his two young sons a hug and a kiss before they went to sleep.
The interview concerned the Claysburg natives recent appearance as a healthcare hero on Jimmy Kimmel Live, because Dodson treats COVID-19 patients at UPMC Altoona.
The segment also featured Dodsons surprise virtual meeting on the show with his own healthcare hero: the Texas woman who donated the stem cells that enabled Dodson to survive past his early 20s via a transplant.
Theyre here because of her, Dodson, 36, said of the little boys hed just sent off to bed.
In the interaction that followed the on-screen introduction to his donor, Dodson tried to explain his feelings about what the woman had done: how it hadnt been limited to saving his life, but had also kept his parents, siblings and friends from losing him and had spread out to allow for the establishment of his own family, including those kids, Chase, now 7, and Karter, now 4.
I dont think she realized the ripple effects, Dodson said.
He had long thought about a first encounter with Shannon Weishuhn of Rowlett, Texas.
I had kind of prepared this thank-you speech in my head, he said.
(But) how do you thank someone who saved your life? Dodson asked.
For Weishuhn, also a nurse, the donation was an ancient memory, Dodson said, based on an off-screen conversation he had with her, which included a virtual meeting with his family.
She had no idea of the butterfly effect that her action had on his world, he said, speaking of the idea that small occurrences can have big consequences. Thats the message I was trying to convey, he said.
Almost didnt make it
Dodson almost didnt make it to the transplant.
But in the process of getting through his difficulties with leukemia, he found his calling.
He was diagnosed initially in 2003.
He went through chemotherapy to wipe out my immune system, which also wiped out the cancer cells, he said.
The idea was to do an immune system reset, with the hope that the cancer cells wouldnt grow back, he said.
He went into remission, but relapsed at the beginning of 2004, he said.
So he underwent chemotherapy again.
He relapsed again.
The third time he got chemo was in preparation for the transplant.
He nearly died multiple times, and at one point, his survival chances shrunk to about 3 percent, Dodson said.
The cancer had broken into his spine and his brain, he said.
Only a handful of prior cases had been treated successfully when that had happened, he said.
There were three options a shunt in his head and more chemotherapy, spinal taps with chemo or hospice at home, he said.
His parents knew he didnt want a shunt in his head, so that was out of the question, Dodson said.
His parents asked the doctors what theyd do if he was their son, and they recommended hospice, he said.
But a nurse stepped in and said you need to give him a chance, arguing that his survival from two previous crises should merit another try, Dodson said.
Thats when my parents switched and opted for treatment, Dodson said. That sealed the deal.
Once the decision was made, there was talk about sending him to Texas, the only place where the contemplated treatment had been done successfully, he said.
Dodson nixed that.
If I was going to die, I was going to die here, he said.
The reason Im here today
By that time, the nurses who took care of him at West Penn Hospital, now part of Allegheny Health Network, had almost become family, he said.
They along with his donor are the reason Im here today, he said.
The nurses are also the reason hes a nurse himself.
The transplant, however, didnt suddenly make things all better.
He had a really rough go (afterwards), said Dr. John Lister, chief of the division of hematology and cellular therapy of Allegheny Health Network Cancer Institute and a member of Dodsons transplant team.
Caring for patients after leukemia transplants is as challenging as anything in medicine, said Lister, who is a descendant of Joseph Lister, a pioneer in antiseptic surgery.
Its challenging because the blood stem cells harvested from the donors blood, when injected into the recipient, create a new white-blood-cell immune system that attacks the recipients diseased white-blood-cell immune system, Lister indicated.
It can be fatal, he said. And extremely debilitating.
Doctors deal with it by giving powerful immunosuppressant medications, he said.
The direction of attack the donor material attacking the recipients is the opposite of the direction of attack with transplants of organs like kidneys, Lister said.
After those other transplants, the recipients immune system attacks the donor organ, he said.
Dodson was kept alive due to the intensive efforts of many people, Lister said.
Eventually, the initial reaction dies down, Lister said.
Hes totally normal at this point, Lister said of Dodson. I would say hes cured.
The donor matched Dodson in certain key genes that make the immune system work, Lister said.
The harvesting of donor stem cells occurs after the donor is given a growth factor that causes those stem cells to leave the bone marrow and enter the bloodstream, Lister said.
Blood stem cells can become any of the three types of blood cells, given the right conditions.
When injected into the recipient, they home to the marrow where theyre needed, according to Lister.
There they divide and repopulate, he said.
Anyone willing to make a bone marrow or stem cell donation can go to bethematch.org.
Its free to register, Dodson said. More ethnically diverse donors are needed, he added.
Last year, the web site helped facilitate 6,425 transplants, Dodson said.
You could change someones life forever, he said.
Today's breaking news and more in your inbox
Continued here:
UPMC nurse practitioner hailed 'healthcare hero' on live TV - Altoona Mirror
Catalent to Produce BrainStorm’s NurOwn Cell Therapy for ALS – ALS News Today
By daniellenierenberg
Catalent Biologics has agreed to manufactureNurOwn, the cell-based therapy by BrainStorm Cell Therapeuticsbeing evaluated in a soon-to-conclude pivotal trial as a possible treatment of amyotrophic lateral sclerosis (ALS).
With this agreement, Catalent will produce NurOwn under current Good Manufacturing Practices standards set to ensure that batches of a medicine are produced with consistent high quality at its new 32,000-square-foot cell therapy manufacturing facility in Houston.
We are proud to have a partner in Catalent whose excellence in manufacturing quality therapies will support commercial supply of NurOwn, Chaim Lebovits, BrainStorms CEO, said in a press release.
With NurOwn, a patients mesenchymal stem cellsare collected from the bone marrow and treated in the lab to produce proteins called neurotrophic factors (NTFs), compounds that promote nervous tissue growth and survival. (Mesenchymal stem cells, orMSCs, are stem cells that can differentiate into a variety of other cell types.)
The modified cells called MSC-NTF cells are then injected into the patients spinal cord, where their NTFs are expected to promote the growth and survival of nerve cells, which are damaged over the course of ALS.
Using a patients own cells as a therapy minimizes the risk of an immune reaction, as might occur with cells from a donor.
The U.S. Food and Drug Administration has given NurOwn bothfast track and orphan drugdesignations to support and speed its development for ALS. The medicine also received orphan drug designation from the European Medicines Agency.
We know that ALS patients are in urgent need of a new treatment option. If NurOwn is successful in the current clinical trials, this agreement will be integral to ensuring rapid access for patients, Lebovits added.
NurOwn showed an ability to slow progression in people with fast-progressing disease in a Phase 2 trial (NCT02017912). This led Brainstorm to open a Phase 3 trial (NCT03280056)to confirm those findings in a larger group of ALS patients.
The trial, taking place at six sites in the U.S., enrolled 200 patients and randomly assigned them to either NurOwn or a placebo, given in three intrathecal (into the spinal cord) injections at two-month intervals.
Researchers are evaluating NurOwns effectiveness using therevised amyotrophic lateral sclerosis functional rating scale(ALSFRS-R), which assesses such daily life abilities as swallowing, speaking, dressing and washing oneself, climbing stairs, and turning over in bed.
Its primary goal is to determine whether NurOwn outperforms a placebo at reducing the rate of decline in ALSFRS-R scores over six months. A change of 1.25 points or more in ALSFRS-R scores each month, compared to scores recorded prior to treatment, defines a responder.
Other trial goals include safety, the number of patients whose disease has not progressed, total ALSFRS-R decline, and overall survival. Samples of blood and cerebrospinal fluid will also be collected to evaluate biomarkers, like neurotrophic factors and immune molecules, in response to the treatment.
BrainStorm expects to deliver top-line results this year; the study is set to fully conclude in December.
Should results be positive and NurOwn be approved for clinical use, BrainStorm and Catalent will consider extending their partnership to allow for commercial manufacturing of NurOwn at the Houston facility.
Forest Ray received his PhD in systems biology from Columbia University, where he developed tools to match drug side effects to other diseases. He has since worked as a journalist and science writer, covering topics from rare diseases to the intersection between environmental science and social justice. He currently lives in Long Beach, California.
Total Posts: 45
Ins holds a PhD in Biomedical Sciences from the University of Lisbon, Portugal, where she specialized in blood vessel biology, blood stem cells, and cancer. Before that, she studied Cell and Molecular Biology at Universidade Nova de Lisboa and worked as a research fellow at Faculdade de Cincias e Tecnologias and Instituto Gulbenkian de Cincia. Ins currently works as a Managing Science Editor, striving to deliver the latest scientific advances to patient communities in a clear and accurate manner.
See more here:
Catalent to Produce BrainStorm's NurOwn Cell Therapy for ALS - ALS News Today
NexImmune Establishes Research Initiative with City of Hope to Focus on Novel Immunotherapeutic Approaches to Acute Myeloid Leukemia – GlobeNewswire
By daniellenierenberg
GAITHERSBURG, Md., Oct. 27, 2020 (GLOBE NEWSWIRE) -- NexImmune, a clinical-stage biotechnology company developing unique non-genetically-engineered T cell immunotherapies, announced today that it has signed a research initiative related to its AIM nanoparticle technology with City of Hope, a world-renowned independent research and treatment center for cancer, diabetes and other life-threatening diseases.
City of Hope is a participating clinical site in the ongoing Phase 1/2 study of NEXI-001. The cancer center will leverage both patient samples from the ongoing NexImmune Phase 1/2 clinical study of NEXI-001 in acute myeloid leukemia (AML) patients with relapsed disease after allogeneic stem cell transplantation and the centers tumor repository bank of primary leukemia samples, one of the largest collections in the world, to drive the research.
NEXI-001 is a cellular product candidate that contains populations of naturally occurring CD8+ T cells directed against multiple antigen targets for AML, and it is the first clinical product generated by the Companys AIM nanoparticle technology.
NexImmune has developed a unique and versatile technology platform that lends itself very effectively to important areas of ongoing research in the field of AML, said Guido Marcucci, M.D., Chair and Professor with City of Hopes Department of Hematologic Malignancies Translational Science. Our collective goal is to translate future research findings into new, more effective T cell immunotherapies to the benefit of these very difficult to treat patients.
A key objective of the research will focus on the identification of new antigen targets that are expressed on both leukemic blasts as well as leukemic stem cells, and those which represent survival proteins to both. Once identified, these antigen targets will be loaded on NexImmune AIM-nanoparticles to expand antigen-specific CD8+ T cells, and evaluated in pre-clinical models for anti-tumor potency, tumor-specific killing, and response durability.
In addition, the research initiative will aim to further understand different mechanisms of tumor escape, such as tumor antigen and human leukocyte antigen (HLA) downregulation due to immune pressure.
Research between NexImmune and City of Hope will inform a scientific understanding of how the immune system can address certain tumor escape mechanisms to more effectively fight aggressive cancers like AML, and how this might be accomplished with NexImmunes AIM technology and T cell products, said Monzr Al Malki, M.D., Director of City of Hopes Unrelated Donor BMT Program and Haploidentical Transplant Program and an Associate Clinical Professor with Department of Hematology and Hematopoietic Cell Transplantation. Based on our current clinical experience with this technology, were excited to learn what more this research will tell us.
City of Hope is a world-class clinical research institution that has built one of the largest banks of leukemia samples in the world, said Han Myint, M.D., NexImmune Chief Medical Officer. The depth of expertise that Drs. Marcucci, Al Malki and their team bring to this research initiative will help NexImmune continue to develop innovative products that can help patients with AML and other hard-to-treat cancers.
City of Hope is a leader inbone marrow transplantation. More than 16,000 stem cell and bone marrow transplants have been performed at City of Hope, and more than 700 are performed annually. City of Hopes BMT program is the only one in the nation that has had one-year survival above the expected rate for 15 consecutive years, based on analysis by the Center for International Blood and Marrow Transplant Research.
About NexImmuneNexImmune is a clinical-stage biotechnology company developing unique approaches to T cell immunotherapies based on its proprietary Artificial Immune Modulation (AIM) technology. The AIM technology is designed to generate a targeted T cell-mediated immune response and is initially being developed as a cell therapy for the treatment of hematologic cancers. AIM nanoparticles (AIM-np) act as synthetic dendritic cells to deliver immune-specific signals to targeted T cells and can direct the activation or suppression of cell-mediated immunity. In cancer, AIM-expanded T cells have demonstrated best-in-class anti-tumor properties as characterized by in vitro analysis, including a unique combination of anti-tumor potency, antigen target-specific killing, and long-term T cell persistence. The modular design of the AIM platform enables rapid expansion across multiple therapeutic areas, with both cell therapy and injectable products.
NexImmunes two lead T cell therapy programs, NEXI-001 and NEXI-002, are in Phase 1/2 clinical trials for the treatment of relapsed AML after allogeneic stem cell transplantation and multiple myeloma refractory to >3 prior lines of therapy, respectively. The Companys pipeline also has additional preclinical programs, including cell therapy and injectable product candidates, for the treatment of oncology, autoimmune disorders, and infectious diseases.
For more information, visit http://www.neximmune.com.
Media Contact:Mike BeyerSam Brown Inc. Healthcare Communications312-961-2502mikebeyer@sambrown.com
Investor Contact:Chad RubinSolebury Trout+1-646-378-2947crubin@soleburytrout.com
Startup focused on B-cell therapies launched with $52M in Series A – MedCity News
By daniellenierenberg
After tackling two major research challenges, the founders of Be Biopharma are ready to announce their official launch along with a $52 million funding round. They are intent upon usingthe bodys B cells to treat a range of diseases.
The Series A round was led by Atlas Venture and RA Capital Management. Joining in were Longwood, Alta Partners and Takeda Ventures.
We have an ambitious plan to be the company that knows how to make B cells and mirror them precisely and make them at scale, Aleks Radovic-Moreno, Be Biopharmas president and director, said in a phone interview.
B cells, which play a leading role in the bodys immune response, can be taken out, genetically programmed to help fight specific diseases and then put back in the body. The cells also can come from healthy donors.
The challenges involved being able to efficiently edit the cells and then make them in sufficient quantities, Radovic-Moreno said. Those are the two big problems we have overcome.
Founded this year, Be Biopharma is looking to hire people in research, engineering and manufacturing, as well as a full-time leadership team, said Radovic-Moreno, an entrepreneur in residence at Longwood Fund, a co-founder and investor in Be Biopharma. The startups CEO is David Steinberg, a general partner at Boston-based Longwood.
From there, the company hopes to begin developing therapeutics for use in people. Cancers and autoimmune diseases are potential targets, as are monogenic diseases like cystic fibrosis. B cells, for example, could replace the need for invasive bone marrow transplants, Radovic-Moreno said.
If we can do that, it would change the lives of so many people. So, were trying to move that as fast as humanly possible, said Radovic-Moreno, who declined to offer a specific timeline.
The path for B cells could be relatively quick, he said, based on the experience of T cells and stem cells, he said. B cell therapies, though, are expected to be safer and less toxic than those involving T cells.
Be Biopharma is drawing on research undertaken at the Seattle Childrens Research Institute by Dr. David Rawlings and Richard James. They are among the co-founders of the new company.
B cells play a key role in combatting diseases by catalyzing humoral immunity the arm of the immune system that manufactures large quantities of proteins to neutralize disease-causing pathogens and manipulate immune cell behavior, Rawlings, director of the Center for Immunity and Immunotherapies at the Seattle institute, said in a statement. Today, this powerful part of the immune system is only passively and/or indirectly addressed therapeutically. Our ambition is to advance the field by building a new class of engineered B cell medicines that will provide direct control over the power of humoral immunity and help transform the prognosis for patients who currently have limited treatment options.
Picture: Feodora Chiosea, Getty Images
The rest is here:
Startup focused on B-cell therapies launched with $52M in Series A - MedCity News
Adipose Tissue Derived Stem Cell Therapy Market to Set Phenomenal Growth in Key Regions by 2027 | AlloCure, Inc, Antria, Inc., Cellleris SA, Tissue…
By daniellenierenberg
What is Adipose Tissue Derived Stem Cell Therapy?
Adipose tissue derived stem cells (ADSCs) are stem cells originated from adipocytes. ADSCs have characteristics similar to bone marrow mesenchymal stem cells. Thus Adipose-derived stem cells substitute for bone marrow as a source of stem cells. Different varieties of manual and automatic stem cell separation procedures are used to separate adipose stem cells (ASCs) from adipose tissue. Flow cytometry can be utilized to isolate ADSCs from other stem cells within a cell solution. Currently, adipose derived stem cells (ADSCs) are generally used in the generation of regenerative medicine due to its anti-inflammatory, anti-apoptotic, and immunomodulatory properties.
Download PDF Sample Report Here @ https://www.theinsightpartners.com/sample/TIPRE00014843/
The research provides answers to the following key questions:
A new market study report by The Insight Partners on the Adipose Tissue Derived Stem Cell Therapy Market has been released with reliable information and accurate forecasts for a better understanding of the current and future market scenarios. The report offers an in-depth analysis of the global market, including qualitative and quantitative insights, historical data, and estimated projections about the market size and share in the forecast period. The forecasts mentioned in the report have been acquired by using proven research assumptions and methodologies. Hence, this research study serves as an important depository of the information for every market landscape. The report is segmented on the basis of types, end-users, applications, and regional markets. Some of the key players in the study are AlloCure, Inc, Antria, Inc., Celgene Corporation, Cellleris SA, Corestem, Inc., Cytori Therapeutics, LLC, Intrexon, Inc., Mesoblast Ltd., Pluristem Therapeutics, Inc., Tissue Genesis, Inc. etc.
Market Insights:
The Adipose Tissue-derived Stem Cell Therapy Market is growing due to increasing use of regenerative medicine in disease treatment and increasing private and public funding for stem cell therapy. However, high cost associated with stem cell processing hampers growth of this market.
An Overview of the Impact of COVID-19 on this Market:
Due to the pandemic, we have included a special section on the Impact of COVID 19 on the Adipose Tissue Derived Stem Cell Therapy Market which would mention How the Covid-19 is Affecting the Adipose Tissue Derived Stem Cell Therapy Industry, Market Trends and Potential Opportunities in the COVID-19 Landscape, Covid-19 Impact on Key Regions and Proposal for Adipose Tissue Derived Stem Cell Therapy Players to fight Covid-19 Impact.
Adipose Tissue Derived Stem Cell Therapy Market: Regional analysis includes:
The Adipose Tissue Derived Stem Cell Therapy Market segments and Market Data Break Down are illuminated below:By Cell Type (Autologous Stem Cells, Allogeneic Stem Cells);
Product (Cell Line, Culture Media);
Disease (Cancer, Obesity, Wounds and Injuries, Musculoskeletal Diseases, Cardiovascular Diseases, Others);
End User (Hospitals and Trauma Centers, Cell banks and Tissue Banks, Research Laboratories and Academic Institutes, Others)
The study conducts SWOT analysis to evaluate strengths and weaknesses of the key players in the Adipose Tissue Derived Stem Cell Therapy market. Further, the report conducts an intricate examination of drivers and restraints operating in the market. The report also evaluates the trends observed in the parent market, along with the macro-economic indicators, prevailing factors, and market appeal with regard to different segments. The report predicts the influence of different industry aspects on the Adipose Tissue Derived Stem Cell Therapy market segments and regions.
This report strategically examines the micro-markets and sheds light on the impact of technology upgrades on the performance of the Adipose Tissue Derived Stem Cell Therapy market.
Are you a Start-up willing to make it Big in the Business? Grab an Exclusive PDF Brochure @ https://www.theinsightpartners.com/buy/TIPRE00014843/
Note: Access insightful study with over 150+ pages, list of tables & figures, profiling 10+ companies.
Thanks for reading this article; you can also customize this report to get select chapters or region-wise coverage with regions such as Asia, North America, and Europe.
About Us:
The Insight Partners is a one stop industry research provider of actionable intelligence. We help our clients in getting solutions to their research requirements through our syndicated and consulting research services. We are committed to provide highest quality research and consulting services to our customers. We help our clients understand the key market trends, identify opportunities, and make informed decisions with our market research offerings at an affordable cost.
We understand syndicated reports may not meet precise research requirements of all our clients. We offer our clients multiple ways to customize research as per their specific needs and budget
Contact Us:
The Insight Partners,
Phone: +1-646-491-9876
Email: [emailprotected]
Covid-19: Has Karnataka achieved herd immunity? Simultaneous triple tests will give true picture – Deccan Herald
By daniellenierenberg
At least six international studies have reported T cell reactivity against SARS-CoV-2 in 20% to 50% of people with no known exposure to the virus. Experts suggest doing three tests simultaneously: RTPCR, antibody test, and a T-cell assay, which will give a picture to policymakers if the State or the country has achieved herd immunity against SARS-CoV-2.
A type of white blood cell, T cells are part of the immune system and develop from stem cells in the bone marrow. They help protect the body from infection. Also called T lymphocyte and thymocyte.
For latest updates on coronavirus outbreak, click here
T-cell mediated immunity can be acquired due to previous exposure to other beta coronaviruses which cause the common cold. Knowing a threshold for herd immunity can allow the government to focus on that section of the population who do not have immunity. But they also caution that very few basic science labs in the country like NIMHANS, IISc, or the National Centre for Biological Sciences can do T cell assays in their labs as it is cumbersome and expensive.
Assessing how much of the population has IgG (non-neutralising antibodies), the current active Covid case burden, and T-cell induced protection, simultaneously will give a clear picture of the health of the population, with respect to Covid-19.
"Currently, we do not know when the pandemic will end. If we know how much of the population is immune, it is easier to decide how much of our resources should be allocated to fight Covid, the economy, etc. If done at the state or the sub-state level, we can understand which region needs more resources," said Dr Giridhar Babu, epidemiologist, and member of the State Covid-19 technical advisory committee (TAC).
In the serosurvey undertaken in Karnataka whose results are yet to be announced, with samples from all the eight zones of Bengaluru included, unlike the serosurveys of Delhi, Mumbai, Pune, and Punjab, Karnataka are supposed to have done all three: RTPCR, antibody, and antigen tests simultaneously in the statewide survey.
Coronavirus India update: State-wise total number of confirmed cases, deaths on October 23
Dr V Ravi, Senior Professor and Head, Neurovirology, NIMHANS, and member of State Covid-19 TAC, told DH, "T cell response assay is very cumbersome and complicated to do. Peripheral blood has to be drawn, lymphocytes separated, culture them, stimulate them with antigens, and then take a readout. It is expensive and resource-intensive. Basic science institutes like IISc, NCBS, National Institute of Immunology, ISER, some of them may have the capacity for doing it, but not the medical college laboratories."
Read the original here:
Covid-19: Has Karnataka achieved herd immunity? Simultaneous triple tests will give true picture - Deccan Herald
VGLL4 promotes osteoblast differentiation by antagonizing TEADs-inhibited Runx2 transcription – Science Advances
By daniellenierenberg
INTRODUCTION
Cleidocranial dysplasia (CCD) is a hereditary disease characterized by incomplete closure of the fontanelle, abnormal clavicle, short stature, and skeletal dysplasia. It has been reported that there are multiple Runx2 mutations in human CCD syndrome (1, 2). Mature osteoblasts defect and bone mineralization disorders were observed in Runx2-deficient mice. The Runx2-heterozygous mice show similar phenotypes to the CCD syndrome (24). RUNX2 triggers mesenchymal stem cells (MSCs) to differentiate into osteoblasts (3, 5). According to the skeletal pathology studies in humans and mice, it is important to accurately regulate Runx2 activity during bone formation and bone remodeling (6, 7). However, the molecular regulation of Runx2 activity remains to be further studied.
The evolutionarily conserved Hippo pathway is essential for tissue growth, organ size control, and cancer development (811). Numerous evidences revealed the important roles of Hippo components in regulating bone development and bone remodeling. YAP, the essential downstream effector of Hippo pathway, regulates multiple steps of chondrocyte differentiation during skeletal development and bone repair (12). YAP also promotes osteogenesis and suppresses adipogenic differentiation by regulating -catenin signaling (13). VGLL4, a member of the Vestigial-like family, acts as a transcriptional repressor of YAP-TEADs in the Hippo pathway (14). Our previous work found that VGLL4 suppressed lung cancer and gastric cancer progression by directly competing with YAP to bind TEADs through its two TDU (Tondu) domains (9, 15). We also found that VGLL4 played a critical role in heart valve development by regulating heart valve remodeling, maturation, and homeostasis (16). Moreover, our team found that VGLL4 regulated muscle regeneration in YAP-dependent manner at the proliferation stage and YAP-independent manner at the differentiation stage (17). Our previous studies suggest that VGLL4 plays an important role to regulate cell differentiation in multiple organs. However, the function of VGLL4 in skeletal formation and bone remodeling is unknown.
Here, we reveal the function of VGLL4 in osteoblast differentiation and bone development. Our in vivo data show that global knockout of Vgll4 results in a wide variety of skeletal defects similar to Runx2 heterozygote mice. Our in vitro studies reveal that VGLL4 deficiency strongly inhibits osteoblast differentiation. We further demonstrate that TEADs can bind to RUNX2, thereby inhibiting the transcriptional activity of RUNX2 independent of YAP binding. VGLL4 could relieve the inhibitory function of TEADs by breaking its interaction with RUNX2. In addition, deletion of VGLL4 in MSCs shows similar skeletal defects with the global Vgll4-deficient mice. Further studies show that knocking down TEADs or overexpressing RUNX2 in VGLL4-deficient osteoblasts reverses the inhibition of osteoblast differentiation.
To study the function of VGLL4 in bone, we first measured -galactosidase activity in Vgll4LacZ/+ mice (16). -Galactosidase activity was enriched in trabecular bones, cortical bones, cranial suture, and calvaria cultures (fig. S1, A to C). Furthermore, in bone marrow MSCs (BMSCs), Vgll4LacZ/+ mice displayed -galactosidase activity in osteoblast-like cells (fig. S1D). During osteoblast differentiation in vitro, osteoblast marker genes such as alkaline phosphatase (Alp) and Sp7 transcription factor (Osterix) were increased and peaked at day 7. Vgll4 showed similar trend in this process at both mRNA and protein levels (Fig. 1A and fig. S1, E and F). To further clarify the important role of VGLL4 in bone development, we used a Vgll4Vgll4-eGFP/+ reporter mouse line in which VGLL4enhanced green fluorescent protein (eGFP) fusion protein expression is under the control of the endogenous VGLL4 promoter, and GFP staining reflects VGLL4 expression pattern in skeletal tissues (16). GFP staining was performed at embryonic day 18.5, week 1, week 2, and week 4 stages. The results indicated that the VGLL4 expression level was increased during bone development (fig. S1G). In addition, VGLL4 was enriched in trabecular bones, cortical bones, chondrocytes, cranial suture, and calvaria (fig. S1, G and K to M). We then observed the colocalization of VGLL4-eGFP with markers of MSCs (CD105), osteoblasts [osteocalcin (OCN)], and chondrocytes [collagen 2a1 (Col2a1)] in long bone and calvaria (fig. S1, H to M). Next, we analyzed VGLL4 expression pattern during osteoblast development in vivo (fig. S1N), which was similar to Alp and Osterix expression patterns in mouse BMSCs of different ages. Together, both in vivo and in vitro data suggest that VGLL4 may play roles in osteoblast differentiation and bone development.
(A) Immunoblotting showed the expression profile of VGLL4 during osteoblast differentiation in C57BL/6J mouse BMSCs. Samples were collected at 0, 1, 4, 7, and 10 days after differentiation. (B) Skeletons of WT and Vgll4/ mice at postnatal day 1 (P1) were double-stained by Alizarin red/Alcian blue (n = 5). Scale bar, 5 mm. (C) Quantification of body length in (B). (D) Skull preparations from control and Vgll4/ mouse newborns were double-stained with Alizarin red and Alcian blue at P1. -QCT images of skulls were taken from control and Vgll4/ mice at P4. Scale bar, 5 mm. (E) Quantification of skull defect area in (D). (F) Clavicle preparations from control and Vgll4/ mouse newborns were double-stained with Alizarin red and Alcian blue at P1 and quantification of clavicle length. Scale bar, 5 mm. (G) Alp staining and Alizarin red staining of calvarial cells from WT and Vgll4/ mice after cultured in osteogenic medium. Scale bar, 3 mm. (H) Relative mRNA levels were quantified by RT-PCR. (I) Hematoxylin and eosin (H&E) staining of femur from WT and Vgll4/ mice at embryonic day 16.5. Scale bar, 125 m. (J) In situ hybridization for Col11 immunostaining. Scale bar, 125 m. In (C), (E), (F), and (H), data were presented as means SEM; *P < 0.05, **P < 0.01, and ***P < 0.001, ns, no significance; unpaired Students t test. Photo credit: Jinlong Suo, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai.
To investigate the potential function of VGLL4 in bone, we next analyzed the phenotype of Vgll4 knockout (Vgll4/) mice (16). The newborn Vgll4 knockout mice were significantly smaller and underweight compared with their control littermates (Fig. 1, B and C, and fig. S2, A and B). In particular, the membranous ossification of the skull was impaired in Vgll4/ newborns compared with the control littermates (Fig. 1, D and E). Furthermore, Vgll4 knockout mice developed a marked dwarfism phenotype with short legs and short clavicles (Fig. 1, C and F). To assess the role of VGLL4 in osteoblast differentiation, calvarial cells from Vgll4/ mice and wild-type (WT) mice were cultured in osteogenic medium. The activity of Alp in the Vgll4 deletion group was significantly reduced at the seventh day of differentiation (Fig. 1G, top) and was markedly weakened over a 14-day culture period as revealed by Alizarin red S staining (Fig. 1G, bottom). The declined osteogenesis in Vgll4 knockout cells was confirmed by the decreased expression of a series of osteogenic marker genes (Fig. 1H), including Alp, Osterix, and collagen type1 1 (Col11). In addition, in Vgll4/ mice, bone development was severely impaired with remarkable decrease in bone length and almost a complete loss of bone ossification (Fig. 1I). Consistently, immunohistochemical analysis of bone tissue sections from embryos at embryonic day 14.5 further confirmed the defects of bone formation and impaired osteoblast differentiation in Vgll4/ mice (Fig. 1J). Together, our study suggests that VGLL4 is likely to regulate MSC fate by enhancing osteoblast differentiation.
Given that the smaller size of mice is often caused by dysplasia, we also paid attention to the development of cartilage after Vgll4 deletion. As we expected, cartilage development was delayed in Vgll4-deficient mice determined by Safranin O (SO) staining (fig. S2C). Immunohistochemical analysis of collagen X (Col X) further confirmed the delay of cartilage development in Vgll4/ mice (fig. S2D). However, additional experiments would be required to determine the regulatory mechanism behind the observed chondrodysplasia. Although dwarfism was observed and trabecular bones were significantly reduced in the adult Vgll4/ mice, no significant cartilage disorder was observed by SO staining (fig. S2E). In adults, bone is undergoing continuous bone remodeling, which involves bone formation by osteoblasts and bone resorption by osteoclasts. We speculated that Vgll4 deletion might lead to decreased osteoclast activity. To distinguish this possibility, we performed histological analysis by tartrate-resistant acid phosphatase (TRAP) staining to detect osteoclast activity. The results showed that osteoclast activity was comparable between Vgll4/ mice and their control littermates (fig. S2F). Together, our results suggest that the phenotypes observed in Vgll4/ mice are mainly due to the defect of osteoblast activity.
To further explore the role of Vgll4 in the commitment of MSCs to the fate of osteoblasts, we generated Prx1-cre; Vgll4floxp/floxp mice (hereafter Vgll4prx1 mice) (fig. S3A). Prx1-Cre activity is mainly restricted to limbs and craniofacial mesenchyme cells (18, 19). Western blot analysis confirmed that VGLL4 was knocked out in BMSCs (fig. S3B). Vgll4prx1 mice survived normally after birth and had normal fertility. However, Vgll4prx1 mice exhibited marked dwarfism that was independent of sex (Fig. 2, A and B, and fig. S3C), which was similar to the phenotype of Vgll4/ mice. In particular, the membranous ossification of the skull and clavicle was also impaired in Vgll4prx1 mouse newborns compared with control littermates (Fig. 2, C to E). To assess the role of VGLL4 in osteoblast differentiation, BMSCs from Vgll4prx1 and Vgll4fl/fl mice were cultured in osteogenic medium. Markedly decreased ALP activity and mineralization were observed in Vgll4prx1 mice (Fig. 2, F and G). The declined osteogenesis in Vgll4 knockout osteoblasts was also proved by the decreased expression of a series of osteogenic marker genes, including Alp, Osterix, and Col1a1 (Fig. 2H). Normal Runx2 expression was detected in Vgll4prx1 mice (Fig. 2H). To further verify the role of VGLL4 in osteoblast differentiation, BMSCs from Vgll4fl/fl mice were infected with GFP and Cre recombinase (Cre) lentivirus and then cultured in osteogenic medium. Vgll4fl/fl BMSCs infected with Cre lentivirus showed markedly decreased ALP activity and mineralization (fig. S4A). Reduced VGLL4 expression by Cre lentivirus was confirmed by reverse transcription polymerase chain reaction (RT-PCR) (fig. S4B). The declined osteogenesis was also proved by the decreased expression of a series of osteogenic marker genes, including Alp, Osterix, and Col1a1 (fig. S4B).
(A) Skeletons of Vgll4fl/fl and Vgll4prx1 mice at P1 were double-stained by Alizarin red and Alcian blue. Scale bar, 5 mm. (B) Quantification of body length in (A) (n = 6). (C) Skull and clavicle preparation from Vgll4fl/fl and Vgll4prx1 mouse newborns were double-stained with Alizarin red and Alcian blue at P1. Scale bars, 5 mm. (D) Quantification of the defect area of skulls in (C) (n = 6). (E) Quantification of clavicle length in (C) (n = 6). (F) Alp staining and Alizarin red staining of BMSCs from Vgll4fl/fl and Vgll4prx1 mice after cultured in osteogenic medium. Scale bars, 3 mm. (G) Alp activity was measured by phosphatase substrate assay. (H) Relative mRNA levels were quantified by RT-PCR. (I) 3D -QCT images of trabecular bone (top) and cortical bone (bottom) of distal femurs. (J to N) -QCT analysis for trabecular bone volume per tissue volume (BV/TV, Tb) (J), trabecular number (Tb.N/mm) (K), trabecular thickness (Tb.Th/mm) (L), trabecular separation (Tb.Sp/mm) (M), and cortical bone thickness (Cor.Th/mm) (N). (O) Representative images of von Kossa staining of 12-week-old Vgll4fl/fl and Vgll4prx1 mice. Scale bar, 500 m. (P) Representative images of calcein and Alizarin red S labeling of proximal tibia. Scale bar, 50 m. (Q) Quantification of MAR. (R and S) ELISA analysis of serum PINP (ng ml1) and CTX-1 (ng ml1) from 10-week-old Vgll4fl/fl and Vgll4prx1 mice (n = 5). In (B), (D), (E), (G), (H), (J) to (N), and (Q) to (S), data were presented as means SEM; *P < 0.05, **P < 0.01, and ***P < 0.001; ns, no significance; unpaired Students t test. Photo credit: Jinlong Suo, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai.
We next performed PCNA (proliferating cell nuclear antigen) staining and MTT assay to detect whether VGLL4 influences cell proliferation during bone development. No significant differences were found after VGLL4 deletion (fig. S5, A to C). We also did not detect significant changes of proliferation-related genes and YAP downstream genes (fig. S5, D and E). We next performed TUNEL (terminal deoxynucleotidyl transferasemediated deoxyuridine triphosphate nick end labeling) staining to detect whether VGLL4 influences cell apoptosis. In addition, no significant differences were found after VGLL4 deletion (fig. S5, F and G).
To further determine the function of VGLL4 in skeletal system, we did micro-quantitative computed tomography (-QCT) analysis to compare the changes in bone-related elements in the long bones of Vgll4prx1 mice and control littermates. We found that the 3-month-old Vgll4prx1 mice showed decreased bone mass per tissue volume (BV/TV) relative to age-matched control littermates (Fig. 2, I and J). Further analysis showed a reduction in trabecular number (Tb.N) of Vgll4prx1 mice compared to control mice (Fig. 2K), which was accompanied by a decrease in trabecular thickness (Tb.Th) and an increase in trabecular separation (Tb.Sp) compared to control mice (Fig. 2, L and M). Vgll4prx1 mice also showed decreased cortical bone thickness (Cor.Th) relative to the Vgll4fl/fl mice (Fig. 2N). The von Kossa staining showed reduced bone mineral deposition in 3-month-old Vgll4prx1 mice (Fig. 2O). The mineral apposition rate (MAR) was also decreased in Vgll4prx1 mice compared with control littermates by fluorescent double labeling of the mineralizing front (Fig. 2, P and Q). Consistent with the decreased bone mass in Vgll4prx1 mice, the enzyme-linked immunosorbent assay (ELISA) assay of N-terminal propeptide of type I procollagen (PINP), a marker of bone formation, revealed a reduced bone formation rate in Vgll4prx1 mice (Fig. 2R). However, the ELISA assay of C-terminal telopeptide of collagen type 1 (CTX-1), a marker of bone resorption, showed that the bone resorption rate of Vgll4prx1 mice did not change significantly (Fig. 2S). Collectively, Vgll4 conditional knockout mice mimicked the main phenotypes of the global Vgll4 knockout mice, further indicating that VGLL4 specifically regulates bone mass by promoting osteoblast differentiation.
To further determine whether the abnormal osteogenesis in Vgll4prx1 mice was caused by a primary defect in osteoblast development, we generated an osteoblast-specific Osx-cre; Vgll4floxp/floxp mice (hereafter Vgll4Osx mice) by crossing Vgll4fl/fl mice with Osx-Cre mice, a line in which Cre expression is primarily restricted to osteoblast precursors (fig. S6A) (6, 20). Vgll4Osx mice survived normally after birth and had normal fertility, but exhibited marked dwarfism in comparison with Osx-Cre mice (fig. S6, B and C), which was similar to the phenotypes of Vgll4/ and Vgll4prx1 mice. In addition, the membranous ossification of the skull and clavicle was also impaired in Vgll4Osx mice compared with control littermates (fig. S6C). -QCT analysis further confirmed the osteogenic phenotype of Vgll4Osx mice (fig. S6, D to J). Hence, the Vgll4Osx mice summarized the defects observed in the Vgll4prx1 mice, thus supporting the conclusion that VGLL4 is necessary for the differentiation and function of committed osteoblast precursors.
We next worked to figure out the mechanism how VGLL4 controls bone mass and osteoblast differentiation. The pygmy and cranial closure disorders in Vgll4/ mice were similar to that of Runx2-heterozygous mice. We therefore examined the potential interaction between VGLL4 and RUNX2. However, coimmunoprecipitation experiments did not show the interaction between VGLL4 and RUNX2 (Fig. 3A). Previous studies showed that VGLL4 could compete with YAP for binding to TEADs (9). The TEAD family contains four highly homologous proteins (8), which is involved in the regulation of myoblast differentiation and muscle regeneration (21). We determined whether the binding of VGLL4 with RUNX2 requires TEADs. Coimmunoprecipitation experiments showed that RUNX2 and TEAD14 had almost equivalent interactions (Fig. 3B). Next, we investigated whether TEADs control the transcriptional activity of Runx2. We used the 6xOSE2-luciferase reporter system that is specifically activated by RUNX2 to verify the role of TEADs (22). We performed dual-luciferase reporter assay with 6xOSE2-luciferase and Renilla in C3H10T1/2 cells, and the results showed that TEAD14 significantly inhibited the activation of 6xOSE2-luciferase induced by RUNX2 (Fig. 3C). Consistently, knockdown of TEADs by small interfering RNAs (siRNAs) markedly enhanced both basic and RUNX2-induced 6xOSE2-luciferase activity (fig. S8A). TEAD family is highly conserved, which consists of an N-terminal TEA domain and a C-terminal YAP-binding domain (YBD) (Fig. 3D) (23). Glutathione S-transferase (GST) pull-down assay revealed the direct interaction between RUNX2 and TEAD4 (Fig. 3E). Moreover, both TEA and YBD domains of TEAD4 could bind to RUNX2 (Fig. 3, F and G).
(A) Coimmunoprecipitation experiments of RUNX2 and VGLL4 in HEK-293T cells. The arrow indicated IgG heavy chain. (B) Coimmunoprecipitation experiments of RUNX2 and TEAD14 in HEK-293T cells. The arrow indicated IgG heavy chain. (C) 6xOSE2-luciferase activity was determined in C3H10T1/2 cells cotransfected with RUNX2 and TEAD14. Data were calculated from three independent replicates. (D) Schematic illustration of the domain organization for TEAD4, TEAD4-Nt, and TEAD4-Ct. (E) GST pull-down (PD) analysis between purified GST-RUNX2 and HIS-SUMO-TEAD4 proteins. (F) GST pull-down analysis between purified GST-RUNX2 and HIS-SUMO-TEAD4-TEA proteins. (G) Lysates from HEK-293T cells with Flag and Flag-RUNX2 expressions were incubated with recombinant GST-TEAD4-YBD protein. GST pull-down assay showed the binding between RUNX2 and TEAD4-YBD. (H) Cells isolated from WT mice were infected with TEAD lentivirus. Osteoblast differentiation was evaluated by Alp staining and Alizarin red staining after culture in osteoblast differentiation medium for 7 days (top) and 14 days (bottom). Data are representative of three independent experiments. Scale bars, 3 mm. (I) Alp activity quantification was measured by phosphatase substrate assay (n = 3). (J) Relative mRNA levels of Alp, Col11, and Osterix were quantified by RT-PCR. (K) Cells isolated from WT mice were infected with TEAD shRNA lentivirus. Osteoblast differentiation was evaluated by Alp staining and Alizarin red staining after culture in osteoblast differentiation medium for 7 days (top) and 14 days (bottom). Data are representative of three independent experiments. Scale bars, 3 mm. (L) Alp activity quantification was measured by phosphatase substrate assay (n = 3). (M) Relative mRNA levels of Runx2, Alp, Col11, and Osterix were quantified by RT-PCR. (N) Relative mRNA levels of Tead1-4 were quantified by RT-PCR. In (C), (I), (J), and (L) to (N), data were presented as means SEM; *P < 0.05, **P < 0.01, and ***P < 0.001; ns, no significance; unpaired Students t test.
To determine whether overexpression of TEAD14 affects osteoblast differentiation, BMSCs from WT mice were infected with TEAD14 lentivirus and then cultured in osteogenic medium. The activities of ALP in TEAD14 overexpression groups were significantly reduced at the seventh day of differentiation [Fig. 3, H (top) and I] and were significantly weakened by Alizarin red S staining over a 14-day culture period (Fig. 3H, bottom). The declined osteogenesis in TEAD14 overexpression cells was confirmed again by the decreased expression of a series of osteogenic marker genes, including Alp, Col11, and Osterix (Fig. 3J). Next, we blocked the total activities of TEAD14 by short hairpin RNA (shRNA) lentiviral infection (Fig. 3N). The activity of Alp in TEAD14 knockdown group was significantly increased [Fig. 3, K (top) and L]. Over a 14-day culture period, osteogenic differentiation was significantly enhanced by Alizarin red S staining (Fig. 3K, bottom). The enhanced osteogenesis in TEAD14 knockdown cells was further confirmed by elevated expression of a series of osteogenic marker genes, including Alp, Col11, and Osterix (Fig. 3M). These results suggest that TEAD14 act as repressors of RUNX2 to inhibit osteoblast differentiation.
To investigate the mechanistic role of VGLL4 in inhibiting osteoblast differentiation, we then verified whether VGLL4 could affect the interaction between TEADs and RUNX2. We found that VGLL4 reduced the interaction between RUNX2 and TEADs (Fig. 4A). To further illustrate the relationship between RUNX2/TEADs/VGLL4, we checked the interaction between RUNX2 and TEADs in the BMSC of Vgll4fl/fl mice treated with GFP or Cre lentivirus. We found that the interaction between RUNX2 and TEADs was enhanced in Cre-treated cells (Fig. 4B). We noticed that there were conserved binding sites of RUNX2 (5-AACCAC-3) and TEAD (5-CATTCC-3) in the promoter regions of Alpi, Osx, and Col1a1, which are three target genes of RUNX2 (17, 24). We performed TEAD4 and RUNX2 chromatin immunoprecipitation (ChIP) assays in BMSCs. The results indicated that both TEAD4 and RUNX2 bound on Alp, Osx, and Col1a1 promoters (fig. S7, A to I). VGLL4 was a transcriptional cofactor, which could not bind DNA directly. We have demonstrated that VGLL4 promoted RUNX2 activity by competing for its binding to TEADs. Consistently, VGLL4 partially blocked TEADs-repressed transcriptional activity of RUNX2 (Fig. 4C). However, overexpression of VGLL4 in TEADs knockdown cells showed no marked change on RUNX2-induced 6xOSE2-luciferase activity compared with TEAD knockdown (fig. S8B). We then asked whether loss of VGLL4-induced disorders of osteoblast differentiation is related to TEADs. We knocked down TEADs by lentiviral infection in Vgll4-deficient BMSCs and then induced these cells for osteogenic differentiation. The differentiation disorders caused by VGLL4 deletion were restored after TEAD knockdown (Fig. 4, D to F). These data supported that VGLL4 released the inhibition of TEADs on RUNX2, thereby promoting osteoblast differentiation.
(A) Coimmunoprecipitation experiments of RUNX2, TEADs, and VGLL4 in HEK-293T cells. The arrow indicated IgG heavy chain. (B) Coimmunoprecipitation experiments of RUNX2 and TEADs in BMSCs cells of Vgll4fl/fl mice treated with GFP and Cre lentivirus. (C) 6xOSE2-luciferase activity was determined in C3H10T1/2 cells cotransfected with RUNX2, TEADs, and VGLL4. (D) Cells isolated from Vgll4fl/fl and Vgll4prx1 mice were infected with GFP and TEAD shRNA lentivirus. Osteoblast differentiation was evaluated by Alp staining and Alizarin red staining after culture in osteoblast differentiation medium for 7 days (top) and 14 days (bottom). Data are representative of three independent experiments. Scale bars, 3 mm. (E) Alp activity quantification was measured by phosphatase substrate assay (n = 3). (F) Relative mRNA levels of Vgll4, Runx2, Alp, Col11, and Osterix were quantified by RT-PCR. In (B), (D), and (E), data were presented as means SEM; *P < 0.05, **P < 0.01, and ***P < 0.001; ns, no significance; unpaired Students t test.
YAP, the key transcription cofactor in the Hippo pathway, has been widely reported in regulating bone development and bone mass (12, 13). VGLL4, a previously identified YAP antagonist, directly competes with YAP for binding to TEADs (9). Therefore, we suspected that the inhibition of RUNX2 transcriptional activity caused by VGLL4 deletion might be dependent on YAP. To this end, we validated the role of YAP by 6xOSE2-luciferase reporter system. The data showed that YAP promoted RUNX2 activity in a dose-dependent manner (Fig. 5A). Moreover, TEAD4 significantly inhibited 6xOSE2-luciferase activity induced by YAP (Fig. 5B). TEAD4Y429H, a mutation that impairs the interaction between TEAD4 and YAP/TAZ (Fig. 5C) (25), did not promote 3xSd-luciferase activity induced by YAP (Fig. 5D). We found that both TEAD and TEAD4Y429H could interact with RUNX2 (Fig. 5E), and both TEAD4 and TEAD4Y429H could inhibit the activity of RUNX2 in a dose-dependent manner (Fig. 5, F and G). Restoring the expression of both TEAD4 and TEAD4Y429H could reverse the increased osteoblast differentiation in TEAD knockdown BMSCs (Fig. 5, H and I). Furthermore, overexpression of TEAD1 could further inhibit osteogenic differentiation of BMSCs after YAP knockdown (Fig. 5J). Together, these data suggest that the inhibition of RUNX2 activity by TEADs is independent of YAP binding.
(A) Effects of YAP on Runx2-activated 6xOSE2-luciferase activity in C3H10T1/2 cells. (B) 6xOSE2-luciferase activity was determined in C3H10T1/2 cells cotransfected with RUNX2, YAP, and TEAD4. (C) Schematic illustration of TEAD4 and TEAD4Y429H mutation. (D) 3xSd-luciferase activity was determined in HEK-293T cells cotransfected with YAP, TEAD4, and TEAD4Y429H. (E) Coimmunoprecipitation experiments of RUNX2, TEAD4, and TEAD4Y429H in HEK-293T cells. The arrow indicated IgG heavy chain. (F) Effects of TEAD4 on RUNX2-activated 6xOSE2-luciferase activity in C3H10T1/2 cells. (G) Effects of TEAD4Y429H on RUNX2-activated 6xOSE2-luciferase activity in C3H10T1/2 cells. (H) Cells isolated from WT mice were infected with GFP or TEAD shRNAs, TEAD4, or TEAD4Y429H lentivirus. Osteoblast differentiation was evaluated by Alp staining and Alizarin red staining after culture in osteoblast differentiation medium for 7 days (top) and 14 days (bottom). Data are representative of three independent experiments. Scale bars, 3 mm. (I) Alp activity quantification was measured by phosphatase substrate assay (n = 3). (J) Relative mRNA levels of Runx2, Alp, Col11, Osterix, Tead1, and Yap were quantified by RT-PCR. In (A), (B), (D), (F), (G), (I), and (J), data were presented as means SEM; *P < 0.05, **P < 0.01, and ***P < 0.001; ns, no significance; unpaired Students t test.
We next examined how VGLL4 breaks the interaction between RUNX2 and TEADs. It has been reported that VGLL4 relies on its own two TDU domains to interact with TEADs (9), and VGLL4 HF4A mutation can disrupt the interaction between VGLL4 and TEADs (15). We hypothesized that VGLL4 competes with RUNX2 for TEAD1 binding depending on its TDU domain. On the basis of these previous studies, we performed coimmunoprecipitation experiments and found that VGLL4 HF4A abolished the interaction between VGLL4 and TEAD1 but did not affect the interaction between TEAD1 and RUNX2 (Fig. 6A). VGLL4 partially rescued the inhibition of RUNX2 transcriptional activity by TEAD1; however, VGLL4 HF4A lost this function (Fig. 6B). We then overexpressed TEAD1 by lentivirus infection in primary calvarial cells and found that the transcriptional level of Alp was significantly inhibited. This inhibition was released by overexpressing VGLL4 but not VGLL4 HF4A (Fig. 6C). To further verify the specific regulation of RUNX2 activity by VGLL4, we performed a coimmunoprecipitation experiment with low and high doses of VGLL4 and VGLL4 HF4A. The results showed that the TEAD1-RUNX2 interaction was gradually repressed along with an increasing dose of VGLL4 but not VGLL4 HF4A (Fig. 6D). Similarly, the inhibition of RUNX2 transcriptional activity by TEAD1 was gradually released with an increasing dose of VGLL4 but not VGLL4 HF4A (Fig. 6E). Super-TDU, a peptide mimicking VGLL4, could also reduce the interaction between purified RUNX2 and TEAD4 proteins (Fig. 6F). Thus, these findings suggest that VGLL4 TDU domain competes with RUNX2 for TEADs binding to release RUNX2 transcriptional activity.
(A) Coimmunoprecipitation experiments of RUNX2, TEAD1, VGLL4, and VGLL4 HF4A in HEK-293T cells. The arrow indicated IgG heavy chain. (B) 6xOSE2-luciferase activity was determined in C3H10T1/2 cells cotransfected with RUNX2, VGLL4, VGLL4 HF4A, and TEAD1 (n = 3). (C) RT-PCR analysis of Alp expression in calvarial cells. Cells isolated from WT mice were infected with GFP, TEAD1, VGLL4, or VGLL4 HF4A lentivirus. (D) Coimmunoprecipitation experiments of RUNX2, TEAD1, and an increasing amount of VGLL4 or VGLL4 HF4A in HEK-293T cells. The arrow indicated IgG heavy chain. (E) 6xOSE2-luciferase activity was determined in C3H10T1/2 cells cotransfected with RUNX2, TEAD1, and an increasing amount of VGLL4 or VGLL4 HF4A. (F) Competitive GST pull-down assay to detect the effect of VGLL4 Super-TDU on the interaction between RUNX2 and TEAD4. (G) Cells isolated from Vgll4fl/fl and Vgll4prx1 mice were infected with GFP and RUNX2 lentivirus. Osteoblast differentiation was evaluated by Alp staining and Alizarin red staining after culture in osteoblast differentiation medium for 7 days (top) and 14 days (bottom). Data are representative of three independent experiments. Scale bars, 3 mm. (H) Alp activity quantification was measured by phosphatase substrate assay (n = 3). (I) Relative mRNA levels of Vgll4, Runx2, Alp, Col11, and Osterix were quantified by RT-PCR. (J) Schematic model of VGLL4/TEADs/RUNX2 in regulating osteogenic differentiation. In (B), (C), (E), (H), and (I), data were presented as means SEM; *P < 0.05, **P < 0.01, and ***P < 0.001; ns, no significance; unpaired Students t test.
Furthermore, we overexpressed RUNX2 by lentivirus infection in Vgll4 knockout BMSCs during osteogenic differentiation, and we found that RUNX2 could significantly restore the osteogenic differentiation disorder caused by Vgll4 deletion (Fig. 6, G to I). Together, these data suggest a genetic interaction between VGLL4/TEADs/RUNX2 and provide evidences that RUNX2 overexpression rescues osteogenic differentiation disorders caused by VGLL4 deletion.
Collectively, our study demonstrates the important roles of VGLL4 in osteoblast differentiation, bone development, and bone homeostasis. In the early stage of osteoblast differentiation, TEADs interact with RUNX2 to inhibit its transcriptional activity in a YAP bindingindependent manner. During differentiation progress, VGLL4 expression gradually increases to dissociate the interaction between TEADs and RUNX2, thereby releasing the inhibition of RUNX2 transcriptional activity by TEADs and promoting osteoblasts differentiation (Fig. 6J).
Accumulating evidences have suggested that the Hippo pathway plays key roles in regulating organ size and tissue homeostasis (8, 10). However, the transcription factors TEADs have not been reported in skeletal development and bone-related diseases. VGLL4 functions as a new tumor suppressor gene, which has been reported to negatively regulate the YAP-TEADs transcriptional complex. Our previous studies show that VGLL4 plays important roles in many tissue homeostasis and organ development, such as heart and muscle (16, 17). In this study, we provide evidences to show that VGLL4 can break TEADs-mediated transcriptional inhibition of RUNX2 to promote osteoblast differentiation and bone development independent of YAP binding.
Overall, our studies establish the Vgll4-specific knockout mouse model in the skeletal system. We show that VGLL4 deletion in MSCs leads to abnormal osteogenic differentiation with delayed skull closure and reduced bone mass. Our data also reveal that VGLL4 deletion leads to chondrodysplasia. Recent researches identified that chondrocytes have the ability to transdifferentiate into osteoblasts (2628), suggesting the possibility that loss of VGLL4 might reduce or delay the pool of chondrocytes that differentiate into osteoblasts. We identify that VGLL4 regulates the RUNX2-TEADs transcriptional complex to control osteoblast differentiation and bone development. TEADs can bind to RUNX2 and inhibit its transcriptional activity in a YAP bindingindependent manner. Recent studies pointed out that reciprocal stabilization of ABL and TAZ regulates osteoblastogenesis through transcription factor RUNX2 (29); however, we found that TEAD4-Y429H, a mutation at the binding site of TAZ and TEAD (25, 30, 31), can still significantly inhibit the activity of RUNX2. Therefore, we consider that the way TEAD regulates RUNX2 may not depend on TAZ regulation. Further research found that VGLL4, but not VGLL4 HF4A, can alleviate the inhibition by influencing the binding between RUNX2 and TEADs. It is possible that VGLL4 might influence the structure organization of the RUNX2-TEAD complex to some extent. Structural information may be required to answer this question and may provide more insights into the mechanism of VGLL4 in osteogenic differentiation.
Previous studies showed that mutations in RUNX2 cause CCD and Runx2+/ mice show a CCD-like phenotype. However, many patients with CCD do not have RUNX2 mutations. Our study may provide clues to the pathogenesis of these patients. A significant reduction of bone mass was observed in the adult mice, suggesting that VGLL4 and TEADs might be drug targets for treatment of cranial closure disorders and osteoporosis. In addition, further investigation of the clinical correlation of VGLL4 and cleidocranial dysplasia in a larger cohort will provide more accurate information for bone research. Our work also provides clues to researchers who are studying the roles of VGLL4 in tumors or other diseases. RUNX2 is highly expressed in breast and prostate cancer cells. RUNX2 contributes to tumor growth in bone and the accompanying osteolytic diseases (32). The regulation of RUNX2 transcriptional activity by TEADs and VGLL4 is likely to play essential roles in tumor, bone metastasis, and osteolytic diseases. Our work may provide clues to researchers who are studying the role of VGLL4 in bone tumors.
We demonstrate that TEADs are involved in regulating osteoblast differentiation by overexpressing and knocking down the TEAD family in vitro. However, the exact roles of TEADs in vivo need to be further confirmed by generation of TEAD1/2/3/4 conditional knockout mice. In the follow-up work, we will continue to study the mechanism of TEADs in skeletal development and bone diseases. Overall, although there are still some shortcomings, our work has greatly contributed to understand the TEADs regulation of RUNX2 activity.
Our work defines the role of VGLL4 in regulating osteoblast differentiation and bone development, and identifies that TEADs function as repressors of RUNX2 to inhibit osteoblast differentiation. We propose a model that VGLL4 dissociates the combination between TEADs and RUNX2. It is not clear whether VGLL4 is also involved in regulating other transcription factors or signaling pathways in the process of osteoblast differentiation and bone development. If that is the case, how to achieve cooperation will be another interesting issue worthy of further study.
Vgll4Lacz/+ mice, Vgll4 knockout (Vgll4/) mice, Vgll4Vgll4-eGFP/+ mice, and Vgll4 conditional knockout (Vgll4fl/fl) mice were generated as previously described (16, 17), and Vgll4fl/fl mice were crossed with the Prx1-Cre and Osx-Cre strain to generate Vgll4prx1 and Vgll4Osx mice. All mice analyzed were maintained on the C57BL/6 background. All mice were monitored in a specific pathogenfree environment and treated in strict accordance with protocols approved by the Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.
The following antibodies were used: anti-Osterix antibody (1:1000; Santa Cruz Biotechnology, SC133871), anti-RUNX2 antibodies (1:1000; Santa Cruz Biotechnology, SC-390351 and SC-10758), anti-Flag antibody (1:5000; Sigma-Aldrich, F-3165), anti-HA (hemagglutinin) antibody (1:2000; Santa Cruz Biotechnology, SC-7392), anti-HA antibody (1:1000; Sangon Biotech, D110004), anti-MYC antibody (1:1000; ABclonal Technology, AE010), anti-PCNA antibody (1:1000; Santa Cruz Biotechnology, SC-56), rabbit immunoglobulin G (IgG) (Santa Cruz Biotechnology, SC-2027), mouse IgG (Sigma-Aldrich, I5381), anti-VGLL4 antibody (1:1000; ABclonal, A18248), anti-TEAD1 antibody (1:1000; ABclonal, A6768), anti-TEAD2 antibody (1:1000; ABclonal, A15594), anti-TEAD3 antibody (1:1000; ABclonal, A7454), anti-TEAD4 antibody (1:1000; Abcam, ab58310), and antipan-TEAD (1:1000; Cell Signaling Technology, 13295).
Cells were cultured at 37C in humidified incubators containing an atmosphere of 5% CO2. Human embryonic kidney (HEK)293T cells were maintained in Dulbeccos Modified Eagle Medium (DMEM) (Corning, Corning, NY) supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin (Gibco) solution. C3H10T1/2 cells were maintained in -minimum essential medium (-MEM) (Corning, Corning, NY) supplemented with 10% FBS and 1% penicillin/streptomycin (Gibco) solution. To induce differentiation of BMSC into osteoblasts, cells were cultured in -MEM containing 10% FBS, l-ascorbic acid (50 g/ml), and -glycerophosphate (1080 mg/ml). The osteoblast differentiation level assay was performed following a previously published method (33). To quantitate Alp activity, cells incubated with Alamar Blue to calculate cell numbers and then incubated with phosphatase substrate (Sigma-Aldrich, St. Louis, MO) dissolved in 6.5 mM Na2CO3, 18.5 mM NaHCO3, and 2 mM MgCl2 after washing by phosphate-buffered saline (PBS). Alp activity was then read with a luminometer (Envision). Bone nodule formation was stained with Alizarin red S solution (1 mg/ml; pH 5.5) after 14 days of induction.
We collected femurs and tibias from mice and flushed out the bone marrow cells with 10% FBS in PBS. All nuclear cells were seeded (2 106 cells per dish) in 100-mm culture dishes (Corning) and incubated at 37C under 5% CO2 conditions. After 48 hours, nonadherent cells were washed by PBS and adherent cells were cultured in -MEM (Corning, Corning, NY) supplemented with 10% FBS and 1% penicillin/streptomycin (Gibco) solution for an additional 5 days. Mouse BMSCs in passage one were used in this study.
Total RNA was isolated from cells with TRIzol reagent (T9424, Sigma-Aldrich), and first-strand complementary DNA (cDNA) was synthesized from 0.5 g of total RNA using the PrimeScript RT Reagent Kit (PR037A, TaKaRa). The real-time RT-PCR was performed with the Bio-Rad CFX96 System. Gene expression analysis from RT-PCR was quantified relative to Hprt.
C3H10T1/2 cells were seeded overnight at 1 105 cells per well into a 12-well plate and transfected by PEI (polyethylenimine linear) with a luciferase reporter plasmid along with various expression constructs, as indicated. All wells were supplemented with control empty expression vector plasmids to keep the total amount of DNA constant. At 36 to 48 hours after transfection, the cells were harvested and subjected to dual-luciferase reporter assays according to the manufacturers protocol (Promega).
293T cells were seeded at 1 107 cells per 10-cm dish and cultured overnight. At 36 to 48 hours after transfection with PEI, cells were harvested and washed with cold PBS following experimental treatments. Then, cells were lysed with EBC buffer [50 mM tris (pH 7.5), 120 mM NaCl, and 0.5% NP-40] containing protease inhibitor cocktail (1:100; MedChem Express, HY-K0010). After ultrasonication, lysates were subjected to immunoprecipitation with anti-Flag antibodies (M2, Sigma-Aldrich) at 4C overnight, followed by washing in lysis buffer, SDSpolyacrylamide gel electrophoresis (PAGE), and immunoblotting with the indicated antibody.
RUNX2 and TEAD4-YBD were cloned into pGEX-4T-1-GST vector and expressed in Escherichia coli BL21 (DE3) cells. TEAD4 and TEAD4-TEA were cloned into HT-pET-28a-HIS-SUMO vector and expressed in E. coli BL21 (DE3) cells. The two TDU domains of VGLL4 were cloned into HT-pET-28a-MBP vector and expressed in E. coli BL21 (DE3) cells. VGLL4 Super-TDU was designed as previously described (15). GST, HIS-SUMO, and MBP-fused proteins were purified by affinity chromatography as previously described (17). The input and output samples were loaded to SDS-PAGE and detected by Western blotting.
CalceinAlizarin red S labeling measuring bone formation rate was performed as previously described (33).
Preparation of skeletal tissue and -QCT analysis were performed as previously described (34). The mouse femurs isolated from age- and sex-matched mice were skinned and fixed in 70% ethanol. Scanning was performed with the -QCT SkyScan 1176 System (Bruker Biospin). The mouse femurs were scanned at a 9-m resolution for quantitative analysis. Three-dimensional (3D) images were reconstructed using a fixed threshold.
ChIP experiments were carried out in BMSCs according to a standard protocol. The cell lysate was sonicated for 20 min (30 s on, 30 s off), and chromatin was divided into fragments ranging mainly from 200 to 500 base pairs in length. Immunoprecipitation was then performed using antibodies against TEAD4 (Abcam, ab58310), RUNX2 (Santa Cruz Biotechnology, SC-10758), and normal IgG. The DNA immunoprecipitated by the antibodies was detected by RT-PCR. The primers used were as follows: Alp-OSE2-ChIP-qPCR-F (5-GTCTCCTGCCTGTGTTTCCACAGTG-3), Alp-OSE2-ChIP-qPCR-R (5-GAAGACGCCTGCTCTGTGGACTAGAG-3), Alp-TBS-ChIP-qPCR-F (5-CCTTGCATGTAAATGGTGGACATGG-3), Alp-TBS-ChIP-qPCR-R (5-TATCATAGTCACTGAGCACTCTCTTGCG-3), Osx-OSE2-ChIP-qPCR-F (5-TTAACTGCCAAGCCATCGCTCAAG-3), Osx-OSE2-ChIP-qPCR-R (5-CCTCTATGTGTGTATGTGTGTTTACCAAACATC-3), Osx-TBS-ChIP-qPCR-F (5-ATGCCAAGAGATCCCTCATTAGGGAC-3), Osx-TBS-ChIP-qPCR-R (5-AGCTTGGTGAGCACAGCAAAGACAC-3), Col1a1-TBS/OSE2-Chip-qPCR-F (5-CTCAGCCTCAGAGCTGTTATTTATTAGAAAGG-3), and Col1a1-TBS/OSE2-Chip-qPCR-R (5-TTAATCTGATTAGAACCTATCAGCTAAGCAGATG-3). TBS indicated TEAD binding sites.
Mouse TEAD1, TEAD2, TEAD3, and TEAD4 siRNAs and the control siRNA were synthesized from Shanghai Gene Pharma Co. Ltd., Shanghai, China. siRNA oligonucleotides were transfected in C3H10T1/2 by Lipofectamine RNAiMAX (Invitrogen) following the manufacturers instructions. Two pairs of siRNAs were used to perform experiments.
Hematoxylin and eosin stain and immunohistochemistry were performed as previously described (7). Tissue sections were used for TRAP staining according to the standard protocol. Tissues were fixed in 4% paraformaldehyde for 48 hours and incubated in 15% DEPC (diethyl pyrocarbonate)EDTA (pH 7.8) for decalcification. Then, specimens were embedded in paraffin and sectioned at 7 m. Immunofluorescence was performed as previously described (33). Sections were blocked in PBS with 10% horse serum and 0.1% Triton for 1 hour and then stained overnight with anti-PCNA antibody (SC-56). Donkey anti-rabbit Alexa Fluor 488 (1:1000; Molecular Probes, A21206) was used as secondary antibodies. DAPI (4,6-diamidino-2-phenylindole) (Sigma-Aldrich, D8417) was used for counterstaining. Slides were mounted with anti-fluorescence mounting medium (Dako, S3023), and images were acquired with a Leica SP5 and SP8 confocal microscope. For embryonic mice, 5-mm tissue sections were used for immunohistochemistry staining, DIG-labeled in situ hybridization (Roche), and immunohistochemical staining (Dako).
TUNEL staining for apoptosis testing was performed as provided by Promega (G3250).
MTT assay for cell viability was performed as provided by Thermo Fisher Scientific.
We determined serum concentrations of PINP using the Mouse PINP EIA Kit (YX-160930M) according to the instructions provided. In addition, we determined serum concentrations of CTX-1 using the Mouse CTX-1 EIA Kit (YX-032033M) according to the instructions provided.
Tissue sections were used for SO staining according to the standard protocol. After paraffin sections were dewaxed into water, they were acidified with 1% acetic acid for 10 s and then fast green for 2 min, acidified with 1% acetic acid for 10 s, stained with SO for 3 min and 95% ethanol for 5 s, and dried and sealed with neutral glue.
Statistical analysis was performed by unpaired, two-tailed Students t test for comparison between two groups using GraphPad Prism Software. A P value of less than 0.05 was considered statistically significant.
Acknowledgments: We thank A. McMahon (Harvard University, Boston, MA) for providing the Prx1-Cre mouse line. We thank the cell biology core facility and the animal core facility of Shanghai Institute of Biochemistry and Cell Biology for assistance. Funding: This work was supported by the National Natural Science Foundation of China (nos. 81725010, 31625017, 81672119, and 31530043), National Key Research and Development Program of China (2017YFA0103601 and 2019YFA0802001), Strategic Priority Research Program of Chinese Academy of Sciences (XDB19000000), Shanghai Leading Talents Program, Science and Technology Commission of Shanghai Municipality (19ZR1466300), and Youth Innovation Promotion Association CAS (2018004). Author contributions: Z.W., L.Z., and W.Z. conceived and supervised the study. J.S. conceived and designed the study, performed the experiments, analyzed the data, and wrote the manuscript. X.F. made the constructs, performed the in vitro pull-down assay and ChIP experiments, analyzed the data, and revised the manuscript. L.Z. and Z.W. provided genetic strains of mice. J.S. and Z.W. bred and analyzed Vgll4/ mice. J.L. and J.W. cultured the cells and made the constructs. W.Z., L.Z., X.F., and Z.W. edited the manuscript. Competing interests: The authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.
Continued here:
VGLL4 promotes osteoblast differentiation by antagonizing TEADs-inhibited Runx2 transcription - Science Advances