Page 34«..1020..33343536..40..»

Human Skin Cells Turned Into Healthy Heart Muscle

By Sykes24Tracey

Scientists on Wednesday reported that they have for the first time taken skin cells from heart attacks patients and turned them into healthy heart tissue that could hopefully be used to one day repair damaged heart muscle.

The healthy, beating heart tissue was grown successfully in the lab from human-induced pluripotent stem cells (hiPSCs), and while scientists said they were not safe enough to put back into human patients, they appeared to work well with other cells when implanted into rats. HiPSCs are a recently discovered source far less controversial than use of embryonic stem cells. And, because the transplanted hiPSCs come from the individual, it could resolve the problems seen with tissue and organ rejection.

While the technique has shown promise in rats, the scientists say there are numerous obstacles to overcome and it could take up to ten years or longer before clinical trials could be available for humans. Even so, it is a significant advance in the quest for replacement cell therapy for heart failure patients.

More people are surviving following a heart attack than ever before and therefore the number of people living with a damaged heart and heart failure is increasing, Nicholas Mills, a consultant cardiologist at Edinburgh University, told The Guardian. Unfortunately, the body has only very limited capacity to repair the heart following a heart attack. There is therefore an urgent need to develop effective and safe treatments to regenerate the heart.

Recent research has shown that hiPSCs could be derived from young and healthy people and are capable of transforming into heart cells. However, researchers have not been able to obtain those cells from elderly and diseased patients. And until now, researchers have not been able to show that heart cells created from hiPSCs could integrate with existing heart tissue.

What is new and exciting about our research is that we have shown that its possible to take skin cells from an elderly patient with advanced heart failure and end up with his own beating cells in a laboratory dish that are healthy and young the equivalent to the stage of his heart cells when he was just born, said lead researcher Professor Lior Gepstein, of Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Technion-Israel Institute of Technology and Rambam Medical Center in Haifa, Israel.

For their study, published in the European Heart Journal, Limor Zwi-Dantsis, a PhD student in the Sohnis Research Laboratory, Gepstein and colleagues took skin cells from two male heart failure patients (ages 51 and 61) and reprogrammed them with three genes (Sox2, Klf4 and Oct4), followed by a small molecule (valproic acid) to the cell nucleus.

The team also used an alternative strategy that involved a virus that delivered reprogramming information to the cell nucleus but which was capable of being removed afterward to avoid insertional oncogenesis.

Using these methods, the hiPSCs were able to differentiate to become cardiomyocytes (heart muscle cells) just as effectively as hiPSCs that had been developed from healthy, young volunteers. The researchers were then able to make cardiomyocytes develop into heart muscle tissue, which they cultured together with pre-existing cardiac tissue. The tissues were beating together within 48 hours, said the researchers.

The researchers transplanted the new tissue into the hearts of healthy rats and found that the grafted tissue started to establish connections with the cells in the host tissue.

Read more:
Human Skin Cells Turned Into Healthy Heart Muscle

To Read More: Human Skin Cells Turned Into Healthy Heart Muscle
categoriaSkin Stem Cells commentoComments Off on Human Skin Cells Turned Into Healthy Heart Muscle | dataMay 24th, 2012
Read All

Scientists convert skin cells into full functioning heart cells

By Sykes24Tracey

In the first procedure of its kind, skin cells taken from patients suffering from heart failure were reprogrammed and changed into heart muscle cells. Not only were the transformed cells healthy, but they were also transplanted into the hearts of rats and were able to integrate with the existing heart tissue.

Published in the European Heart Journal, the research examined the use of human-induced pluripotent stem cells (hiPSCs) to treat damaged hearts. HiPSCs are cells that are derived from other cells in a persons body.

We were able to show [in earlier studies] that you can take these hiPSCS from healthy heart patients and coax them into bonafide heart cells, lead author Lior Gepstein, professor of medicine (cardiology) and physiology at the Technion-Israel Institute of Technology and Rambam Medical Center in Haifa, Israel, told FoxNews.com. The question we asked in this study was whether you can do the same from an elderly individual that had suffered from advance heart failure.

Because hiPSCs are derived from the person in need of the stem cells, they could potentially help to bypass the painful process of rejection that many transplant patients go through. According to Gepstein, if this process is perfected, it could lead to much more localized treatments.

When there is significant damage from a heart attack, or with heart failure, where the heart doesnt pump enough blood into circulation, patients usually need a heart transplant, Gepstein said. But perhaps in the future, we can take a small sample of skin and convert them into stem cells specific to that patient. Then we can only replace the area with scar tissue rather than replace the dying heart.

In order to transform the skin cells into hiPSCs, Gepstein and his colleagues gave them a reprogramming cocktail, which involved delivering three genes (Sox2, Klf4 and Oct4), followed by a small molecule called valproic acid, to the nucleus of the cell.

This process turned the skin cells into heart muscle cells, or cardiomyocytes, which the researchers were able to subsequently turn into heart muscle tissue by culturing them together with cardiac tissue.

We converted the cells back into a state that resembles their early state in the embryo, Gepstein said. So they highly resemble the patients cells at the time they were born. When you give them proper conditions, they can become any type of cell in the body.

This area of study has advanced very rapidly, Gepstein added. You can take almost any type of adult cells - hair follicles, blood cells, etc. - and reprogram them to make hiPSCS cells. Skin cells are the easiest way to do it, and you dont need a lot of them.

Once the tissue had formed, it was transplanted into the hearts of healthy rats, where it successfully grafted and integrated with the existing tissue.

See the rest here:
Scientists convert skin cells into full functioning heart cells

To Read More: Scientists convert skin cells into full functioning heart cells
categoriaSkin Stem Cells commentoComments Off on Scientists convert skin cells into full functioning heart cells | dataMay 24th, 2012
Read All

Stem cell drug approved in Canada to treat bone marrow disease

By Sykes24Tracey

Canadian regulators have approved the world's first stem cell drug.

The drug, Prochymal, will be used to treat a deadly side effect of bone marrow transplants called acute graft-versus host disease (GvHD), which occurs in children.

Acute graft-versus host disease kills about 80 percent of children affected.

Prochymal uses stem cells from healthy adult donors, with one donation able to create 10,000 doses of the drug, reported the New York Times.

The manufacturer, Maryland-based Osiris Therapeutics Inc., saw their shares climb 5.5 percent to $5.55 after losing 24 percent in the last year, reported Bloomberg.

In extended trading, stocks rose 14 percent.

The drug was approved, said Reuters, on the condition that further clinical tests are carried out.

There has been debate about the effectiveness of the drug in recent years.

Late stage clinical trials three years ago failed to show results but more recent tests have shown the drug to be relatively effective about a month into therapy.

Osiris says that it plans to seek approval from the US Food and Drug Administration this year.

Link:
Stem cell drug approved in Canada to treat bone marrow disease

To Read More: Stem cell drug approved in Canada to treat bone marrow disease
categoriaBone Marrow Stem Cells commentoComments Off on Stem cell drug approved in Canada to treat bone marrow disease | dataMay 21st, 2012
Read All

World's First Approved Stem Cell Drug; Osiris Receives Marketing Clearance from Health Canada for Prochymal

By Sykes24Tracey

COLUMBIA, Md.--(BUSINESS WIRE)--

Osiris Therapeutics Inc. (NASDAQ:OSIR - News) announced today it has received market authorization from Health Canada to market its stem cell therapy Prochymal (remestemcel-L), for the treatment of acute graft-vs-host disease (GvHD) in children. The historic decision marks the worlds first regulatory approval of a manufactured stem cell product and the first therapy approved for GvHD a devastating complication of bone marrow transplantation that kills up to 80 percent of children affected, many within just weeks of diagnosis.

"I am very proud of the leadership role Canada has taken in advancing stem cell therapy and particularly gratified that this historic decision benefits children who would otherwise have little hope," said Andrew Daly, M.D., Clinical Associate Professor, Department of Medicine and Oncology at the University of Calgary, Canada and Principal Investigator in the phase 3 clinical program for Prochymal. "As a result of Health Canada's comprehensive review, physicians now have an off-the-shelf stem cell therapy in their arsenal to fight GvHD. Much like the introduction of antibiotics in the late 1920's, with stem cells we have now officially taken the first step into this new paradigm of medicine."

Prochymal was authorized under Health Canada's Notice of Compliance with conditions (NOC/c) pathway, which provides access to therapeutic products that address unmet medical conditions and which have demonstrated a favorable risk/benefit profile in clinical trials. Under the NOC/c pathway, the sponsor must agree to carry out confirmatory clinical testing.

Today is not only a great day for Osiris, but for everyone involved in the responsible development of stem cell therapies, said C. Randal Mills, Ph.D., President and Chief Executive Officer of Osiris. Most importantly, today is a great day for children and their families who bravely face this horrific disease. While today marks the first approval of a stem cell drug, now that the door has been opened, it will surely not be the last.

Health Canadas authorization was made following the recommendation of an independent expert advisory panel, commissioned to evaluate Prochymal's safety and efficacy. In Canada, Prochymal is now authorized for the management of acute GvHD in children who fail to respond to steroids. The approval was based on the results from clinical studies evaluating Prochymal in patients with severe refractory acute GvHD. Prochymal demonstrated a clinically meaningful response at 28 days post initiation of therapy in 61-64 percent of patients treated. Furthermore, treatment with Prochymal resulted in a statistically significant improvement in survival when compared to a historical control population of pediatric patients with refractory GvHD (p=0.028). The survival benefit was most pronounced in patients with the most severe forms of GvHD. As a condition of approval, the clinical benefit of Prochymal will be further evaluated in a case matched confirmatory trial and all patients receiving Prochymal will be encouraged to participate in a registry that will monitor the long-term effects of the therapy.

Refractory GvHD is not just deadly to the patients it afflicts, but is devastating for the family, friends, and caregivers who watch helplessly as the disease progresses, said Joanne Kurtzberg, MD, Head of the Pediatric Bone Marrow Transplant Program at Duke University and Lead Investigator for Prochymal. "I have personally seen Prochymal reverse the debilitating effects of severe GvHD in many of my patients and now, after nearly two decades of research, the data demonstrating consistently high response rates, a strong safety profile and improved survival clearly support the use of Prochymal in the management of refractory GvHD."

Prochymal is currently available in several countries, including the United States, under an Expanded Access Program (EAP). Prochymal will be commercially available in Canada later this year.

Today Osiris turns the promise of stem cell research into reality, delivering on decades of medical and scientific research, said Peter Friedli, Chairman and Co-founder of Osiris. It took 20 years of hard work and perseverance and I want to personally thank everyone involved for their dedication to this important mission.

In addition to the extensive intellectual property protection Osiris has around Prochymal, which includes 48 issued patents, Health Canada's decision will also provide Prochymal with regulatory exclusivity within the territory. Canada affords eight years of exclusivity to Innovative Drugs such as Prochymal, and an additional six-month extension is available since it addresses a pediatric population.

Read this article:
World's First Approved Stem Cell Drug; Osiris Receives Marketing Clearance from Health Canada for Prochymal

To Read More: World's First Approved Stem Cell Drug; Osiris Receives Marketing Clearance from Health Canada for Prochymal
categoriaUncategorized commentoComments Off on World's First Approved Stem Cell Drug; Osiris Receives Marketing Clearance from Health Canada for Prochymal | dataMay 19th, 2012
Read All

CUR – Initiating Coverage of Neuralstem, Inc.

By Sykes24Tracey

By Jason Napodano, CFA

We are initiating coverage of Neuralstem Inc. (CUR) with an Outperform rating and $3.00 price target. We believe the companys dual-technology platform focused on cell therapy and traditional pharmaceutical products provides investors with the best of both worlds an early-stage investment in a potentially revolutionary pipeline in regenerative medicine and an attractive and under-valued small molecule pipeline sure to attract interest from larger pharmaceutical partners given the novel mechanism of action and broadapplication potential into multiple indications.

Neuralstems cell therapy technology enables the isolation and large-scale expansion of human neural stem cells from all areas of the developing human brain and spinal cord. Neuralstems technology was created to assist the body in producing new cells to replace malfunctioning or dead cells as a way to treat disease and injury. The companys preclinical research shows these cells both help create new circuitry (neurogenesis) and express factors that protect existing cells (neuroprotective). We believe this platform may be useful in treating many diseases and conditions of the central nervous system (CNS) and neurodegenerative disorders. The lead development programs are currently focused on amyotrophic lateral sclerosis (ALS) and spinal cord injuries (SCI).

Preliminary data from the companys phase 1 clinical trial in ALS (abstract / poster) shows encouraging trends in both safety and efficacy. In this trial, the company is injecting human spinal stem cells (HSSC) directly into the gray matter of the spinal cord. This is no easy task. Management licensed a floating injection platform technology from the Cleveland Clinic that allows the injection of the cells into the spinal cord without risk of trauma. Neuralstems Spinal Cord Delivery Platform and Floating Cannula are being utilized in the current phase 1 ALS program, but have the potential for use in additional clinical applications where injection directly into the cord is needed or advantageous, including spinal cord injury. We believe the Floating Cannula technology alone nearly supports the current market value of only $55 million. Now that safety and feasibility have been demonstrated, if Neuralstem were to spin-out this technology into a separate company, we think given the potential to out-license or commercialize with other companies looking to do direct injections into the spine, it would be worth $25 to $50 million in value.

The phase 1 trial is now progressing into the next six patients, all of which will have direct injections into the cervical spine. The previous twelve patients all had injections into the lumbar spine. The FDA wanted to make sure that the safety and adverse event profile was acceptable before progressing into areas of the spine that affect breathing and upper limb function. So far, three patients have been dosed in the cervical spine with no serious complications. We are excited to see the first efficacy data points in approximately six months.

Neuralstem and the FDA are currently in discussions on potentially expanding the phase 1 program, right now capped at 18 patients, into an additional 9 patients bringing the total to 27 that will include reinjecting patients from previous cohorts and increasing the number of cells per injection from 100,000 to 200,000 or 300,000. We think the more data the company can amass from this phase 1 / 2 program, the better chance the FDA will allow movement into a registration program in 2014. The FDA has already granted Neuralstem Orphan Drug designation for ALS. The FDA allowing Neuralstem to move into phase 3 in 2014 is comparable to Fast Track development status. We see the ALS market as wide open. If successful, Neuralstems HSSC for ALS would be a very attractive treatment option for patients with little hope to date.

We have built a sales model for HSSC in ALS that assumes a U.S. filing in 2016 and approval in 2017. Depending on the magnitude of the efficacy, we think Neuralstems HSSC could capture 15% to 20% market share of the vastly underserved 30,000 U.S. ALS population. We think as many as 50% of these patients could be eligible for Neuralstems HSSC treatment. Our model assumes that Neuralstem commercializes HSSC on its own at a price of approximately $100,000 per treatment. With 20% market share, we see the opportunity for Neuralstem at approximately $300 million (30,000 x 50% x 20% x $100,000).

Given the current market capitalization at only $55 million, we think there is little to no value being assigned to the companys novel oral small molecule platform. Neuralstem has developed the ability to screen and test small molecules on living human neurons in vitro. The companys research into hippocampal atrophy as it relates to neurodegenerative diseases such as major depressive disorder (MDD) and Alzheimers disease (AD) has allowed the company to be granted patents on four first-in-class chemical entities.

The first of these oral small molecule compounds to enter human clinical testing is NSI-189. Preclinical data suggests that NSI-189 significantly stimulates the generation of new neurons (neurogenesis) in vitro and in animal models. The data demonstrates clear evidence of increased hippocampal volume in animals with a model of depression. Neuralstem believes NSI-189 has the potential to reverse the hippocampal atrophy associated with major depressive disorder and other related disorders, and to restore fundamental brain physiology. NSI-189 has the potential to address directly the pathology of the disease itself. This is a major paradigm shift from the traditional oral serotonin or norepinephrine molecules currently approved to treat depression and bipolar disorder.

We think if positive, Neuralstem will seek to strike a development and commercialization partnership on NSI-189 in 2013. We believe that management will be seeking enough cash from partnering NSI-189, and additional hippocampal neurogenesis / neuroprotectant molecules can be brought into the clinic. We expect that milestones on the development of NSI-189 will help fund the pivotal registration trials in ALS or SCI in the companys stem cell pipeline. This is a unique opportunity that many of Neuralstems competitors are lacking the ability to self-fund a potentially revolutionary breakthrough in stem cell technology through the advancement of a traditional small molecule platform.

Read the rest here:
CUR - Initiating Coverage of Neuralstem, Inc.

To Read More: CUR – Initiating Coverage of Neuralstem, Inc.
categoriaSpinal Cord Stem Cells commentoComments Off on CUR – Initiating Coverage of Neuralstem, Inc. | dataMay 16th, 2012
Read All

VistaGen CEO Issues Update Letter to Stockholders

By Sykes24Tracey

SOUTH SAN FRANCISCO, CA--(Marketwire -05/14/12)- VistaGen Therapeutics, Inc. (OTC.BB: VSTA) (VSTA.OB), a biotechnology company applying stem cell technology for drug rescue, today issued the following letter to its stockholders and the investment community from its CEO, Shawn Singh.

To our valued Stockholders:

Since becoming a public company one year ago, we have progressed to perhaps the most exciting time in our company's 14-year history. To arrive at this point, more than $45 million, obtained through various strategic collaborations, investments and grant awards, has been carefully employed. We believe our pluripotent stem cell technology platform, Human Clinical Trials in a Test Tube, combined with the network of strategic relationships we have announced, will allow us to secure additional capital and the large market drug rescue opportunities that can deliver value to our stockholders.

Since the beginning of the year, our team has carefully reviewed our Top 10 drug rescue opportunities and narrowed our focus to our Top 5 candidates. Now we intend to launch our initial drug rescue program and secure strategic capital necessary to support it, as well as launch our second drug rescue program by year-end. We also are working on validation of LiverSafe 3D, our bioassay system for drug rescue involving liver toxicity and drug metabolism issues, for launch during the first half of next year.

The pharmaceutical industry continues to face extremely high barriers in bringing new medicine to market. The number of drugs approved by the FDA over the past decade has dropped precipitously, by over 50%, in spite of staggering increases in resources devoted to R&D by pharmaceutical companies. Based on the progress we have made with CardioSafe 3D and our efforts to build our strategic drug rescue ecosystem of collaborators, we believe our core business model -- to use our stem cell technology and strategic relationships to develop less toxic variants of drugs that have already been proven in vitro to be effective -- is now more commercially promising than at any other point in our history. We believe we will be able to help major pharmaceutical companies avoid the loss of years of time and millions of dollars spent in developing new therapies that have positive efficacy data, but must be discontinued due to later discovery of unsafe toxicity levels for human heart and liver tissue.

Over the past year, we have secured additional intellectual property protection and entered into strategic relationships with leading biotech firms and academic researchers to support development of our stem technology and our drug rescue-based commercialization initiatives:

Over the next 12 months, we have an ambitious agenda to work closely with our advisors and collaborators to secure capital and achieve these transformative milestones:

Our goals are reachable, with strategic financing. We believe we have the right technology, intellectual property, development teams and specialized focus to deliver on our founding mission -- "putting humans first" -- bringing clinically relevant human biology to the front end of the drug development process, long before standard animal and human testing, and using better cells to make better medicine.

We would like to thank our partners, advisors, employees and each of you, our loyal stockholders, for helping support us in our efforts to deliver long-term value for you.

Sincerely,

Original post:
VistaGen CEO Issues Update Letter to Stockholders

To Read More: VistaGen CEO Issues Update Letter to Stockholders
categoriaUncategorized commentoComments Off on VistaGen CEO Issues Update Letter to Stockholders | dataMay 16th, 2012
Read All

Regenerative Sciences Receives $2M Investment for Orthopedic Stem Cell Initiatives

By Sykes24Tracey

DENVER, May 14, 2012 /PRNewswire/ -- Regenerative Sciences, Inc., a company dedicated to advancing orthopedic care through non-surgical adult stem cell procedures, today announced that it has secured a $2M investment from philanthropist, visionary and businessman John C. Malone, PhD, chairman of Liberty Media Corporation. In addition to advancing Regenerative Sciences' clinical and lab-based stem cell research, the investment will help support the national expansion of their Regenexx Physician Network.

Regenerative Sciences' Regenexx procedures utilize a patient's own stem cells to help repair a broad range of common injuries and degenerative conditions, including cartilage lesions, torn ligaments and tendons, osteoarthritis and bulging spinal discs. For many, the procedures offer a viable alternative to arthroscopic surgery, open-joint surgery, or joint replacement surgery. Regenexx patients experience little or no downtime from the procedures and avoid the lengthy rehabilitation period associated with most surgical procedures.

"We are proud of our accomplishments in the field of regenerative interventional orthopedics and it's exciting that our work has drawn the attention of such a noted entrepreneur and philanthropist," said Christopher J. Centeno, M.D., Chief Executive Officer of Regenerative Sciences. "Dr. Malone shares our vision for forging the next generation of minimally invasive regenerative treatments. This investment will not only bolster our existing stem cell research programs and make our procedures available in all regions of the U.S., but it will help us maintain a leadership role in clarifying the regulatory space for physician stem cell use."

Regenerative Sciences is at the forefront of regenerative orthopedic medicine within the United States and the company is bringing the future of orthopedic treatments to patient care today.

About Regenerative Sciences

Regenerative Sciences is an outgrowth of the Centeno-Schultz clinic, where we are reinventing orthopedic care for the 21st century using key biologics such as stem cells, next generation tools and devices, and unique therapeutic approaches. Our signature initiative, Interventional Orthopedics, allows doctors to treat orthopedic conditions through injection, rather than traditional invasive surgery. The Regenexx Physician Network brings together like-minded physicians from around the country to offer more patients access to our innovative procedures. For more information on Regenerative Sciences and Regenexx procedures, visit: http://www.regenexx.com

About John C. Malone, PhD

Dr. John C. Malone holds a bachelor's degree in electrical engineering and economics from Yale University, where he was a Phi Beta Kappa and merit scholar. He also holds a master's degree in industrial management and a Ph.D. in operations research from Johns Hopkins University.

Dr. Malone is Chairman of Liberty Media Corporation, a position he has held since 1990. Dr. Malone is also the Chairman of the Board of Liberty Global, Inc. (LGI), a position he has held since June, 2005. From 1996 to March 1999 when Tele-Communications, Inc. (TCI) merged with AT&T Corp., he was also Chairman and Chief Executive Officer of TCI. Previous to that, from 1973 to 1996, Dr. Malone served as President and CEO of TCI. He currently serves on the Board of Directors for CATO Institute, Expedia, Inc., Discovery Communications, Inc., and SiriusXM.

Contact:

Go here to read the rest:
Regenerative Sciences Receives $2M Investment for Orthopedic Stem Cell Initiatives

To Read More: Regenerative Sciences Receives $2M Investment for Orthopedic Stem Cell Initiatives
categoriaUncategorized commentoComments Off on Regenerative Sciences Receives $2M Investment for Orthopedic Stem Cell Initiatives | dataMay 16th, 2012
Read All

UMDNJ symposium heralds advances in treating spinal cord injuries

By Sykes24Tracey

NEWARK Stem cells might repair damage in a spinal cord, regenerating tissue currently considered irreparable. Electrical implants are already allowing a quadriplegic to control a robotic hand with their thoughts. And scientists are working on protein therapy that would keep a bad injury from becoming catastrophic .

These were just some of the advances in treating spinal cord injuries that were heralded at a symposium Wednesday at the University of Medicine and Dentistry of New Jersey. It was the second annual meeting of national scientists and researchers coming together in Newark to sharing their expertise.

The presentations show further advances since last years inaugural event, according to the experts.

"Everything Im seeing here is completely different than what I learned as a medical student 25 years ago," said Robert Heary, a UMDNJ neurosurgeon, the co-director of the Reynolds Family Spine Laboratory at the Spine Center of New Jersey, and the organizer of the event.

Stem cell implantation in a dozen spinal-cord patients is underway in Switzerland, according to Aileen Anderson, an associate professor of physical medicine and rehabilitation at the University of California-Irvine who has been involved in the work. She said the human clinical trial involving multipotent cells at the University of Zurich will be going through 2015 at least but stem cells advances have been moving relatively quickly.

"Cholesterol drugs took 30 years to get to market," Anderson said. "Stem cells as potential therapeutics have moved pretty quickly."

Some of the work presented variations upon a microscopic theme.

A UMDNJ team presented work in which an immune-system protein is suppressed to reduce inflammation allowing better recovery after catastrophic injury in mice. Michele Basso, a professor at the Ohio State University College of Medicine, presented work that showed rodents walking was dramatically improved after the another protein was suppressed, and they got exercise.

"We begin to see a gain of function that we wouldnt normally see," said Basso.

Still others focused on the technologies that being used to currently treat patients.

See the article here:
UMDNJ symposium heralds advances in treating spinal cord injuries

To Read More: UMDNJ symposium heralds advances in treating spinal cord injuries
categoriaSpinal Cord Stem Cells commentoComments Off on UMDNJ symposium heralds advances in treating spinal cord injuries | dataMay 10th, 2012
Read All

Cardio3 BioSciences Announces CE Marking for its C-Cath® Injection Catheter

By Sykes24Tracey

MONT-SAINT-GUIBERT, Belgium, May 9, 2012 /PRNewswire/ --

The Belgian biotechnology company, Cardio3--BioSciences (C3BS), a leader in the discovery and development of regenerative and protective therapies for the treatment of cardiac diseases, today announces that it has received CE Marking (Conformit Europenne) for its intra-myocardial C-Cath Injection Catheter. The CE Mark certifies that C-Cath complies with applicable European health, safety and environmental protection legislation. C-Cath is now available for commercial use in the EU and many other countries where the CE mark allows commercialization.

The C-Cath Injection Catheter is the most advanced device of its kind and was designed to address three key requirements: ease of use, safety and efficacy. During its development Cardio3 BioSciences combined its extensive experience in stem cell therapies and specific knowledge of the properties of heart tissue with key insights from leading cardiologists in the field. C-Cath's performance is based on its unique needle design as well as unique catheter properties. Previously announced pre-clinical data from a head to head comparison with the 'best' injection catheter available until now showed a close to threefold increase in retention of stem cells within the heart muscle in favour of the CCath Injection Catheter. Within a clinical setting, an increased retention rate could allow an increase in efficacy while reducing side effects.-

Dr Christian Homsy,CEOof Cardio3-BioSciences comments on today's announcement: "Today marks an important milestone for Cardio3 BioSciences and our innovative C-Cath technology. With C-Cath, we developed an advanced injection catheter that meets the requirements of physicians and has the potential to deliver better outcomes for patients. C-Cath demonstrates our commitment to continued innovation in regenerative heart therapy. This is a major step forward in addressing the patient needs for regenerative therapies for the heart and provides physicians with new treatment options."

About Cardio3 BioSciences

Cardio3-BioSciences is a Belgian leading biotechnology company focused on the discovery and development of regenerative and protective therapies for the treatment of cardiac diseases. The company was founded in 2007 and is based in the Walloon region of Belgium. Cardio3-BioSciences leverages research collaborations in the US and in Europe with Mayo Clinic and the Cardiovascular Center Aalst, Belgium.

The Company's lead product candidate C3BS-CQR-1 is an innovative pharmaceutical product consisting of autologous cardiac progenitor stem cells. C3BS-CQR-1 is based on ground breaking research conducted at Mayo Clinic that allowed discovery of cardiopoiesis, a process to mimic in adult stem cells the natural signals triggered in the early stages of life during the cardiac tissue development. Cardio3-BioSciences has developed C-Cath, the next-generation injection catheter with superior efficiency of delivery of bio therapeutic agents into the myocardium.

C3BS-CQR-1, C-Cure, C-Cath, Cardio3 BioSciences and the Cardio3 BioSciences and C-Cath logos are trademarks or registered trademarks of Cardio3 BioSciences SA, in Belgium, other countries, or both. Mayo Clinic holds equity in Cardio3 BioSciences as a result of intellectual property licensed to the company. In addition to historical facts or statements of current condition, this press release contains forward-looking statements, which reflect our current expectations and projections about future events, and involve certain known and unknown risks, uncertainties and assumptions that could cause actual results or events to differ materially from those expressed or implied by the forward-looking statements. These risks, uncertainties and assumptions could adversely affect the outcome and financial effects of the plans and events described herein. These forward-looking statements are further qualified by important factors, which could cause actual results to differ materially from those in the forward-looking statements, including timely submission and approval of anticipated regulatory filings; the successful initiation and completion of required Phase III studies; additional clinical results validating the use of adult autologous stem cells to treat heart failure; satisfaction of regulatory and other requirements; and actions of regulatory bodies and other governmental authorities. As a result, of these factors investors and prospective investors are cautioned not to rely on any forward-looking statements.We disclaim any intention or obligation to update or review any forward-looking statement, whether as a result of new information, future events or otherwise.

For more information contact:

Cardio3 BioSciences http://www.c3bs.com

Read this article:
Cardio3 BioSciences Announces CE Marking for its C-Cath® Injection Catheter

To Read More: Cardio3 BioSciences Announces CE Marking for its C-Cath® Injection Catheter
categoriaCardiac Stem Cells commentoComments Off on Cardio3 BioSciences Announces CE Marking for its C-Cath® Injection Catheter | dataMay 10th, 2012
Read All

Pluristem stem cells save girl's life

By Sykes24Tracey

Pluristem Therapeutics Ltd. (Nasdaq:PSTI; DAX: PJT: PLTR)has announced that a seven year-old girl suffering from an aplastic bone marrow whose condition was rapidly deteriorating has seen a reversal of her condition. The improvement came due to a significant increase in her red cells, white cells and platelets following the intramuscular injection of Pluristem's PLacental eXpanded (PLX) cells. Aplastic bone marrow is a disease where the patient has no blood-forming hematopoietic stem cells in the bone marrow.

Hadassah Medical Center Bone Marrow Transplantation, Cell Therapy and Transplantation Research Center director Prof. Reuven Or said, "With her body rejecting all possible treatment, and with no other options, we finally turned to Pluristem's PLX cells, which literally saved her life. The results of this unique case indicate that PLX cells may be effective in treating other diseases that affect the bone marrow."

The patient has been hospitalized at the Hadassah Hebrew University Medical Center in Jerusalem since August 2011. Her aplastic bone marrow had been refractory to treatment. So she underwent allogeneic stem cell transplantation from a matched unrelated donor. The first transplant was unsuccessful and the patient remained with bone marrow failure. The patient underwent a second allogeneic stem cell transplantation from a second donor. The bone marrow function was very poor and the patient suffered from recurrent infections.

Two months after the patient's second bone marrow transplant, the child received PLX cells intramuscularly in two doses about one week apart. Some 10 days after the last administration of PLX cells, the patient's hematological parameters began to significantly increase, an effect that has persisted to date. The patient's general clinical status has also improved. Subsequent analysis has indicated that the PLX cells worked by stimulating the recovery of the hematopoietic stem cells contained in the second bone marrow transplant that she had received over two months earlier. Finally, after nine months of hospitalization, the child will be discharged from the hospital.

Pluristem chairman and CEO Zami Alberman said, "Pluristem is extremely happy that our PLX cells have helped this little girl. Remarkably, these beneficial effects were seen in the patient after our PLX cells were administered intramuscularly and correlate with the positive effects on the bone marrow when we administered our PLX cells intramuscularly (IM) in animals exposed to toxic levels of radiation. Pluristem now has several data points to indicate that our PLX cells may work for systemic diseases when given locally, away from the target organ, and without a need to give cells intravenously."

In February 2012, Pluristem announced the results of animal studies suggesting PLX cells can be potentially effective in treating the life threatening hematopoietic complications associated with Acute Radiation Syndrome (ARS). In these experiments, animals given PLX cells IM up to 24 hours post irradiation demonstrated a recovery of their red cells, white cells, platelets and bone marrow to almost normal levels. It was that announcement, and the significant deterioration of the patient following two bone marrow transplants, that led Prof. Or to contact Pluristem about the possible compassionate use of PLX cells to treat his young patient.

Pluristem recently received US FDA clearance to begin a Phase II clinical trial using the company's proprietary PLX-PAD cell product candidate intramuscularly for the treatment of Intermittent Claudication (IC), a subset of peripheral artery disease (PAD).

Published by Globes, Israel business news - http://www.globes-online.com - on May 9, 2012

Copyright of Globes Publisher Itonut (1983) Ltd. 2012

Go here to see the original:
Pluristem stem cells save girl's life

To Read More: Pluristem stem cells save girl's life
categoriaBone Marrow Stem Cells commentoComments Off on Pluristem stem cells save girl's life | dataMay 10th, 2012
Read All

Gene-modified stem cell transplant protects patients from toxic side effects of chemotherapy, study suggests

By Sykes24Tracey

ScienceDaily (May 9, 2012) For the first time, scientists at Fred Hutchinson Cancer Research Center have transplanted brain cancer patients' own gene-modified blood stem cells in order to protect their bone marrow against the toxic side effects of chemotherapy. Initial results of the ongoing, small clinical trial of three patients with glioblastoma showed that two patients survived longer than predicted if they had not been given the transplants, and a third patient remains alive with no disease progression almost three years after treatment.

"We found that patients were able to tolerate the chemotherapy better and without negative side effects after transplantation of the gene-modified stem cells than patients in previous studies who received the same type of chemotherapy without a transplant of gene-modified stem cells," said Hans-Peter Kiem, M.D., senior and corresponding author of the study published in the May 9 issue of Science Translational Medicine.

Kiem, a member of the Clinical Research Division at the Hutchinson Center, said that a major barrier to effective use of chemotherapy to treat cancers like glioblastoma has been the toxicity of chemotherapy drugs to other organs, primarily bone marrow. This results in decreased blood cell counts, increased susceptibility to infections and other side effects. Discontinuing or delaying treatment or reducing the chemotherapy dose is generally required, but that often results in less effective treatment.

In the current study, Kiem and colleagues focused on patients with glioblastoma, an invariably fatal cancer. Many of these patients have a gene called MGMT (O6-methylguanine-DNA-methyltransferase) that is turned on because the promoter for this gene is unmethylated. MGMT is a DNA repair enzyme that counteracts the toxic effect of some chemotherapy agents like temozolomide. Patients with such an unmethylated promoter status have a particularly poor prognosis.

A drug called benzylguanine can block the MGMT gene and make tumor cells sensitive to chemotherapy again, but when given with chemotherapy, the toxic effects of this combination are too much for bone marrow cells, which results in marrow suppression.

By giving bone marrow stem cells P140K, which is a modified version of MGMT, those cells are protected from the toxic effects of benzylguanine and chemotherapy, while the tumor cells are still sensitive to chemotherapy. "P140K can repair the damage caused by chemotherapy and is impervious to the effects of benzylguanine," Kiem said.

"This therapy is analogous to firing at both tumor cells and bone marrow cells, but giving the bone marrow cells protective shields while the tumor cells are unshielded," said Jennifer Adair, Ph.D., who shares first authorship of the study with Brian Beard, Ph.D., both members of Kiem's lab.

The three patients in this study survived an average of 22 months after receiving transplants of their own circulating blood stem cells. One, an Alaskan man, remains alive 34 months after treatment. Median survival for patients with this type of high-risk glioblastoma without a transplant is just over a year.

"Glioblastoma remains one of the most devastating cancers with a median survival of only 12 to 15 months for patients with unmethylated MGMT," said Maciej Mrugala, M.D., the lead neuro oncologist for this study.

As many as 50 percent to 60 percent of glioblastoma patients harbor such chemotherapy-resistant tumors, which makes gene-modified stem cell transplant therapy applicable to a large number of these patients. In addition, there are also other brain tumors such as neuroblastoma or other solid tumors with MGMT-mediated chemo resistance that might benefit from this approach.

See original here:
Gene-modified stem cell transplant protects patients from toxic side effects of chemotherapy, study suggests

To Read More: Gene-modified stem cell transplant protects patients from toxic side effects of chemotherapy, study suggests
categoriaBone Marrow Stem Cells commentoComments Off on Gene-modified stem cell transplant protects patients from toxic side effects of chemotherapy, study suggests | dataMay 10th, 2012
Read All

Transplanted Gene-Modified Blood Stem Cells Protect Brain Cancer Patients From Toxic Side Effects of Chemotherapy

By Sykes24Tracey

Study is first to show feasibility and efficacy of a new use for autologous stem cell transplant

Newswise SEATTLE For the first time, scientists at Fred Hutchinson Cancer Research Center have transplanted brain cancer patients own gene-modified blood stem cells in order to protect their bone marrow against the toxic side effects of chemotherapy. Initial results of the ongoing, small clinical trial of three patients with glioblastoma showed that two patients survived longer than predicted if they had not been given the transplants, and a third patient remains alive with no disease progression almost three years after treatment.

We found that patients were able to tolerate the chemotherapy better and without negative side effects after transplantation of the gene-modified stem cells than patients in previous studies who received the same type of chemotherapy without a transplant of gene-modified stem cells, said Hans-Peter Kiem, M.D., senior and corresponding author of the study published in the May 9 issue of Science Translational Medicine.

Kiem, a member of the Clinical Research Division at the Hutchinson Center, said that a major barrier to effective use of chemotherapy to treat cancers like glioblastoma has been the toxicity of chemotherapy drugs to other organs, primarily bone marrow. This results in decreased blood cell counts, increased susceptibility to infections and other side effects. Discontinuing or delaying treatment or reducing the chemotherapy dose is generally required, but that often results in less effective treatment.

In the current study, Kiem and colleagues focused on patients with glioblastoma, an invariably fatal cancer. Many of these patients have a gene called MGMT (O6-methylguanine-DNA-methyltransferase) that is turned on because the promoter for this gene is unmethylated. MGMT is a DNA repair enzyme that counteracts the toxic effect of some chemotherapy agents like temozolomide. Patients with such an unmethylated promoter status have a particularly poor prognosis.

A drug called benzylguanine can block the MGMT gene and make tumor cells sensitive to chemotherapy again, but when given with chemotherapy, the toxic effects of this combination are too much for bone marrow cells, which results in marrow suppression.

By giving bone marrow stem cells P140K, which is a modified version of MGMT, those cells are protected from the toxic effects of benzylguanine and chemotherapy, while the tumor cells are still sensitive to chemotherapy. P140K can repair the damage caused by chemotherapy and is impervious to the effects of benzylguanine, Kiem said.

This therapy is analogous to firing at both tumor cells and bone marrow cells, but giving the bone marrow cells protective shields while the tumor cells are unshielded, said Jennifer Adair, Ph.D., who shares first authorship of the study with Brian Beard, Ph.D., both members of Kiems lab.

The three patients in this study survived an average of 22 months after receiving transplants of their own circulating blood stem cells. One, an Alaskan man, remains alive 34 months after treatment. Median survival for patients with this type of high-risk glioblastoma without a transplant is just over a year.

Glioblastoma remains one of the most devastating cancers with a median survival of only 12 to 15 months for patients with unmethylated MGMT, said Maciej Mrugala, M.D., the lead neuro oncologist for this study.

See the article here:
Transplanted Gene-Modified Blood Stem Cells Protect Brain Cancer Patients From Toxic Side Effects of Chemotherapy

To Read More: Transplanted Gene-Modified Blood Stem Cells Protect Brain Cancer Patients From Toxic Side Effects of Chemotherapy
categoriaBone Marrow Stem Cells commentoComments Off on Transplanted Gene-Modified Blood Stem Cells Protect Brain Cancer Patients From Toxic Side Effects of Chemotherapy | dataMay 10th, 2012
Read All

Treatment with Ixmyelocel-T Shown to Improve Outcomes in Heart Failure Patients

By Sykes24Tracey

LAS VEGAS, May 10, 2012 /PRNewswire/ -- An investigational therapyderived from a patient's own bone marrow stem cells improves heart function in some patients with progressive heart failure due to dilated cardiomyopathy (DCM), according to the results of a Phase 2a study presented today as a late-breaking clinical trial at the SCAI 2012 Scientific Sessions.

Ixmyelocel-T is developed by culturing a patient's bone marrow for 12 days to increase the numbers of immune cells including macrophages and monocytes, as well as mesenchymal cells, stem cells that can differentiate into several different cell types. The resulting cell treatment is then injected into the patient's heart muscles to encourage growth of new tissue and improve inflammation.

"An increasing number of patients have progressive heart failure due to dilated cardiomyopathy, even after treatment with drug therapy and surgical intervention," said Timothy Henry, MD, FSCAI, director of research and an interventional cardiologist at the Minneapolis Heart Institute at Abbott Northwestern Hospital, and the study's principal investigator. "In this study, patients treated with ixmyelocel-T showed repair in damaged heart muscle and some reversal in heart failure symptoms."

The trial included 22 ischemic (IDCM) and non-ischemic (NIDCM) patients with a New York Heart Association (NYHA) heart failure class of III or IV, or moderate to severe heart failure, and a left ventricular ejection fraction of 30 percent or less, which is a measure of how much blood leaves the heart with each pump. Patients were randomized to receive an injection of the treatment into their heart muscles or to a control group, and were followed at 3, 6 and 12 months.

After 12 months, no procedural complications and no difference in adverse events were reported among patients who received the treatment and the control group. IDCM patients who received the cell treatment had a lower mean number of major adverse clinical events (0.33 compared to 1.67 in the control group). IDCM patients who received the treatment were more likely to see improvement in NYHA class, six-minute walking distance and ejection fraction, compared to NIDCM patients who received the treatment and those in the control group.

"Treatment with ixmyelocel-T was well-tolerated and patients who received the cell therapy showed improved symptoms after one year," said Dr. Henry. "The results provide a strong basis for a larger clinical trial of this treatment in patients with dilated cardiomyopathy."

The study was sponsored by Aastrom Biosciences.

Dr. Henry will present "Safety and Efficacy ofIxmyelocel-T, An Expanded Patient-Specific Mixed Cell Therapy, in Dilated Cardiomyopathy" on Thursday, May 10, 2012, in the Late-Breaking Clinical Trials Session beginning at 12:00 p.m. (Pacific Time).

About SCAI

Headquartered in Washington, D.C., the Society for Cardiovascular Angiography and Interventions is a 4,000-member professional organization representing invasive and interventional cardiologists in approximately 70 nations. SCAI's mission is to promote excellence in invasive and interventional cardiovascular medicine through physician education and representation, and advancement of quality standards to enhance patient care. SCAI's patient education program, Seconds Count, offers comprehensive information about cardiovascular disease. For more information about SCAI and Seconds Count, visit http://www.scai.org or http://www.SecondsCount.org.

Read the original here:
Treatment with Ixmyelocel-T Shown to Improve Outcomes in Heart Failure Patients

To Read More: Treatment with Ixmyelocel-T Shown to Improve Outcomes in Heart Failure Patients
categoriaBone Marrow Stem Cells commentoComments Off on Treatment with Ixmyelocel-T Shown to Improve Outcomes in Heart Failure Patients | dataMay 10th, 2012
Read All

Stem cells boost brain tumor treatments for some patients, study finds

By Sykes24Tracey

(CBS News) Patients with brain cancer may face devastating side effects from chemotherapy, but a new study offers a possible solution: stem cells.

Yearly dental X-rays raise brain tumor risk, study finds

Memorial Hermann hospital in Houston to live tweet brain tumor surgery

The stem cells form a shield of sorts against the toxic side effects from chemo, according to the researchers behind the study. It was a small trial that involved only three patients with glioblastoma, the most aggressive and common form of a malignant brain tumor that's usually fatal.

Two of the patients survived longer than predicted with help from the stem cell treatment - an average of 22 months - and a third man from Alaska remains alive today with no disease progression almost three years following treatment.

How does it work?

Many patients with the deadly form of brain cancer possess a gene called MGMT. The MGMT gene is typically turned on and counters the effects from some chemotherapy agents, such as temozolomide, rendering them less effective. As such, people with such a gene often have a particularly poor prognosis.

A drug called benzylguanine can block the MGMT gene, thus making tumors more receptive to chemotherapy, but the combination of the drug and chemo are often too toxic for healthy bone marrow cells.

That's where the new stem cell treatment comes in. By combining bone marrow stem cells with a modified version of MGMT in the form of the new treatment, patients' cells were protected from the toxic effects of the cancer drugs and chemotherapy while keeping the tumor cells targeted.

"This therapy is analogous to firing at both tumor cells and bone marrow cells, but giving the bone marrow cells protective shields while the tumor cells are unshielded," study author Dr. Jennifer Adair, a researcher at the Fred Hutchinson Cancer Research Center in Seattle, said in a news release.

Read more:
Stem cells boost brain tumor treatments for some patients, study finds

To Read More: Stem cells boost brain tumor treatments for some patients, study finds
categoriaBone Marrow Stem Cells commentoComments Off on Stem cells boost brain tumor treatments for some patients, study finds | dataMay 10th, 2012
Read All

Stem cell collaboration could set stage for company’s growth

By Sykes24Tracey

A stem cell breakthrough at UCLA could mark a big step for a biopharmaceutical company to use its proprietary technology to forge partnerships with pharmaceutical companies and other research institutions.

Fibrocell Sciences technology isolates, purifies and multiplies a patients fibroblast cells, connective skin cells that make collagen. In a research collaboration with the company, UCLA used the technology to isolate, identify and increase the number of different skin cell types, which lead to two rare adult stem cell-like subpopulations being identified in adult human skin SSEA3-expressing regeneration-associated cells associated with skin regeneration after injuries and mesenchymal adult stem cells.

The findings could have broad applications for personalized medicine. Currently, adult stem cells are derived from adipose tissue and bone marrow. Using mesenchymal stem cells would be less invasive and could be more efficient. Mesenchymal stem cells are being used in research to develop osteoblasts, or bone cells; chondrocytes, or cartilage cells; and adipocytes, or fat cells.

David Pernock, the chairman and CEO of Fibrocell, said the move could mark a significant step in the companys growth.

Follow this link:
Stem cell collaboration could set stage for company’s growth

To Read More: Stem cell collaboration could set stage for company’s growth
categoriaSkin Stem Cells commentoComments Off on Stem cell collaboration could set stage for company’s growth | dataMay 10th, 2012
Read All

Study Identifies Cell Subtypes For Potential Personalized Cellular Therapies

By Sykes24Tracey

Connie K. Ho for RedOrbit.com

A new study by researchers at the University of California, Los Angeles (UCLA) has discovered two adult stem cell-like subpopulations in adult human skin.

The findings allow for further research to be done in the area of personalized medicine and patient-specific cellular therapies.

The study, using technology from Fibrocell Science, allowed the researchers to identify and confirm two types of cells in human skin cell cultures; the possible source of stem cell-like subpopulations from skin biopsies would be faster to perform, painless, and less invasive than current extractions from adipose tissues and bone marrow.

The research, featured in the inaugural issue of BioResearch Open Access, discusses two subtypes of cells. BioResearch Open Access is a bimonthly, peer-reviewed journal. It features scientific topics like biochemistry, bioengineering, gene therapy, genetics, microbiology, neuroscience, regenerative medicine, stem cells, systems biology, tissue engineering and biomaterials, and virology.

Being able to identify two sub-populations of rare, viable and functional cells that behave like stem cells from within the skin is an important finding because both cell types have the potential to be investigated for diverse clinical applications, commented Dr. James A. Bryne, lead author of the report.

Brynes research, first at Stanford University then at UCLA, focused on reprogramming beginnings of cells from animals and then humans. A graduate of Cambridge University, Bryne studied the intra- and inter-species of epigenetic reprogramming. His work also highlighted how primate embryonic stem cells could be derived from somatic cell nuclear transfers.

The study published in BioResearch Open Access confirmed previous research that identified a rare population of cells in adult human skin that had a marker called stage-specific embryonic antigen 3 (SSEA3). Bryne and his colleagues found that there was an increase in the amount of SSEA3 expressing cells after injury to the human skin. It showed that the SSEA3 biomarker could be used to help identify and isolate cells with tissue-regenerative traits.

Finding these rare adult stem cell-like subpopulations in human skin is an exciting discovery and provides the first step towards purifying and expanding these cells to clinically relevant numbers for application to a variety of potential personalized cellular therapies for osteoarthritis, bone loss, injury and/or damage to human skin as well as many other diseases, remarked Bryne, an Assistant Professor of Molecular and Medical Pharmacology at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA.

Bryne and his team used Fibrocell technology to collect cells from skin samples, cultured the cells in the lab, and purified them by fluorescence-activated cell sorting (FACS). The FACS tagged suspended cells with fluorescent markers for undifferentiated stem cells. The researchers were able to separate the rare cell subpopulations from other kinds of cells.

Originally posted here:
Study Identifies Cell Subtypes For Potential Personalized Cellular Therapies

To Read More: Study Identifies Cell Subtypes For Potential Personalized Cellular Therapies
categoriaUncategorized commentoComments Off on Study Identifies Cell Subtypes For Potential Personalized Cellular Therapies | dataMay 10th, 2012
Read All

Single cell triggers fibroid uterine tumor

By Sykes24Tracey

CHICAGO, May 5 (UPI) -- U.S. researchers say they've identified the molecular trigger of fibroid uterine tumors -- a single stem cell develops a mutation and grows uncontrollably.

Dr. Serdar Bulun, the chairman of obstetrics and gynecology at Northwestern University Feinberg School of Medicine and Northwestern Memorial Hospital, said the single cell activates other cells to join its frenzied expansion.

"It loses its way and goes wild," Bulun said in a statement. "No one knew how these came about before. The stem cells make up only 1.5 percent of the cells in the tumor, yet they are the essential drivers of its growth."

Dr. Masanori Ono, a post-doctoral student in Bulun's laboratory who was the study's lead author, said the stem cell that initiated the tumor carries a mutation called MED12.

Recently, mutations in the MED12 gene have been reported in the majority of uterine fibroid tissues. Once the mutation kicks off the abnormal expansion, the tumors grow in response to steroid hormones, particularly progesterone, Bulun said.

"Understanding how this mutation directs the tumor growth gives us a new direction to develop therapies," Bulun said in a statement.

The paper is published in the journal PLoS ONE.

See the rest here:
Single cell triggers fibroid uterine tumor

To Read More: Single cell triggers fibroid uterine tumor
categoriaUncategorized commentoComments Off on Single cell triggers fibroid uterine tumor | dataMay 7th, 2012
Read All

REGION: Surprise cord-blood find is 'godsend' for ailing boy

By Sykes24Tracey

After half a year of blood transfusions to treat life-threatening anemia, 9-year-old Ricky Martinez was running out of time.

The Murrieta boy needed a bone marrow transplant to save his life. Although his parents had held numerous drives seeking a match for their son, the perfect donor eluded them.

Then another option appeared ---- doctors found Ricky's own blood from his umbilical cord, banked at birth, and stored in a medical facility.

"I had donated it at birth, when I delivered," said Ricky's mother, Cynthia Martinez. "I had no idea that I'd be using it for him nine years later."

The cord blood discovery represents a "godsend" for the family, Martinez said, because Ricky's body began rejecting the transfusions that keep him alive.

Cord blood contains stem cells ---- undifferentiated cells that can spur production of healthy tissue to help treat various diseases. Doctors believe it could jump-start Ricky's bone marrow, allowing his body to resume normal blood production.

But it's not a guarantee.

Ricky's condition, aplastic anemia, is an extremely rare disease, and cord blood transplantation is an experimental procedure for the condition, said David Buchbinder, a hematologist and transplant physician who is treating Ricky at Children's Hospital Orange County, in the city of Orange.

Although the procedure offers few risks of complications, it also pushes the boundaries of medical practice, placing Ricky in a realm of mixed medical opinions and uncertain results, Buchbinder said.

His parents say they're willing to go there to save their son's life.

Visit link:
REGION: Surprise cord-blood find is 'godsend' for ailing boy

To Read More: REGION: Surprise cord-blood find is 'godsend' for ailing boy
categoriaBone Marrow Stem Cells commentoComments Off on REGION: Surprise cord-blood find is 'godsend' for ailing boy | dataMay 6th, 2012
Read All

Jets support one fan's quest for a life-saving bone-marrow transplant

By Sykes24Tracey

Earlier this spring, Jets defensive coordinator Mike Pettine spent more than an hour on the phone with Villanova coach Andy Talley. But they weren't talking about football.

Instead, Pettine needed advice on a cause that Talley has championed in Philadelphia: bone marrow donation.

The topic hit close to home for Pettine last month, when he learned through a close friend about Michael Manganiello, a long-time Jets fan from Wayside who was diagnosed with acute myelofibrosis Easter weekend.

The rare condition -- which causes the bone marrow to progressively scar and become unable to produce blood cells -- is aggressively advancing in Manganiello's body, and his survival depends on quickly finding a matching bone marrow donor.

"It was a no-brainer to step in and help," Pettine said last night. "We dont get a lot of opportunities to do something like this, when you have a chance to have such a great impact on a life."

Pettine served as a co-host for the "Match for Michael" event held last night in Eatontown, which raised funds for the Manganiello family and the National Marrow Donor Program, but more importantly added more than 400 new people to the national bone marrow registry. Registering is as easy as taking a cheek swab, and bone marrow donation is now a less invasive procedure, the majority of the time being done via a non-surgical peripheral blood stem cell donation. Donors can usually resume normal activities within two to seven days.

Talley, who founded a non-profit organization two years ago to add donors to the national registry, gave Pettine advice on running such an event. Jets coach Rex Ryan and players Mark Sanchez, Sione Pouha and Aaron Maybin lent their support by attending the event last night, signing autographs and posing for pictures with the newly registered donors.

Manganiello, whose wife described him as the No. 1 Jets fan, was at the Robert Wood Johnson Hospital, where he is currently undergoing chemotherapy, but the Jets coaches and players were trying to reach him in his hospital room by phone.

"He's very selfless -- he would be embarrassed to know we are all here for him, he'd probably feel funny," Margo Manganiello, Michael's wife, said. "I just know were going to get through this together as a family, and I just feel like this must have happened for a reason, for us to give back to other families that are in similar situations, to help them find a cure. Because I'm very optimistic that were going to get there."

In a matter of weeks, the Manganiello family's life has been turned upside down. The 44-year-old father of three had been experiencing fatigue while running and an irregular heartbeat earlier this spring, so his wife forced him to go to the emergency room the day before Easter. It was there that blood tests confirmed the scary diagnosis.

Read this article:
Jets support one fan's quest for a life-saving bone-marrow transplant

To Read More: Jets support one fan's quest for a life-saving bone-marrow transplant
categoriaBone Marrow Stem Cells commentoComments Off on Jets support one fan's quest for a life-saving bone-marrow transplant | dataMay 2nd, 2012
Read All

Local woman donates stem cells through national registry

By Sykes24Tracey

PLATTSBURGH Lois Wenger cites her faith in God as the underlying factor in her ability to help others in need, and she has never faltered in lending a helping hand.

Or in this case some much-needed bone marrow.

Wenger, who works as a support specialist in CVPH Medical Center's Information Services and Support Department, has been donating blood for years. Her blood type is O-negative, which is the universal blood type and can be used by most people in need of a transfusion.

"My older sister is a medical technologist, so it's always been a regular practice (to give blood)," Wenger said.

That practice expanded a few years ago when Wenger heard that the CVPH Blood Donor Center was working with the Rhode Island Blood Donor Center on a plan to increase the national database for bone-marrow donations.

"Only about 5 million people (nationally) were in the database at that time," said Nancy Roberts, a registered nurse at the CVPH Blood Donor Center. "We thought it would be a good idea to send out the word (for needed donors) in our region."

During the past few years, the Donor Center has hosted a bone-marrow registration at the annual Relay for Life fundraising program for the American Cancer Society.

Those successful drives, along with registrations made through the Blood Donor Center, have resulted in about 700 people from the North Country now being listed on the bone-marrow donation registry.

Those potential donors remain anonymous while their specific tissue type (collected by a simple cheek swab when registering) is recorded via bar code.

There is nothing else for the potential donor to do unless they are notified of a potential match anywhere in the country and even across the globe.

Continued here:
Local woman donates stem cells through national registry

To Read More: Local woman donates stem cells through national registry
categoriaBone Marrow Stem Cells commentoComments Off on Local woman donates stem cells through national registry | dataMay 2nd, 2012
Read All

Page 34«..1020..33343536..40..»


Copyright :: 2024