Page 91«..1020..90919293..100110..»

Global Cord Blood Banking Market 2020 with Analysis of 44 Industry Players – PRNewswire

By daniellenierenberg

DUBLIN, Sept. 2, 2020 /PRNewswire/ -- The "Global Cord Blood Banking Industry Report 2020" report has been added to ResearchAndMarkets.com's offering.

This report presents the number of cord blood units stored in inventory by the largest cord blood banks worldwide and the number of cord blood units (CBUs) released by registries across the world for hematopoietic stem cell (HSC) transplantation. Although cord blood is now used to treat more than 80 different diseases, this number could substantially expand if applications related to regenerative medicine start receiving approvals in major healthcare markets worldwide.

From the early 1900s through the mid-2000s, the global cord blood banking industry expanded rapidly, with companies opening for business in all major markets worldwide. From 2005 to 2010, the market reached saturation and stabilized.

Then, from 2010 to 2020, the market began to aggressively consolidate. This has created both serious threats and unique opportunities within the industry.

Serious threats to the industry include low rates of utilization for stored cord blood, expensive cord blood transplantation procedures, difficulty educating obstetricians about cellular therapies, and an increasing trend toward industry consolidation. There are also emerging opportunities for the industry, such as accelerated regulatory pathways for cell therapies in leading healthcare markets worldwide and expanding applications for cell-based therapies. In particular, MSCs from cord tissue (and other sources) are showing intriguing promise in the treatment and management of COVID-19.

Cord Blood Industry Trends

Within recent years, new themes have been impacting the industry, including the pairing of stem cell storage services with genetic and genomic testing services, as well as reproductive health services. Cord blood banks are diversifying into new types of stem cell storage, including umbilical cord tissue storage, placental blood and tissue, amniotic fluid and tissue, and dental pulp. Cord blood banks are also investigating means of becoming integrated therapeutic companies. With hundreds of companies offering cord blood banking services worldwide, maturation of the market means that each company is fighting harder for market share.

Growing numbers of investors are also entering the marketplace, with M&A activity accelerating in the U.S. and abroad. Holding companies are emerging as a global theme, allowing for increased operational efficiency and economy of scale. Cryoholdco has established itself as the market leader within Latin America. Created in 2015, Cryoholdco is a holding company that will control nearly 270,000 stem cell units by the end of 2020. It now owns a half dozen cord blood banks, as well as a dental stem cell storage company.

Globally, networks of cord blood banks have become commonplace, with Sanpower Group establishing its dominance in Asia. Although Sanpower has been quiet about its operations, it holds 4 licenses out of only 7 issued provincial-level cord blood bank licenses in China. It has reserved over 900,000 cord blood samples in China, and its reserves amount to over 1.2 million units when Cordlife' reserves within Southeast Asian countries are included. This positions Sanpower Group and it's subsidiary Nanjing Cenbest as the world's largest cord blood banking operator not only in China and Southeast Asia but in the world.

The number of cord blood banks in Europe has dropped by more than one-third over the past ten years, from approximately 150 to under 100. The industry leaders in this market segment include FamiCord Group, who has executed a dozen M&A transactions, and Vita34, who has executed approximately a half dozen. Stemlab, the largest cord blood bank in Portugal, also executed three acquisition deals prior to being acquired by FamiCord. FamiCord is now the leading stem cell bank in Europe and one of the largest worldwide.

Cord Blood Expansion Technologies

Because cord blood utilization is largely limited to use in pediatric patients, growing investment is flowing into ex vivo cord blood expansion technologies. If successful, this technology could greatly expand the market potential for cord blood, encouraging its use within new markets, such as regenerative medicine, aging, and augmented immunity.

Key strategies being explored for this purpose include:

Currently, Gamida Cell, Nohla Therapeutics, Excellthera, and Magenta Therapeutics have ex vivo cord blood expansion products proceeding through clinical trials. Growing numbers of investors have also entered the cord blood banking marketplace, led by groups such as GI Partners, ABS Capital Partners & HLM Management, KKR & Company, Bay City Capital, GTCR, LLC, and Excalibur.

Cord Blood Banking by Region

Within the United States, most of the market share is controlled by three major players: Cord Blood Registry (CBR), Cryo-Cell, and ViaCord. CBR has been traded twice, once in 2015 to AMAG Pharmaceuticals for $700 million and again in 2018 to GI Partners for $530 million. CBR also bought Natera's Evercord Cord Blood Banking business in September 2019. In total, CBR controls over 900,000 cord blood and tissue samples, making it one of the largest cord blood banks worldwide.

In China, the government controls the industry by authorizing only one cord blood bank to operate within each province, and official government support, authorization, and permits are required. Importantly, the Chinese government announced in late 2019 that it will be issuing new licenses for the first time, expanding from the current 7 licensed regions for cord blood banking to up to 19 regions, including Beijing.

In Italy and France, it is illegal to privately store one's cord blood, which has fully eliminated the potential for a private market to exist within the region. In Ecuador, the government created the first public cord blood bank and instituted laws such that private cord blood banks cannot approach women about private cord blood banking options during the first six months of pregnancy. This created a crisis for private banks, forcing most out of business.

Recently, India's Central Drugs Standard Control Organization (CDSCO) restricted commercial banking of stem cells from most biological materials, including cord tissue, placenta, and dental pulp stem cells - leaving only umbilical cord blood banking as permitted and licensed within the country.

While market factors vary by geography, it is crucial to have a global understanding of the industry, because research advances, clinical trial findings, and technology advances do not know international boundaries. The cord blood market is global in nature and understanding dynamics within your region is not sufficient for making strategic, informed, and profitable decisions.

Overall, the report provides the reader with the following details and answers the following questions:

1. Number of cord blood units cryopreserved in public and private cord blood banks globally2. Number of hematopoietic stem cell transplants (HSCTs) globally using cord blood cells3. Utilization of cord blood cells in clinical trials for developing regenerative medicines4. The decline of the utilization of cord blood cells in HSC transplantations since 20055. Emerging technologies to influence the financial sustainability of public cord blood banks6. The future scope for companion products from cord blood7. The changing landscape of cord blood cell banking market8. Extension of services by cord blood banks9. Types of cord blood banks10. The economic model of public cord blood banks11. Cost analysis for public cord blood banks12. The economic model of private cord blood banks13. Cost analysis for private cord blood banks14. Profit margins for private cord blood banks15. Pricing for processing and storage in private banks16. Rate per cord blood unit in the U.S. and Europe17. Indications for the use of cord blood-derived HSCs for transplantations18. Diseases targeted by cord blood-derived MSCs in regenerative medicine19. Cord blood processing technologies20. Number of clinical trials, number of published scientific papers and NIH funding for cord blood research21. Transplantation data from different cord blood registries

Key questions answered in this report are:

1. What are the strategies being considered for improving the financial stability of public cord blood banks?2. What are the companion products proposed to be developed from cord blood?3. How much is being spent on processing and storing a unit of cord blood?4. How much does a unit of cryopreserved cord blood unit fetch on release?5. Why do most public cord blood banks incur a loss?6. What is the net profit margin for a private cord blood bank?7. What are the prices for processing and storage of cord blood in private cord blood banks?8. What are the rates per cord blood units in the U.S. and Europe?9. What are the revenues from cord blood sales for major cord blood banks?10. Which are the different accreditation systems for cord blood banks?11. What are the comparative merits of the various cord blood processing technologies?12. What is to be done to increase the rate of utilization of cord blood cells in transplantations?13. Which TNC counts are preferred for transplantation?14. What is the number of registered clinical trials using cord blood and cord tissue?15. How many clinical trials are involved in studying the expansion of cord blood cells in the laboratory?16. How many matching and mismatching transplantations using cord blood units are performed on an annual basis?17. What is the share of cord blood cells used for transplantation from 2000 to 2020?18. What is the likelihood of finding a matching allogeneic cord blood unit by ethnicity?19. Which are the top ten countries for donating cord blood?20. What are the diseases targeted by cord blood-derived MSCs within clinical trials?

Key Topics Covered

1. REPORT OVERVIEW1.1 Statement of the Report1.2 Executive Summary1.3 Introduction1.3.1 Cord Blood: An Alternative Source for HPSCs1.3.2 Utilization of Cord Blood Cells in Clinical Trials1.3.3 The Struggle of Cord Blood Banks1.3.4 Emerging Technologies to Influence Financial Sustainability of Banks1.3.4.1 Other Opportunities to Improve Financial Stability1.3.4.2 Scope for Companion Products1.3.5 Changing Landscape of Cord Blood Cell Banking Market1.3.6 Extension of Services by Cord Blood Banks

2. CORD BLOOD & CORD BLOOD BANKING: AN OVERVIEW2.1 Cord Blood Banking (Stem Cell Banking)2.1.1 Public Cord Blood Banks2.1.1.1 Economic Model of Public Cord Blood Banks2.1.1.2 Cost Analysis for Public Banks2.1.1.3 Relationship between Costs and Release Rates2.1.2 Private Cord Blood Banks2.1.2.1 Cost Analysis for Private Cord Blood Banks2.1.2.2 Economic Model of Private Banks2.1.3 Hybrid Cord Blood Banks2.2 Globally Known Cord Blood Banks2.2.1 Comparing Cord Blood Banks2.2.2 Cord Blood Banks in the U.S.2.2.3 Proportion of Public, Private and Hybrid Banks2.3 Percent Share of Parents of Newborns Storing Cord Blood by Country/Region2.4 Pricing for Processing and Storage in Commercial Banks2.4.1 Rate per Cord Blood Unit in the U.S. and Europe2.5 Cord Blood Revenues for Major Cord Blood Banks

3. CORD BLOOD BANK ACCREDITATIONS3.1 American Association of Blood Banks (AABB)3.2 Foundation for the Accreditation of Cellular Therapy (FACT)3.3 FDA Registration3.4 FDA Biologics License Application (BLA) License3.5 Investigational New Drug (IND) for Cord Blood3.6 Human Tissue Authority (HTA)3.7 Therapeutic Goods Act (TGA) in Australia3.8 International NetCord Foundation3.9 AABB Accredited Cord Blood Facilities3.10 FACT Accreditation for Cord Blood Banks

4. APPLICATIONS OF CORD BLOOD CELLS4.1 Hematopoietic Stem Cell Transplantations with Cord Blood Cells4.2 Cord Cells in Regenerative Medicine

5. CORD BLOOD PROCESSING TECHNOLOGIES5.1 The Process of Separation5.1.1 PrepaCyte-CB5.1.2 Advantages of PrepaCyte-CB5.1.3 Treatment Outcomes with PrepaCyte-CB5.1.4 Hetastarch (HES)5.1.5 AutoXpress (AXP)5.1.6 SEPAX5.1.7 Plasma Depletion Method (MaxCell Process)5.1.8 Density Gradient Method5.2 Comparative Merits of Different Processing Methods5.2.1 Early Stage HSC Recovery by Technologies5.2.2 Mid Stage HSC (CD34+/CD133+) Recovery from Cord Blood5.2.3 Late Stage Recovery of HSCs from Cord Blood5.3 HSC (CD45+) Recovery5.4 Days to Neutrophil Engraftment by Technology5.5 Anticoagulants used in Cord Blood Processing5.5.1 Type of Anticoagulant and Cell Recovery Volume5.5.2 Percent Cell Recovery by Sample Size5.5.3 TNC Viability by Time Taken for Transport and Type of Anticoagulant5.6 Cryopreservation of Cord Blood Cells5.7 Bioprocessing of Umbilical Cord Tissue (UCT)5.8 A Proposal to Improve the Utilization Rate of Banked Cord Blood

6. CORD BLOOD CLINICAL TRIALS, SCIENTIFIC PUBLICATIONS & NIH FUNDING6.1 Cord Blood Cells for Research6.2 Cord Blood Cells for Clinical Trials6.2.1 Number of Clinical Trials involving Cord Blood Cells6.2.2 Number of Clinical Trials using Cord Blood Cells by Geography6.2.3 Number of Clinical Trials by Study Type6.2.4 Number of Clinical Trials by Study Phase6.2.5 Number of Clinical Trials by Funder Type6.2.6 Clinical Trials Addressing Indications in Children6.2.7 Select Three Clinical Trials Involving Children6.2.7.1 Sensorineural Hearing Loss (NCT02038972)6.2.7.2 Autism Spectrum (NCT02847182)6.2.7.3 Cerebral Palsy (NCT01147653)6.2.8 Clinical Trials for Neurological Diseases using Cord Blood and Cord Tissue6.2.9 UCB for Diabetes6.2.10 UCB in Cardiovascular Clinical Trials6.2.11 Cord Blood Cells for Auto-Immune Diseases in Clinical Trials6.2.12 Cord Tissue Cells for Orthopedic Disorders in Clinical Trials6.2.13 Cord Blood Cells for Other Indications in Clinical Trials6.3 Major Diseases Addressed by Cord Blood Cells in Clinical Trials6.4 Clinical Trials using Cord Tissue-Derived MSCs6.5 Ongoing Clinical Trials using Cord Tissue6.5.1 Cord Tissue-Based Clinical Trials by Geography6.5.2 Cord Tissue-Based Clinical Trials by Phase6.5.3 Cord Tissue-Based Clinical Trials by Sponsor Types6.5.4 Companies Sponsoring in Trials using Cord Tissue-Derived MSCs6.6 Wharton's Jelly-Derived MSCs in Clinical Trials6.6.1 Wharton's Jelly-Based Clinical Trials by Phase6.6.2 Companies Sponsoring Wharton's Jelly-Based Clinical Trials6.7 Clinical Trials Involving Cord Blood Expansion Studies6.7.1 Safe and Feasible Expansion Protocols6.7.2 List of Clinical Trials involved in the Expansion of Cord Blood HSCs6.7.3 Expansion Technologies6.8 Scientific Publications on Cord Blood6.9 Scientific Publications on Cord Tissue6.10 Scientific Publications on Wharton's Jelly-Derived MSCs6.11 Published Scientific Papers on Cord Blood Cell Expansion6.12 NIH Funding for Cord Blood Research

7. PARENT'S AWARENESS AND ATTITUDE TOWARDS CORD BLOOD BANKING7.1 Undecided Expectant Parents7.2 The Familiar Cord Blood Banks Known by the Expectant Parents7.3 Factors Influencing the Choice of a Cord Blood Bank

8. CORD BLOOD: AS A TRANSPLANTATION MEDICINE8.1 Comparisons of Cord Blood to other Allograft Sources8.1.1 Major Indications for HCTs in the U.S.8.1.2 Trend in Allogeneic HCT in the U.S. by Recipient Age8.1.3 Trends in Autologous HCT in the U.S. by Recipient Age8.2 HCTs by Cell Source in Adult Patients8.2.1 Transplants by Cell Source in Pediatric Patients8.3 Allogeneic HCTs by Cell Source8.3.1 Unrelated Donor Allogeneic HCTs in Patients &lessThan;18 Years8.4 Likelihood of Finding an Unrelated Cord Blood Unit by Ethnicity8.4.1 Likelihood of Finding an Unrelated Cord Blood Unit for Patients &lessThan;20 Years8.5 Odds of using a Baby's Cord Blood8.6 Cord Blood Utilization Trends8.7 Number of Cord Blood Donors Worldwide8.7.1 Number of CBUs Stored Worldwide8.7.2 Cord Blood Donors by Geography8.7.2.1 Cord Blood Units Stored in Different Geographies8.7.2.2 Number of Donors by HLA Typing8.7.3 Searches Made by Transplant Patients for Donors/CBUs8.7.4 Types of CBU Shipments (Single/Double/Multi)8.7.5 TNC Count of CBUs Shipped for Children and Adult Patients8.7.6 Shipment of Multiple CBUs8.7.7 Percent Supply of CBUs for National and International Patients8.7.8 Decreasing Number of CBU Utilization8.8 Top Ten Countries in Cord Blood Donation8.8.1 HLA Typed CBUs by Continent8.8.2 Percentage TNC of Banked CBUs8.8.3 Total Number of CBUs, HLA-Typed Units by Country8.9 Cord Blood Export/Import by the E.U. Member States8.9.1 Number of Donors and CBUs in Europe8.9.2 Number of Exports/Imports of CBUs in E.U.8.10 Global Exchange of Cord Blood Units

9. CORD BLOOD CELLS AS THERAPEUTIC CELL PRODUCTS IN CELL THERAPY9.1 MSCs from Cord Blood and Cord Tissue9.1.1 Potential Neurological Applications of Cord Blood-Derived Cells9.1.2 Cord Tissue-Derived MSCs for Therapeutic use9.1.2.1 Indications Targeted by UCT-MSCs in Clinical Trials9.2 Current Consumption of Cord Blood Units by Clinical Trials9.3 Select Cord Blood Stem Cell Treatments in Clinical Trials9.3.1 Acquired Hearing Loss (NCT02038972)9.3.2 Autism (NCT02847182)9.3.3 Cerebral Palsy (NCT03087110)9.3.4 Hypoplastic Left Heart Syndrome (NCT01856049)9.3.5 Type 1 Diabetes (NCT00989547)9.3.6 Psoriasis (NCT03765957)9.3.7 Parkinson's Disease (NCT03550183)9.3.8 Signs of Aging (NCT04174898)9.3.9 Stroke (NCT02433509)9.3.10 Traumatic Brain Injury (NCT01451528)

10. MARKET ANALYSIS10.1 Public vs. Private Cord Blood Banking Market10.2 Cord Blood Banking Market by Indication

11. PROFILES OF SELECT CORD BLOOD BANKS11.1 AllCells11.1.1 Whole Blood11.1.2 Leukopak11.1.3 Mobilized Leukopak11.1.4 Bone Marrow11.1.5 Cord Blood11.2 AlphaCord LLC11.2.1 NextGen Collection System11.3 Americord Registry, Inc.11.3.1 Cord Blood 2.011.3.2 Cord Tissue11.3.3 Placental Tissue 2.011.4 Be The Match11.4.1 Hub of Transplant Network11.4.2 Partners of Be The Match11.4.3 Allogeneic Cell Sources in Be The Match Registry11.4.4 Likelihood of a Matched Donor on Be The Match by Ethnic Background11.5 Biocell Center Corporation11.5.1 Chorionic villi after Delivery11.5.2 Amniotic Fluid and Chorionic Villi during Pregnancy11.6 BioEden Group, Inc.11.6.1 Differences between Tooth Cells and Umbilical Cord Cells11.7 Biovault Family11.7.1 Personalized Cord Blood Processing11.8 Cell Care11.9 Cells4Life Group, LLP11.9.1 Cells4Life's pricing11.9.2 TotiCyte Technology11.9.3 Cord Blood Releases11.10 Cell-Save11.11 Center for International Blood and Marrow Transplant Research (CIBMTR)11.11.1 Global Collaboration11.11.2 Scientific Working Committees11.11.3 Medicare Clinical Trials and Studies11.11.4 Cellular Therapy11.12 Crio-Cell International, Inc.11.12.1 Advanced Collection Kit11.12.2 Prepacyte-CB11.12.3 Crio-Cell International's Pricing11.12.4 Revenue for Crio-Cell International11.13 Cord Blood Center Group11.13.1 Cord Blood Units Released11.14 Cordlife Group, Ltd.11.14.1 Cordlife's Cord Blood Release Track Record11.15 Core23 Biobank11.16 Cord Blood Registry (CBR)11.17 CordVida11.18 Crioestaminal11.18.1 Cord Blood Transplantation in Portugal11.19 Cryo-Cell International, Inc.11.19.1 Processing Method11.19.2 Financial Results of the Company11.20 CryoHoldco11.21 Cryoviva Biotech Pvt. Ltd11.22 European Society for Blood and Bone Marrow Transplantation (EBMT)11.22.1 EBMT Transplant Activity11.23 FamiCord Group11.24 GeneCell International11.25 Global Cord Blood Corporation11.25.1 The Company's Business11.26 HealthBaby Hong Kong11.26.1 BioArchive System Service Plan11.26.2 MVE Liquid Nitrogen System11.27 HEMAFUND11.28 Insception Lifebank11.29 LifebankUSA11.29.1 Placental Banking11.30 LifeCell International Pvt. Ltd.11.31 MiracleCord, Inc.11.32 Maze Cord Blood Laboratories11.33 New England Cord Blood Bank, Inc.11.34 New York Cord Blood Center (NYBC)11.34.1 Products11.34.2 Laboratory Services11.35 PacifiCord11.35.1 FDA-Approved Sterile Collection Bags11.35.2 AXP Processing System11.35.3 BioArchive System11.36 ReeLabs Pvt. Ltd.11.37 Smart Cells International, Ltd.11.38 Stem Cell Cryobank11.39 StemCyte, Inc.11.39.1 StemCyte Sponsored Clinical Trials11.39.1.1 Spinal Cord Injury Phase II11.39.1.2 Other Trials11.40 Transcell Biolife11.40.1 ScellCare11.40.2 ToothScell11.41 ViaCord11.42 Vita 34 AG11.43 World Marrow Donor Association (WMDA)11.43.1 Search & Match Service11.44 Worldwide Network for Blood & Marrow Transplantation (WBMT)

For more information about this report visit https://www.researchandmarkets.com/r/7bm9lx

Research and Markets also offers Custom Research services providing focused, comprehensive and tailored research.

Media Contact:

Research and Markets Laura Wood, Senior Manager [emailprotected]

For E.S.T Office Hours Call +1-917-300-0470 For U.S./CAN Toll Free Call +1-800-526-8630 For GMT Office Hours Call +353-1-416-8900

U.S. Fax: 646-607-1907 Fax (outside U.S.): +353-1-481-1716

SOURCE Research and Markets

http://www.researchandmarkets.com

Continued here:
Global Cord Blood Banking Market 2020 with Analysis of 44 Industry Players - PRNewswire

To Read More: Global Cord Blood Banking Market 2020 with Analysis of 44 Industry Players – PRNewswire
categoriaSpinal Cord Stem Cells commentoComments Off on Global Cord Blood Banking Market 2020 with Analysis of 44 Industry Players – PRNewswire | dataSeptember 3rd, 2020
Read All

(new) The Science of Survival: Evolving Research in Advanced Non-Small Cell Lung Cancer – Reuters

By daniellenierenberg

Despite significant progress in treating cancer in recent years, the need for further improvements has persisted particularly for some of the most challenging forms of the disease, such as lung cancer. Lung cancer is one of the most common cancers, and is the leading cause of cancer death in both men and women.

The majority of lung cancer cases are non-small cell lung cancer (NSCLC), a complex disease that can affect each patient differently. Most cases of NSCLC are not diagnosed until the disease is advanced meaning it has metastasized or spread which can make it more challenging to treat.

The impact of lung cancer, and advanced NSCLC in particular, continues to be felt across our communities, explained Andrea Ferris, president and chairman of LUNGevity Foundation. While every persons experience with the disease is unique, many patients hope they can retain a sense of normalcy in their lives and are seeking more treatment options that offer a chance at a longer life.

Research Driving New Progress for Certain Patients

Researchers have accelerated their pursuit of new and differentiated approaches that address this critical unmet need, focusing on options that may offer patients a chance at a longer life. One area of research that has shown potential is combining treatments, such as immunotherapies, for certain patients with previously untreated advanced disease.

Hossein Borghaei, D.O., chief of thoracic medical oncology at Fox Chase Cancer Center in Philadelphia explains, Progress in treating advanced lung cancer has led to more options for patients with newly diagnosed advanced NSCLC. Some of the most recent developments in the field of immunotherapy are particularly exciting.

One example is the U.S. Food and Drug Administrations approval of the first and only dual immunotherapy approach for newly diagnosed patients. Opdivo (nivolumab) is a prescription medicine used in combination with Yervoy (ipilimumab) for adults with advanced stage NSCLC that has spread to other parts of your body (metastatic) and tests positive for PD-L1 and do not have an abnormal EGFR or ALK gene.

Opdivo can cause problems that can sometimes become serious or life threatening and can lead to death. Serious side effects may include lung problems (pneumonitis); intestinal problems (colitis) that can lead to tears or holes in your intestine; liver problems (hepatitis); hormone gland problems (especially the thyroid, pituitary, adrenal glands, and pancreas); kidney problems, including nephritis and kidney failure; skin problems; inflammation of the brain (encephalitis); problems in other organs; and severe infusion reactions; and complications of stem-cell transplant that uses donor stem cells (allogeneic). Additional serious side effects of Yervoy alone include: nerve problems that can lead to paralysis; eye problems; and complications of stem-cell transplant that uses donor stem cells (allogeneic). Please see Important Facts about side effects for Opdivo and Yervoy below.

Opdivo and Yervoy work with your immune system to help fight cancer in two ways. Yervoy stimulates the kind of cells that help fight cancer, while Opdivo may help these cells to find and fight the cancer cells again. While doing so, Opdivo and Yervoy can also affect healthy cells. These problems can sometimes become serious or life threatening and can lead to death. These problems may happen anytime during treatment or even after treatment has ended. Some of these problems may happen more often when Opdivo is used in combination with Yervoy.

Clinical Trial Findings: A Chance to Live Longer

Opdivo + Yervoy was studied in a clinical trial and compared to platinum-based chemotherapy among certain patients with previously untreated, advanced NSCLC that tested positive for PD-L1.

In the trial, 396 patients received Opdivo + Yervoy and 397 patients received platinum-based chemotherapy. Patients who were treated with Opdivo + Yervoy lived longer than those treated with platinum-based chemotherapy:

An additional analysis showed:

The data supporting this dual immunotherapy approach are encouraging, particularly as one third of the patients who responded to treatment with Opdivo + Yervoy were still alive at three years, said Dr. Borghaei. Further, Opdivo + Yervoy offers a non-chemotherapy option, which can be important to some patients.

The most common side effects of Opdivo, when used in combination with Yervoy, include: feeling tired; diarrhea; rash; itching; nausea; pain in muscles, bones, and joints; fever; cough; decreased appetite; vomiting; stomach-area (abdominal) pain; shortness of breath; upper respiratory tract infection; headache; low thyroid hormone levels (hypothyroidism); decreased weight; and dizziness. Please see Important Facts about side effects for Opdivo and Yervoy below.

Evolving Outlooks and Adapting Support for Patients

Facing a lung cancer diagnosis and beginning treatment can be life-altering in many ways and todays unique environment as a result of the coronavirus has brought about additional considerations for patients, caregivers and the broader healthcare community, with telemedicine and other forms of remote support playing an increasingly vital role.

Patients should know there are resources available and ways to stay connected, even during times when maintaining physical distance from others is important, said Ferris. We have transformed many of our patient support and education offerings into virtual formats, which we are updating frequently to provide the most recent information and reach and connect as many people as possible.

Dr. Borghaei also urges patients to reach out to their doctor or care team to learn about and take advantage of available remote support offerings. Advances in cancer research are still happening every day, with Opdivo + Yervoy being one example. Its as important as ever that people diagnosed with lung cancer speak with their doctor to fully understand their treatment options. While how we deliver care might look different now in some ways, our commitment to helping patients live longer hasnt changed.

To learn more about Opdivo + Yervoy, please visit http://www.Opdivo.com.

INDICATION

OPDIVO (nivolumab) is a prescription medicine used in combination with YERVOY (ipilimumab) as a first treatment for adults with a type of advanced stage lung cancer (called non-small cell lung cancer) when your lung cancer has spread to other parts of your body (metastatic) and your tumors are positive for PD-L1, but do not have an abnormal EGFR or ALK gene.

It is not known if OPDIVO is safe and effective in children younger than 18 years of age.

OPDIVO (10 mg/mL) and YERVOY (5 mg/mL) are injections for intravenous (IV) use.

Important Safety Information for OPDIVO (nivolumab) + YERVOY (ipilimumab)

OPDIVO is a medicine that may treat certain cancers by working with your immune system. OPDIVO can cause your immune system to attack normal organs and tissues in any area of your body and can affect the way they work. These problems can sometimes become serious or life-threatening and can lead to death. These problems may happen anytime during treatment or even after your treatment has ended. Some of these problems may happen more often when OPDIVO is used in combination with YERVOY.

YERVOY can cause serious side effects in many parts of your body which can lead to death. These problems may happen anytime during treatment with YERVOY or after you have completed treatment.

Serious side effects may include: Lung problems (pneumonitis). Symptoms of pneumonitis may include: new or worsening cough; chest pain; and shortness of breath. Intestinal problems (colitis) that can lead to tears or holes in your intestine. Signs and symptoms of colitis may include: diarrhea (loose stools) or more bowel movements than usual; blood in your stools or dark, tarry, sticky stools; and severe stomach area (abdomen) pain or tenderness. Liver problems (hepatitis). Signs and symptoms of hepatitis may include: yellowing of your skin or the whites of your eyes; severe nausea or vomiting; pain on the right side of your stomach area (abdomen); drowsiness; dark urine (tea colored); bleeding or bruising more easily than normal; feeling less hungry than usual; and decreased energy. Hormone gland problems (especially the thyroid, pituitary, adrenal glands, and pancreas). Signs and symptoms that your hormone glands are not working properly may include: headaches that will not go away or unusual headaches; extreme tiredness; weight gain or weight loss; dizziness or fainting; changes in mood or behavior, such as decreased sex drive, irritability, or forgetfulness; hair loss; feeling cold; constipation; voice gets deeper; and excessive thirst or lots of urine. Kidney problems, including nephritis and kidney failure. Signs of kidney problems may include: decrease in the amount of urine; blood in your urine; swelling in your ankles; and loss of appetite. Skin problems. Signs of these problems may include: rash; itching; skin blistering; and ulcers in the mouth or other mucous membranes. Inflammation of the brain (encephalitis). Signs and symptoms of encephalitis may include: headache; fever; tiredness or weakness; confusion; memory problems; sleepiness; seeing or hearing things that are not really there (hallucinations); seizures; and stiff neck. Problems in other organs. Signs of these problems may include: changes in eyesight; severe or persistent muscle or joint pains; severe muscle weakness; and chest pain.

Additional serious side effects observed during a separate study of YERVOY alone include: Nerve problems that can lead to paralysis. Symptoms of nerve problems may include: unusual weakness of legs, arms, or face; and numbness or tingling in hands or feet. Eye problems. Symptoms may include: blurry vision, double vision, or other vision problems; and eye pain or redness.

Get medical help immediately if you develop any of these symptoms or they get worse. It may keep these problems from becoming more serious. Your healthcare team will check you for side effects during treatment and may treat you with corticosteroid or hormone replacement medicines. If you have a serious side effect, your healthcare team may also need to delay or completely stop your treatment.

OPDIVO and OPDIVO + YERVOY can cause serious side effects, including: Severe infusion reactions. Tell your doctor or nurse right away if you get these symptoms during an infusion: chills or shaking; itching or rash; flushing; difficulty breathing; dizziness; fever; and feeling like passing out. Graft-versus-host disease, a complication that can happen after receiving a bone marrow (stem cell) transplant that uses donor stem cells (allogeneic), may be severe, and can lead to death, if you receive YERVOY either before or after transplant. Your healthcare provider will monitor you for the following signs and symptoms: skin rash, liver inflammation, stomach-area (abdominal) pain, and diarrhea.

Pregnancy and Nursing: Tell your healthcare provider if you are pregnant or plan to become pregnant. OPDIVO and YERVOY can harm your unborn baby. If you are a female who is able to become pregnant, your healthcare provider should do a pregnancy test before you start receiving OPDIVO. Females who are able to become pregnant should use an effective method of birth control during treatment and for at least 5 months after the last dose. Talk to your healthcare provider about birth control methods that you can use during this time. Tell your healthcare provider right away if you become pregnant or think you are pregnant during treatment. You or your healthcare provider should contact Bristol Myers Squibb at 1-800-721-5072 as soon as you become aware of the pregnancy. Pregnancy Safety Surveillance Study: Females who become pregnant during treatment with YERVOY are encouraged to enroll in a Pregnancy Safety Surveillance Study. The purpose of this study is to collect information about the health of you and your baby. You or your healthcare provider can enroll in the Pregnancy Safety Surveillance Study by calling 1-844-593-7869. Before receiving treatment, tell your healthcare provider if you are breastfeeding or plan to breastfeed. It is not known if either treatment passes into your breast milk. Do not breastfeed during treatment and for 5 months after the last dose.

Tell your healthcare provider about: Your health problems or concerns if you: have immune system problems such as autoimmune disease, Crohns disease, ulcerative colitis, lupus, or sarcoidosis; have had an organ transplant; have lung or breathing problems; have liver problems; or have any other medical conditions. All the medicines you take, including prescription and over-the-counter medicines, vitamins, and herbal supplements.

The most common side effects of OPDIVO, when used in combination with YERVOY, include: feeling tired; diarrhea; rash; itching; nausea; pain in muscles, bones, and joints; fever; cough; decreased appetite; vomiting; stomach-area (abdominal) pain; shortness of breath; upper respiratory tract infection; headache; low thyroid hormone levels (hypothyroidism); decreased weight; and dizziness.

These are not all the possible side effects. For more information, ask your healthcare provider or pharmacist. Call your doctor for medical advice about side effects. You are encouraged to report negative side effects of prescription drugs to the FDA. Visit http://www.fda.gov/medwatch or call 1-800-FDA-1088.

Please see U.S. Full Prescribing Information and Medication Guide for OPDIVO and YERVOY.

2020 Bristol-Myers Squibb Company.

OPDIVO and YERVOY are registered trademarks of Bristol-Myers Squibb Company.

7356US2001251-01 08/20

The rest is here:
(new) The Science of Survival: Evolving Research in Advanced Non-Small Cell Lung Cancer - Reuters

To Read More: (new) The Science of Survival: Evolving Research in Advanced Non-Small Cell Lung Cancer – Reuters
categoriaSkin Stem Cells commentoComments Off on (new) The Science of Survival: Evolving Research in Advanced Non-Small Cell Lung Cancer – Reuters | dataSeptember 3rd, 2020
Read All

Exciting new technologies could change the way we age – TheSpec.com

By daniellenierenberg

On April 15, 2002, the FDA approved a temporary treatment for wrinkles that would revolutionize aging. All of a sudden, you could waltz into a derms office and get your frown lines ironed out faster than it would take to iron an actual shirt. It was called botulinum toxin, Botox for short.

Eighteen years later, a few units of Botox every three months has become the norm for millions around the world (more than seven million yearly in the U.S. alone). Now, if someone had told your grandparents, or even your parents, 20 years ago that people would be getting their foreheads frozen to look younger, they likely would have scoffed at the idea. So just imagine what other wild fixes could be coming to a medi-spa near you.

Its exciting to think about how the next 10 years will look, says Dr. Rohan Bissoondath, medical director of Calgarys Preventous Cosmetic Medicine clinic. With lifespan increasing, people are routinely going to be living into their hundreds, so we want to look great as well. From magic pills to creams that mimic injections, we take a look at the incredible innovations on the horizon.

You wont need surgery to lift your face

The way science is progressing, facelifts are set to become obsolete, says Dr. Lisa Kellett of Torontos DLK on Avenue. I think that the gold standard will eventually be finding ways to regenerate and kick-start our own collagen instead of doing a facelift. Kellett is already trying out cutting-edge technology to accomplish this, such as a laser that delivers growth factors right in the dermis to regenerate tissue. Its pretty snazzy stuff, but she anticipates even greater advances in coming years. I think well be able to use stem cells in conjunction with technology to regenerate collagen I think thats what well be doing one day.

Youll (hopefully) be able to nix wrinkles without needles

Botox in a cream? This has been in the pipeline for a while, says Bissoondath. The challenge is getting the molecules to penetrate the skin so that they can act on the muscle. Maybe on crows feet because its a thinner area, thinner muscles; that may be an area where we see some utility for it, but its still out there. Topical Botox had some success in trials, but scientists still have kinks to work out. In the meantime, a Botox cream might be beneficial even if it doesnt reach muscles, says Bissoondath. I see the potential for having it in a cream and applying it to the whole face, not necessarily affecting facial expressions, but giving an improved glow and better skin quality.

Therell be more all-in-one solutions

If you want to smooth, you get Botox. If you want to brighten, you get IPL. If you want to tighten, you get Thermage. But what if there was a treatment that did it all? I think thats the future of aging, says Kellett, who is just about to launch such a treatment at her clinic. Marketed as the next generation of laser and light-based platform technology, Etherea MX is a multiple modality device that can tackle everything from dark spots and skin laxity to textural issues and wrinkles. It means that when patients come in, theyre not just doing one thing, says the doc. Instead, in the same appointment, shes able to address a variety of concerns with a single machine.

Youll be able to take a pill instead of hitting the gym

OK, this is very cool. Something I think is possible is a pill to replace exercise, says Bissoondath, who adds that this could be developed in the not so distant future. With the advances were making in understanding the functions of our body down to the cellular level and intracellular level, and understanding how our mitochondria actually ages, were looking at ways now where we can manipulate that from a pill perspective. The pill wouldnt deliver all the benefits of physical activity, such as the positive impact on our mood, but it would replicate its effects on our body. It wont take the place of walking around outside and soaking up nature it cant do the mental part of it. But as far as the physiologic, biochemical part of it, were really understanding that better and making big strides. Its exciting.

Loading...Loading...Loading...Loading...Loading...

Read more here:
Exciting new technologies could change the way we age - TheSpec.com

To Read More: Exciting new technologies could change the way we age – TheSpec.com
categoriaSkin Stem Cells commentoComments Off on Exciting new technologies could change the way we age – TheSpec.com | dataSeptember 3rd, 2020
Read All

Market Growth of Global Stem Cells to Remain Sluggish through 2020 2030 – The News Brok

By daniellenierenberg

The success of approved stem cell therapies has caused a surge in interest of biopharma developers in this field; many innovator companies are currently progressing proprietary leads across different phases of clinical development, with cautious optimism

Roots Analysis has announced the addition of Global Stem Cells Market: Focus on Clinical Therapies, 20202030 (Based on Source (Allogeneic, Autologous); Origin (Adult, Embryonic); Type (Hematopoietic, Mesenchymal, Progenitor); Lineage (Amniotic Fluid, Adipose Tissue, Bone Marrow, Cardiosphere, Chondrocytes, Corneal Tissue, Cord Blood, Dental Pulp, Neural Tissue Placenta, Peripheral Blood, Stromal Cells); and Potency (Multipotent, Pluripotent)) report to its list of offerings.

There is a growing body of evidence supporting the vast applicability and superiority of treatment outcomes of stem cell therapies, compared to conventional treatment options. In fact, the unmet needs within this domain have spurred the establishment of many start-ups in recent years.

To order this 500+ page report, which features 185+ figures and 220+ tables, please visit this link

Over 280 stem cell therapies are under development, most of which are allogeneic productsMore than 50% of the pipeline candidates are in the mid to late phase trials (phase II and above), and allogenic therapies (majority of which are derived from the bone marrow) make up 65% of the pipeline.

70% of pipeline candidates are based on mesenchymal stem cellsIt is worth highlighting that the abovementioned therapies are designed to treat musculoskeletal (22%), neurological (21%) and cardiovascular (15%) disorders. On the other hand, hematopoietic stem cell-based products are mostly being evaluated for the treatment of oncological disorders, primarily hematological malignancies.

Close to 85% stem cell therapy developers are based in North America and Asia-Pacific regionsWithin these regions, the US, China, South Korea and Japan, have emerged as key R&D hubs for stem cell therapies. It is worth noting that majority of the initiatives in this domain are driven by small / mid-sized companies

Over 1,500 grants were awarded for stem cell research, since 2015More than 45% of the total amount was awarded under the R01 mechanism (which supports research projects). The NCI, NHLBI, NICHD, NIDDK, NIGMS and OD emerged as key organizations that have offered financial support for time periods exceeding 25 years as well.

Outsourcing has become indispensable to R&D and manufacturing activity in this domainPresently, more than 80 industry / non-industry players, based in different regions across the globe, claim to provide contract development and manufacturing services to cater to the unmet needs of therapy developers. Examples include (in alphabetical order) Bio Elpida, Cell and Gene Therapy Catapult, Cell Tech Pharmed, GenCure, KBI Biopharma, Lonza, MEDINET, Nikon CeLL innovation, Roslin Cell Therapies, WuXi Advanced Therapies and YposKesi.

North America and Asia-Pacific markets are anticipated to capture over 80% share by 2030The stem cell therapies market is anticipated to witness an annualized growth rate of over 30% during the next decade. Interestingly, the market in China / broader Asia-Pacific region is anticipated to grow at a relatively faster rate.

To request a sample copy / brochure of this report, please visit this link

The USD 8.5 billion (by 2030) financial opportunity within the stem cell therapies market has been analyzed across the following segments:

The report features inputs from eminent industry stakeholders, according to whom stem cell therapies are currently considered to be a promising alternatives for the treatment of a myriad of disease indications, with the potential to overcome challenges associated with conventional treatment options. The report includes detailed transcripts of discussions held with the following experts:

The research covers brief profiles of several companies (including those listed below); each profile features an overview of the company, financial information (if available), stem cell therapy portfolio and an informed future outlook.

For additional details, please visithttps://www.rootsanalysis.com/reports/view_document/stem-cells-market/296.html

or email [emailprotected]

You may also be interested in the following titles:

Contact:

Gaurav Chaudhary+1 (415) 800 3415+44 (122) 391 1091[emailprotected]

See more here:
Market Growth of Global Stem Cells to Remain Sluggish through 2020 2030 - The News Brok

To Read More: Market Growth of Global Stem Cells to Remain Sluggish through 2020 2030 – The News Brok
categoriaCardiac Stem Cells commentoComments Off on Market Growth of Global Stem Cells to Remain Sluggish through 2020 2030 – The News Brok | dataSeptember 3rd, 2020
Read All

New Scientific Data at the ESMO Virtual Congress 2020 Reflect Merck’s Commitment to Advancing Cancer Research and Care – The Baytown Sun

By daniellenierenberg

KENILWORTH, N.J.--(BUSINESS WIRE)--Sep 2, 2020--

Merck (NYSE: MRK), known as MSD outside the United States and Canada, today announced that new data from its broad and diverse oncology development program will be presented at the European Society for Medical Oncology (ESMO) Virtual Congress 2020 from Sept. 1921. Data spanning more than 15 types of cancer will be presented at the congress, with new findings from Mercks portfolio of established medicines including KEYTRUDA, Mercks anti-PD-1 therapy; LENVIMA (lenvatinib, in collaboration with Eisai); and LYNPARZA (in collaboration with AstraZeneca). Pivotal Phase 3 data evaluating KEYTRUDA in combination with chemotherapy for the first-line treatment of patients with locally advanced or metastatic esophageal cancer from the KEYNOTE-590 trial (Abstract #LBA8) and LYNPARZA in patients with metastatic castration-resistant prostate cancer (mCRPC) from the PROfound trial (Abstract #610O) were selected for inclusion in ESMO Presidential Symposium sessions. Additionally, new findings will be shared for three of Mercks novel investigational candidates: vibostolimab (MK-7684), an anti-TIGIT antibody; MK-4830, an antibody targeting ILT4; and MK-6482, an oral HIF-2 inhibitor.

At Merck, we are focused on further improving long-term outcomes for more patients living with cancer, and this commitment is reflected in the breadth and diversity of our oncology research program, said Dr. Roy Baynes, senior vice president and head of global clinical development, chief medical officer, Merck Research Laboratories. At the ESMO Virtual Congress 2020, we look forward to sharing important new results including survival data for KEYTRUDA in esophageal cancer and long-term findings in lung cancer, melanoma, and head and neck cancer, as well as research from our expansive pipeline.

Key data from Mercks portfolio and pipeline to be presented at ESMO include:

KEYTRUDA

KEYTRUDA Plus LENVIMA

LYNPARZA

Pipeline

Merck Investor Event

Merck will hold a virtual investor event in conjunction with the ESMO Virtual Congress 2020 on Tuesday, Sept. 22 from 89 a.m. E.T. Details will be provided at a date closer to the event at https://www.merck.com/investor-relations.

Details on Abstracts Listed Above and Additional Key Abstracts for Merck

KEYTRUDA

Classical Hodgkin Lymphoma

Colorectal Cancer

Diffuse Large B-Cell Lymphoma

Esophageal Cancer

Head and Neck Cancer

Lung Cancer

Melanoma

Sarcoma

Solid Tumors

KEYTRUDA Plus LENVIMA (in collaboration with Eisai)

Lung Cancer

Melanoma

Renal Cell Carcinoma

Solid Tumors

LYNPARZA (in collaboration with AstraZeneca)

Ovarian Cancer

Prostate Cancer

Vibostolimab

Lung Cancer

MK-4830

Solid Tumors

MK-6482

Von-Hippel Lindau Disease

About KEYTRUDA (pembrolizumab) Injection, 100 mg

KEYTRUDA is an anti-PD-1 therapy that works by increasing the ability of the bodys immune system to help detect and fight tumor cells. KEYTRUDA is a humanized monoclonal antibody that blocks the interaction between PD-1 and its ligands, PD-L1 and PD-L2, thereby activating T lymphocytes which may affect both tumor cells and healthy cells.

Merck has the industrys largest immuno-oncology clinical research program. There are currently more than 1,200 trials studying KEYTRUDA across a wide variety of cancers and treatment settings. The KEYTRUDA clinical program seeks to understand the role of KEYTRUDA across cancers and the factors that may predict a patient's likelihood of benefitting from treatment with KEYTRUDA, including exploring several different biomarkers.

Selected KEYTRUDA (pembrolizumab) Indications

Melanoma

KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic melanoma.

KEYTRUDA is indicated for the adjuvant treatment of patients with melanoma with involvement of lymph node(s) following complete resection.

Non-Small Cell Lung Cancer

KEYTRUDA, in combination with pemetrexed and platinum chemotherapy, is indicated for the first-line treatment of patients with metastatic nonsquamous non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.

KEYTRUDA, in combination with carboplatin and either paclitaxel or paclitaxel protein-bound, is indicated for the first-line treatment of patients with metastatic squamous NSCLC.

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with NSCLC expressing PD-L1 [tumor proportion score (TPS) 1%] as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations, and is stage III where patients are not candidates for surgical resection or definitive chemoradiation, or metastatic.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with metastatic NSCLC whose tumors express PD-L1 (TPS 1%) as determined by an FDA-approved test, with disease progression on or after platinum-containing chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving KEYTRUDA.

Small Cell Lung Cancer

KEYTRUDA is indicated for the treatment of patients with metastatic small cell lung cancer (SCLC) with disease progression on or after platinum-based chemotherapy and at least 1 other prior line of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

Head and Neck Squamous Cell Cancer

KEYTRUDA, in combination with platinum and fluorouracil (FU), is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent head and neck squamous cell carcinoma (HNSCC).

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent HNSCC whose tumors express PD-L1 [combined positive score (CPS) 1] as determined by an FDA-approved test.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) with disease progression on or after platinum-containing chemotherapy.

Classical Hodgkin Lymphoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory classical Hodgkin lymphoma (cHL), or who have relapsed after 3 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Primary Mediastinal Large B-Cell Lymphoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory primary mediastinal large B-cell lymphoma (PMBCL), or who have relapsed after 2 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials. KEYTRUDA is not recommended for treatment of patients with PMBCL who require urgent cytoreductive therapy.

Urothelial Carcinoma

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who are not eligible for cisplatin-containing chemotherapy and whose tumors express PD-L1 [combined positive score (CPS) 10], as determined by an FDA-approved test, or in patients who are not eligible for any platinum-containing chemotherapy regardless of PD-L1 status. This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who have disease progression during or following platinum-containing chemotherapy or within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy.

KEYTRUDA is indicated for the treatment of patients with Bacillus Calmette-Guerin (BCG)-unresponsive, high-risk, non-muscle invasive bladder cancer (NMIBC) with carcinoma in situ (CIS) with or without papillary tumors who are ineligible for or have elected not to undergo cystectomy.

Microsatellite Instability-High or Mismatch Repair Deficient Cancer

KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR)

This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with MSI-H central nervous system cancers have not been established.

Microsatellite Instability-High or Mismatch Repair Deficient Colorectal Cancer

KEYTRUDA is indicated for the first-line treatment of patients with unresectable or metastatic MSI-H or dMMR colorectal cancer (CRC).

Gastric Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic gastric or gastroesophageal junction (GEJ) adenocarcinoma whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test, with disease progression on or after two or more prior lines of therapy including fluoropyrimidine- and platinum-containing chemotherapy and if appropriate, HER2/neu-targeted therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Esophageal Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic squamous cell carcinoma of the esophagus whose tumors express PD-L1 (CPS 10) as determined by an FDA-approved test, with disease progression after one or more prior lines of systemic therapy.

Cervical Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cervical cancer with disease progression on or after chemotherapy whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Hepatocellular Carcinoma

KEYTRUDA is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Merkel Cell Carcinoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with recurrent locally advanced or metastatic Merkel cell carcinoma (MCC). This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Renal Cell Carcinoma

KEYTRUDA, in combination with axitinib, is indicated for the first-line treatment of patients with advanced renal cell carcinoma (RCC).

Endometrial Carcinoma

KEYTRUDA, in combination with LENVIMA, is indicated for the treatment of patients with advanced endometrial carcinoma that is not MSI-H or dMMR, who have disease progression following prior systemic therapy and are not candidates for curative surgery or radiation. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trial.

Tumor Mutational Burden-High

KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic tumor mutational burden-high (TMB-H) [10 mutations/megabase (mut/Mb)] solid tumors, as determined by an FDA-approved test, that have progressed following prior treatment and who have no satisfactory alternative treatment options. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with TMB-H central nervous system cancers have not been established.

Cutaneous Squamous Cell Carcinoma

KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cutaneous squamous cell carcinoma (cSCC) that is not curable by surgery or radiation.

Selected Important Safety Information for KEYTRUDA

Immune-Mediated Pneumonitis

KEYTRUDA can cause immune-mediated pneumonitis, including fatal cases. Pneumonitis occurred in 3.4% (94/2799) of patients with various cancers receiving KEYTRUDA, including Grade 1 (0.8%), 2 (1.3%), 3 (0.9%), 4 (0.3%), and 5 (0.1%). Pneumonitis occurred in 8.2% (65/790) of NSCLC patients receiving KEYTRUDA as a single agent, including Grades 3-4 in 3.2% of patients, and occurred more frequently in patients with a history of prior thoracic radiation (17%) compared to those without (7.7%). Pneumonitis occurred in 6% (18/300) of HNSCC patients receiving KEYTRUDA as a single agent, including Grades 3-5 in 1.6% of patients, and occurred in 5.4% (15/276) of patients receiving KEYTRUDA in combination with platinum and FU as first-line therapy for advanced disease, including Grades 3-5 in 1.5% of patients.

Monitor patients for signs and symptoms of pneumonitis. Evaluate suspected pneumonitis with radiographic imaging. Administer corticosteroids for Grade 2 or greater pneumonitis. Withhold KEYTRUDA for Grade 2; permanently discontinue KEYTRUDA for Grade 3 or 4 or recurrent Grade 2 pneumonitis.

Immune-Mediated Colitis

KEYTRUDA can cause immune-mediated colitis. Colitis occurred in 1.7% (48/2799) of patients receiving KEYTRUDA, including Grade 2 (0.4%), 3 (1.1%), and 4 (<0.1%). Monitor patients for signs and symptoms of colitis. Administer corticosteroids for Grade 2 or greater colitis. Withhold KEYTRUDA for Grade 2 or 3; permanently discontinue KEYTRUDA for Grade 4 colitis.

Immune-Mediated Hepatitis (KEYTRUDA) and Hepatotoxicity (KEYTRUDA in Combination With Axitinib)

Immune-Mediated Hepatitis

KEYTRUDA can cause immune-mediated hepatitis. Hepatitis occurred in 0.7% (19/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.4%), and 4 (<0.1%). Monitor patients for changes in liver function. Administer corticosteroids for Grade 2 or greater hepatitis and, based on severity of liver enzyme elevations, withhold or discontinue KEYTRUDA.

Hepatotoxicity in Combination With Axitinib

KEYTRUDA in combination with axitinib can cause hepatic toxicity with higher than expected frequencies of Grades 3 and 4 ALT and AST elevations compared to KEYTRUDA alone. With the combination of KEYTRUDA and axitinib, Grades 3 and 4 increased ALT (20%) and increased AST (13%) were seen. Monitor liver enzymes before initiation of and periodically throughout treatment. Consider more frequent monitoring of liver enzymes as compared to when the drugs are administered as single agents. For elevated liver enzymes, interrupt KEYTRUDA and axitinib, and consider administering corticosteroids as needed.

Immune-Mediated Endocrinopathies

KEYTRUDA can cause adrenal insufficiency (primary and secondary), hypophysitis, thyroid disorders, and type 1 diabetes mellitus. Adrenal insufficiency occurred in 0.8% (22/2799) of patients, including Grade 2 (0.3%), 3 (0.3%), and 4 (<0.1%). Hypophysitis occurred in 0.6% (17/2799) of patients, including Grade 2 (0.2%), 3 (0.3%), and 4 (<0.1%). Hypothyroidism occurred in 8.5% (237/2799) of patients, including Grade 2 (6.2%) and 3 (0.1%). The incidence of new or worsening hypothyroidism was higher in 1185 patients with HNSCC (16%) receiving KEYTRUDA, as a single agent or in combination with platinum and FU, including Grade 3 (0.3%) hypothyroidism. Hyperthyroidism occurred in 3.4% (96/2799) of patients, including Grade 2 (0.8%) and 3 (0.1%), and thyroiditis occurred in 0.6% (16/2799) of patients, including Grade 2 (0.3%). Type 1 diabetes mellitus, including diabetic ketoacidosis, occurred in 0.2% (6/2799) of patients.

Monitor patients for signs and symptoms of adrenal insufficiency, hypophysitis (including hypopituitarism), thyroid function (prior to and periodically during treatment), and hyperglycemia. For adrenal insufficiency or hypophysitis, administer corticosteroids and hormone replacement as clinically indicated. Withhold KEYTRUDA for Grade 2 adrenal insufficiency or hypophysitis and withhold or discontinue KEYTRUDA for Grade 3 or Grade 4 adrenal insufficiency or hypophysitis. Administer hormone replacement for hypothyroidism and manage hyperthyroidism with thionamides and beta-blockers as appropriate. Withhold or discontinue KEYTRUDA for Grade 3 or 4 hyperthyroidism. Administer insulin for type 1 diabetes, and withhold KEYTRUDA and administer antihyperglycemics in patients with severe hyperglycemia.

Immune-Mediated Nephritis and Renal Dysfunction

KEYTRUDA can cause immune-mediated nephritis. Nephritis occurred in 0.3% (9/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.1%), and 4 (<0.1%) nephritis. Nephritis occurred in 1.7% (7/405) of patients receiving KEYTRUDA in combination with pemetrexed and platinum chemotherapy. Monitor patients for changes in renal function. Administer corticosteroids for Grade 2 or greater nephritis. Withhold KEYTRUDA for Grade 2; permanently discontinue for Grade 3 or 4 nephritis.

Read more:
New Scientific Data at the ESMO Virtual Congress 2020 Reflect Merck's Commitment to Advancing Cancer Research and Care - The Baytown Sun

To Read More: New Scientific Data at the ESMO Virtual Congress 2020 Reflect Merck’s Commitment to Advancing Cancer Research and Care – The Baytown Sun
categoriaCardiac Stem Cells commentoComments Off on New Scientific Data at the ESMO Virtual Congress 2020 Reflect Merck’s Commitment to Advancing Cancer Research and Care – The Baytown Sun | dataSeptember 3rd, 2020
Read All

Optimized Freezing Solutions for Clinical Application of Cell Therapy Products – Technology Networks

By daniellenierenberg

AMSBIO has announced new additions and certifications for its range of clinical grade, chemically defined cryopreservation excipient solutions STEM-CELLBANKER and HSC-BANKER.

STEM-CELLBANKER DMSO Free GMP grade is a new chemically defined freezing solution that does not contain DMSO as an anti-freezing agent. It was developed for customers who prefer not to use DMSO-containing cryopreservation solution due to the intended application of the samples. STEM-CELLBANKER DMSO Free GMP grade is manufactured in compliance with JPN, EU, US, and PIC/S GMP guidelines.

STEM-CELLBANKER is a chemically defined freezing media optimized for stem cells and iPS cells storage, as well as fragile primary cells. Published data supports its ability to cryopreserve organoids and tissues to allow the recovery of viable cells. STEM-CELLBANKER GMP grade is manufactured in compliance with JPN, EU, US, and PIC/S GMP guidelines. Free from animal derived components this popular cryopreservation medium contains only chemically defined USP, EP and JP grade ingredients. Available in both DMSO containing and DMSO-Free formulations, STEM-CELLBANKER is an optimal freezing solution for basic research and is finding widespread use in the clinical application of cell therapy products.

Manufactured to be completely free of serum and animal derived components, HSC-BANKER contains only European or US Pharmacopoeia graded ingredients making it suitable for storage of hematopoietic stem cells developed for cell therapy applications.

Recently the master files of HSC-BANKER were accepted by the Center for Biologics Evaluation and Research (CBER) within the US FDA (Food and Drug Administration). Master files are submissions to the FDA used to provide confidential, detailed information about facilities, processes, or articles used in the manufacturing, processing, packaging, and storing of human drug products. Beneficially they allow researchers to reference material without disclosing Master file contents to those parties.

HSC-BANKER is supplied ready-to-use and requires no special devices, such as a controlled rate freezer, in order to achieve consistently high viabilities following resuscitation from cryopreservation, even over extended long-term storage. HSC-BANKER significantly increases cell viability while maintaining cell pluripotency, normal karyotype and proliferation ability after freeze-thaw. Evaluated for endotoxins, pH, osmolarity and mycoplasma contaminants to ensure GMP equivalent quality. HSC-BANKER is part of the CELLBANKER range of cryopreservation media for cells, organoids and tissues.

Read more:
Optimized Freezing Solutions for Clinical Application of Cell Therapy Products - Technology Networks

To Read More: Optimized Freezing Solutions for Clinical Application of Cell Therapy Products – Technology Networks
categoriaIPS Cell Therapy commentoComments Off on Optimized Freezing Solutions for Clinical Application of Cell Therapy Products – Technology Networks | dataSeptember 3rd, 2020
Read All

Royal Biologics Announces the Acquisition of FIBRINET – PRNewswire

By daniellenierenberg

HACKENSACK, N.J., Sept. 1, 2020 /PRNewswire/ --Royal Biologics, an ortho-biologics company specializing in the research and advancement of autologous and live cellular solutions, today announced the completed acquisition of FIBRINET, from Vertical Spine LLC. The acquisition comes as part of Royal Biologics' strategic initiative to add novel technologies to its growing portfolio of autologous and live cellular solutions to support orthopedic and spinal fusion.

The FIBRINET system utilizes a patient's own autologous blood to create a platelet-rich fibrin matrix/membrane (PRFM). During this process, a patient's autologous platelets are harvested first through centrifugation and then combined with a proprietary solution to solidify into a fibrin clot/membrane. PRFM can be used to help augment spinal fusions and provide surgeons a new and novel biologic option. FIBRINET is the first commercialized system that utilizes a non-thrombin solution to create a reproducible platelet-rich fibrin matrix. The use of its proprietary solution to solidify a fibrin membrane provides the unique advantage of creating a biologic reservoir of growth factors and stem cells that can be held and used at the point of care for spinal fusion.

"We are extremely excited to add FIBRINET to our growing portfolio of autologous and live cellular therapies," says Salvatore Leo, Royal Biologics Chief Executive Officer. "FIBRINET'S technology now allows surgeons to harvest a patient's autologous cells and create a unique platelet-rich fibrin membrane-scaffold to be used at the point of care in most spinal fusion procedures. When added to our current product portfolio of autologous and live cellular therapies, we feel that providing each patient an opportunity to harvest their own unique cells for treatment is a superior option in many surgical settings."

FIBRINET has shown promising results and has been adopted into major orthopedic institutions in the United States. Hospitals such as Hospital for Special Surgery, Mount Sinai, NY Presbyterian and Connecticut's Orthopaedic Institute have all adopted FIBRINET into their spine services portfolio of approved products for use.

In a recent European Spine Journalstudy, at a one-year follow-up, FIBRINET demonstrated over a 92.4% radiographic fusion, and there was a significant improvement recorded in VAS scores for both back and leg pain. Compared to baseline figures, the number of patients using opioid analgesics at 12 months decreased by 38%. While the majority (31/50) of patients that participated in the study were retired, 68% of the employed patients were able to return to work.1

"FIBRINET presents itself as a low-cost option to obtain premium, high-quality viable cells from the patient for each fusion procedure," comments Dr. James Yue, Co-Chief and Orthopedic Spine Surgeon at Midstate Medical Center. "During this pandemic, a time when patients are having difficulty receiving operations in major hospital systems, the transition of procedures to ambulatory surgery centers has become even more desired and essential. FIBRINET's low-cost bundle provides surgeons the ability to offer a live viable cell product, point of care in a streamlined and safe environment for spinal fusion."

As part of a national re-launch plan for FIBRINET, Royal Biologics has just launched a new 3D animated moviethat demonstrates the unique features and benefits of FIBRINET's technology. "We wanted to show surgeons, distributors and our peers a new and creative take on Autologous & Live Cellular therapy," comments Leo. "With the recent pandemic and industry environment, we felt it was necessary to help create a unique viewing experience of the FIBRINET system."

FIBRINET comes after two other recent product launches from Royal Biologics in Q1 of 2020. Magnus, a live viable cellular allograft, and Cryo-Cord, a live cellular umbilical cord, were launched in the first quarter of 2020. Both products focus on providing live cellular therapies without the use of traditional toxic cyro-protectants. Both products are new, novel approaches to preserving live cells in a cryo-protected format.

Royal Biologic's FIBRINET is available for U.S. national distribution. Please contact [emailprotected] for more information.

1"Singlecenter, consecutive series study of the use of a novel plateletrich fibrin matrix (PRFM) and betatricalcium phosphate in posterolateral lumbar fusion," European Spine Journal https://doi.org/10.1007/s00586-018-5832-5, July 16, 2018.

SOURCE Royal Biologics

Home

See the rest here:
Royal Biologics Announces the Acquisition of FIBRINET - PRNewswire

To Read More: Royal Biologics Announces the Acquisition of FIBRINET – PRNewswire
categoriaSpinal Cord Stem Cells commentoComments Off on Royal Biologics Announces the Acquisition of FIBRINET – PRNewswire | dataSeptember 1st, 2020
Read All

Plasma Therapy Market Overview with Detailed Analysis, Competitive landscape, Forecast to 2025 – StartupNG

By daniellenierenberg

The Plasma Therapy market research report added by Market Study Report, LLC, is an in-depth analysis of the latest trends persuading the business outlook. The report also offers a concise summary of statistics, market valuation, and profit forecast, along with elucidating paradigms of the evolving competitive environment and business strategies enforced by the behemoths of this industry.

The Plasma Therapy market report provides with a broad perspective of this business space and contains crucial insights such as current and predicted remuneration of the industry, in consort with its size and valuation over the estimated timeframe.

Request a sample Report of Plasma Therapy Market at:https://www.marketstudyreport.com/request-a-sample/2448306?utm_source=scientect.com&utm_medium=AG

The study assesses the key factors that are positively affecting the industry landscape based on revenue generated as well as market growth. Additionally, the document analyzes the current trends that define this market while evaluating the challenges & limitations as well as the growth factors of this domain.

Key aspects of Plasma Therapy market report:

Regional analysis of Plasma Therapy market:

Plasma Therapy Market Segmentation:

Product types and application scope of Plasma Therapy market:

Product landscape:

Product types:

Key factors highlighted in the report:

Application Landscape:

Application segmentation:

Details specified in the document:

Additional information enlisted in the document:

Ask for Discount on Plasma Therapy Market Report at:https://www.marketstudyreport.com/check-for-discount/2448306?utm_source=scientect.com&utm_medium=AG

Competitive arena of the Plasma Therapy market:

Key players in the Plasma Therapy market:

Major aspects enlisted in the report:

Report Objectives:

For More Details On this Report: https://www.marketstudyreport.com/reports/global-plasma-therapy-market-growth-status-and-outlook-2020-2025

Some of the Major Highlights of TOC covers:

Plasma Therapy Regional Market Analysis

Plasma Therapy Segment Market Analysis (by Type)

Plasma Therapy Segment Market Analysis (by Application)

Plasma Therapy Major Manufacturers Analysis

Related Reports:

1. Global Induced Pluripotent Stem Cells (iPSCs) Market Growth (Status and Outlook) 2020-2025This report categorizes the Induced Pluripotent Stem Cells (iPSCs) market data by manufacturers, region, type and application, also analyzes the market status, market share, growth rate, future trends, market drivers, opportunities and challenges, risks and entry barriers, sales channels, distributors Analysis.Read More: https://www.marketstudyreport.com/reports/global-induced-pluripotent-stem-cells-ipscs-market-growth-status-and-outlook-2020-2025

2. Global Ergothioneine (EGT) Market Growth (Status and Outlook) 2020-2025Ergothioneine (EGT) Market report covers the market landscape and its growth prospects over the coming years, the Report also brief deals with the product life cycle, comparing it to the relevant products from across industries that had already been commercialized details the potential for various applications, discussing about recent product innovations and gives an overview on potential regional market.Read More: https://www.marketstudyreport.com/reports/global-ergothioneine-egt-market-growth-status-and-outlook-2020-2025

Contact Us:Corporate Sales,Market Study Report LLCPhone: 1-302-273-0910Toll Free: 1-866-764-2150 Email: [emailprotected]

Originally posted here:
Plasma Therapy Market Overview with Detailed Analysis, Competitive landscape, Forecast to 2025 - StartupNG

To Read More: Plasma Therapy Market Overview with Detailed Analysis, Competitive landscape, Forecast to 2025 – StartupNG
categoriaCardiac Stem Cells commentoComments Off on Plasma Therapy Market Overview with Detailed Analysis, Competitive landscape, Forecast to 2025 – StartupNG | dataSeptember 1st, 2020
Read All

How Groups of Cells Cooperate to Build Organs and Organisms – The Scientist

By daniellenierenberg

Efforts to use regenerative medicinewhich seeks to address ailments as diverse as birth defects, traumatic injury, aging, degenerative disease, and the disorganized growth of cancerwould be greatly aided by solving one fundamental puzzle: How do cellular collectives orchestrate the building of complex, three-dimensional structures?

While genomes predictably encode the proteins present in cells, a simple molecular parts list does not tell us enough about the anatomical layout or regenerative potential of the body that the cells will work to construct. Genomes are not a blueprint for anatomy, and genome editing is fundamentally limited by the fact that its very hard to infer which genes to tweak, and how, to achieve desired complex anatomical outcomes. Similarly, stem cells generate the building blocks of organs, but the ability to organize specific cell types into a working human hand or eye has been and will be beyond the grasp of direct manipulation for a very long time.

But researchers working in the fields of synthetic morphology and regenerative biophysics are beginning to understand the rules governing the plasticity of organ growth and repair. Rather than micromanaging tasks that are too complex to implement directly at the cellular or molecular level, what if we solved the mystery of how groups of cells cooperate to construct specific multicellular bodies during embryogenesis and regeneration? Perhaps then we could figure out how to motivate cell collectives to build whatever anatomical features we want.

New approaches now allow us to target the processes that implement anatomical decision-making without genetic engineering. In January, using such tools, crafted in my lab at Tufts Universitys Allen Discovery Center and by computer scientists in Josh Bongards lab at the University of Vermont, we were able to create novel living machines, artificial bodies with morphologies and behaviors completely different from the default anatomy of the frog species (Xenopus laevis) whose cells we used. These cells rebooted their multicellularity into a new form, without genomic changes. This represents an extremely exciting sandbox in which bioengineers can play, with the aim of decoding the logic of anatomical and behavioral control, as well as understanding the plasticity of cells and the relationship of genomes to anatomies.

Deciphering how an organism puts itself together is truly an interdisciplinary undertaking.

Deciphering how an organism puts itself together is truly an interdisciplinary undertaking. Resolving the whole picture will involve understanding not only the mechanisms by which cells operate, but also elucidating the computations that cells and groups of cells carry out to orchestrate tissue and organ construction on a whole-body scale. The next generation of advances in this area of research will emerge from the flow of ideas between computer scientists and biologists. Unlocking the full potential of regenerative medicine will require biology to take the journey computer science has already taken, from focusing on the hardwarethe proteins and biochemical pathways that carry out cellular operationsto the physiological software that enables networks of cells to acquire, store, and act on information about organ and indeed whole-body geometry.

In the computer world, this transition from rewiring hardware to reprogramming the information flow by changing the inputs gave rise to the information technology revolution. This shift of perspective could transform biology, allowing scientists to achieve the still-futuristic visions of regenerative medicine. An understanding of how independent, competent agents such as cells cooperate and compete toward robust outcomes, despite noise and changing environmental conditions, would also inform engineering. Swarm robotics, Internet of Things, and even the development of general artificial intelligence will all be enriched by the ability to read out and set the anatomical states toward which cell collectives build, because they share a fundamental underlying problem: how to control the emergent outcomes of systems composed of many interacting units or individuals.

Many types of embryos can regenerate entirely if cut in half, and some species are proficient regenerators as adults. Axolotls (Ambystoma mexicanum) regenerate their limbs, eyes, spinal cords, jaws, and portions of the brain throughout life. Planarian flatworms (class Turbellaria), meanwhile, can regrow absolutely any part of their body; when the animal is cut into pieces, each piece knows exactly whats missing and regenerates to be a perfect, tiny worm.

The remarkable thing is not simply that growth begins after wounding and that various cell types are generated, but that these bodies will grow and remodel until a correct anatomy is complete, and then they stop. How does the system identify the correct target morphology, orchestrate individual cell behaviors to get there, and determine when the job is done? How does it communicate this information to control underlying cell activities?

Several years ago, my lab found that Xenopus tadpoles with their facial organs experimentally mixed up into incorrect positions still have largely normal faces once theyve matured, as the organs move and remodel through unnatural paths. Last year, a colleague at Tufts came to a similar conclusion: the Xenopus genome does not encode a hardwired set of instructions for the movements of different organs during metamorphosis from tadpole to frog, but rather encodes molecular hardware that executes a kind of error minimization loop, comparing the current anatomy to the target frog morphology and working to progressively reduce the difference between them. Once a rough spatial specification of the layout is achieved, that triggers the cessation of further remodeling.

The deep puzzle of how competent agents such as cells work together to pursue goals such as building, remodeling, or repairing a complex organ to a predetermined spec is well illustrated by planaria. Despite having a mechanistic understanding of stem cell specification pathways and axial chemical gradients, scientists really dont know what determines the intricate shape and structure of the flatworms head. It is also unknown how planaria perfectly regenerate the same anatomy, even as their genomes have accrued mutations over eons of somatic inheritance. Because some species of planaria reproduce by fission and regeneration, any mutation that doesnt kill the neoblastthe adult stem cell that gives rise to cells that regenerate new tissueis propagated to the next generation. The worms incredibly messy genome shows evidence of this process, and cells in an individual planarian can have different numbers of chromosomes. Still, fragmented planaria regenerate their body shape with nearly 100 percent anatomical fidelity.

Permanent editingof the encoded target morphology without genomic editing reveals a new kind of epigenetics.

So how do cell groups encode the patterns they build, and how do they know to stop once a target anatomy is achieved? What would happen, for example, if neoblasts from a planarian species with a flat head were transplanted into a worm of a species with a round or triangular head that had the head amputated? Which shape would result from this heterogeneous mixture? To date, none of the high-resolution molecular genetic studies of planaria give any prediction for the results of this experiment, because so far they have all focused on the cellular hardware, not on the logic of the softwareimplemented by chemical, mechanical, and electrical signaling among cellsthat controls large-scale outcomes and enables remodeling to stop when a specific morphology has been achieved.

Understanding how cells and tissues make real-time anatomical decisions is central not only to achieving regenerative outcomes too complex for us to manage directly, but also to solving problems such as cancer. While the view of cancer as a genetic disorder still largely drives clinical approaches, recent literature supports a view of cancer as cells simply not being able to receive the physiological signals that maintain the normally tight controls of anatomical homeostasis. Cut off from these patterning cues, individual cells revert to their ancient unicellular lifestyle and treat the rest of the body as external environment, often to ruinous effect. If we understand the mechanisms that scale single-cell homeostatic setpoints into tissue- and organ-level anatomical goal states and the conditions under which the anatomical error reduction control loop breaks down, we may be able to provide stimuli to gain control of rogue cancer cells without either gene therapy or chemotherapy.

During morphogenesis, cells cooperate to reliably build anatomical structures. Many living systems remodel and regenerate tissues or organs despite considerable damagethat is, they progressively reduce deviations from specific target morphologies, and halt growth and remodeling when those morphologies are achieved. Evolution exploits three modalities to achieve such anatomical homeostasis: biochemical gradients, bioelectric circuits, and biophysical forces. These interact to enable the same large-scale form to arise despite significant perturbations.

N.R. FULLER, SAYO-ART, LLC

BIOCHEMICAL GRADIENTS

The best-known modality concerns diffusible intracellular and extracellular signaling molecules. Gene-regulatory circuits and gradients of biochemicals control cell proliferation, differentiation, and migration.

BIOELECTRIC CIRCUITS

The movement of ions across cell membranes, especially via voltage-gated ion channels and gap junctions, can establish bioelectric circuits that control large-scale resting potential patterns within and among groups of cells. These bioelectric patterns implement long-range coordination, feedback, and memory dynamics across cell fields. They underlie modular morphogenetic decision-making about organ shape and spatial layout by regulating the dynamic redistribution of morphogens and the expression of genes.

BIOMECHANICAL FORCES

Cytoskeletal, adhesion, and motor proteins inside and between cells generate physical forces that in turn control cell behavior. These forces result in large-scale strain fields, which enable cell sheets to move and deform as a coherent unit, and thus execute the folds and bends that shape complex organs.

The software of life, which exploits the laws of physics and computation, is enabled by chemical, mechanical, and electrical signaling across cellular networks. While the chemical and mechanical mechanisms of morphogenesis have long been appreciated by molecular and cell biologists, the role of electrical signaling has largely been overlooked. But the same reprogrammability of neural circuits in the brain that supports learning, memory, and behavioral plasticity applies to all cells, not just neurons. Indeed, bacterial colonies can communicate via ionic currents, with recent research revealing brain-like dynamics in which information is propagated across and stored in a kind of proto-body formed by bacterial biofilms. So it should really come as no surprise that bioelectric signaling is a highly tractable component of morphological outcomes in multicellular organisms.

A few years ago, we studied the electrical dynamics that normally set the size and borders of the nascent Xenopus brain, and built a computer model of this process to shed light on how a range of various brain defects arise from disruptions to this bioelectric signaling. Our model suggested that specific modifications with mRNA or small molecules could restore the endogenous bioelectric patterns back to their correct layout. By using our computational platform to select drugs to open existing ion channels in nascent neural tissue or even a remote body tissue, we were able to prevent and even reverse brain defects caused not only by chemical teratogenscompounds that disrupt embryonic developmentbut by mutations in key neurogenesis genes.

Similarly, we used optogenetics to stimulate electrical activity in various somatic cell types totrigger regeneration of an entire tadpole tailan appendage with spinal cord, muscle, and peripheral innervationand to normalize the behavior of cancer cells in tadpoles strongly expressing human oncogenes such as KRAS mutations. We used a similar approach to trigger posterior regions, such as the gut, to build an entire frog eye. In both the eye and tail cases, the information on how exactly to build these complex structures, and where all the cells should go, did not have to be specified by the experimenter; rather, they arose from the cells themselves. Such findings reveal how ion channel mutations result in numerous human developmental channelopathies, and provide a roadmap for how they may be treated by altering the bioelectric map that tells cells what to build.

We also recently found a striking example of such reprogrammable bioelectrical software in control of regeneration in planaria. In 2011, we discovered that an endogenous electric circuit establishes a pattern of depolarization and hyperpolarization in planarian fragments that regulate the orientation of the anterior-posterior axis to be rebuilt. Last year, we discovered that this circuit controls the gene expressionneeded to build a head or tail within six hours of amputation, and by using molecules that make cell membranes permeable to certain ions to depolarize or hyperpolarize cells, we induced fragments of such worms to give rise to a symmetrical two-headed form, despite their wildtype genomes. Even more shockingly, the worms continued to generate two-headed progeny in additional rounds of cutting with no further manipulation. In further experiments, we demonstrated that briefly reducing gap junction-mediated connectivity between adjacent cells in the bioelectric network that guides regeneration led worms to regenerate head and brain shapes appropriate to other worm species whose lineages split more than 100 million years ago.

My group has developed the use of voltage-sensitive dyes to visualize the bioelectric pattern memory that guides gene expression and cell behavior toward morphogenetic outcomes. Meanwhile, my Allen Center colleagues are using synthetic artificial electric tissues made of human cells and computer models of ion channel activity to understand how electrical dynamics across groups of non-neural cells can set up the voltage patterns that control downstream gene expression, distribution of morphogen molecules, and cell behaviors to orchestrate morphogenesis.

The emerging picture in this field is that anatomical software is highly modulara key property that computer scientists exploit as subroutines and that most likely contributes in large part to biological evolvability and evolutionary plasticity. A simple bioelectric state, whether produced endogenously during development or induced by an experimenter, triggers very complex redistributions of morphogens and gene expression cascades that are needed to build various anatomies. The information stored in the bodys bioelectric circuitscan be permanently rewritten once we understand the dynamics of the biophysical circuits that make the critical morphological decisions. This permanent editing of the encoded target morphology without genomic editing reveals a new kind of epigenetics, information that is stored in a medium other than DNA sequences and chromatin.

Recent work from our group and others has demonstrated that anatomical pattern memories can be rewritten by physiological stimuli and maintained indefinitely without genomic editing. For example, the bioelectric circuit that normally determines head number and location in regenerating planaria can be triggered by brief alterations of ion channel or gap junction activity to alter the animals body plan. Due to the circuits pattern memory, the animals remain in this altered state indefinitely without further stimulation, despite their wildtype genomes. In other words, the pattern to which the cells build after damage can be changed, leading to a target morphology distinct from the genetic default.

N.R. FULLER, SAYO-ART, LLC

First, we soaked a planarian in voltage-sensitive fluorescent dye to observe the bioelectrical pattern across the entire tissue. We then cut the animal to see how this pattern changes in each fragment as it begins to regenerate.

We then applied drugs or used RNA interference to target ion channels or gap junctions in individual cells and thus change the pattern of depolarization/hyperpolarization and cellular connectivity across the whole fragment.

As a result of the disruption of the bodys bioelectric circuits, the planarian regrows with two heads instead of one, or none at all.

When we re-cut the two-headed planarian in plain water, long after the initial drug has left the tissue, the new anatomy persists in subsequent rounds of regeneration.

Cells can clearly build structures that are different from their genomic-default anatomical outcomes. But are cells universal constructors? Could they make anything if only we knew how to motivate them to do it?

The most recent advances in the new field at the intersection of developmental biology and computer science are driven by synthetic living machines known as biobots. Built from multiple interacting cell populations, these engineered machines have applications in disease modeling and drug development, and as sensors that detect and respond to biological signals. We recently tested the plasticity of cells by evolving in silico designs with specific movement and behavior capabilities and used this information to sculpt self-organized growth of aggregated Xenopus skin and muscle cells. In a novel environmentin vitro, as opposed to inside a frog embryoswarms of genetically normal cells were able to reimagine their multicellular form. With minimal sculpting post self-assembly, these cells form Xenobots with structures, movements, and other behaviors quite different from what might be expected if one simply sequenced their genome and identified them as wildtype X. laevis.

These living creations are a powerful platform to assess and model the computations that these cell swarms use to determine what to build. Such insights will help us to understand evolvability of body forms, robustness, and the true relationship between genomes and anatomy, greatly potentiating the impact of genome editing tools and making genomics more predictive for large-scale phenotypes. Moreover, testing regimes of biochemical, biomechanical, and bioelectrical stimuli in these biobots will enable the discovery of optimal stimuli for use in regenerative therapies and bioengineered organ construction. Finally, learning to program highly competent individual builders (cells) toward group-level, goal-driven behaviors (complex anatomies) will significantly advance swarm robotics and help avoid catastrophes of unintended consequences during the inevitable deployment of large numbers of artificial agents with complex behaviors.

Understanding how cells and tissues make real-time anatomical decisions is central to achieving regenerative outcomes too complex for us to manage directly.

The emerging field ofsynthetic morphology emphasizes a conceptual point that has been embraced by computer scientists but thus far resisted by biologists: the hardware-software distinction. In the 1940s, to change a computers behavior, the operator had to literally move wires aroundin other words, she had to directly alter the hardware. The information technology revolution resulted from the realization that certain kinds of hardware are reprogrammable: drastic changes in function could be made at the software level, by changing inputs, not the hardware itself.

In molecular biomedicine, we are still focused largely on manipulating the cellular hardwarethe proteins that each cell can exploit. But evolution has ensured that cellular collectives use this versatile machinery to process information flexibly and implement a wide range of large-scale body shape outcomes. This is biologys software: the memory, plasticity, and reprogrammability of morphogenetic control networks.

The coming decades will be an extremely exciting time for multidisciplinary efforts in developmental physiology, robotics, and basal cognition to understand how individual cells merge together into a collective with global goals not belonging to any individual cell. This will drive the creation of new artificial intelligence platforms based not on copying brain architectures, but on the multiscale problem-solving capacities of cells and tissues. Conversely, the insights of cognitive neurobiology and computer science will give us a completely new window on the information processing and decision-making dynamics in cellular collectives that can very effectively be targeted for transformative regenerative therapies of complex organs.

Michael Levinis the director of the Allen Discovery Center at Tufts University and Associate Faculty at Harvard Universitys Wyss Institute. Email him atmichael.levin@tufts.edu. M.L. thanks Allen Center Deputy DirectorJoshua Finkelsteinfor suggestions on the drafts of this story.

See the rest here:
How Groups of Cells Cooperate to Build Organs and Organisms - The Scientist

To Read More: How Groups of Cells Cooperate to Build Organs and Organisms – The Scientist
categoriaSkin Stem Cells commentoComments Off on How Groups of Cells Cooperate to Build Organs and Organisms – The Scientist | dataSeptember 1st, 2020
Read All

Emerging Evidence Supports the Use of Narsoplimab in HSCT-TMA – OncLive

By daniellenierenberg

During the 2020 European Society for Blood and Marrow Transplantation Annual Meeting, Rafael F. Duarte, MD, PhD, FRCP, of the Hospital Universitario Puerta de Hierro Majadahonda in Madrid, Spain, presented 2 real-world clinical cases in which the investigational monoclonal antibody narsoplimab (OMS721) demonstrated clinical benefit in patients with hematopoietic stem cell transplantation-associated thrombotic microangiopathy (HSCT-TMA).

Because the selection of patients for clinical trials has limitations, and more so, because running a trial is a hard endeavor for this difficult complication, [I wanted to share] some hands-on experience that we have had with narsoplimab outside of the trial with some case studies of patients who have been treated in a compassionate-use basis, said Duarte.

First, Duarte shared a case of a 19-year-old female who received narsoplimab following matched-sibling allogeneic HSCT to treat her B-cell acute lymphoblastic leukemia (B-ALL) in first complete remission.

At 5 months, the patient experienced late-onset acute graft-versus-host disease (GVHD) and severe HSCT-TMA with lower gastrointestinal (GI) bleeding and ischemic ulcers. While skin involvement of GVHD resolved, she received initial treatment with 1 dose of eculizumab (Soliris) due to persistent GI symptoms after steroids, mesenchymal stromal cells, and extracorporeal photopheresis. Additionally, she received 4 mg/kg of narsoplimab once or twice weekly for a total of 18 doses.

We asked for narsoplimab purely on the basis that this was a severely immunocompromised patient who had experienced complications before and who had been receiving a lot of immunosuppression for the treatment of GVHD, said Duarte. We tried to minimize immunosuppression, so we thought narsoplimab would be a good option.

According to Duarte, the patients GI bleeding and microangiopathy hemolytic anemia resolved quickly and dramatically after starting narsoplimab. Additionally, she became transfusion independent with platelet counts above 100 x 109 per liter.

At 21 months, the patient remains in complete remission (CR) of B-ALL and is devoid of signs of HSCT-TMA after discontinuing narsoplimab.

Subsequently, Duarte presented another, more complex case of a 48-year-old male with HIV and Hodgkin lymphoma who was in his third CR.

Following CCR5-32/32 HSCT, the patient experienced very early HSCT-TMA on day 0. Subsequently, he had rapid severe renal failure that required hemodialysis.

Initial treatment with calcineurin inhibitor withdrawal did not elicit any response, so he was started on narsoplimab at 4 mg/kg twice weekly on day 6. He received a total of 8 doses of narsoplimab.

The patients lactate dehydrogenase (LDH), bilirubin, and schistocyte counts improved rapidly following narsoplimab initiation. Additionally, the patient derived partial improvement of renal function and fluid management, although he required continued dialysis.

Despite this, at 31 days post-transplant, the patient had multiple secondary complications as a result of the CCR5-32/32 HSCT and experienced sudden death. The death was not thought to be related to TMA and no autopsy was granted.

We dont have a better explanation regarding what happened with this patient, unfortunately, Duarte explained. We think we are seeing that many of the patients who undergo transplant with this mutated CCR5-32/32 tend to have greater mortality and greater complications than HIV-positive patients who undergo transplant with standard [procedure].

Duarte also presented findings from the pivotal, phase 2 trial, in which narsoplimab demonstrated high rates of CRs, as well as improved laboratory and clinical markers among patients with HSCT-TMA.

Narsoplimab was previously granted a breakthrough therapy designation by the FDA for the treatment of patients with high-risk TA-TMA. In addition, the agent was granted an orphan drug designation for TA-TMA therapy and complement-mediated TMA prevention.

Findings from the single-arm, open-label phase 2 trial demonstrated a 54% CR rate in all treated patients (n = 28) with the mannan-binding lectin-associated serine protease-2 inhibitor (95% CI, 34%-72%). Additionally, patients treated per protocol recommendations (n = 23), which entailed 4 weeks or more of dosing, achieved a CR rate of 65% (95% CI, 43%-84%).

At 100 days following HSCT-TMA diagnosis, 68% of all treated patients, 83% of patients treated per protocol, and 93% of treatment responders (n = 15) were alive.

Eligible patients had to be 18 years of older at screening, which occurred during the patients first visit. Additionally, patients had to have persistent HSCT-TMA as defined by a platelet count less than 150,000 per L, evidence of microangiopathy hemolysis such as the presence of schistocytes, serum LDH greater than upper limit of normal, or haptoglobin less than the lower limit of normal, and renal dysfunction defined as doubling of serum creatinine compared with pre-transplant level. All of the following had to be present for at least 2 weeks following modification or discontinuation of calcineurin inhibitors.

Patients who had eculizumab therapy within 3 months of screening, positive direct Coombs test, or active systemic bacteria or fungal infection that required antimicrobial therapy beyond prophylactic antimicrobial therapy as a standard of care were excluded from the study.

Response-based efficacy requiring improvement in TMA laboratory markers of platelet count and LDH and improvement in clinical status, as well as safety, served as the primary end points of the trial. Secondary end points included survival and change from baseline laboratory markers.

Regarding laboratory markers, LDH had to be less than 1.5 L. For patients who had a baseline platelet count of 20,000/L, improvement was defined as a tripling of baseline platelet count more than 30,000 and freedom from platelet transfusion. For patients with a baseline platelet count of more than 20,000, improvement was defined as an increased count of least 50% and absolute count of more than 75,000, as well as freedom from platelet transfusion.

Clinical improvement was based off any of the following improvements in specific organ function. Patients could derive blood improvement defined as transfusion freedom; renal improvement defined as a reduction of creatinine of more than 40%, normalization of creatinine and more than 20% reduction of creatinine, or discontinuation of renal replacement therapy; pulmonary improvement defined as extubation and discontinuation of ventilator support, or discontinuation of non-invasive mechanical ventilation; gastrointestinal improvement defined as improvement assessed by MAGIC (Mount Sinai GVHD International Consortium) criteria; or neurological improvement defined as limited to stroke, posterior reversible encephalopathy syndrome, seizures, and weakness.

Eligible patients had an average age of 48, and 71% were male. Moreover, 96% of patients had malignant underlying disease. Regarding risk factors, 64% had GVHD, 75% had significant infection, 14% had non-infectious pulmonary complications, such as idiopathy pneumonia syndrome or diffuse alveolar hemorrhage, and 50% had neurological signs.

Moreover, the study population was defined as high risk as 93% of patients had multiple risk factors associated with poor outcome.

Regarding safety, any-grade toxicities were observed in 92.9% of patients treated with narsoplimab. The most common adverse effects (AEs) included nausea, vomiting, diarrhea, hypokalemia, neutropenia, and fever.

Additionally, 21% of patients died while on study; however, all deaths were attributed to common complications of HSCT.

Investigators concluded that similar AEs are associated with patients who undergo transplant and that narsoplimab was generally well tolerated.

These are very highly encouraging results with narsoplimab in patients with very severe TMA who are unresponsive to other treatments. These results suggest that narsoplimab may be of benefit in these severely ill, complex patients with TMA, including those in the most complex clinical scenarios, Duarte concluded.

Reference

Duarte R. MASP-2 inhibition with the investigational agent narsoplimab for the treatment of HSCT-TMA: overview of data and case discussion. Presented at: 2020 European Society for Blood and Marrow Transplantation Annual Meeting; August 30-September 2, 2020; Virtual. Session IS28-4.

Read the original here:
Emerging Evidence Supports the Use of Narsoplimab in HSCT-TMA - OncLive

To Read More: Emerging Evidence Supports the Use of Narsoplimab in HSCT-TMA – OncLive
categoriaSkin Stem Cells commentoComments Off on Emerging Evidence Supports the Use of Narsoplimab in HSCT-TMA – OncLive | dataSeptember 1st, 2020
Read All

Unraveling the use of CBD in veterinary medicine – Jill Lopez

By daniellenierenberg

It was about the 3rd week into Bastions recovery from his TPLO surgery and he was already having a rough time. Bastion was a gregarious yellow Labrador who had his injured stifle about 25 days ago. Fortunately, his family elected for him to have his stifle surgically reconstructed. Initially, he had recovered well from surgery. But one day in particular, he presented to the hospital because he had a brief setback. He was limping far more severely than what would be normally expected at this stage of recovery.

The osteotomy from his surgery had not yet completely healed and he was still in the middle of his prescribed 5 weeks of exercise strict restriction. His family was trying their best but Bastion wasnt having it. He was too active at home and his humans were growing frustrated. Anti-anxiety medications had been dispensed but they were not given. Instead, his family had decided to give him CBD oil at home. When I asked why the prescribed medications had not been given, the client responded, I found CBD oil at the local farmers market and I figured it would work just as well.

Like Bastion, an increasing number of pets are receiving cannabidiol (CBD) supplements. The popularity of CBD continues to rise and many clients are incorporating CBD as part of the medication protocol for their pets, either as an adjunct or, as alternative treatment option.

Perhaps the initial interest in the benefits of CBD can be traced back to 1998, or possibly earlier, when scientists at the National Institutes of Health discovered that CBD could protect cells from oxidative stress. These findings fueled interest in the human medical field and, in large part, that appeal has been transmuted into veterinary medicine. The regard for this molecule has risen to such levels that in many homes, CBD is being used as the sole treatment option for a variety of medical conditions.

Veterinarians are becoming more fluent in the fascinating pharmacology regarding the use of this phytocannabinoid. A recent survey indicated that most veterinarians (61.5%) felt comfortable discussing the use of CBD with their colleagues, but only 45.5% felt comfortable discussing this topic with clients.1 Furthermore, veterinarians and clients in states with legalized recreational marijuana were more likely to talk about the use of CBD products to treat canine ailments than those in other states.2 Lastly, CBD was most frequently discussed as a potential treatment for pain management, anxiety and seizures.1 At first glance, the use of CBD has tangential or limited relevance in the world of veterinary surgery. However, as one takes a closer look at the putative, and proven benefits, it is clear that we are just scratching the surface of its therapeutic benefits. This article takes a brief dive into the world of CBD and its promise in the field of veterinary surgery.

Pain

Whether you perform surgery within a specialty discipline (oncology, orthopedics, neurology, soft tissue surgery, mixed animal, oral/dental, etc), or surgery is only a small part of your general practice, every veterinarian endeavors to aggressively manage pain. The first choice for pain relief among many clinicians are the medications that have been more extensively studied including, but not limited to, anti-inflammatories, gabapentinoids, opioids, local anesthetics, and other analgesics (acetaminophen, amantadine, cerenia etc). These medications or a combination thereof, have been prescribed to treat pain from orthopedic surgery, soft tissue surgery, surgical neuropathic conditions, pain from intestinal surgery, to name just a few. In the most basic schema, pain is divided into four categories: nociceptive pain (a response to damaged tissue), neuropathic pain (a response to directly-damaged sensory or spinal nerves), centralized pain (the result of pain signals being improperly amplified), and inflammatory pain.1 Cannabinoids may have a role to play in mediating all four of these types of pain states. When tissue is damaged, histamine, serotonin, TNF-alpha, IL-1-beta, IL-6, and Il -17 6, and interleukin 17 are released.2 Cannabinoids bind to the CB1 receptors and attenuate the pain signal by slowing down the release of those neurotransmitters.3 This process can take place locally or in the central nervous system.3 Cannabinoids have also been shown to inhibit the release of GABA, a well known neurotransmitter associated with pain.3 Although there is a paucity of clinical research on the use of CBD to treat postoperative pain in the veterinary medical setting, there has been heartening research conducted in humans. Indeed, National Academies of Sciences, Engineering, and Medicine concluded that there is, substantial evidence that cannabis is an effective treatment for chronic pain in adults.

Opioids have long been the go to option, or cornerstone of pain management, however, the potential for the adverse events associated with the use of opioids in veterinary patients is universally accepted.38 I have seen how distressing it can be for a family to see their pet experiencing any of the unpleasurable side effects of opioids including urine retention, delayed bowel movements, whining, panting, disorientation, or other manifestations of dysphoria. Those are just some of the challenges that clinicians face when using opioids for chronic pain management. Considering the ongoing consequences of the opioid epidemic, there is a search for pain management solutions that are innovative, prone to less adverse events, and are more effective. As the scientific community begins to evaluate the evidence for use of CBD , it is clear that more research is needed.

Anecdotal reports of CBDs efficacy as a pain reliever are ubiquitous but more are turning to scientific data for evidence of CBDs efficacy. A study in 2020 evaluating effects of CBD hemp extract on opioid use and quality of life indicators in chronic pain patients found that over half of chronic pain patients (53%) reduced or eliminated their opioids within 8 weeks after adding CBD-rich hemp extract to their regimens.5 Almost all CBD users (94%) reported quality of life improvements.5 And in a recent study evaluating orally consumed cannabinoids for long-lasting relief of allodynia in a mouse model, found that cannabinoids reduced hyperalgesia and a similar effect was not found with morphine.4 Mouse vocalizations were recorded throughout the experiment, and mice showed a large increase in ultrasonic, broadband clicks after sciatic nerve injury, which was reversed by THC, CBD, and morphine.4 The study demonstrated that cannabinoids provide long-term relief of chronic pain states.4 If research shows that use of cannabinoids in animals, specifically, CBD, can help to decrease the use of opioids for pain management, that would help make more animals comfortable and potentially help to fight the tragic epidemic of human prescription opioid abuse. Further research is needed in a variety of species, specifically, both the canine and feline species.

Bone Healing

Both general veterinary practitioners and veterinary surgeons commonly diagnose and treat fractures. A large retrospective study of fracture incidence in dogs in North America has not been published since 1994; however, the findings from that study are still informative regarding the frequency of bone injuries. That study demonstrated that approximately 24% of all patients in the population studied over a 10 year period were affected by a disorder of the musculoskeletal system, with fractures contributing the largest proportion (over 29%) of all of the diagnosis of the appendicular skeletal system.7 Although that research is dated, the conclusions from this study - at the very least, indicate that fractures are commonplace in the clinical veterinary setting.7 Fracture repair has gradually become more straightforward due to improvements in technology. Because of these innovations, speciality surgeons and general practitioners who repair fractures have begun to see better surgical outcomes. So whether you primarily stabilize fractures with implants, or if external coaptation of fractures with the intention to refer (or perhaps as the primary means of fixation) is your treatment of choice, all veterinary practitioners aim to help fractured bones heal quickly. Despite these technological improvements, bone healing can be protracted or non existent with some fractures. There are a variety of options at a veterinarians disposal to kick-start the healing process but perhaps in the near future, CBD may be added to that armamentarium. The effect of CBD in fracture healing has been investigated evaluating bone callus formation in femur fractures in a rat model.8 The findings demonstrated enhanced biomechanical properties of healing fractures in those given CBD compared with a control group.8 This effect was not found in those only given 9-THC. Moreover, the bone forming effects (osteogenic) of CBD were weakened when test subjects were given equal amounts of CBD and 9-THC.6 Another in vivo research study indicated that when CBD is incorporated into a surface that promotes bone growth (osteoconductive scaffold) it can stimulate stem cell migration and osteogenic differentiation.9 Further studies are needed to better evaluate the role of CBD in healing and bone metabolism of companion animals so that these findings can be applied in the clinical setting.

Additionally, cannabis has been shown to be a useful addition in treatment plans optimized to improve bone health in laboratory studies. A study endeavored to more closely understand the role of CB2 receptors in maintaining bone health. CB2 receptors in bone cells have been linked to maintaining bone density and stimulating growth, and may therefore have a part in reversing the effects of osteoporosis.10 One study evaluating role of CB2 receptors, found that in mice whose genes had been altered to remove the CB1 or CB2 receptors, those that developed signs of bone weakness that were far more pronounced than those in the control group.12 Another study in 2009, investigated the relationship between CB2 expression and bone disease in humans. The study found that people with dysfunctional CB2 receptors to have significantly weaker hand bones.11

Arthritis

Osteoarthritis (OA) affects many dogs, large and small. Most often, OA is the consequence of a developmental orthopedic disease that often affects a single joint or a pair of joints, and, less often, affects multiple joints. It is axiomatic that Mother Nature likes symmetry thus developmental orthopedic diseases frequently affect both left and right joints. For example, hip dysplasia is reportedly bilateral in >60% of affected dog,s13 and elbow dysplasia is bilateral in approximately 50% of affected dogs.14 Osteoarthritis occurs secondary to a myriad of primary orthopedic conditions that affect a variety of joints including: the hip (most common causes of OA in the hip: hip dysplasia, Perthes disease); stifle (patellar luxation, cranial cruciate ligament disease, osteochondritis dissecans [OCD]); elbow (elbow dysplasia, elbow OCD, fragmentation of the medial coronoid process, incomplete ossification of the humeral condyle); shoulder (shoulder OCD, developmental shoulder subluxation); tarsus (OCD of the talus), and carpus (carpal laxity, carpal subluxation secondary to chondrodystrophy); and metacarpophalangeal (MCP) and metatarsophalangeal (MTP) joint degenerative osteoarthritis (digital osteoarthritis) .

Cannabinoids were found to treat pain secondary to inflammation in a variety of studies on humans. Some of the most compelling research has shown that cannabis can reduce the inflammation in the joint caused in human patients diagnosed with immune mediated arthritis.15 One study found that cannabinoids could simultaneously reduce the secretion of cytokines involved in inflammation from one type of TH immune cells, which were being under-produced, while also increasing their numbers to correct their scarcity.15 Furthermore in a study in 2003, researchers found that plant-based cannabinoids could suppress the expression of interleukin-1betaone of the most prominent markers for inflammation in patients with rheumatoid arthritisby as much as 50%.16 And finally, in 2006, transdermal applications of CBD were shown to decrease biomarkers that can contribute to neurogenic inflammation in a sample of arthritic rats. 17

A report published in the journal of PAIN, lead by researchers at Baylor College of Medicine revealed the results of a large, double blinded, placebo controlled study on the positive effects CBD had in the fight against osteoarthritis.18 The study was designed with two main goals: The first portion of the research studied the effect CBD had on the inflammatory molecules and cells in mice.18 The second portion of the study, investigated whether CBD improved the quality of life in dogs diagnosed with osteoarthritis. In lab tests and in mouse models, CBD significantly decreased the production of natural chemicals that promote inflammation and it increased the natural chemicals that fight inflammation.18 Essentially, what they saw was a drop in proinflammatory cytokines and an increase in anti-inflammatory cytokines. 18 For dogs with osteoarthritis, CBD significantly decreased pain and increased mobility in a dose-dependent fashion. Importantly, A lower dose of liposomal CBD was as effective as the highest dose of nonliposomal CBD, indicating that the effect of CBD was quicker and more effective when CBD was delivered encapsulated in liposomes than without.18 Blood samples indicated no significant harmful side effects, or adverse events, over the 4-week analysis period.18 Although this study is very promising and it supports the safety and therapeutic potential of hemp-derived CBD for relieving arthritic pain in dogs, it is important to consult with your pets veterinarian before giving any supplement or medication.

In the veterinary population, use of cannabidiol and other alternative treatments may have the potential to obviate the need for other medications, and thus spare patients from adverse effects associated with their use. More likely, the use of cannabinoids could be additive or synergistic in a multimodal treatment strategy and could increase quality-of-life issues associated with painful arthritic conditions.

Intervertebral Disk Disease

As our patients age, discs in the spine also undergo degenerative changes. Thus, degeneration of intervertebral discs is evitable. This process of degeneration is multifactorial process and it involves hypoxia, inflammation, neoinnervation, accelerated catabolism, and reduction in water and glycosaminoglycan content.39 The magnitude and severity of disc degeneration can vary widely between patients. The most common locations of clinically relevant disc disease are located in the cervical spine, thoracolumbar spine, and the lumbosacral spine.40 Although there are various manifestations of disc disease, broad classifications of Hansen Type I and Type II are typically used to describe the condition. In short, disc material may either extrude (acute herniations) or protrude (chronic herniations), both of which compress the spinal cord which ultimately can cause pain, paresis, paralysis and other neurological deficits.40 The prevalence of thoracolumbar disc disease dogs has been estimated at 3.5%.40 Depending on the neurologic examination, diagnosis, severity, prognosis, and other factors, surgery may be recommended to decompress the spinal cord.

After surgical decompression, there are a host of challenges that the the patient, the family, and the surgeon, may have to work through including a potentially protracted recovery, recurrence of neurological signs, post surgical pain, spinal instability, urinary disorders, (cystitis, urinary tract infection, urinary retention, micturition disorders), ascending myelomalacia, and others.41 Could CBD play a part in helping to improve those affected by disc disease pre-, intra-, or post-operatively and what types of spinal disorders could benefit from CBD? A study conducted on the use of CBD in mice with degenerative disc disease showed promise in mitigating the effect of disc damage and wear.19 Instead of being ingested orally, CBD was injected at the site of the disc. Researchers investigated the effects of cannabidiol intradiscal injection using a combination of MRI and histological analyses.19 A puncture was created in the disc and then CBD was injected into the disc (30, 60 or 120 nmol) shortly after.19 The effects of intradiscal injection of cannabidiol were analyzed within 2 days by MRI.17 Fifteen days later, the group that received cannabidiol 120 nmol was resubmitted to MRI examination and then to histological analyses after the cannabidiol injection.19 What they found was that cannabidiol significantly decreased the effects of disc injury induced by the needle puncture.19 These results suggest that this compound could be useful in the treatment of intervertebral disc degeneration perhaps using a novel route of administration.

Unfortunately, the exact mechanism for how CBD oil helped protect disc damage is still being investigated. The hope is that the neuroprotective properties of cannabidiol can also be found in the study of canine and feline disc disease to ultimately improve functional recovery.

References:

Kogan L, Schoenfeld-Tacher R, et al. US Veterinarians' Knowledge, Experience, and Perception Regarding the Use of Cannabidiol for Canine Medical Conditions. Front Vet Sci. 2018;5:338.

Abd-Elsayed A., Deer T.R. (2019) Different Types of Pain. In: Abd-Elsayed A. (eds) Pain. Springer, Cham. https://doi.org/10.1007/978-3-319-99124-5_3

Manzanares J, Julian MD, Carrascosa A. Role of the Cannabinoid System in Pain Control and Therapeutic Implications for the Management of Acute and Chronic Pain Episodes Curr Neuropharmacol. 2006 Jul; 4(3): 239257.

Abraham AD, Leung EJ, Brenden A, Wong BA, Rivera ZM, Kruse LC, et al. Orally consumed cannabinoids provide long-lasting relief of allodynia in a mouse model of chronic neuropathic pain. 2020 Jun;45(7):1105-1114. doi: 10.1038/s41386-019-0585-3. Epub 2019 Dec 7.

Capano A, Weaver R, Burkman E. Evaluation of the effects of CBD hemp extract on opioid use and quality of life indicators in chronic pain patients: a prospective cohort study. Postgrad Med. 2020 Jan;132(1):56-61. doi:10.1080/00325481.2019.1685298. Epub 2019 Nov 12.

Abraham AD, Leung EJ, Wong BA, Rivera ZM, Kruse LC, Clark JJ, Land BB. Orally consumed cannabinoids provide long-lasting relief of allodynia in a mouse model of chronic neuropathic pain. Neuropsychopharmacology. 2020: 45:11051114.

Johnson, J., Austin, C., & Breur, G. Incidence of Canine Appendicular Musculoskeletal Disorders in 16 Veterinary Teaching Hospitals from 1980 through 1989. Veterinary and Comparative Orthopaedics and Traumatology, 07(02), 5669. (1994). doi:10.1055/s-0038-1633097

Kogan NM, Melamed E, Wasserman E. Cannabidiol, a Major Non-Psychotropic Cannabis Constituent Enhances Fracture Healing and Stimulates Lysyl Hydroxylase Activity in Osteoblasts J Bone Miner Re. 2015 Oct;30(10):1905-13. doi: 10.1002/jbmr.2513. Epub 2015 May 10.

Kamali, A., Oryan, A., Hosseini, S., Ghanian, M. H., Alizadeh, M., Baghaban Eslaminejad, M., & Baharvand, H. Cannabidiol-loaded microspheres incorporated into osteoconductive scaffold enhance mesenchymal stem cell recruitment and regeneration of critical-sized bone defects. Materials Science and Engineering: (2019). C, 101, 6475. doi:10.1016/j.msec.2019.03.070

Bab I, Zimmer A. Cannabinoid Receptors and the Regulation of Bone Mass. British Journal of Pharmacology. 2007 153:182-188 doi:10.1038/sj.bjp.0707593

I. Idris, A. Cannabinoid Receptors as Target for Treatment of Osteoporosis: A Tale of Two Therapies. Current Neuropharmacology. 2010. 8(3), 243253. doi:10.2174/157015910792246173

Meliha Karsak et al. The Cannabinoid Receptor Type 2 (CNR2) Gene Is Associated with Hand Bone Strength Phenotypes in an Ethnically Homogeneous Family Sample. Human Genetics. 2009. 5:629-36 doi:10.1007/s00439-009-0708-8.

Loder, R. T., & Todhunter, R. J. The Demographics of Canine Hip Dysplasia in the United States and Canada. Journal of Veterinary Medicine. 2017 115. doi:10.1155/2017/5723476

ONeill DG, Brodbelt DC, Hodge R,. Church DB, Meeson RL. Epidemiology and clinical management of elbow joint disease in dogs under primary veterinary care in the UK. Canine Medicine and Genetics. 2020 volume 7:1

Susan H. Pross et al. Differential Suppression of T-cell Subpopulations by THC (delta-9- tetrahydrocannabinol). International Journal of Immunopharmacology 12, no. 5 (1990): 539-44. doi:10.1016/0192-0561(90)90118-7

Robert B. Zurier et al. Suppression of Human Monocyte Interleukin-1 Production by Ajulemic Acid, a Nonpsychoactive Cannabinoid. Biochemical Pharmacology. 2003 4:649-55. doi:10.1016/s0006-2952(02)01604-0.

D.c. Hammell et al. Transdermal Cannabidiol Reduces Inflammation and Pain-related Behaviours in a Rat Model of Arthritis. European Journal of Pain. 2015 6:936-48. doi:10.1002/ejp.818

Verrico, C. D., Wesson, S., Konduri, V., Hofferek, C. J., Vazquez-Perez, J., Blair, E., Halpert, M. M. A randomized, double-blind, placebo-controlled study of daily cannabidiol for the treatment of canine osteoarthritis pain. 2020. Pain. doi:10.1097/j.pain.0000000000001896

Silveira, J. W., Issy, A. C., Castania, V. A., Salmon, C. E. G., Nogueira-Barbosa, M. H., Guimares, et al. Protective Effects of Cannabidiol on Lesion-Induced Intervertebral Disc Degeneration. 2014. PLoS ONE 9:12 doi:10.1371/journal.pone.0113161

Yam, M., Loh, Y., Tan, C., Khadijah Adam, S., Abdul Manan, N., & Basir, R. . General Pathways of Pain Sensation and the Major Neurotransmitters Involved in Pain Regulation. International Journal of Molecular Sciences. 2018 19(8), 2164. doi:10.3390/ijms19082164

Costigan, M., Scholz, J., & Woolf, C. J. Neuropathic Pain: A Maladaptive Response of the Nervous System to Damage. Annual Review of Neuroscience. 2009 32(1), 132. doi:10.1146/annurev.neuro.051508.135531

Arora A, Taliyan R, Sharma PL. Ameliorative Potential of Cannabis Sativa Extract on Diabetes Induced Neuropathic Pain in Rats. International Journal of Pharmaceutical Sciences and Research 1. 2010 https://www.researchgate.net/publication/216536386_Ameliorative_potential_of_cannabis_sativa_extract_

Mark S. Wallace et al., Efficacy of Inhaled Cannabis on Painful Diabetic Neuropathy. 2015. Pain 16(7): 616-27 doi:10.1016/j.jpain.2015.03.008.

Gruen, M. E., Roe, S. C., Griffith, E., Hamilton, A., & Sherman, B. L.. Use of trazodone to facilitate postsurgical confinement in dogs. Journal of the American Veterinary Medical Association. (2014) 245(3), 296301. doi:10.2460/javma.245.3.296

Serra, G., & Fratta, W. A possible role for the endocannabinoid system in the neurobiology of depression. Clinical Practice and Epidemiology in Mental Health. 2007. 3(1), 25. doi:10.1186/1745-0179-3-25

Kim, E. J., Pellman, B., & Kim, J. J. Stress effects on the hippocampus: a critical review. Learning & Memory. 2015. 22(9), 411416. doi:10.1101/lm.037291.114

Demirakca, T., Sartorius, A., Ende, G., et al. Diminished gray matter in the hippocampus of cannabis users: Possible protective effects of cannabidiol. 2010. Drug and Alcohol Dependence. doi:10.1016/j.drugalcdep.2010.09.020

Mateus M. Bergamaschi et al. Cannabidiol Reduces the Anxiety Induced by Simulated Public Speaking in Treatment-Nave Social Phobia Patients. Neuropsychopharmacology. 2011 36(6):1219-26 doi:10.1038/npp.2011.6.

Jos Alexandre S Crippa et al. Neural Basis of Anxiolytic Effects of Cannabidiol (CBD) in Generalized Social Anxiety Disorder: A Preliminary Report. Journal of Psychopharmacology. 2010. 25: 1doi:10.1177/0269881110379283.

National Academies of Sciences, Engineering, and Medicine, 120.

Zieba, J., Sinclair, D., Sebree, T., Bonn-Miller, M., Cannabidiol (CBD) reduces anxiety-related behavior in mice via an FMRP1-independent mechanism. Pharmacology Biochemistry and Behavior. 2019. doi:10.1016/j.pbb.2019.05.002

Pamplona, F. A., da Silva, L. R., & Coan, A. C. Potential Clinical Benefits of CBD-Rich Cannabis Extracts Over Purified CBD in Treatment-Resistant Epilepsy: Observational Data Meta-analysis. 2018. Frontiers in Neurology, 9. doi:10.3389/fneur.2018.00759

Palmieri B, Laurino C, Vadal M. A therapeutic effect of cbd-enriched ointment in inflammatory skin diseases and cutaneous scars. Mar-Apr 2019;170(2):e93-e99. doi: 10.7417/CT.2019.2116.

Sangiovanni, E., Fumagalli, M., Pacchetti, B., Piazza, S., et al.. Cannabis sativa L. extract and cannabidiol inhibit in vitro mediators of skin inflammation and wound injury. (2019). Phytotherapy Research. doi:10.1002/ptr.6400

B. Van Klingeren and M. Ten Ham. Antibacterial Activity of 9-tetrahydrocannabinol and Cannabidiol. 1976. 42(1-2): 9-12 doi:10.1007/bf00399444.

Giovanni Appendino et al. Antibacterial Cannabinoids From Cannabis Sativa: A StructureActivity Study. 2008. Journal of Natural Products 71(8):1427-430, doi:10.1021/np8002673

McIver, V., Tsang, A., Symonds, N., Perkins, N., et al. Effects of topical treatment of cannabidiol extract in a unique manuka factor 5 manuka honey carrier on second intention wound healing on equine distal limb wounds: a preliminary study. 2020. Australian Veterinary Journal. doi:10.1111/avj.12932

White, D. M., Mair, A. R., & Martinez-Taboada, F. Opioid-free anaesthesia in three dogs. Open Veterinary Journal. 2017 7(2), 104. doi:10.4314/ovj.v7i2.5

Hansen T, Smolders LA, Tryfonidou MA, et al: The Myth of Fibroid Degeneration in the Canine Intervertebral Disc: A Histopathological Comparison of Intervertebral Disc Degeneration in Chondrodystrophic and Nonchondrodystrophic Dogs. Vet Pathol 2017 Vol 54 (6) pp. 945-952.

40. Jeffery ND, Levine JM, Olby NJ, et al: Intervertebral disk degeneration in dogs: consequences, diagnosis, treatment, and future directions. J Vet Intern Med 2013 Vol 27 (6) pp. 1318-33.

41. Balducci F, Canal S, Contiero B, et al: Prevalence and Risk Factors for Presumptive Ascending/Descending Myelomalacia in Dogs after Thoracolumbar Intervertebral Disk Herniation. J Vet Intern Med 2017 Vol 31 (2) pp. 498-504.

Read more here:
Unraveling the use of CBD in veterinary medicine - Jill Lopez

To Read More: Unraveling the use of CBD in veterinary medicine – Jill Lopez
categoriaSkin Stem Cells commentoComments Off on Unraveling the use of CBD in veterinary medicine – Jill Lopez | dataSeptember 1st, 2020
Read All

New Report Begins a New Era of Stem Cell Science and Medicine: Stem Cell Biotechnology Company Asymmetrex Tells How It Counts Therapeutic Tissue Stem…

By daniellenierenberg

In an August 28 special issue of the peer-reviewed online journal OBM Transplantation, stem cell biotechnology company Asymmetrex has now published a report describing how its technology for determining the specific dosage of therapeutic tissue stem cells works. The new technology is poised to revolutionize stem cell science and stem cell medicine by giving the long-needed means to quantity their essential focus, tissue stem cells.

BOSTON, Sept. 1, 2020 /PRNewswire-PRWeb/ --Stem cell biotechnology company, Asymmetrex, has been counting tissue stem cells like those used for bone marrow and cord blood transplantation therapies for a few years now. Recently, the company announced the issue of patents for its first-in-kind technology both in the U.S. and the U.K. However, until last Friday, August 28, Asymmetrex had not reported in the peer-reviewed academic literature how it achieves this feat that had been pursued by many distinguished labs for more than six decades.

Now in a report published in a special issue of OBM Transplantation, a peer-review journal for transplantation medicine research, Asymmetrex completes its introduction of the new technology to the fields of stem cell science and stem cell medicine. The report is the second invited article published in a special issue focused on the "Isolation and Characterization of Adult Therapeutic Cells."

The new report describes Asymmetrex's discovery of mathematical formulas, call algorithms, that can be used to determine the number of stem cells in complex tissue cell preparations, like experimental samples or patient treatments. The stem cell counting algorithms are specific for different types of tissue stem cells. So, the algorithms defined for blood stem cells are distinct from the algorithms for liver stem cells, or lung stem cells. Once an algorithm is defined by the Asymmetrex technology, it can be used repeatedly as a simple, rapid, and inexpensive test to determine the quantity and dosage of its specific tissue stem cell type.

Asymmetrex's founder and director, James L. Sherley, M.D., Ph.D., anticipated the August publication of the new algorithms in a talk given earlier at the 6th Annual Perinatal Stem Cell Society Congress in March of this year. Then and now, he says that he believes, "Now that the tissue stem cell counting algorithms are available, everything will change" in stem cell science and medicine.

Prior to Asymmetrex's technology, there was no method for counting tissue stem cells in research, medicine, or for any other of their many uses. So, the impact of the stem cell counting algorithms in research and medicine is far-reaching. Such information is a game changer for accelerating progress in stem cell science and stem cell medicine, including improving treatments like gene therapy whose success depends on targeting tissue stem cells. There will also be tremendous gains in cell biomanufacturing, drug development, and environmental toxicology, all whose capabilities are currently limited by the lack of a facile means to quantify tissue stem cells.

To make the new counting technology readily accessible for evaluation by the greater academic, medical, and industrial stem cell communities, Asymmetrex provides free tissue stem cell counting on its company website.

About Asymmetrex

Asymmetrex, LLC is a Massachusetts life sciences company with a focus on developing technologies to advance stem cell medicine. The company's U.S. and U.K. patent portfolio contains biotechnologies that solve the two main technical problems production and quantification that have stood in the way of effective use of human adult tissue stem cells for regenerative medicine and drug development. Asymmetrex markets the first technology for determination of the dose and quality of tissue stem cell preparations (the "AlphaSTEM Test") for use in stem cell transplantation therapies and pre-clinical drug evaluations. Asymmetrex is a member company of the Advanced Regenerative Manufacturing Institute BioFabUSA and the Massachusetts Biotechnology Council.

SOURCE Asymmetrex, LLC

Here is the original post:
New Report Begins a New Era of Stem Cell Science and Medicine: Stem Cell Biotechnology Company Asymmetrex Tells How It Counts Therapeutic Tissue Stem...

To Read More: New Report Begins a New Era of Stem Cell Science and Medicine: Stem Cell Biotechnology Company Asymmetrex Tells How It Counts Therapeutic Tissue Stem…
categoriaBone Marrow Stem Cells commentoComments Off on New Report Begins a New Era of Stem Cell Science and Medicine: Stem Cell Biotechnology Company Asymmetrex Tells How It Counts Therapeutic Tissue Stem… | dataSeptember 1st, 2020
Read All

Girl’s only bone marrow donor in the world pulls out at last moment – Metro.co.uk

By daniellenierenberg

Evie Hodgson, 8, was due to undergo a bone marrow transplant this month, but her only match in the world pulled out at the last minute (Picture: North News)

A little girl battling a rare blood disorder has issued a desperate plea for donors after her only match in the world pulled out at the last minute.

Evie Hodgson, 8, was due to undergo a bone marrow transplant this month but her donor cancelled just as she was getting prepared.

Mum Tina, of Whitby, North Yorkshire, said the chances of finding another donor are so slim doctors are planning a different course of treatment.

But the best hope Evie has of being cured is to find a stem cell transplant from a compatible donor.

The schoolgirl was diagnosed with deadly aplastic anaemia in May after she developed a pin prick rash on her back which didnt fade.

Tests revealed she had low blood platelet levels, which medics initially thought might be leukaemia but a biopsy found no cancerous cells.

They were then given the devastating diagnosis and Evie was told she would need a bone marrow transplant.

Tina, 37, dad Andy, 49, and five-year-old brother William, were sadly not a match so a worldwide search was launched to find a donor.

To the familys delight, a 10/10 match was found, with the anonymous donor agreeing to go ahead.

The family began to prepare for the transplant, including dental work and the removal of one of her ovaries, but to their horror, on August 14, they were told the donor had pulled out.

Tina, who works at RAF Flying Dales, said: We were devastated, it was a huge blow. We have no idea why the donor changed their mind. Everything is confidential.

Evie has already been through so much. She thought she had a donor and now she doesnt.

The donor pulling out is quite hard hitting but from our point of view we just want to raise awareness of the stem cell register.

Its so easy to be a donor. Its just like giving blood, but you could save a childs life. Some people dont even know they could be a match.

Its so easy to join the register but only about 1% of the UK population is registered.

Evie is set to undergo an immunosuppressant course of treatment while the search for a donor continues.

Her family have set up a Facebook group to raise awareness and to update progress on Evies journey.

Tina added: The condition Evie has is life-threatening. She wont survive without a transplant.

Thats why we are desperately appealing for any many people as possible to register as a stem cell donor.

Evie said: I need this transplant to save my life. Please sign the register to help save my life.

Get in touch with our news team by emailing us atwebnews@metro.co.uk.

For more stories like this,check our news page.

See the original post:
Girl's only bone marrow donor in the world pulls out at last moment - Metro.co.uk

To Read More: Girl’s only bone marrow donor in the world pulls out at last moment – Metro.co.uk
categoriaBone Marrow Stem Cells commentoComments Off on Girl’s only bone marrow donor in the world pulls out at last moment – Metro.co.uk | dataSeptember 1st, 2020
Read All

Parents plea for stem cell help to save life of daughter with rare blood disorder – Mirror Online

By daniellenierenberg

The parents of a girl battling a deadly blood disorder are begging people to join the stem cell donor register to save her life after her only match in the world pulled out at the last minute.

Evie Hodgson, eight, who suffers from aplastic anaemia, was due to have a bone marrow transplant this month but her donor backed out at the last possible moment.

Her mum, Tina, says the chances of finding another donor are so slim that doctors are now planning a different course of treatment. But, in future, a stem call transplant is Evies best hope of being cured.

The schoolgirl, from Whitby, North Yorks, was first taken to hospital with a rash and was diagnosed with aplastic anaemia in May.

After a global donor search was launched, a 10/10 match was found and the anonymous donor agreed to the procedure. In preparation, Evie had to have dental work and one of her ovaries was removed. But on August 14 the donor pulled out.

Tina, 37, who works at RAF Flyingdales, in Pickering, North Yorks, said: We were devastated, it was a huge blow. We have no idea why the donor changed their mind. Evie has already been through so much. She thought she had a donor and now she doesnt.

The donor pulling out is quite hard-hitting, but we want to raise awareness of the stem cell register. Its so easy to be a donor. Its just like giving blood, but you could save a childs life. Its so easy to join but only 1% of the UK population is registered.

Evie said: I need this transplant to save my life. Please sign the register to help.

Tina added: The condition Evie has is life-threatening. She wont survive without a transplant. We are desperately appealing for people to sign the stem cell register.

Evie was diagnosed with the condition after she developed a pin-prick rash on her back, which didnt fade. Tests revealed she had low blood platelet levels and she was told she needed a bone marrow transplant.

Aplastic anaemia is a rare life-threatening condition where the bone marrow fails to produce enough blood cells. Around 100-150 people are diagnosed in the UK each year.

Treatment can include immunosuppressants, chemotherapy, blood transfusions, or blood and bone marrow transplants.

Neither Tina, dad Andy, 49, or brother William, five, were a match and so an international search was launched.

Tina said: Our world crumbled when Evie was diagnosed. Evie knew shed need chemotherapy. She donated her hair to The Little Princess Trust, after making friends with poorly children who have lost all their hair.

Evie will be treated with immunosuppressants while the search for a donor continues.

Blood cancer charity Anthony Nolan is looking for stem cell donors between the ages of 16-30.

Research shows that younger donors result in better outcomes for patients.

To find out how to donate click here.

See original here:
Parents plea for stem cell help to save life of daughter with rare blood disorder - Mirror Online

To Read More: Parents plea for stem cell help to save life of daughter with rare blood disorder – Mirror Online
categoriaBone Marrow Stem Cells commentoComments Off on Parents plea for stem cell help to save life of daughter with rare blood disorder – Mirror Online | dataSeptember 1st, 2020
Read All

Familys plea to help save girl, 8, after her only donor match in the world pulls out at the last minute – The Sun

By daniellenierenberg

THE family of a girl battling a deadly blood disorder are pleading for help after her only donor match in the world pulled out at the last minute.

Evie Hodgson, eight, who suffers from aplastic anaemia - also known as bone marrow failure - was due to have a transplant this month but her donor backed out.

4

Her mum, Tina Hodgson, says the chances of finding another donor are so slim that doctors are now planning a different course of treatment.

The youngster from Sleights, Whitby, was rushed to hospital with a rash during the coronavirus lockdown.

She was diagnosed with aplastic anaemia in May.

Amazingly, a match was found and preparations were underway for surgery.

But just weeks before the transplant, the donor pulled out and the family's "world fell apart, again".

However, the courageous pupil at Fyling Hall School, in Robin Hoods Bay, is determined to battle the disease.

Evie's mum told how the family received the diagnosis: "In the middle of the Covid lockdown, Evie woke up one morning with a red pin rash all over her body.

"We first thought it was meningitis because it wasn't fading under a tumbler but she had no other symptoms."

The family contacted the NHS 111 service and were advised to take Evie to Whitby A&E.

"The doctor took one look at her and thought it was sepsis," Tina said.

"She had IV antibiotics there and we were rushed to James Cook University Hospital by ambulance."

4

Evie then had blood tests at the Middlesbrough hospital which revealed her platelets were low - but her red and white blood cells were fine.

She was diagnosed with a platelet condition - known as ITP - and told she would need to return to hospital once per week for tests.

But when the family returned to Teesside one week later, tests revealed all Evie's cell counts were low.

The youngster was then immediately transferred to Great North Childrens Hospital in Newcastle.

Tina, who works at RAF Fylingdales, said: "Deep down we thought this is quite serious and I think everyone though it was leukaemia."

In May, further tests revealed that Evie didn't have cancerous cells - and not many cells at all - as doctors broke the devastating news that Evie was suffering from aplastic anaemia.

4

As the family received the diagnosis, Tina said: "As parents we said thank god it isn't cancer but then the nurse said this is just as bad, it is a lot harder to treat.

"Our world fell apart at that point."

Aplastic anemia is a condition that occurs when your body stops producing enough new blood cells.

Around 100-150 people are diagnosed in the UK each year.

Treatment can include immunosuppressants, chemotherapy, blood transfusions, or blood and bone marrow transplants.

Evie's first option was a bone marrow transplant as a cure, but mum Tina, dad Andy and Evies five-year-old brother William were not a match.

The next step was to search the international database for a bone marrow transplant.

And luckily, Evie's perfect donor - the only one in the world - was found and preparations for surgery were scheduled.

Evie had one of her ovaries removed, dental work carried out and even chopped off her Rapunzel-like locks to donate to The Little Princess Trust.

Speaking through tears about her brave little girl, Tina, 37, said: "Evie was always that girl at the hairdressers that wanted her hair like Rapunzel.

"When we've been in the hospital she has saw her friends with no hair.

"One day she said to me 'will I lose my hair?'. So I said probably, yes."

Evie then made the courageous decision to chop off her hair and is now sporting a beautiful curly bob despite fighting her own battle.

The brave youngster, who is also a keen singer, has also been entertaining other patients and staff in the hospital with her talents.

The family's second devastating blow came when Evie was in hospital and doctors broke the news the donor had pulled out.

4

"It was like the diagnosis all over again. We will never know why they pulled out," Tina added.

Evie is due to start a three-month immunosuppressive therapy treatment which aims for her body to generate bone marrow.

As the treatment has only a 60 per cent success rate, Evie's family are now raising awareness about joining the stem cell donation register.

Speaking about the importance of signing up, Tina said: "I was shocked to learn that only 2 per cent of the UK population is registered on the blood stem cell register.

"It is such an easy procedure, similar to giving blood.

"It is so easy to get on the register and donate if you are a match.

HOMESICK HARRYHarry 'upset' he can't go to Balmoral with Wills & Kate but Meg's 'too busy'

TODDLE OFFPub owner's brutal response to customer who complained after 'spending 700'

Breaking

COVID ALERTGlasgow lockdown as half a million BANNED from meeting other households

ASDA OUTBREAKAsda corona outbreak as 8 staff get bug after 'shoppers let in without masks'

CLASS DISMISSEDPrimary school sends class home after pupil tests positive for coronavirus

NO CRIMEDodging TV licence could be decriminalised next month in wake of Proms row

"If people are made aware they could save someone's life. It isn't just Evie, there are so many families waiting for a donor."

You can join on the DKMS register, here, or through Anthony Nolan register, here.

A dedicated Facebook page has been set up to follow Evie's journey with aplastic anaemia - you can follow her progress here.

View post:
Familys plea to help save girl, 8, after her only donor match in the world pulls out at the last minute - The Sun

To Read More: Familys plea to help save girl, 8, after her only donor match in the world pulls out at the last minute – The Sun
categoriaBone Marrow Stem Cells commentoComments Off on Familys plea to help save girl, 8, after her only donor match in the world pulls out at the last minute – The Sun | dataSeptember 1st, 2020
Read All

Vor Biopharma and Metagenomi to Collaborate on Engineered Hematopoietic Stem-Cell Therapies – Business Wire

By daniellenierenberg

CAMBRIDGE, Mass.--(BUSINESS WIRE)--Vor Biopharma, an oncology company pioneering engineered hematopoietic stem cells (eHSCs) for the treatment of cancer, and Metagenomi, a gene editing company discovering breakthrough systems for curing genetic disease, today announced that Vor will evaluate the potential use of Metagenomis gene editing technology to develop engineered hematopoietic stem cell-based therapies for the treatment of blood cancers, such as acute myeloid leukemia.

Cancer patients deserve therapies with strong effects on cancer cells and minimal effects on all other cells, said Tirtha Chakraborty, Ph.D., Vors VP and Head of Research. Our new partnership with Metagenomi will help us achieve this goal by engineering hematopoietic stem cells using precise yet flexible gene editing thereby ensuring that targeted therapies can live up to their name."

The collaboration is non-exclusive and applies to pre-clinical research only. Further terms of the agreement are not being disclosed.

This partnership unites two transformative technologies our proprietary gene editing enzymes, and Vors platform for engineering hematopoietic stem cells such that they are inherently treatment-resistant, said Brian C. Thomas, Metagenomis CEO and co-founder. We are excited to be working together to bring both of these cutting-edge approaches into the clinic.

About Vor Biopharma

Vor Biopharma aims to transform the lives of cancer patients by pioneering engineered hematopoietic stem cell (eHSC) therapies. By removing biologically redundant proteins from eHSCs, these cells become inherently invulnerable to complementary targeted therapies while tumor cells are left susceptible, thereby unleashing the potential of targeted therapies to benefit cancer patients in need.

Vors platform could be used to potentially change the treatment paradigm of both hematopoietic stem cell transplants and targeted therapies, such as antibody drug conjugates, bispecific antibodies and CAR-T cell treatments.

Vor is based in Cambridge, Mass. and has a broad intellectual property base, including in-licenses from Columbia University, where foundational work was conducted by inventor and Vor Scientific Board Chair Siddhartha Mukherjee, MD, DPhil.

About VOR33

Vors lead product candidate, VOR33, consists of engineered hematopoietic stem cells (eHSCs) that lack the protein CD33. Once these cells are transplanted into a cancer patient, we believe that CD33 will become a far more cancer-specific target, potentially avoiding toxicity to the normal blood and bone marrow associated with CD33-targeted therapies. Vor aims to improve the therapeutic window and effectiveness of CD33-targeted therapies, thereby potentially broadening the clinical benefit to patients suffering from acute myeloid leukemia.

About Metagenomi

Metagenomi is harnessing the vast information found in life on Earth to develop cures for genetic disease. Using proprietary data collected from around the world, Metagenomi has developed novel gene editing tools that enable next-generation gene and cell therapies.

Metagenomi is based out of Emeryville, California, and was founded by pioneers in the field of metagenomics, Jill Banfield and Brian C. Thomas. Metagenomi generates massive quantities of data from natural environments, producing complete genomes from organisms that are otherwise unknown. Metagenomi then unlocks the information captured in these genomes to develop game-changing in vivo and ex vivo therapeutics.

Go here to read the rest:
Vor Biopharma and Metagenomi to Collaborate on Engineered Hematopoietic Stem-Cell Therapies - Business Wire

To Read More: Vor Biopharma and Metagenomi to Collaborate on Engineered Hematopoietic Stem-Cell Therapies – Business Wire
categoriaBone Marrow Stem Cells commentoComments Off on Vor Biopharma and Metagenomi to Collaborate on Engineered Hematopoietic Stem-Cell Therapies – Business Wire | dataSeptember 1st, 2020
Read All

Comprehensive Report on Hematopoietic Stem Cells Transplantation Market Set to Witness Huge Growth by 2026 | ViaCord, Vita34, Omeros Corporation,…

By daniellenierenberg

The Hematopoietic Stem Cells Transplantation (HSCT) market research report study recently presented by AMR provides comprehensive knowledge on the development activities by Global industry players, growth possibilities or opportunities and market sizing for Hematopoietic Stem Cells Transplantation (HSCT) along with analysis by key segments, leading and emerging players, and their presence geographies. This is the latest report, covering the current COVID-19 impact on the market. The pandemic of Coronavirus (COVID-19) has affected every aspect of life globally. This has brought along several changes in market conditions

This research study has 125 pages, it covers the complete market overview of various profiled players and their development history, on-going development strategies along with the current situation.

Hematopoietic stem cells transplantation is the treatment of patients with blood dysfunction such as leukemia or aplastic anemia by intravenous injection of normal bone marrow cells.

The research benefits in recognizing and following arising players in the market and their portfolios, to enhance decision-making abilities and helps to create effective counter-strategies to gain a competing advantage. Some of the players profiled/ part of study coverage are ViaCord, Vita34, Omeros Corporation, Cesca Therapeutics, Smart Cells, Cryo-Cell, Kiadis Pharma, Cryo-Save AG.

Download the Sample ToC and understand the COVID19 impact and be smart in redefining business strategies. https://www.amplemarketreports.com/sample-request/covid-19-outbreak-global-hematopoietic-stem-cells-transplantation-industry-1910831.html

AMRs research team has examined complete data across the globe comprising 20+ countries with a comprehensive data plan spread from 2013 to 2026 and approximately 12+ regional indicators complemented with 20+ company level coverage.

The study is organized utilizing data and knowledge sourced of various primary and secondary sources, proprietary databases, company/university websites, regulators, conferences, SEC filings, investor presentations and featured press releases from company sites and industry-specific third party sources.

Know more about focused companies, countries before buy at: https://www.amplemarketreports.com/enquiry-before-buy/covid-19-outbreak-global-hematopoietic-stem-cells-transplantation-industry-1910831.html

Characteristics of the Table of Content:

The comprehensive study presented by considering all the important aspects and sections. Some of these were

Hematopoietic Stem Cells Transplantation (HSCT) MARKET RESEARCH SCOPE OBJECTIVES, TARGET AND KEY FINDINGS

Preferably, that approaching major uptrend failed to arrive on schedule, but the Hematopoietic Stem Cells Transplantation (HSCT) market raised without posting any drops and surely witnesses zeniths in years to come.

Buy this research report at: https://www.amplemarketreports.com/buy-report.html?report=1910831&format=1

Leukemia, Lymphoproliferative Disorders, Solid Tumors, Non-Malignant Disorders, Others segment interpreted and sized in this research report by application/end-users reveals the inherent growth and several shifts for the period 2014 to 2026.

The changing dynamics supporting the growth perform it perilous for manufacturers in this extent to keep up-to-date with the changing pace of the market. Find out which segment is doing great and will return in strong earnings adding the significant drive to overall growth.

Furthermore, the research contributes an in-depth overview of regional level break-up categorized as likely leading growth rate territory, countries with the highest market share in past and current scenario. Some of the geographical break-up incorporated in the study are North America (Covered in Chapter 7 and 14), United States, Canada, Mexico, Europe (Covered in Chapter 8 and 14), Germany, UK, France, Italy, Spain, Russia.

In the Type segment Autologous Transplant, Allogenic Transplant included for segmenting Hematopoietic Stem Cells Transplantation (HSCT) market by type.

The industry is performing well and few emerging business institutions are in their peak as per growth rate and their existence with major players of Hematopoietic Stem Cells Transplantation (HSCT) market whereas conflict between 2 Global economies continues in 2020.

ViaCord, Vita34, Omeros Corporation, Cesca Therapeutics, Smart Cells, Cryo-Cell, Kiadis Pharma, Cryo-Save AG major key players included in this research along with their sales and revenue data show how they are performing well?

Find out more about this report at: https://www.amplemarketreports.com/report/covid-19-outbreak-global-hematopoietic-stem-cells-transplantation-industry-1910831.html

Thanks for reading this article, you can also get individual chapter wise section or region wise report versions like North America, Western / Eastern Europe or Southeast Asia.

With the given market data, Research on Global Markets offers customization according to specific needs.

About Author

Ample Market Research provides comprehensive market research services and solutions across various industry verticals and helps businesses perform exceptionally well. Our end goal is to provide quality market research and consulting services to customers and add maximum value to businesses worldwide. We desire to delivery reports that have the perfect concoction of useful data. Our mission is to capture every aspect of the market and offer businesses a document that makes solid grounds for crucial decision making.

Contact Address:

William James

Media & Marketing Manager

Address: 3680 Wilshire Blvd, Ste P04 1387 Los Angeles, CA 90010

Call: +1 (530) 868 6979

Email: [emailprotected]

https://www.amplemarketreports.com

The rest is here:
Comprehensive Report on Hematopoietic Stem Cells Transplantation Market Set to Witness Huge Growth by 2026 | ViaCord, Vita34, Omeros Corporation,...

To Read More: Comprehensive Report on Hematopoietic Stem Cells Transplantation Market Set to Witness Huge Growth by 2026 | ViaCord, Vita34, Omeros Corporation,…
categoriaBone Marrow Stem Cells commentoComments Off on Comprehensive Report on Hematopoietic Stem Cells Transplantation Market Set to Witness Huge Growth by 2026 | ViaCord, Vita34, Omeros Corporation,… | dataSeptember 1st, 2020
Read All

Orchard Therapeutics Announces Additional Interim Results from Proof-of-Concept Study of OTL-203 for MPS-I – BioSpace

By daniellenierenberg

Data on all eight patients demonstrate sustained engraftment and supranormal IDUA enzyme expression

Translation of metabolic correction to clinical outcomes in first two patients continues to support potential of hematopoietic stem cell gene therapy in a second neurometabolic disorder

Data support planned initiation of registrational trial in 2021

BOSTON and LONDON, Sept. 01, 2020 (GLOBE NEWSWIRE) -- Orchard Therapeutics(Nasdaq: ORTX), a global gene therapy leader, today announced additional interim data from an ongoing proof-of-concept clinical trial evaluating the safety and efficacy of OTL-203, an investigationalex vivoautologous hematopoietic stem cell (HSC) gene therapy in development for the treatment of mucopolysaccharidosis type I (MPS-I) at theSan Raffaele Telethon Institute for Gene Therapy(SR-Tiget) inMilan, Italy. The readout from the primary endpoint at one year of follow-up is expected in 2021. Today's results are being shared virtually in an invited oral presentation at the 46th Annual Meeting of the European Society for Blood and Bone Marrow Transplantation (EBMT).

We continue to see encouraging data from the ongoing clinical trial in MPS-I, including promising preliminary clinical effects on motor development, acquisition of cognitive skilIs and growth in the first two patients that were treated now 1.5 and 2 years ago, respectively. Additionally, new preliminary analyses of radiological outcome measures suggest that treatment with OTL-203 leads to stabilization or improvement in disease-related neurological abnormalities, as measured by brain and spine MRI, which we look to confirm with longer follow-up, saidMaria Ester Bernardo, M.D., Ph.D., principal investigator at SR-Tiget. "These data, taken together with those from clinical studies of HSC gene therapy for other metabolic disorders and leukodystrophies, support the potential for this therapeutic approach to correct a wide spectrum of multisystemic manifestations of the disease, bringing clinically meaningful benefits for patients.

Interim Study Results

Eight patients with the severe Hurler subtype of MPS-I had been treated with OTL-203 in the ongoing proof-of-concept study, which completed enrollment in December 2019. As of July 2020, all patients had been followed for a minimum of six months, with the longest follow-up extending out to 24 months. Treatment with OTL-203 was generally well-tolerated with a safety profile consistent with the selected conditioning regimen. Consistent with previous analyses, treatment across all eight patients continued to demonstrate:

We continue to see positive trends in all biomarker and clinical measures as we follow patients in the OTL-203 proof of concept study for longer periods of time, saidBobby Gaspar, M.D., Ph.D., chief executive officer of Orchard. With a growing amount of data to support advancing this program, we have recently convened a panel of disease experts to develop a design for a registrational trial that we intend to take to the regulators in advance of initiating the study in 2021 and ultimately progressing towards commercialization.

About OTL-203 and MPS-I

Mucopolysaccharidosis type I (MPS-I) is a rare, inherited neurometabolic disease caused by a deficiency of the alpha-L-iduronidase (IDUA) lysosomal enzyme, which is required to break down sugar molecules called glycosaminoglycans (also known as GAGs). The accumulation of GAGs across multiple organ systems results in symptoms including neurocognitive impairment, skeletal deformity, loss of vision and hearing, and cardiovascular and pulmonary complications. MPS-I occurs at an overall estimated frequency of one in every 100,000 live births. There are three subtypes of MPS-I; approximately 60 percent of children born with MPS-I have the most severe subtype, called Hurler syndrome, and rarely live past the age of 10 when untreated.

Treatment options for MPS-I include hematopoietic stem cell transplant and chronic enzyme replacement therapy, both of which have significant limitations. Though early intervention with enzyme replacement therapy has been shown to delay or prevent some clinical features of the condition, it has only limited efficacy on neurological symptoms. OTL-203 is an investigationalex vivoautologous hematopoietic stem cell gene therapy being studied for the treatment of MPS-I. Orchard was granted an exclusive worldwide license to intellectual property rights to research, develop, manufacture and commercialize the gene therapy program for the treatment of MPS-I developed by theSan Raffaele Telethon Institute for Gene TherapyinMilan, Italy.

About Orchard

Orchard Therapeuticsis a global gene therapy leader dedicated to transforming the lives of people affected by rare diseases through the development of innovative, potentially curative gene therapies. Ourex vivoautologous gene therapy approach harnesses the power of genetically modified blood stem cells and seeks to correct the underlying cause of disease in a single administration. In 2018, Orchard acquired GSKs rare disease gene therapy portfolio, which originated from a pioneering collaboration between GSK and theSan Raffaele Telethon Institute for Gene Therapy inMilan, Italy. Orchard now has one of the deepest and most advanced gene therapy product candidate pipelines in the industry spanning multiple therapeutic areas where the disease burden on children, families and caregivers is immense and current treatment options are limited or do not exist.

Orchard has its global headquarters inLondonandU.S.headquarters inBoston. For more information, please visitwww.orchard-tx.com, and follow us onTwitterandLinkedIn.

Availability of Other Information About Orchard

Investors and others should note that Orchard communicates with its investors and the public using the company website (www.orchard-tx.com), the investor relations website (ir.orchard-tx.com), and on social media (TwitterandLinkedIn), including but not limited to investor presentations and investor fact sheets,U.S. Securities and Exchange Commissionfilings, press releases, public conference calls and webcasts. The information that Orchard posts on these channels and websites could be deemed to be material information. As a result, Orchard encourages investors, the media, and others interested in Orchard to review the information that is posted on these channels, including the investor relations website, on a regular basis. This list of channels may be updated from time to time on Orchards investor relations website and may include additional social media channels. The contents of Orchards website or these channels, or any other website that may be accessed from its website or these channels, shall not be deemed incorporated by reference in any filing under the Securities Act of 1933.

Forward-Looking Statements

This press release contains certain forward-looking statements about Orchards strategy, future plans and prospects, which are made pursuant to the safe harbor provisions of the Private Securities Litigation Reform Act of 1995. Such forward-looking statements may be identified by words such as anticipates, believes, expects, plans, intends, projects, and future or similar expressions that are intended to identify forward-looking statements. Forward-looking statements include express or implied statements relating to, among other things, Orchards business strategy and goals, the therapeutic potential of Orchards product candidates, including the product candidates referred to in this release, Orchards expectations regarding the timing of clinical trials for its product candidates, including the product candidates referred to in this release, the timing of interactions with regulators and regulatory submissions related to ongoing and new clinical trials for its product candidates, the timing of announcement of clinical data for its product candidates, and the likelihood that such data will be positive and support further clinical development and regulatory approval of these product candidates. These statements are neither promises nor guarantees and are subject to a variety of risks and uncertainties, many of which are beyond Orchards control, which could cause actual results to differ materially from those contemplated in these forward-looking statements. In particular, these risks and uncertainties include, without limitation: the severity of the impact of the COVID-19 pandemic on Orchards business, including on clinical development, its supply chain and commercial programs; the risk that Orchard will not realize the anticipated benefits of its new strategic plan or the expected cash savings associated with such plan; the risk that any one or more of Orchards product candidates, including the product candidates referred to in this release, will not be successfully developed, approved or commercialized; the risk of cessation or delay of any of Orchards ongoing or planned clinical trials; the risk that Orchard may not successfully recruit or enroll a sufficient number of patients for its clinical trials; the risk that prior results, such as signals of safety, activity or durability of effect, observed from preclinical studies or clinical trials will not be replicated or will not continue in ongoing or future studies or trials involving Orchards product candidates or that long-term adverse safety findings may be discovered; the delay of any of Orchards regulatory submissions; the failure to obtain marketing approval from the applicable regulatory authorities for any of Orchards product candidates or the receipt of restricted marketing approvals; and the risk of delays in Orchards ability to commercialize its product candidates, if approved. Given these uncertainties, the reader is advised not to place any undue reliance on such forward-looking statements.

Other risks and uncertainties faced by Orchard include those identified under the heading "Risk Factors" in Orchards quarterly report on Form 10-Q for the quarter endedJune 30, 2020, as filed with theU.S. Securities and Exchange Commission(SEC), as well as subsequent filings and reports filed with theSEC. The forward-looking statements contained in this press release reflect Orchards views as of the date hereof, and Orchard does not assume and specifically disclaims any obligation to publicly update or revise any forward-looking statements, whether as a result of new information, future events or otherwise, except as may be required by law.

Contacts

InvestorsRenee LeckDirector, Investor Relations+1 862-242-0764Renee.Leck@orchard-tx.com

MediaMolly CameronManager, Corporate Communications+1 978-339-3378media@orchard-tx.com

Read this article:
Orchard Therapeutics Announces Additional Interim Results from Proof-of-Concept Study of OTL-203 for MPS-I - BioSpace

To Read More: Orchard Therapeutics Announces Additional Interim Results from Proof-of-Concept Study of OTL-203 for MPS-I – BioSpace
categoriaBone Marrow Stem Cells commentoComments Off on Orchard Therapeutics Announces Additional Interim Results from Proof-of-Concept Study of OTL-203 for MPS-I – BioSpace | dataSeptember 1st, 2020
Read All

Bone Marrow Processing Systems Market Business Analysis, New Innovation | Share, Revenue, And Sales Till 2025 – The Scarlet

By daniellenierenberg

Bone marrowaspiration and trephine biopsy are usually performed on the back of the hipbone, or posterior iliac crest. An aspirate can also be obtained from the sternum (breastbone). For the sternal aspirate, the patient lies on their back, with a pillow under the shoulder to raise the chest. A trephine biopsy should never be performed on the sternum, due to the risk of injury to blood vessels, lungs or the heart.

Get Access to sample pages @https://www.trendsmarketresearch.com/report/sample/3184

The need to selectively isolate and concentrate selective cells, such as mononuclear cells, allogeneic cancer cells, T cells and others, is driving the market. Over 30,000 bone marrow transplants occur every year. The explosive growth of stem cells therapies represents the largest growth opportunity for bone marrow processing systems.Europe and North America spearheaded the market as of 2016, by contributing over 74.0% to the overall revenue. Majority of stem cell transplants are conducted in Europe, and it is one of the major factors contributing to the lucrative share in the cell harvesting system market.

In 2016, North America dominated the research landscape as more than 54.0% of stem cell clinical trials were conducted in this region. The region also accounts for the second largest number of stem cell transplantation, which is further driving the demand for harvesting in the region.Asia Pacific is anticipated to witness lucrative growth over the forecast period, owing to rising incidence of chronic diseases and increasing demand for stem cell transplantation along with stem cell-based therapy.

Japan and China are the biggest markets for harvesting systems in Asia Pacific. Emerging countries such as Mexico, South Korea, and South Africa are also expected to report lucrative growth over the forecast period. Growing investment by government bodies on stem cell-based research and increase in aging population can be attributed to the increasing demand for these therapies in these countries.

Major players operating in the global bone marrow processing systems market are ThermoGenesis (Cesca Therapeutics inc.), RegenMed Systems Inc., MK Alliance Inc., Fresenius Kabi AG, Harvest Technologies (Terumo BCT), Arthrex, Inc. and others

Covid 19 Impact[emailprotected]https://www.trendsmarketresearch.com/report/covid-19-analysis/3184

Read this article:
Bone Marrow Processing Systems Market Business Analysis, New Innovation | Share, Revenue, And Sales Till 2025 - The Scarlet

To Read More: Bone Marrow Processing Systems Market Business Analysis, New Innovation | Share, Revenue, And Sales Till 2025 – The Scarlet
categoriaBone Marrow Stem Cells commentoComments Off on Bone Marrow Processing Systems Market Business Analysis, New Innovation | Share, Revenue, And Sales Till 2025 – The Scarlet | dataAugust 31st, 2020
Read All

Stem cells made from skin cells treats sickle cell anemia …

By daniellenierenberg

Using a new type of stem cells made from ordinary skin cells, U.S. researchers said on Thursday they treated mice with sickle cell anemia, proving in principle that such cells could be used as a therapy.

U.S. and Japanese researchers last month reported they had reprogrammed human skin cells into behaving like embryonic stem cells, the bodys master cells. They call the cells induced pluripotent stem cells, or iPS cells for short.

Hanna and colleagues working in Rudolf Jaenischs lab at Whitehead Institute took skin cells from diseased mice and inserted four genes that reprogram the cells into becoming iPS cells.

Pluripotent or multipurpose cells, such as embryonic stem cells and the new cells, can morph into any type of cell in the human body.

The researchers then coaxed these mouse master cells into becoming blood-forming stem cells and substituted the faulty gene that causes sickle cell anemia with a working one.

When they transplanted these cells into the diseased mice, tests showed normal blood and kidney function, they report in Fridays issue of the journal Science.

The four genes needed to turn skin cells into master cells are delivered using a type of virus called a retrovirus.

Once they enter the genome, there is the danger that they can silence some genes that are important or they can activate some dangerous genes that shouldnt be activated, Hanna said.

Another obstacle is that one of the four genes used is c-Myc, which is known to cause cancer.

Hanna and colleagues got around that by removing the c-Myc gene after it had done its job of converting the skin cells into iPS cells. It is far from solving the problem, he said.

Scientists hope to use stem cells to treat a host of diseases like diabetes, Parkinsons disease and spinal injuries. And the new technique for making stem cells will make them easier to study.

More here:
Stem cells made from skin cells treats sickle cell anemia ...

To Read More: Stem cells made from skin cells treats sickle cell anemia …
categoriaSkin Stem Cells commentoComments Off on Stem cells made from skin cells treats sickle cell anemia … | dataAugust 31st, 2020
Read All

Page 91«..1020..90919293..100110..»


Copyright :: 2024