Page 82«..1020..81828384..90100..»

The luxury skincare splurge that will help repair your skin cells – Dazed

By daniellenierenberg

Alex Peters is Dazed Beautys news writer. She picked up the phrase Its all happening from Almost Famous as a teen and it now exclusively makes up her vocabulary. Although in theory she likes the idea of a queer mullet, she is currently rocking the latest lockdown trend: Kajillionaire hair. Here, she shares her choice for Product of the Week a weekly round-up of the Dazed Beauty team and wider communitys must-have buys.

Brand: Augustinus Bader

Product: The Cream

Price: 205

As head of stem cell research at the University of Leipzig, Professor Augustinus Bader spent 30 years working with burns victims, developing a groundbreaking gel in 2008 that could heal third-degree burns without the need for skin grafts. Its this revolutionary stem cell technology the patented Trigger Factor Complex (TFC8) which lies at the heart of his skincare label and its hero product The Cream.

Powered by this technology, with consistent use (the Cream asks that you remain devoted to it for 27 days, using nothing else), the products activate and orchestrate the body's innate regenerative processes which basically means that when you use them your skin cells repair themselves. This helps with reducing the signs of ageing and environmental damage, reducing scarring and redness, and improving tone and texture.

Thats all very scientific, but the most important question is does it actually work? And for me it does. My skin is on the oily side as well as being sensitive and acne-prone so I use the Cream, rather than the Rich Cream which is better suited to dry skin types. The cream itself has a light texture that absorbs quickly and doesnt feel sticky. Two pumps is enough to cover your face and it goes on very smoothly. It has quite a distinctive scent, so if you are nose-sensitive be prepared. Its hard to describe clinical rather than artificial. It comes in a weighty blue and copper tube that feels fancy when youre using it.

I am not always great at using it consistently, particularly since we test out so many products as part of our job, but I have found that when I do, my skin looks noticeably better. My tone is more even and less red, the texture is better, scars look more faded, and I would tentatively say that it seems like I get fewer spots.

I would like to say, however, that the product is definitely on the higher end of the spectrum price-wise, and if you cannot afford it, please do not worry. There are a lot of great options out there that are more affordable and also very effective. If this is something that you can afford, I would highly recommend.

If I were communicating to an alien only using hand gestures, I would describe it with... Just a solid thumbs up. Or through elaborately miming the process of cell renewal.

It sounds like... A reassuring older German professor telling you efferyzing vill be alright and in the background the sound of a fire crackling.

If it was a meme it would be... Sorry to this man. Totally unrelated but its my favourite meme.

The fictional character who would use it is... Bette Porter from The L Word.

Alex Peters's Product of the Week

Follow this link:
The luxury skincare splurge that will help repair your skin cells - Dazed

To Read More: The luxury skincare splurge that will help repair your skin cells – Dazed
categoriaSkin Stem Cells commentoComments Off on The luxury skincare splurge that will help repair your skin cells – Dazed | dataOctober 6th, 2020
Read All

Animal Stem Cell Therapy Market – Great Growth Opportunities for the Market in the Coming Year | TMR Research Study – BioSpace

By daniellenierenberg

Advances in the stem cell therapy sector have been phenomenal over the years. Its assistance in curing humans of various diseases and disorders has generated expansive advancements. These advancements are not just limited to humans. Stem cell therapy has also acquired a prominent place in the veterinary sector.

The influence of animal stem cell therapy for the treatment of various animals for diverse diseases and disorders is growing rapidly. Therefore, this factor may help the global animal stem cell therapy market to generate exponential growth across the forecast period of 2019-2029. Stem cells help in the replacement of neurons affected by stroke, Parkinsons disease, spinal cord injury, Alzheimers disease, and others.

Get Brochure of the Report @ https://www.tmrresearch.com/sample/sample?flag=B&rep_id=6816

This animal stem cell therapy market report has extensive information on various aspects associated with bringing growth. Important factors such as emerging trends, mergers and acquisitions, and the regional scenario of the animal stem cell therapy market have been analyzed and included in the report. The stakeholders can derive a treasure of information from this report. This report also includes a scrutinized take on the COVID-19 impact on the animal stem cell therapy market.

Animal Stem Cell Therapy Market: Competitive Prospects

The competitive landscape of the animal stem cell therapy market can be described as mildly fragmented. With a considerable chunk of players, the animal stem cell therapy market is surrounded by substantial competition. Research and development activities form an important part of the growth landscape because they help gain novel insights.

Activities such as mergers, acquisitions, joint ventures, collaborations, and partnerships form the foundation of the growth of the animal stem cell therapy market. These activities help manufacturers to gain influence and eventually help in increasing the growth rate of the animal stem cell therapy market. Prominent participants in the animal stem cell therapy market are Magellan Stem Cells, Medivet Biologics LLC, Kintaro Cells Power, U.S. Stem Cell, Inc., Celavet Inc., VETSTEM BIOPHARMA, and VetCell Therapeutics.

Buy this Premium Report @ https://www.tmrresearch.com/checkout?rep_id=6816&ltype=S

Animal Stem Cell Therapy Market: Key Trends

Infections are scaling up among animals at a rapid rate. The alarming increase is proving fatal for many animals. Therefore, to avoid such incidences and treat existing diseases and disorders, animal stem cell therapy is being applied seamlessly. Hence, this aspect may bring great growth opportunities for the animal stem cell therapy market.

Developments have been observed across the animal stem cell therapy market for long. Autologous adipose-derived mesenchymal stem cells are gaining traction for successfully resolving a range of issues in animals. These stem cells help in treating ligament and tendon injuries to a certain extent. The strengthening influence of this stem cell type in companion animals is also proving to be a prominent growth prospect for the animal stem cell therapy market.

Recent research has also found that stem cell-derived CC exosomes showed improved recovery from myocardial infarction (MI) among pigs. Such developments assure promising growth for the animal stem cell therapy market.

Animal Stem Cell Therapy Market: Regional Analysis

The animal stem cell therapy market is spread across North America, Latin America, the Middle East and Africa, Europe, and Asia Pacific. The animal stem cell therapy market may derive significant growth from North America. The escalating awareness regarding animal stem cell therapy may attract profound growth. Strengthening research and development activities in the region regarding animal stem cell therapy is further expanding the growth prospects.

Get Table of Content of the Report @ https://www.tmrresearch.com/sample/sample?flag=T&rep_id=6816

About TMR Research

TMR Research is a premier provider of customized market research and consulting services to business entities keen on succeeding in todays supercharged economic climate. Armed with an experienced, dedicated, and dynamic team of analysts, we are redefining the way our clients conduct business by providing them with authoritative and trusted research studies in tune with the latest methodologies and market trends.

Contact:

Rohit Bhisey

TMR Research,

3739 Balboa St # 1097,

San Francisco, CA 94121

United States

Tel: +1-415-520-1050

Visit Site: https://www.tmrresearch.com/

Read more:
Animal Stem Cell Therapy Market - Great Growth Opportunities for the Market in the Coming Year | TMR Research Study - BioSpace

To Read More: Animal Stem Cell Therapy Market – Great Growth Opportunities for the Market in the Coming Year | TMR Research Study – BioSpace
categoriaSpinal Cord Stem Cells commentoComments Off on Animal Stem Cell Therapy Market – Great Growth Opportunities for the Market in the Coming Year | TMR Research Study – BioSpace | dataOctober 6th, 2020
Read All

US Food and Drug Administration Approves Opdivo (nivolumab) + Yervoy (ipilimumab) as the First and Only Immunotherapy Treatment for Previously…

By daniellenierenberg

DetailsCategory: AntibodiesPublished on Saturday, 03 October 2020 15:56Hits: 667

Opdivo + Yervoy is the first new systemic therapy in over 15 years to be approved by the FDA in this setting1,2

Approval is based on CheckMate -743 in which Opdivo + Yervoy demonstrated superior overall survival vs. standard of care chemotherapy1

Approval marks third indication for Opdivo + Yervoy-based treatments in thoracic cancers and seventh indication overall

PRINCETON, NJ, UA I October 2, 2020 IBristol Myers Squibb (NYSE: BMY) today announced that Opdivo (nivolumab) 360 mg every three weeks plus Yervoy (ipilimumab) 1 mg/kg every six weeks (injections for intravenous use) was approved by the U.S. Food and Drug Administration (FDA) for the first-line treatment of adult patients with unresectable malignant pleural mesothelioma (MPM).1 This approval is based on a pre-specified interim analysis from the Phase 3 CheckMate -743 trial in which Opdivo + Yervoy (n=303) demonstrated superior overall survival (OS) versus the platinum-based standard of care chemotherapy (n=302) (Hazard Ratio [HR]: 0.74 [95% Confidence Interval [CI]: 0.61 to 0.89]; P=0.002), with a median OS (mOS) of 18.1 months (95% CI: 16.8 to 21.5) versus 14.1 months (95% CI: 12.5 to 16.2), respectively.1 These results were observed after 22.1 months of minimum follow-up.3 At two years, 41% of patients treated with Opdivo + Yervoy were alive and 27% with chemotherapy.1,3

Malignant pleural mesothelioma is a rare cancer with limited treatment options. When it is diagnosed in advanced stages, the five-year survival rate is approximately 10 percent, said study investigator Anne S. Tsao, M.D., professor and Section Chief Thoracic Medical Oncology and Director of the Mesothelioma Program at The University of Texas M.D. Anderson Cancer Center.2,4 The survival results from the CheckMate -743 trial show that the combination of nivolumab and ipilimumab could become a new front-line standard of care option. This is exciting news, instilling hope for patients with this devastating disease and for the healthcare providers who care for them.1,3

Opdivo and Yervoy are associated with Warnings and Precautions including immune-mediated: pneumonitis, colitis, hepatitis, endocrinopathies, nephritis and renal dysfunction, skin adverse reactions, encephalitis, other adverse reactions; infusion reactions; complications of stem-cell transplant that uses donor stem cells (allogeneic); embryo-fetal toxicity; and increased mortality in patients with multiple myeloma when Opdivo is added to a thalidomide analogue and dexamethasone, which is not recommended outside of controlled clinical trials.1Yervoy is associated with the following Warnings and Precautions: severe and fatal immune-mediated adverse reactions, infusion-related reactions, complications of allogeneic hematopoietic stem cell transplant after Yervoy, embryo-fetal toxicity and risks associated when administered in combination with Opdivo.5 Please see the Important Safety Information section below.

This is the third indication for an Opdivo + Yervoy-based combination in the first-line treatment of a form of thoracic cancer.1Opdivo + Yervoy is approved by the FDA as a first-line treatment for patients with metastatic non-small cell lung cancer (NSCLC) whose tumors express PD-L11% as determined by an FDA-approved test, and without EGFR or ALK genomic tumor aberrations.1 It is also approved in combination with limited chemotherapy for the first-line treatment of adult patients with metastatic or recurrent NSCLC with no EGFR or ALK genomic tumor aberrations regardless of PD-L1 expression.1

Thoracic cancers can be complex and difficult to treat, and we are focused on developing immunotherapy options that may have the potential to extend patients lives, said Adam Lenkowsky, general manager and head, U.S., Oncology, Immunology, Cardiovascular, Bristol Myers Squibb.2,6 Just a few months ago, Opdivo + Yervoy-based combinations received two first-line indications for certain patients with non-small cell lung cancer. Now, Opdivo + Yervoy is approved for use in another type of thoracic cancer, previously untreated unresectable MPM. With todays announcement, Opdivo + Yervoy becomes the first new systemic therapy approved in more than 15 years in this setting, and may offer these patients a chance for a longer life. 1

Opdivo + Yervoy is a unique combination of two immune checkpoint inhibitors that features a potentially synergistic mechanism of action, targeting two different checkpoints (PD-1 and CTLA-4) to help destroy tumor cells: Yervoy helps activate and proliferate T cells, while Opdivo helps existing T cells discover the tumor.1,7 Some of the T cells stimulated by Yervoy can become memory T cells, which may allow for a long-term immune response.7,8,9,10,11,12 Targeting of normal cells can also occur and result in immune-mediated adverse reactions, which can be severe and potentially fatal.1 Please see the Important Safety Information section below.

This approval was granted less than six weeks following the submission of a new supplemental Biologics License Application (sBLA), which was reviewed under the FDAs Real-Time Oncology Review (RTOR) pilot program. The RTOR program aims to ensure that safe and effective treatments are available to patients as early as possible.13 The review was also conducted under the FDAs Project Orbis initiative, enabling concurrent review by the health authorities in Australia, Brazil, Canada and Switzerland.

About CheckMate -743

CheckMate -743 is an open-label, multi-center, randomized Phase 3 trial evaluating Opdivo plus Yervoy compared to chemotherapy (pemetrexed and cisplatin or carboplatin) in patients with histologically confirmed unresectable malignant pleural mesothelioma and no prior systemic therapy or palliative radiotherapy within 14 days of initiation of therapy (n=605).1 Patients with interstitial lung disease, active autoimmune disease, medical conditions requiring systemic immunosuppression, or active brain metastasis were excluded from the trial.1In the trial, 303 patients were randomized to receive Opdivo 3 mg/kg every two weeks and Yervoy 1 mg/kg every six weeks; 302 patients were randomized to receive cisplatin 75 mg/m2 or carboplatin AUC 5 plus pemetrexed 500 mg/m2 in 3-week cycles for six cycles.1 Treatment in both arms continued until disease progression or unacceptable toxicity or, in the Opdivo + Yervoy arm, up to 24 months.1 The primary endpoint of the trial was OS in all randomized patients.1 Additional efficacy outcome measures included progression-free survival (PFS), objective response rate (ORR) and duration of response (DOR), as assessed by BICR utilizing modified RECIST criteria.1

Select Safety Profile from CheckMate -743 Study

Treatment was permanently discontinued for adverse reactions in 23% of patients treated with Opdivo + Yervoy, and 52% had at least one dose withheld for an adverse reaction.1 An additional 4.7% of patients permanently discontinued Yervoy alone due to adverse reactions. Serious adverse reactions occurred in 54% of patients receiving Opdivo + Yervoy.1 The most frequent (2%) serious adverse reactions in patients receiving Opdivo + Yervoy were pneumonia, pyrexia, diarrhea, pneumonitis, pleural effusion, dyspnea, acute kidney injury, infusion-related reaction, musculoskeletal pain, and pulmonary embolism.1 Fatal adverse reactions occurred in 4 (1.3%) patients and included pneumonitis, acute heart failure, sepsis, and encephalitis.1 The most common (20%) adverse reactions were fatigue (43%), musculoskeletal pain (38%), rash (34%), diarrhea (32%), dyspnea (27%), nausea (24%), decreased appetite (24%), cough (23%) and pruritus (21%).1 The median number of doses was 12 for Opdivo and 4 for Yervoy.3

About Malignant Pleural Mesothelioma

Mesothelioma is a rare but aggressive form of cancer that often forms in the lining of the lungs.2,14 There are approximately 3,000 cases diagnosed in the United States each year.14 Malignant pleural mesothelioma is the most common type of the disease.2 It is most frequently caused by exposure to asbestosand diagnosis is often delayed, with the majority of patients presenting with advanced disease.2,15 Prognosis is generally poor: in patients with advanced malignant pleural mesothelioma, median survival is approximately one year and the five-year survival rate is approximately 10%.2

INDICATIONS

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the treatment of patients with unresectable or metastatic melanoma.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the first-line treatment of adult patients with metastatic non-small cell lung cancer (NSCLC) whose tumors express PD-L1 (1%) as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab) and 2 cycles of platinum-doublet chemotherapy, is indicated for the first-line treatment of adult patients with metastatic or recurrent non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the first-line treatment of adult patients with unresectable malignant pleural mesothelioma.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the treatment of patients with intermediate or poor risk, previously untreated advanced renal cell carcinoma (RCC).

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the treatment of adults and pediatric patients 12 years and older with microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR) metastatic colorectal cancer (CRC) that has progressed following treatment with a fluoropyrimidine, oxaliplatin, and irinotecan. This indication is approved under accelerated approval based on overall response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on overall response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Bristol Myers Squibb: Advancing Cancer Research

At Bristol Myers Squibb, patients are at the center of everything we do. The goal of our cancer research is to increase patients quality of life, long-term survival and make cure a possibility. We harness our deep scientific experience, cutting-edge technologies and discovery platforms to discover, develop and deliver novel treatments for patients.

Building upon our transformative work and legacy in hematology and Immuno-Oncology that has changed survival expectations for many cancers, our researchers are advancing a deep and diverse pipeline across multiple modalities. In the field of immune cell therapy, this includes registrational CAR T cell agents for numerous diseases, and a growing early-stage pipeline that expands cell and gene therapy targets, and technologies. We are developing cancer treatments directed at key biological pathways using our protein homeostasis platform, a research capability that has been the basis of our approved therapies for multiple myeloma and several promising compounds in early- to mid-stage development. Our scientists are targeting different immune system pathways to address interactions between tumors, the microenvironment and the immune system to further expand upon the progress we have made and help more patients respond to treatment. Combining these approaches is key to delivering potential new options for the treatment of cancer and addressing the growing issue of resistance to immunotherapy. We source innovation internally, and in collaboration with academia, government, advocacy groups and biotechnology companies, to help make the promise of transformational medicines a reality for patients.

About Bristol Myers Squibbs Patient Access Support

Bristol Myers Squibb remains committed to providing assistance so that cancer patients who need our medicines can access them and expedite time to therapy.

BMS Access Support, the Bristol Myers Squibb patient access and reimbursement program, is designed to help appropriate patients initiate and maintain access to BMS medicines during their treatment journey. BMS Access Support offers benefit investigation, prior authorization assistance, as well as co-pay assistance for eligible, commercially insured patients. More information about our access and reimbursement support can be obtained by calling BMS Access Supportat 1-800-861-0048 or by visiting http://www.bmsaccesssupport.com.

About the Bristol Myers Squibb and Ono Pharmaceutical Collaboration

In 2011, through a collaboration agreement with Ono Pharmaceutical Co., Bristol Myers Squibb expanded its territorial rights to develop and commercialize Opdivo globally, except in Japan, South Korea and Taiwan, where Ono had retained all rights to the compound at the time. On July 23, 2014, Ono and Bristol Myers Squibb further expanded the companies strategic collaboration agreement to jointly develop and commercialize multiple immunotherapies as single agents and combination regimens for patients with cancer in Japan, South Korea and Taiwan.

About Bristol Myers Squibb

Bristol Myers Squibb is a global biopharmaceutical company whose mission is to discover, develop and deliver innovative medicines that help patients prevail over serious diseases. For more information about Bristol Myers Squibb, visit us at BMS.com or follow us on LinkedIn, Twitter, YouTube, Facebook and Instagram.

Celgene and Juno Therapeutics are wholly owned subsidiaries of Bristol-Myers Squibb Company. In certain countries outside the U.S., due to local laws, Celgene and Juno Therapeutics are referred to as, Celgene, a Bristol Myers Squibb company and Juno Therapeutics, a Bristol Myers Squibb company.

References

SOURCE: Bristol-Myers Squibb

Follow this link:
US Food and Drug Administration Approves Opdivo (nivolumab) + Yervoy (ipilimumab) as the First and Only Immunotherapy Treatment for Previously...

To Read More: US Food and Drug Administration Approves Opdivo (nivolumab) + Yervoy (ipilimumab) as the First and Only Immunotherapy Treatment for Previously…
categoriaSkin Stem Cells commentoComments Off on US Food and Drug Administration Approves Opdivo (nivolumab) + Yervoy (ipilimumab) as the First and Only Immunotherapy Treatment for Previously… | dataOctober 4th, 2020
Read All

EMA starts rapid review of Bluebird’s gene therapy for rare disease CALD – – pharmaphorum

By daniellenierenberg

Bluebird bio could be just a few months away from approval of its gene therapy for rare disease cerebral adrenoleukodystrophy (CALD) in the EU, after the EMA started an accelerated review.

If approved, Lenti-D (elivaldogene autotemcel or eli-cel) could transform the prospects of people with CALD, the most severe form of the neurodegenerative disease ALD that usually emerges in boys during early childhood and causes physical and mental disabilities as well as behavioural problems.

Around 40% of patients develop the cerebral form of ALD, which in turn affects around one in 17,000 live births.

A few weeks ago, Bluebird reported new data from the phase 2/3 STARBEAM trial of Lenti-D which showed that 87% of CALD patients were still alive and free of major functional disabilities after at least two years follow-up.

The EU filing comes ahead of a filing for eli-cel in the US, which Bluebird says should take place sometime towards the middle of next year, having been delayed by the coronavirus pandemic.

If approved, eli-cel would provide a one-shot treatment for CALD, holding back the progressive breakdown in the protective myelin that sheathes neurons.

It would be the first alternative to a stem cell transplant to treat the disease, a therapy that can provide significant improvements and even halt progression in some patients if given early enough.

However it requires high-dose chemotherapy to destroy the bone marrow, and that poses significant risks to patients in its own right, and can also lead to graft-versus-host disease, a potentially life-threatening complication in which the bone marrow donors immune cells attack the recipients cells and tissues.

CALD is caused by mutations in the ABCD1 gene located on the X chromosome, which provides instructions for the production of the ALD protein.

ALD protein is needed to clear toxic molecules called very long-chain fatty acids (VLCFAs) in the brain, and if mutated causes the VLCFAs to accumulate and damage the myelin sheath.

Using eli-cel, the patients own stem cells are modified in the lab to produce a working version of the ABCD1 gene, producing functional ALD protein that can help to flush VLCFAs from the body.

CALD is a devastating disease, often marked by rapid neurodegeneration, the development of major functional disabilities, and eventual death, said Gary Fortin, head of severe genetic disease programmes at Bluebird.

If approved, eli-cel would represent the first therapy for CALD that uses a patients own haematopoietic stem cells, potentially mitigating the risk of life-threatening immune complications associated with transplant using cells from a donor, he added.

Aside from STARBEAM, which will follow treated patients for up to 15 years, Bluebird is also conducting the phase 3 ALD-104 trial of eli-cel in CALD, which is due to generate results in 2024.

The EU filing for eli-cel comes shortly after Bluebirds development partner received a 27 March 2021 FDA review date for anti-BCMA CAR-T cell therapy ide-cel, a potential therapy for multiple myeloma.

The biotech already has approval in Europe for Zynteglo, a gene therapy for haematological disease beta thalassaemia, and is due to file its related therapy LentiGlobin for sickle cell disease next year. The two therapies have been tipped to generate $1.5 billion-plus in peak sales by some analysts.

View post:
EMA starts rapid review of Bluebird's gene therapy for rare disease CALD - - pharmaphorum

To Read More: EMA starts rapid review of Bluebird’s gene therapy for rare disease CALD – – pharmaphorum
categoriaBone Marrow Stem Cells commentoComments Off on EMA starts rapid review of Bluebird’s gene therapy for rare disease CALD – – pharmaphorum | dataOctober 4th, 2020
Read All

Different Types of Childhood Cancer | INTEGRIS – Integris

By daniellenierenberg

If youre a parent, you know the thoughts, feelings and emotions that come with protecting your child. Youd do anything for them to ensure they live a long, healthy life. But what will you do when there are times when health conditions, such as childhood cancer, stand in the way?

Cancer in children is more common than you may think, as it accounts for the second-leading cause of death behind accidents. While a cancer diagnosis, or even the thought of your child developing cancer one day, is overwhelming, modern medicine has improved survival rates. As with any cancer, early detection is key. To help you familiarize yourself with childhood cancer, we asked Michael Confer, M.D., a radiation oncologist at the INTEGRIS Cancer Institute, about the different types of cancers, which signs to look for and how they can be treated.

Unlike adult cancers, which can result from the environment or exposure to certain things, childhood cancers result from genetic mutations that occur early on in life or before birth.

It all comes down to changes in genes. Your DNA contains information to make different types of cells in your body. In other words, your skin cells contain information to be brain cells, while your kidney cells contain information to be heart muscle cells. As cells mature, they become specialized, turning on and off certain genes to allow them to perform specific duties. Cells need to be able to replicate to replace damaged cells of the same category. They grow with help from genes called proto-oncogenes.

When your DNA changes, it leads to genetic mutations, and cells can become permanently activated. This can lead to cells duplicating uncontrollably, known as cancer.

Tumor suppressor genes slow down cell division. They repair DNA mistakes before cells divide and control cells internal death process (apoptosis or programmed cell death), Dr. Confer says. DNA mutations within tumor suppressor genes can also allow cells to duplicate uncontrollably. Children can be born with mutated proto-oncogenes or tumor suppressor genes in certain cells. These abnormally programmed cells lead to most childhood cancers.

So, what causes DNA changes? Your child can inherit genes from a parent that increases their risk of cancer or they can acquire these genes. Cancers from acquired, sporadic gene mutations are more common than those from inherited gene mutations 5% of all childhood cancers come from inherited mutations.

Breast cancer and ovarian cancer are the most common types of cancer caused by inherited DNA changes from BRCA1 or BRCA2 gene mutations. Even with how well-known these are, only 5 to 10% of breast cancer cases come from BRCA1/BRCA2 inherited mutations. Plus, breast cancer and ovarian cancer are more common in adults than children. Talk to your doctor or visit a genetic counselor if you have specific questions about inherited mutations.

Cancer can impact any part of your body, ranging from your bones and blood cells to your brain, spinal cord and other internal organs. You may be most familiar with leukemia, lymphoma, and brain and spinal tumors, since they are the most common. But, here is a full overview of cancers that commonly affect children, according to the American Cancer Society.

Leukemia: This is the most common type of cancer in children, accounting for 28% of cases. It generally starts in white blood cells and becomes fast growing (acute). Acute lymphocytic leukemia (ALL) and acute myeloid leukemia (AML) are the two most common types of leukemia. Three out of every four children with leukemia have ALL. This type of cancer starts in the lymphoid cells, called lymphocytes, whereas AML starts in myeloid cells. Chronic myeloid leukemia (CML) and chronic lymphocytic leukemia (CLL) are two types of rare cancers

Brain and spinal cord tumors: These types of cancers make up 26% of all cases. Brain tumors are more common than spinal cord tumors. The cancer generally starts in the lower part of the brain.

Neuroblastoma: This type of cancer affects infants and young children. Neuroblastoma starts in nerve cells during pregnancy and accounts for 6% of childhood cancers. Abdomen swelling is a common sign of neuroblastoma.

Wilms tumor: This type of cancer starts in the kidneys and impacts children who are 3 or 4 years old. It accounts for 5% of childhood cancers.

Lymphoma: Although lymphoma isnt as common as other types of cancers, youve likely heard of Hodgkin lymphoma and non-Hodgkin lymphoma, the two main types of cancer that show up in the lymphocytes. Non-Hodgkin lymphoma (accounts for 5% of childhood cancers) appears in younger children and is more common than Hodgkin lymphoma (accounts for 3%), which is more common in younger adults. You may notice a swollen lymph node under your childs arm or near their throat.

Rhabdomyosarcoma: This type of cancer develops in areas that your child uses to move their body, such as the head, pelvis, arms or legs. It accounts for 3% of childhood cancer cases.

Retinoblastoma: This cancer develops in the eyes, and your child is most at risk around the age of 2 until the age of 6. It accounts for 2% of childhood cancers.

Bone cancer: Bone cancer is more prominent in teens, but it still accounts for 3% of childhood cancers. There are two types, osteosarcoma and Ewing sarcoma, that show up via swelling around the bones. Ewing sarcoma is a less common type of cancer that is more prominent in older children and younger teens. Osteosarcoma, meanwhile, is more common in teens and in areas where bones grow quickly.

There isn't a one-size-fits-all guide to know if your child has cancer. In general, Dr. Confer says to keep an eye on any changes in your childs behavior, such as walking, eating, playing or sleeping. If theyre older, listen to any complaints they may have. Some cancers may produce a lump or swelling and pain in certain areas. Other symptoms include a loss of energy, weight loss, sudden eye or vision changes, frequent headaches with vomiting or a persistent fever that signifies the body is fighting an infection.

For example, leukemia, the most common type of childhood cancer, affects most children between the ages of 2 and 4. Typical symptoms include fever, bleeding, deep pain in the bones, small red spots on the skin called petechiae, bruises and enlarged lymph nodes.

Notify your childs pediatrician if any of these concerns arise. Aside from that, you should schedule your child for routine checkups and wellness visits.

Routine checkups and wellness visits help monitor normal growth and development. A good pediatrician-patient relationship helps the physician better identify subtle signs of cancer and gives parents a trusted sounding board for the concerns parents or children may have, Dr. Confer says.

Many childhood cancers have become increasingly treatable, leading to longer survival rates. Dr. Confer says acute lymphoblastic leukemia, lymphoma or kidney tumors known as Wilms tumor all have more than a 90% five-year survival rate (the percentage of patients who are alive five years after receiving treatment or a diagnosis).

In fact, the overall five-year survival rate for childhood cancers has improved from 58% in the mid-1970s to 84%, according to the American Cancer Society. But, certain types of aggressive cancer still exist. Diffuse intrinsic pontine glioma (DIPG), a rare brain tumor, is often cited as the childhood cancer with the poorest survival rate (less than 1% for five years).

No matter the diagnosis, continual hope and quality, proven therapies are the most important factors for children and families facing childhood cancers, Dr. Confer says.

Here are some of the most common forms of therapies to treat childhood cancer.

Surgery can help many patients, whether you need an entire tumor removed or a procedure to ease pain caused by a tumor. Your childs surgeon can also debulk a tumor, meaning they remove part of it and treat the rest with another method. Surgery has the highest success rate when its contained to one area, before the cancer has an opportunity to metastasize (spread to other parts of the body).

High doses of radiation help reduce cancer by either killing the cells or damaging their DNA to slow growth. Over time, these cells die and your body removes them. You can either receive internal or external radiation. External radiation comes from a beam that treats a specific body part, whereas internal radiation is in solid or liquid form. More specifically, brachytherapy is the medical term for solid internal radiation. Your doctor will place capsules, seeds or ribbons near the tumor. Systemic therapy is the medical term for liquid internal radiation. With this method, the radiation travels through your blood via a pill, injection or IV to kill cancer cells.

Chemotherapy comes in many methods of application, such as IV, oral, injection, topical or through a catheter, port or pump. Chemotherapy also kills healthy cells, which is one of the downsides. This is why many chemotherapy patients lose their hair and experience other side effects. Depending on the type and progression of the cancer, chemotherapy can help shrink a tumor to increase the success rate of surgery or radiation. Chemotherapy can also fight against any lingering cancer cells following surgery or radiation. Its also used to treat cancer that returns or metastasizes.

The immune system is your bodys way of defending itself against harmful germs, bacteria and viruses. When it comes to cancer, the immune system can have trouble recognizing and fighting off harmful cells because cancer starts in healthy cells. Immunotherapy helps your body pinpoint cancer kills to better defend against them. There are many types of immunotherapy treatments to boost your immune system. One type, chimeric antigen receptor (CAR) T-cell therapy, mixes your own T-cells with a virus that teaches the T-cells how to kill cancer cells.

Targeted therapy is a form of chemotherapy. But, as the name suggests, these drugs zero in on a specific area of the cancer cells. Depending on the drug, targeted therapy can change the protein levels in cancer cells or block chemical signals that help cancer cells grow. Other targeted therapy drugs can limit blood vessel production to cut off the cancer cells or distribute toxins to specifically kill the cancer while sparing healthy cells.

Stem cells, which originate in the bone marrow, make red blood cells, white blood cells and platelets. Leukemia and lymphoma start in the blood cells, causing damage to the cells your body needs to function. A stem cell transplant involves destroying cancer cells via chemotherapy and/or radiation before replacing them with new, healthy cells. This allows doctors to use stronger doses of chemotherapy or radiation knowing new cells, via a transplant, will replace old, damaged cells. Stem cell transplants can come from your own cells or the cells of another person. Donated cells are often more effective since they can help kill off cancer cells.

While you cant do anything to prevent your child from developing cancer, you can be proactive by scheduling regular checkups and looking out for warning signs and symptoms. Contact an INTEGRIS pediatrician if you have any concerns, and they can refer you to an oncologist at the INTEGRIS Cancer Institute.

Subscribe to the INTEGRIS On Your Health blog

Subscribe for regular emails full of useful and interesting Oklahoma-centric health and wellness info, from the doctors and health experts at INTEGRIS.

Originally posted here:
Different Types of Childhood Cancer | INTEGRIS - Integris

To Read More: Different Types of Childhood Cancer | INTEGRIS – Integris
categoriaBone Marrow Stem Cells commentoComments Off on Different Types of Childhood Cancer | INTEGRIS – Integris | dataOctober 4th, 2020
Read All

How Maine’s members of Congress voted this week – Bangor Daily News

By daniellenierenberg

Heres a look at how Maines members of Congress voted over the previous week.

Along with its roll call votes this week, the House also passed these measures: the Cyber Sense Act (H.R. 360), to require the Secretary of Energy to establish a voluntary Cyber Sense program to test the cybersecurity of products and technologies intended for use in the bulk-power system; the Consumer Product Safety Inspection Enhancement Act (H.R. 8134), to support the Consumer Product Safety Commissions capability to protect consumers from unsafe consumer products; the School-Based Allergies and Asthma Management Program Act (H.R. 2468), to increase the preference given, in awarding certain allergies and asthma-related grants, to states that require certain public schools to have allergies and asthma management programs; and the Effective Suicide Screening and Assessment in the Emergency Department Act (H.R. 4861), to establish a program to improve the identification, assessment, and treatment of patients in the emergency department who are at risk of suicide.

House Vote 1:

PRESIDENTIAL ELECTION: The House has passed a resolution (H. Res. 1155), sponsored by Rep. Eric Swalwell, D-Calif., reaffirming the Houses commitment to an orderly and peaceful transfer of presidential power after the November election. Swalwell said: The peaceful transition of power is not only a bedrock principle of Americas founding; it is a living ideal that we must exercise and pass down to our children. An opponent, Rep. Matt Gaetz, R-Fla., called the resolution a way for Democrats to attack the president and disguise the fact that they will refuse to accept the election results unless they win. The vote, on Sept. 29, was 397 yeas to 5 nays.

YEAS: Pingree D-ME (1st), Golden D-ME (2nd)

House Vote 2:

DISCLOSING TIES TO UYGHUR LABOR: The House has passed the Uyghur Forced Labor Disclosure Act (H.R. 6270), sponsored by Rep. Jennifer Wexton, D-Va., to require publicly traded companies to disclose whether they have business ties to Chinas Uyghur Autonomous Region in Xinjiang province. Wexton said the requirement would let investors know of a given companys passive complicity or active exploitation of one of the most pressing and ongoing human rights violations of our lifetime. A bill opponent, Rep. Anthony Gonzalez, R-Ohio, said it wrongly tried to have the Securities and Exchange Commission police human rights violations, a role that would be better handled by the Treasury Department. The vote, on Sept. 30, was 253 yeas to 163 nays.

YEAS: Pingree D-ME (1st), Golden D-ME (2nd)

House Vote 3:

DISEASE THERAPIES: The House has passed the Timely ReAuthorization of Necessary Stem-cell Programs Lends Access to Needed Therapies Act (H.R. 4764), sponsored by Rep. Doris O. Matsui, D-Calif. The bill would reauthorize a program for transplanting umbilical cord blood, stem cells and bone marrow to adults and children suffering from various diseases. The vote, on Sept. 30, was unanimous with 414 yeas.

YEAS: Pingree D-ME (1st), Golden D-ME (2nd)

House Vote 4:

FURTHER COVID-19 SPENDING: The House has approved an amendment to the Americas Conservation Enhancement Act (H.R. 925). The amendment would spend $2.2 trillion on new COVID-19 measures, including testing and treatment efforts and unemployment benefits. A supporter, Rep. James P. McGovern, D-Mass., said the spending was needed for families to pay for necessities like food, utilities, and rent during this pandemic. An opponent, Rep. Tom Cole, R-Okla., said the amendment had been hurriedly brought to the floor without minority input or adequate time for review, and that it would not pass the Senate. The vote, on Oct. 1, was 214 yeas to 207 nays.

YEAS: Pingree D-ME (1st)

NAYS: Golden D-ME (2nd)

Senate Vote 1:

CONTINUING APPROPRIATIONS: The Senate has passed the Continuing Appropriations Act and Other Extensions Act (H.R. 8337), sponsored by Rep. Nita M. Lowey, D-N.Y., to extend through December 11 funding for health programs, including Medicare, surface transportation, and many other government programs. The vote, on Sept. 30, was 84 yeas to 10 nays.

YEAS: Collins R-ME, King I-ME

Senate Vote 2:

OBAMACARE LITIGATION: The Senate has rejected a cloture motion to end debate on a motion to consider a bill (S. 4653), sponsored by Senate Minority Leader Chuck Schumer, D-N.Y., that would block the Justice Department from making arguments in court for cancelling any provision of the 2010 health care reform law (Obamacare). The vote to end debate, on Oct. 1, was 51 yeas to 43 nays, with a three-fifths majority needed for approval.

YEAS: Collins R-ME, King I-ME

Continued here:
How Maine's members of Congress voted this week - Bangor Daily News

To Read More: How Maine’s members of Congress voted this week – Bangor Daily News
categoriaBone Marrow Stem Cells commentoComments Off on How Maine’s members of Congress voted this week – Bangor Daily News | dataOctober 4th, 2020
Read All

FibroGenesis Expands Fight Against COVID-19 In Brazil with International Collaboration – BioSpace

By daniellenierenberg

HOUSTON, Oct. 1, 2020 /PRNewswire/ -- FibroGenesis, the leading developer of fibroblast based therapeutic solutions for unmet medical needs has entered into a clinical collaboration agreement with Brazilian R4D Biotech.Holding the world's largest patent portfolio in the field of cell therapies using fibroblasts, FibroGenesis is expanding its ongoing clinical programs internationally. The partnership will pave the way for clinical studies of PneumoBlast in Brazil as a unique treatment of acute respiratory distress syndrome (ARDS) for patients affected by COVID-19, in parallel to clinical studies in the United States upon approval by the FDA.

Administration of PneumoBlast in pre-clinical and animal studies resulted in dramatic improvement of immunological signaling molecules, reducing concentrations of the inflammatory cytokines interleukin-1 beta, interleukin-6, interleukin-8, interleukin-17, interleukin-18, and Tumor Necrosis Factor alpha TNFa. Company scientists have also demonstrated that PneumoBlast has induced statistically significant reduction of lung fibrosis and lung scarring in COVID-19 infected animals, particularly when compared to more conventional treatments using bone marrow derived mesenchymal stem cells (BMSCs). Furthermore, recent data supports the potential benefits of PneumoBlast for preventing COVID-19 blood clotting. Both companies will collaborate on a clinical study design that meets the needs of Brazilian patients.

"As the scientific and medical community is discovering more about the biological and medical consequences of the COVID-19 infection, FibroGenesis is eager to contribute to the therapeutic cure options currently being created to fight this global war against this virus," commented Pete O'Heeron, Chief Executive Officer, FibroGenesis. "The collaboration with R4D Biotech is another strategic milestone that emphasizes our commitment to expand fibroblast research globally."

"The lab results which indicate our cell therapy approach possesses both therapeutic effects on animal models of the acute stage of COVID-19, and also benefits a cure for residual pathology seen in COVID-19 patients, has our research team extremely excited," said Thomas Ichim, Ph.D., Chief Scientific Officer, FibroGenesis.

"Technology transfer is at the core of this partnership," said Paulo Ferraz, BRICS/Emerging Markets Director of international fund Newstar Ventures and an advisor for FibroGenesis on this transaction. "R4D Biotech has access to sophisticated resources comprising research facilities and hospitals, and its talent pool includes scientific advisors who are recognized academics and distinguished members of the Brazilian Academy of Pharmaceutical Sciences. PneumoBlast clinical study will represent the first step in a long-term relationship designed to aid in the discovery of advanced therapeutic solutions for chronic medical needs."

About R4D Biotech:R4D Biotech is a Brazilian emerging company headquartered in the state of So Paulo focused on research and development for biotechnology and healthcare, with the mission of bringing disruptive technology innovation across all steps of clinical development in life sciences.

About FibroGenesis:Based in Houston, Texas, FibroGenesis is a regenerative medicine company developing an innovative solution for chronic disease treatment using human dermal fibroblasts. Currently, FibroGenesis holds 240+ U.S. and international issued patents/patents pending across a variety of clinical pathways, including Disc Degeneration, Multiple Sclerosis, Parkinson's, Chronic Traumatic Encephalopathy, Cancer, Diabetes, Liver Failure, Colitis and Heart Failure. FibroGenesis represents the next generation of medical advancement in cell therapy.Visit http://www.Fibro-Genesis.com.

View original content to download multimedia:http://www.prnewswire.com/news-releases/fibrogenesis-expands-fight-against-covid-19-in-brazil-with-international-collaboration-301144126.html

SOURCE FibroGenesis

Follow this link:
FibroGenesis Expands Fight Against COVID-19 In Brazil with International Collaboration - BioSpace

To Read More: FibroGenesis Expands Fight Against COVID-19 In Brazil with International Collaboration – BioSpace
categoriaBone Marrow Stem Cells commentoComments Off on FibroGenesis Expands Fight Against COVID-19 In Brazil with International Collaboration – BioSpace | dataOctober 4th, 2020
Read All

FDA Grants Fast Track Status to Aegle Therapeutics’ AGLE-102 for the Treatment of Dystrophic Epidermolysis Bullosa – PRNewswire

By daniellenierenberg

BOSTON and MIAMI, Oct. 1, 2020 /PRNewswire/ -- Aegle Therapeutics Corporation today announced theU.S. Food and Drug Administration(FDA) has granted Fast Track designation to AGLE-102 for the treatment of patients with dystrophic epidermolysis bullosa ("DEB"), a rare genetic pediatric skin blistering disorder. AGLE-102 is an extracellular vesicle ("EV") therapy that delivers proteins, genetic material and regenerative healing factors to diseased and damaged tissue. AGLE-102 will be evaluated in DEB patients in a phase 1/2a trial initiating in 2021.

The Fast Track program is intended to facilitate the development and review of drug candidates that treat serious conditions and fill an unmet medical need. A drug candidate with Fast Track designation is eligible for greater access to the FDA for the purpose of expediting the drug product candidate's development, review and potential approval.

"We are pleased to have received Fast Track designation for AGLE-102. Aegle's EV therapy is unique in that it delivers collagen 7 protein, COL7A1 mRNA and regenerative healing factors to potentially address the complex nature of DEB," said Evangelos Badiavas, MD, PhD, Chief Scientific Officer atAegle Therapeutics. "This designation will expedite the development and regulatory review of AGLE-102 and highlights the importance of providing novel treatments to this patient population."

AboutAegle Therapeutics Corporation

Aegle Therapeutics (www.aegletherapeutics.com) is a privately held biotechnology company developing extracellular vesicles, including exosomes, secreted by mesenchymal stem cells as therapy for the treatment of dystrophic epidermolysis bullosa and other severe dermatological conditions. Aegle anticipates entering the clinic with AGLE-102 in early 2021.

ContactAegle Therapeutics CorporationShelley A. HartmanChief Executive Officer[emailprotected]

SOURCE Aegle Therapeutics Corporation

http://www.aegletherapeutics.com

Visit link:
FDA Grants Fast Track Status to Aegle Therapeutics' AGLE-102 for the Treatment of Dystrophic Epidermolysis Bullosa - PRNewswire

To Read More: FDA Grants Fast Track Status to Aegle Therapeutics’ AGLE-102 for the Treatment of Dystrophic Epidermolysis Bullosa – PRNewswire
categoriaSkin Stem Cells commentoComments Off on FDA Grants Fast Track Status to Aegle Therapeutics’ AGLE-102 for the Treatment of Dystrophic Epidermolysis Bullosa – PRNewswire | dataOctober 2nd, 2020
Read All

UC Davis Engineers Lead $36M Effort to Improve Recovery From Spinal Cord Injuries – UC Davis

By daniellenierenberg

Engineers at the University of California, Davis, will lead a consortium of universities, biomedical startups and nonprofit organizations to develop interventions for spinal cord injuries that can be applied within days of injury to improve long-term outcomes.

Karen Moxon, professor of biomedical engineering at UC Davis, will lead the five-year, $36 million contract as part of the Defense Advanced Research Project Agency, or DARPA, Bridging the Gap Plus Program. A primary goal is to develop technologies to stabilize a patients hemodynamic response, which includes blood flow and blood pressure, within days of injury.

Because large swings in blood pressure are common following spinal cord injuries, stabilizing hemodynamics within days of injury will improve functional recovery. The team will take advantage of stabilized hemodynamics to optimize delivery of neural stem cells using personalized 3D printed scaffolds within two weeks of injury to regenerate lost connections within the injured spinal cord.

Spinal cord injury is a complex condition that causes partial or complete loss of function below the location of injury, Moxon said. We will develop systems for real-time biomarker monitoring and intervention to stabilize and rebuild neural communications pathways between the brain and spinal cord. As a result of our efforts, clinicians will be able to collect previously unavailable diagnostic information for automated or clinician-directed interventions. Our goal is to translate these technologies to humans within the five-year award period.

The international team includes 12 institutions: UC Davis, UC San Diego, UC San Francisco, the University of British Columbia, the University of Calgary and the cole Polytechnique Fdrale de Lausanne (EPFL, Switzerland); biotech startups Pathonix Innovation Inc. of Vancouver, GTX Medical (Lausanne, Switzerland), and Teliatry (Richardson, Texas); nonprofit institutions the Wyss Center for Bio and Neuroengineering (Geneva, Switzerland) and Battelle Memorial Institute (Columbus, Ohio); and a regulatory consultant firm, NetValue BioConsulting Inc., Toronto.

Moxon and her team at UC Davis including Zhaodan Kong, associate professor in the Department of Mechanical and Aerospace Engineering, and Professor Kiarash Shahlaie and Assistant Professor Julius Ebinu, neurosurgeons in the UC Davis School of Medicine will take the lead on assessing the impact of these interventions on the brain to maximize the restoration of both motor and sensory functions. This part of the project will be conducted at the California National Primate Research Center.

We are extremely pleased that the California National Primate Research Center will host the nonhuman primate research arm of this extraordinary effort to restore function following spinal cord injury, said center director John Morrison, professor of neurology at UC Davis.

Part of the effort will also aim to improve functional recovery, using neural stem cell and bioengineering scaffold technology developed by professors Mark Tuszynski, Paul Lu, Ephron Rosenzweig and Jacob Koffler, all faculty in the Department of Neurosciences at UCSD. Their stem cell and scaffold technology will be combined with neural electrical stimulation technology (neuromodulation) developed by Gregoire Courtine at EPFL. The team hopes to successfully combine this cell and engineering technology to promote nerve regeneration that bridges the injury site.

Moxons lab at UC Davis, in collaboration with a teamat the Wyss Center for Bio and Neuroengineering led by Tracy Laabs, will develop cortical stimulation protocols to enhance sensory feedback to the brain and aid in motor control. The team will take advantage of Wysss ABILITYsystem that wirelessly records signals from individual neurons in the brain and will further develop it to include closed-loop cortical stimulation, which employs a sensor to record signals, for improved motor function.

The multi-institution team will focus on advancing three main technologies:

Together, these technologies will integrate into a system-of-systems that monitors the information from sensors and stimulators to allow clinicians to monitor patients progress. At the same time, the team will be able to identify the optimal time to transplant the neural stem cells and 3D scaffold in this critical time period after injury.

It is exciting to lead this talented team of international scientists and to be in a position to effect real change for people who sustain a spinal cord injury, Moxon said. Its this type of team science between academia and industry that makes clinical breakthroughs possible in short time periods.

Development of the proposal for the award was facilitated by the UC Davis Office of Researchs Interdisciplinary Research Support team and Gabriela Lee, project manager. This project is part of a larger effort at UC Davis led by Moxon, Professor Sanjay Joshi in the Department of Mechanical and Aerospace Engineering, and Professor Carolynn Patten in the School of Medicine and College of Biological Sciences to develop a neuroengineering program that aims to restore, augment and extend human capacity to benefit society.

Read the original here:
UC Davis Engineers Lead $36M Effort to Improve Recovery From Spinal Cord Injuries - UC Davis

To Read More: UC Davis Engineers Lead $36M Effort to Improve Recovery From Spinal Cord Injuries – UC Davis
categoriaSpinal Cord Stem Cells commentoComments Off on UC Davis Engineers Lead $36M Effort to Improve Recovery From Spinal Cord Injuries – UC Davis | dataOctober 2nd, 2020
Read All

What You Need to Know About Prop 14, The Stem Cell Research Bond (Transcript) – KQED

By daniellenierenberg

Olivia Allen-Price [00:01:55] OK, so what exactly does this bond fund?

Danielle Venton [00:01:59] This would fund $5.5 billion in stem cell research and treatments in California. Some of the diseases that stem cell research is seeking to cure or treat include cancer, Alzheimer's disease, diabetes, spinal cord injuries, blindness, and even COVID-19. I spoke recently with a guy named Jake Javier. He supports this bond initiative because he knows firsthand how life changing stem cell research can be.

Jake Javier [00:02:25] I am in my last year at Cal Poly.

Danielle Venton [00:02:28] So, Jake grew up locally in Danville and was just graduating high school when he suffered a life altering injury.

Jake Javier [00:02:35] On the last day of high school, I drove in to a pool and hit my head on the bottom and broke my neck and was immediately paralyzed.

Danielle Venton [00:02:47] He says his injury was complete, with very little hope of recovery. But a doctor at Stanford reached out to Jake and his family and said, you can be part of this clinical trial where we, with a one time surgery, will inject stem cells into the damaged area and you may possibly see some benefits.

Danielle Venton [00:03:07] Now, Jake is still injured.

Jake Javier [00:03:09] I'm a quadriplegic. I use a wheelchair.

Danielle Venton [00:03:11] But he says after the surgery, he noticed more movement in his arms, in his hands.

Jake Javier [00:03:17] So, I mean, with my injury, I'm at a level where I would normally not have any function at all in my hands and very, very little function like in my triceps and things like that. Muscles that are really important for functionality and, you know, being able to get through day to day activities that could help me push myself around more, help me transfer in and out of my chair independently. And then also, I notice, you know, I got some some finger movement. It doesn't seem like much, but even that little movement has helped me so much with picking things up and things like that. So it was really, I was really blessed to see that happen.

Danielle Venton [00:03:51] So he doesn't know how much of his recovery is due to the stem cells. How much is natural, or how much is due to physical therapy. But today he's able to live independently, to go to college and he wants to pursue a career in medicine. And he is a big believer in stem cell research, regenerative medicine, and is really hoping that California voters will support this proposition.

Olivia Allen-Price [00:04:20] Now, what exactly are stem cells and how do they work, I guess?

Danielle Venton [00:04:25] Yeah, stem cells are types of cells that can be turned into any type of specialized cell. Scientists have known about them since the eighteen hundreds, but it wasn't until the late 90s that researchers developed a method to derive them from human embryos and grow them in a laboratory. And then people really began to get excited about their potential for medicine. Now these cells came from unused embryos created for in vitro fertilization, and they were donated with informed consent. But many anti-abortion groups felt that using the cells were tantamount to taking a human life. So in 2001, then President George W. Bush banned federal funding for any research using newly created stem cell lines.

Olivia Allen-Price [00:05:09] OK. And how does that get us now to bonds in California?

Danielle Venton [00:05:13] Well, Californians wanted to circumvent these federal restrictions, and in 2004 voted for a bond that gave the state $3 billion to create a research agency called the California Institute of Regenerative Medicine, or CIRM. There was a lot of public support for it. And it just felt like these wonderful cures could be right around the corner. Celebrities like Michael J. Fox appeared in TV commercials.

Michael J. Fox TV commercial [00:05:36] My most important role lately is as an advocate for patients, and for finding new cures for diseases. That's why I'm asking you to vote yes on Proposition 71, Stem Cell Research Initiative.

Danielle Venton [00:05:48] And the money for that research, that $3 billion, has now run out. And to continue their work, the stem cell advocacy group, Americans for Cures, is asking voters for more money.

Olivia Allen-Price [00:06:00] So we're basically voting on whether we want to refill the stem cell research piggy bank here.

Danielle Venton [00:06:05] Yeah, exactly. Some question if the state can afford this at this time when budgets are going to be so tight. Others have been disappointed by the slow pace of cures coming out of the field. Now, there are people who credit this research, such as Jake, with improving or restoring their health or the health of their loved ones. Or maybe they hope that one day it will, and they would balk at the idea that this is not worthy research. They point to achievements that the agency has funded. That includes effectively a cure for bubble baby disease. This is when someone is born without a functioning immune system. That mutation can now be corrected with genetically modified stem cells. And recently, just within the last year or so, the FDA approved two new treatments for blood cancer, developed with CIRM support. These achievements are what the agency points to when they're criticized for not having accomplished more. And they say the process of scientific discovery is long and unpredictable.

Olivia Allen-Price [00:07:04] Now, wasn't that Bush-era ban on stem cell research that you were talking about earlier wasn't that overturned?

Danielle Venton [00:07:11] Yes, that was overturned by President Obama. However, there are current members of Congress who are lobbying President Trump to ban the research again. And if that happens, then California would be the only major player in stemcell research once again in the United States.

Olivia Allen-Price [00:07:30] All right, so who is supporting Prop 14?

Danielle Venton [00:07:32] Governor Gavin Newsom, for one. Many patient advocacy organizations and medical and research institutions, including the California Board of Regents. These people don't want to see the pace of this research slow. They want it to accelerate. The political action committee supporting this proposition is reporting more than six million dollars in contributions.

Olivia Allen-Price [00:07:53] All right. And what about the opposition? Who's against it?

Danielle Venton [00:07:55] Well, so far, there's no organized, funded opposition. There have been several newspaper editorials coming out against it, including locally, the Mercury News and the Santa Rosa Press Democrat. They basically say state bonds aren't the way to fund research and the situation isn't like it was in 2004 and that the institute should now seek other sources of funding and move forward as a nonprofit.

Olivia Allen-Price [00:08:19] All right, Danielle. Well, thanks, as always for your help.

Danielle Venton [00:08:21] My pleasure. Thanks.

Olivia Allen-Price [00:08:28] In a nutshell, a vote yes on Proposition 14 says you think Californians should give $5.5 billion to the state's stem cell research institute. That money will be raised by selling bonds, which the state would pay back, with interest, out ofthe general fund over the next 30 years. A vote no means you think we shouldn't spend public money on this research.

Olivia Allen-Price [00:08:54] That's it on Proposition 14. We'll be back tomorrow with an episode on Prop 15. And oh, it is a doozy. Commercial property tax! A partial rollback of one of California's most controversial propositions! It's going to be fire. In the meantime, you can find more of KQED election coverage at KQED.org/elections. Two reminders on the way out: October 19th is the last day to register to vote and mail in ballots must be postmarked on or before November 3rd.

Olivia Allen-Price [00:09:28] Bay Curious is made in San Francisco at member supported KQED. I'm Olivia Allen-Price. See you tomorrow.

See the original post here:
What You Need to Know About Prop 14, The Stem Cell Research Bond (Transcript) - KQED

To Read More: What You Need to Know About Prop 14, The Stem Cell Research Bond (Transcript) – KQED
categoriaSpinal Cord Stem Cells commentoComments Off on What You Need to Know About Prop 14, The Stem Cell Research Bond (Transcript) – KQED | dataOctober 2nd, 2020
Read All

SMART researchers receive Intra-CREATE grant for personalized medicine and cell therapy – MIT News

By daniellenierenberg

Researchers from Critical Analytics for Manufacturing Personalized-Medicine (CAMP), an interdisciplinary research group at Singapore-MIT Alliance for Research and Technology (SMART), MITs research enterprise in Singapore, have been awarded Intra-CREATE grants from the National Research Foundation (NRF) Singapore to help support research on retinal biometrics for glaucoma progression and neural cell implantation therapy for spinal cord injuries. The grants are part of the NRFs initiative to bring together researchers from Campus for Research Excellence And Technological Enterprise (CREATE) partner institutions, in order to achieve greater impact from collaborative research efforts.

SMART CAMP was formed in 2019 to focus on ways to produce living cells as medicine delivered to humans to treat a range of illnesses and medical conditions, including tissue degenerative diseases, cancer, and autoimmune disorders.

Singapores well-established biopharmaceutical ecosystem brings with it a thriving research ecosystem that is supported by skilled talents and strong manufacturing capabilities. We are excited to collaborate with our partners in Singapore, bringing together an interdisciplinary group of experts from MIT and Singapore, for new research areas at SMART. In addition to our existing research on our three flagship projects, we hope to develop breakthroughs in manufacturing other cell therapy platforms that will enable better medical treatments and outcomes for society, says Krystyn Van Vliet, co-lead principal investigator at SMART CAMP, professor of materials science and engineering, and associate provost at MIT.

Understanding glaucoma progression for better-targeted treatments

Hosted by SMART CAMP, the first research project, Retinal Analytics via Machine learning aiding Physics (RAMP), brings together an interdisciplinary group of ophthalmologists, data scientists, and optical scientists from SMART, Singapore Eye Research Institute (SERI), Agency for Science, Technology and Research (A*STAR), Duke-NUS Medical School, MIT, and National University of Singapore (NUS). The team will seek to establish first principles-founded and statistically confident models of glaucoma progression in patients. Through retinal biomechanics, the models will enable rapid and reliable forecast of the rate and trajectory of glaucoma progression, leading to better-targeted treatments.

Glaucoma, an eye condition often caused by stress-induced damage over time at the optic nerve head, accounts for 5.1 million of the estimated 38 million blind in the world and 40 percent of blindness in Singapore. Currently, health practitioners face challenges forecasting glaucoma progression and its treatment strategies due to the lack of research and technology that accurately establish the relationship between its properties, such as the elasticity of the retina and optic nerve heads, blood flow, intraocular pressure and, ultimately, damage to the optic nerve head.

The research is co-led by George Barbastathis, principal investigator at SMART CAMP and professor of mechanical engineering at MIT, and Aung Tin, executive director at SERI and professor at the Department of Ophthalmology at NUS. The team includes CAMP principal investigators Nicholas Fang, also a professor of mechanical engineering at MIT; Lisa Tucker-Kellogg, assistant professor with the Cancer and Stem Biology program at Duke-NUS; and Hanry Yu, professor of physiology with the Yong Loo Lin School of Medicine, NUS and CAMPs co-lead principal investigator.

We look forward to leveraging the ideas fostered in SMART CAMP to build data analytics and optical imaging capabilities for this pressing medical challenge of glaucoma prediction, says Barbastathis.

Cell transplantation to treat irreparable spinal cord injury

Engineering Scaffold-Mediated Neural Cell Therapy for Spinal Cord Injury Treatment (ScaNCellS), the second research project, gathers an interdisciplinary group of engineers, cell biologists, and clinician scientists from SMART, Nanyang Technological University (NTU), NUS, IMCB A*STAR, A*STAR, French National Centre for Scientific Research (CNRS), the University of Cambridge, and MIT. The team will seek to design a combined scaffold and neural cell implantation therapy for spinal cord injury treatment that is safe, efficacious, and reproducible, paving the way forward for similar neural cell therapies for other neurological disorders. The project, an intersection of engineering and health, will achieve its goals through an enhanced biological understanding of the regeneration process of nerve tissue and optimized engineering methods to prepare cells and biomaterials for treatment.

Spinal cord injury (SCI), affecting between 250,000 and 500,000 people yearly, is expected to incur higher societal costs as compared to other common conditions such as dementia, multiple sclerosis, and cerebral palsy. SCI can lead to temporary or permanent changes in spinal cord function, including numbness or paralysis. Currently, even with the best possible treatment, the injury generally results in some incurable impairment.

The research is co-led by Chew Sing Yian, principal investigator at SMART CAMP and associate professor of the School of Chemical and Biomedical Engineering and Lee Kong Chian School of Medicine at NTU, and Laurent David, professor at University of Lyon (France) and leader of the Polymers for Life Sciences group at CNRS Polymer Engineering Laboratory. The team includes CAMP principal investigators Ai Ye from Singapore University of Technology and Design; Jongyoon Han and Zhao Xuanhe, both professors at MIT; as well as Shi-Yan Ng and Jonathan Loh from Institute of Molecular and Cell Biology, A*STAR.

Chew says, Our earlier SMART and NTU scientific collaborations on progenitor cells in the central nervous system are now being extended to cell therapy translation. This helps us address SCI in a new way, and connect to the methods of quality analysis for cells developed in SMART CAMP.

Cell therapy, one of the fastest-growing areas of research, will provide patients with access to more options that will prevent and treat illnesses, some of which are currently incurable. Glaucoma and spinal cord injuries affect many. Our research will seek to plug current gaps and deliver valuable impact to cell therapy research and medical treatments for both conditions. With a good foundation to work on, we will be able to pave the way for future exciting research for further breakthroughs that will benefit the health-care industry and society, says Hanry Yu, co-lead principal investigator at SMART CAMP, professor of physiology with the Yong Loo Lin School of Medicine, NUS, and group leader of the Institute of Bioengineering and Nanotechnology at A*STAR.

The grants for both projects will commence on Oct. 1, with RAMP expected to run until Sept. 30, 2022, and ScaNCellS expected to run until Sept. 30, 2023.

SMART was. established by the MIT in partnership with the NRF in 2007. SMART is the first entity in the CREATE developed by NRF. SMART serves as an intellectual and innovation hub for research interactions between MIT and Singapore, undertaking cutting-edge research projects in areas of interest to both Singapore and MIT. SMART currently comprises an Innovation Centre and five interdisciplinary research groups (IRGs): Antimicrobial Resistance, CAMP, Disruptive and Sustainable Technologies for Agricultural Precision, Future Urban Mobility, and Low Energy Electronic Systems.

CAMP is a SMART IRG launched in June 2019. It focuses on better ways to produce living cells as medicine, or cellular therapies, to provide more patients access to promising and approved therapies. The investigators at CAMP address two key bottlenecks facing the production of a range of potential cell therapies: critical quality attributes (CQA) and process analytic technologies (PAT). Leveraging deep collaborations within Singapore and MIT in the United States, CAMP invents and demonstrates CQA/PAT capabilities from stem to immune cells. Its work addresses ailments ranging from cancer to tissue degeneration, targeting adherent and suspended cells, with and without genetic engineering.

CAMP is the R&D core of a comprehensive national effort on cell therapy manufacturing in Singapore.

View post:
SMART researchers receive Intra-CREATE grant for personalized medicine and cell therapy - MIT News

To Read More: SMART researchers receive Intra-CREATE grant for personalized medicine and cell therapy – MIT News
categoriaSpinal Cord Stem Cells commentoComments Off on SMART researchers receive Intra-CREATE grant for personalized medicine and cell therapy – MIT News | dataOctober 2nd, 2020
Read All

Measuring chips amplify and record nerve cells – Futurity: Research News

By daniellenierenberg

Share this Article

You are free to share this article under the Attribution 4.0 International license.

New microelectrode-array chips for measuring nerve impulses could reveal how thousands of nerve cells interact with each other.

For over 15 years, ETH Zurich professor Andreas Hierlemann and his group have been developing microelectrode-array chips that can precisely excite nerve cells in cell cultures and to measure electrical cell activity. These developments make it possible to grow nerve cells in cell-culture dishes and use chips at the bottom of the dish to examine each individual cell in a connected nerve tissue in detail.

Alternative methods for conducting such measurements have some clear limitations. They are either very time-consumingbecause contact to each cell has to be individually establishedor they require the use of fluorescent dyes, which influence the behavior of the cells and so the outcome of the experiments.

Now, researchers from Hierlemanns group at the department of biosystems science and engineering of ETH Zurich in Basel, together with Urs Frey and his colleagues from the ETH spin-off MaxWell Biosystems, developed a new generation of microelectrode-array chips. These chips enable detailed recordings of considerably more electrodes than previous systems, which opens up new applications.

As with previous chip generations, the new chips have around 20,000 microelectrodes in an area measuring 2 by 4 millimeters. To ensure that these electrodes pick up the relatively weak nerve impulses, the signals need to be amplified. Examples of weak signals that the scientists want to detect include those of nerve cells derived from human pluripotent stem cells (iPS cells). These are currently used in many cell-culture disease models. Another reason to significantly amplify the signals is if the researchers want to track nerve impulses in axons (fine, very thin fibrous extensions of a nerve cell).

However, high-performance amplification electronics take up space, which is why the previous chip was able to simultaneously amplify and read out signals from only 1,000 of the 20,000 electrodes. Although the 1,000 electrodes could be arbitrarily selected, they had to be determined prior to every measurement. This meant that it was possible to make detailed recordings over only a fraction of the chip area during a measurement.

In the new chip, the amplifiers are smaller, permitting the signals of all 20,000 electrodes to be amplified and measured at the same time. However, the smaller amplifiers have higher noise levels. So, to make sure they capture even the weakest nerve impulses, the researchers included some of the larger and more powerful amplifiers into the new chips and employ a nifty trick: they use these powerful amplifiers to identify the points in time at which nerve impulses occur in the cell culture dish. At these time points, they then can search for signals on the other electrodes, and by taking the average of several successive signals, they can reduce the background noise. This procedure yields a clear image of the signal activity over the entire area being measured.

In first experiments, which the researchers report in Nature Communications, they demonstrated their method on human iPS-derived neuronal cells as well as on brain sections, retina pieces, cardiac cells, and neuronal spheroids.

With the new chip, the scientists can produce electrical images of not only the cells but also the extension of their axons, and they can determine how fast a nerve impulse is transmitted to the farthest reaches of the axons.

The previous generations of microelectrode array chips let us measure up to 50 nerve cells. With the new chip, we can perform detailed measurements of more than 1,000 cells in a culture all at once, Hierlemann says.

Such comprehensive measurements are suitable for testing the effects of drugs, meaning that scientists can now conduct research and experiments with human cell cultures instead of relying on lab animals. The technology then also helps to reduce the number of animal experiments.

MaxWell Biosystems is marketing the existing microelectrode technology, which university and industry research groups around the world are using.

Source: ETH Zurich

Go here to read the rest:
Measuring chips amplify and record nerve cells - Futurity: Research News

To Read More: Measuring chips amplify and record nerve cells – Futurity: Research News
categoriaCardiac Stem Cells commentoComments Off on Measuring chips amplify and record nerve cells – Futurity: Research News | dataOctober 2nd, 2020
Read All

Recording thousands of nerve cell impulses at high resolution – Newswise

By daniellenierenberg

Newswise For over 15 years, ETH Professor Andreas Hierlemann and his group have been developing microelectrode-array chips that can be used to precisely excite nerve cells in cell cultures and to measure electrical cell activity. These developments make it possible to grow nerve cells in cell-culture dishes and use chips located at the bottom of the dish to examine each individual cell in a connected nerve tissue in detail. Alternative methods for conducting such measurements have some clear limitations. They are either very time-consuming - because contact to each cell has to be individually established - or they require the use of fluorescent dyes, which influence the behaviour of the cells and hence the outcome of the experiments.

Now, researchers from Hierlemann's group at the Department of Biosystems Science and Engineering of ETH Zurich in Basel, together with Urs Frey and his colleagues from the ETH spin-off MaxWell Biosystems, developed a new generation of microelectrode-array chips. These chips enable detailed recordings of considerably more electrodes than previous systems, which opens up new applications.

Stronger signal required

As with previous chip generations, the new chips have around 20,000 microelectrodes in an area measuring 2 by 4 millimetres. To ensure that these electrodes pick up the relatively weak nerve impulses, the signals need to be amplified. Examples of weak signals that the scientists want to detect include those of nerve cells, derived from human pluripotent stem cells (iPS cells). These are currently used in many cell-culture disease models. Another reason to significantly amplify the signals is if the researchers want to track nerve impulses in axons (fine, very thin fibrous extensions of a nerve cell).

However, high-performance amplification electronics take up space, which is why the previous chip was able to simultaneously amplify and read out signals from only 1,000 of the 20,000 electrodes. Although the 1,000 electrodes could be arbitrarily selected, they had to be determined prior to every measurement. This meant that it was possible to make detailed recordings over only a fraction of the chip area during a measurement.

Background noise reduced

In the new chip, the amplifiers are smaller, permitting the signals of all 20,000 electrodes to be amplified and measured at the same time. However, the smaller amplifiers have higher noise levels. So, to make sure they capture even the weakest nerve impulses, the researchers included some of the larger and more powerful amplifiers into the new chips and employ a nifty trick: they use these powerful amplifiers to identify the time points, at which nerve impulses occur in the cell culture dish. At these time points, they then can search for signals on the other electrodes, and by taking the average of several successive signals, they can reduce the background noise. This procedure yields a clear image of the signal activity over the entire area being measured.

In first experiments, which the researchers published in the journalNature Communications, they demonstrated their method on human iPS-derived neuronal cells as well as on brain sections, retina pieces, cardiac cells and neuronal spheroids.

Application in drug development

With the new chip, the scientists can produce electrical images of not only the cells but also the extension of their axons, and they can determine how fast a nerve impulse is transmitted to the farthest reaches of the axons. "The previous generations of microelectrode array chips let us measure up to 50 nerve cells. With the new chip, we can perform detailed measurements of more than 1,000 cells in a culture all at once," Hierlemann says.

Such comprehensive measurements are suitable for testing the effects of drugs, meaning that scientists can now conduct research and experiments with human cell cultures instead of relying on lab animals. The technology thus also helps to reduce the number of animal experiments.

The ETH spin-off MaxWell Biosystems is already marketing the existing microelectrode technology, which is now in use around the world by over a hundred research groups at universities and in industry. At present, the company is looking into a potential commercialisation of the new chip.

###

More here:
Recording thousands of nerve cell impulses at high resolution - Newswise

To Read More: Recording thousands of nerve cell impulses at high resolution – Newswise
categoriaCardiac Stem Cells commentoComments Off on Recording thousands of nerve cell impulses at high resolution – Newswise | dataOctober 2nd, 2020
Read All

No on Prop 14: Not the best way to support stem-cell research – Los Angeles Times

By daniellenierenberg

In 2004, after President George W. Bush cut off all federal funding for embryonic stem-cell research on religious grounds, Californians strongly backed Proposition 71, a $3-billion bond measure to fund this kind of research, even though such funding is usually not the purview of states.

Supporters of the proposition including this editorial board believed it would allow California to stand out as a leader in this field, advance a budding avenue of research that might save lives and alleviate suffering, bolster its biotech sector and fund possible blockbuster treatments that might earn the state royalties as well. Embryonic stem cells are particularly valuable to research because they are undifferentiated, meaning they do not have a particular function, and researchers could conceivably turn them into specialized cells in order to regenerate human cells and tissue.

In the years since, Proposition 71 gave rise to a burst of scientific discovery. Two cancer treatments it helped fund, for blood and bone-marrow cancers, have been approved by the FDA, though neither of those employed embryonic stem cells and could have been funded even under Bush administration rules. It has also supported promising advances in the treatment of diabetes, bubble boy immune deficiency and vision-robbing retinitis pigmentosa, but other efforts have fallen short in clinical trials.

Moreover, the money helped build laboratories and other infrastructure that give California a head start on research and development, making the state the it place for stem-cell research. Researchers in the state moved to the head of the pack for private grants, because projects are less likely to need the time and money to create facilities before work can begin.

Now that Proposition 71 funding has practically run out, the issue is back on the November ballot with Proposition 14, which seeks nearly double the amount worth of bonds $5.5 billion to continue the juggernaut.

This time, voters should reject the measure, with the caveat that the issue could be reconsidered in a couple of years, if its proponents bring it back in better-designed and more modest form and if there are more successes in human trials and financial payback.

We have long had reservations about how the California Institute for Regenerative Medicine, established as a result of Proposition 71, was set up. Though funded publicly, it is not overseen by the governor and Legislature like other state agencies, and its governing board is too large, at 29 members. Those members generally have ties to the advocacy organizations and research institutions that have received most of the money.

The driving force behind the initiative has been Robert N. Klein II, a Bay Area lawyer and real estate investor. There is no doubting Kleins sincerity in his cause. He knows too well the suffering inflicted by intractable diseases; his son Jordan died of complications of Type I diabetes in 2016. His accomplishment in persuading the state to invest billions in a specific avenue of biomedical research has been exceptional.

However, Klein developed these initiatives largely behind closed doors with little to no public input; he has strong ideas about how things should be run on the stem-cell front and has steadfastly resisted more government oversight. Thats fine when hes investing his own money; its a fatal flaw when he is asking voters for nearly $8 billion, the estimated cost of paying off the bonds over time, according to the Legislative Analysts Office.

Kleins role and the bloated structure of CIRMs super-sized governing board have given rise to some serious ethical mishaps, including a board member who improperly intervened to try to get funding for his organization. (He is no longer on the board.) After this and several other examples of impropriety, rules were tightened. Board members must recuse themselves from votes when there is a conflict of interest, but with 29 members who all want certain projects to receive funding, there is too much potential for mutual back-scratching. Instead of repairing this problem, the new proposition would expand CIRMs board to 35 members and retain its troubling independence from oversight by the governor and Legislature, leaving it open to further conflicts of interest.

Proposition 71 hasnt yet yielded a significant financial return on investment for the state or the cures that were ballyhooed at the time. Though no one ever promised quick medical miracles, campaign ads strongly implied they were around the corner if only the funding came through. Proponents oversold the initiatives and voters cant be blamed if they view this new proposal with skepticism.

In the years since Proposition 71 passed, more resources have become available. President Obama reversed Bushs order and restored federal funding, which meant that between CIRM and the National Institutes of Health, along with private grant and investment funding, stem-cell research has been healthy, if not downright flush. That funding has stayed and even grown under President Trump, to more than $2 billion a year, with about $321 million of that in human embryonic stem-cell research. (There have, though, been recent threats to embryonic research from a group of conservative senators.)

The idea was never for California to become the long-term replacement for federal funding. It was to kick-start an industry that would then operate on its own. If that has failed to happen under Proposition 71 as promised, it shouldnt be the responsibility of California taxpayers to fix it. Thats especially true right now, at a time of yawning needs to address the cost of twin health and economic crises and the worsening effects of climate change. Private money for stem cell-work will continue to be available; its not as though research will collapse.

No doubt, the pace of responsible science is incremental and the outcomes uncertain even with the best research efforts. Yet the backers still couch the possibilities in grandiose terms. In a recent interview with the Times editorial board, Klein talked about the money that would be saved by wiping out Alzheimers disease which has so far has frustrated attempts to treat it effectively, despite many billions of dollars in research.

Embryonic stem cell research remains important, and there might be ways in which the state can contribute less grandiose funding while maximizing its investment. For example, scientific research has a well-known valley of death, where many projects cant get funding to make the transition from laboratory to human clinical trials.

Offering some matching help to get projects through that phase might attract businesses and scientists to California, while spending far less than the billions proposed in Proposition 14. Its worth noting that stem-cell work isnt the only kind of research that faces the valley of death problem; its an issue for most basic research that seeks to make the leap to human trials and that might be equally in need of state help.

Now is not the time for a huge new investment in specialized medical research. First, it makes sense to wait until after the election; if Democrats do well, there should be growing support for embryonic stem-cell research at the federal level, which is where such funding should take place. The future of Californias pandemic-battered economy and budget remains to be seen. Waiting also would give voters a chance to find out how well the states stem-cell research projects continue without state dollars, and whether some of the promising advances lead to breakthrough therapies and a return on Californias investment.

There would be an opportunity to rethink and rewrite any future proposals, which should include a far more modest ask of taxpayers as well as fixes to the structure and inflated size of the CIRM board. The institute should also be placed under the same state oversight as other agencies reporting to the governor.

If CIRM needs money for a basic operating budget over the next couple of years, that could be covered by the states general fund. The agency still needs to administer already-funded projects and could use that time to discuss a more affordable path forward. Right now, the state has other, more urgent spending priorities.

Editors note: This newspapers owner, the physician and scientist Dr. Patrick Soon-Shiong, played no role in the editorial boards deliberations on this measure.

The rest is here:
No on Prop 14: Not the best way to support stem-cell research - Los Angeles Times

To Read More: No on Prop 14: Not the best way to support stem-cell research – Los Angeles Times
categoriaBone Marrow Stem Cells commentoComments Off on No on Prop 14: Not the best way to support stem-cell research – Los Angeles Times | dataOctober 2nd, 2020
Read All

Asymmetrex Presents the Value of Tissue Stem Cell Counting For Supplying Stem Cell Clinical Trials and Drug Development Clinical Trials – PR Web

By daniellenierenberg

Asymmetrex discusses new advances for supply of traditional drug development and advanced therapy medicinal product (ATMP) clinical trials

BOSTON (PRWEB) October 01, 2020

Adapting to the present COVID crisis, this year the 2020 Outsourcing in Clinical Trials USA Conference, one of several international clinical trials supply trade conferences organized by Arena International Events Group each year, adopted a virtual meeting format. The conference, scheduled for September 30-October 1, continued its tradition of bringing together contract research organization suppliers and company sponsors in the clinical trials supply industry to discuss new developments and best practices.

Among the many industry members invited to speak in the event, James L. Sherley, M.D., Ph.D., founder and director of Massachusetts stem cell biotechnology company Asymmetrex, presented on September 30. Dr. Sherleys presentation highlighted a growing new area of the clinical trials supply industry. More and more, the clinical trials supply industry is considering better technology and practices to support stem cell clinical trials and gene therapy clinical trials that utilize advanced therapy medicinal products. In particular, Dr. Sherley discussed the value of implementing new quantification technologies for ATMPs developed with tissue stem cells. He answered the rhetorical question that was the title of his talk How can we outsource stem cell clinical trials without counting tissue stem cells? by detailing places in ATMP supply chains where instituting counting technologies would provide significant benefits to the stem-gene clinical trials supply industry and the patients it serves.

Sherley also presented innovation proposals for traditional pharmaceutical and biopharmaceutical clinical trials supply. He described how tissue stem cell counting technologies represented advantages both for discovery of novel drugs and for toxicology evaluations of new drug candidates. A major value presented was the opportunity for drug companies to realize hundreds of millions of dollars in reduced costs each year by using tissue stem cell counting tests for earlier identification of drugs that would fail late in clinical trials because of inducing chronic failure of organs and tissues like the liver and bone marrow. Currently applied animal toxicology studies miss many drugs with this disastrous character. Sherley described how such drugs could be detected in inexpensive cell culture tests by counting how stem cell-specific number and viability changed in their presence.

Though not a main focus of the presentation, Sherley ended his presentation with acknowledgement of Asymmetrexs recent introduction of the first-in-kind technology for counting therapeutic tissue stem cells and determining their dosage. The company holds issued patents for the technology and its use for drug evaluations in both the U.S. and U.K. In August of this year, it published a peer-reviewed report, co-authored with its partner AlphaSTAR Corporation, that describes the new method and its applications for stem cell therapy and drug evaluations. In September, the company was awarded a research and development grant from the National Institutes of Health-National Heart, Lung, and Blood Institute for continued development of the technology and its commercialization. These plans for the companys AlphaSTEM Test tissue stem cell counting technology were recently reported.

About Asymmetrex

Asymmetrex, LLC is a Massachusetts life sciences company with a focus on developing technologies to advance stem cell medicine. The companys U.S. and U.K. patent portfolio contains biotechnologies that solve the two main technical problems production and quantification that have stood in the way of effective use of human adult tissue stem cells for regenerative medicine and drug development. Asymmetrex markets the first technology for determination of the dose and quality of tissue stem cell preparations (the AlphaSTEM Test) for use in stem cell transplantation therapies and pre-clinical drug evaluations. Asymmetrex is a member company of the Advanced Regenerative Manufacturing Institute BioFabUSA and the Massachusetts Biotechnology Council.

Share article on social media or email:

Read more from the original source:
Asymmetrex Presents the Value of Tissue Stem Cell Counting For Supplying Stem Cell Clinical Trials and Drug Development Clinical Trials - PR Web

To Read More: Asymmetrex Presents the Value of Tissue Stem Cell Counting For Supplying Stem Cell Clinical Trials and Drug Development Clinical Trials – PR Web
categoriaBone Marrow Stem Cells commentoComments Off on Asymmetrex Presents the Value of Tissue Stem Cell Counting For Supplying Stem Cell Clinical Trials and Drug Development Clinical Trials – PR Web | dataOctober 2nd, 2020
Read All

FibroGenesis Expands Fight Against COVID-19 In Brazil with International Collaboration – PRNewswire

By daniellenierenberg

HOUSTON, Oct. 1, 2020 /PRNewswire/ -- FibroGenesis, the leading developer of fibroblast based therapeutic solutions for unmet medical needs has entered into a clinical collaboration agreement with Brazilian R4D Biotech.Holding the world's largest patent portfolio in the field of cell therapies using fibroblasts, FibroGenesis is expanding its ongoing clinical programs internationally. The partnership will pave the way for clinical studies of PneumoBlast in Brazil as a unique treatment of acute respiratory distress syndrome (ARDS) for patients affected by COVID-19, in parallel to clinical studies in the United States upon approval by the FDA.

Administration of PneumoBlast in pre-clinical and animal studies resulted in dramatic improvement of immunological signaling molecules, reducing concentrations of the inflammatory cytokines interleukin-1 beta, interleukin-6, interleukin-8, interleukin-17, interleukin-18, and Tumor Necrosis Factor alpha TNFa. Company scientists have also demonstrated that PneumoBlast has induced statistically significant reduction of lung fibrosis and lung scarring in COVID-19 infected animals, particularly when compared to more conventional treatments using bone marrow derived mesenchymal stem cells (BMSCs). Furthermore, recent data supports the potential benefits of PneumoBlast for preventing COVID-19 blood clotting. Both companies will collaborate on a clinical study design that meets the needs of Brazilian patients.

"As the scientific and medical community is discovering more about the biological and medical consequences of the COVID-19 infection, FibroGenesis is eager to contribute to the therapeutic cure options currently being created to fight this global war against this virus," commented Pete O'Heeron, Chief Executive Officer, FibroGenesis. "The collaboration with R4D Biotech is another strategic milestone that emphasizes our commitment to expand fibroblast research globally."

"The lab results which indicate our cell therapy approach possesses both therapeutic effects on animal models of the acute stage of COVID-19, and also benefits a cure for residual pathology seen in COVID-19 patients, has our research team extremely excited," said Thomas Ichim, Ph.D., Chief Scientific Officer, FibroGenesis.

"Technology transfer is at the core of this partnership," said Paulo Ferraz, BRICS/Emerging Markets Director of international fund Newstar Ventures and an advisor for FibroGenesis on this transaction. "R4D Biotech has access to sophisticated resources comprising research facilities and hospitals, and its talent pool includes scientific advisors who are recognized academics and distinguished members of the Brazilian Academy of Pharmaceutical Sciences. PneumoBlast clinical study will represent the first step in a long-term relationship designed to aid in the discovery of advanced therapeutic solutions for chronic medical needs."

About R4D Biotech:R4D Biotech is a Brazilian emerging company headquartered in the state of So Paulo focused on research and development for biotechnology and healthcare, with the mission of bringing disruptive technology innovation across all steps of clinical development in life sciences.

About FibroGenesis:Based in Houston, Texas, FibroGenesis is a regenerative medicine company developing an innovative solution for chronic disease treatment using human dermal fibroblasts. Currently, FibroGenesis holds 240+ U.S. and international issued patents/patents pending across a variety of clinical pathways, including Disc Degeneration, Multiple Sclerosis, Parkinson's, Chronic Traumatic Encephalopathy, Cancer, Diabetes, Liver Failure, Colitis and Heart Failure. FibroGenesis represents the next generation of medical advancement in cell therapy.Visit http://www.Fibro-Genesis.com.

SOURCE FibroGenesis

http://www.Fibro-Genesis.com

More here:
FibroGenesis Expands Fight Against COVID-19 In Brazil with International Collaboration - PRNewswire

To Read More: FibroGenesis Expands Fight Against COVID-19 In Brazil with International Collaboration – PRNewswire
categoriaBone Marrow Stem Cells commentoComments Off on FibroGenesis Expands Fight Against COVID-19 In Brazil with International Collaboration – PRNewswire | dataOctober 2nd, 2020
Read All

Wisconsin Medicine Livestream: The future of medicine – Wisbusiness.com

By daniellenierenberg

MADISON,WI(September 30, 2020) From bone marrow transplants to discoveries about skin cancer to human stem cells, UWMadison has fostered many of the developments that shaped modern medicine. And Robert Golden, dean of the School of Medicine and Public Health, is certain that the UW will be home to the developments that shape the future of medicine, too.

The UW is perfectly positioned to build further on our traditions of excellence, he says, because our collaborative environment creates synergies across the domains of basic science, clinical, and translational research, bringing new discoveries from the bench to the bedside and ultimately into communities.

Golden hosted a conversation on the future of medicine as part of the Wisconsin Medicine livestream series on September 29. His guests included Dhanansayan Shanmuganayagam, director of the UWs Biomedical and Genomic Research Group; David Gamm, director of the McPherson Eye Research Institute; and Petros Anagnostopoulos, chief of the pediatric cardiothoracic surgery section at American Family Childrens Hospital. Each of the doctors described new developments in their area.

Organ transplantation is one of the greatest advances in modern medicine, but the need for organs for transplantation is far greater than the available donor organs, said Shanmuganayagam. He noted that more than 109,000 Americans are currently waiting for an organ transplant, and every 20 minutes one of them dies for lack of a donor. How do we plan to solve this crisis? We believe the answer is something called xenotransplantation: the transplant of organs from one species to another.

Shanmuganayagam then described how his group has learned to genetically engineer pigs even engineering a new breed, the Wisconsin Miniature Swine to grow organs that may eventually be transplanted to patients.

Gamm has been involved in using human stem cells to address vision loss and blindness. He believes that stem cells may help address or even reverse diseases of the retina, such as macular degeneration and retinitis pigmentosa.

We are looking for ways we can use the cells that we grow in the laboratory dish not just as model systems, he says, but actually to replace those cells that have died in the course of a disease, to act sort of as spare parts for the retina and so potentially restore vision.

Anagnostopoulos discussed the expertise of UW surgeons in treating cardiac conditions, particularly among children. For the patient complexity that we see, and the breadth of surgery that we see, our outcomes are statistically superior than they should be expected to be, he said

After the three doctors presented, Golden brought forward questions from some of the hundreds of viewers who watched the event live on YouTube. To hear more from Golden and the members of the panel,view a recording of Wisconsin Medicine. This was the fourth installment in the series, which ran through September.

See the original post:
Wisconsin Medicine Livestream: The future of medicine - Wisbusiness.com

To Read More: Wisconsin Medicine Livestream: The future of medicine – Wisbusiness.com
categoriaBone Marrow Stem Cells commentoComments Off on Wisconsin Medicine Livestream: The future of medicine – Wisbusiness.com | dataOctober 2nd, 2020
Read All

BrainStorm Cell Therapeutics to Announce Third Quarter Financial Results and Provide a Corporate Upd – PharmiWeb.com

By daniellenierenberg

NEW YORK, Oct. 2, 2020 /PRNewswire/ --BrainStorm-Cell Therapeutics Inc. (NASDAQ: BCLI), a leader in developing innovative autologous cellular therapies for highly debilitating neurodegenerative diseases, announced today that the Company will hold a conference call to update shareholders on financial results for the third quarter ended September 30, 2020, and provide a corporate update, at 8:00 a.m., Eastern Daylight Time (EDT), on October 15, 2020.

BrainStorm's CEO, Chaim Lebovits, will present a corporate update, after which, participant questions will be answered. Joining Mr. Lebovits to answer investment community questions will be Ralph Kern, MD, MHSc, President and Chief Medical Officer, David Setboun, PharmD, MBA, Executive Vice President and Chief Operating Officer, and Preetam Shah, PhD, MBA, Executive Vice President and Chief Financial Officer.

Participants are encouraged to submit their questions prior to the call by sending them to:q@brainstorm-cell.com. Questions should be submitted by5:00 p.m. EDT,Tuesday, October 13, 2020.

Teleconference Details BRAINSTORM CELL THERAPEUTICS 3Q 2020

The investment community may participate in the conference call by dialing the following numbers:

Participant Numbers:

Toll Free: 877-407-9205International: 201-689-8054

Those interested in listening to the conference call live via the internet may do so by visiting the "Investors & Media" page of BrainStorm's website atwww.ir.brainstorm-cell.comand clicking on the conference call link.

Event Link: Webcast URL: https://bit.ly/30pVpNG Webcast Replay Expiration: Friday, October 15, 2021

Those that wish to listen to the replay of the conference call can do so by dialing the numbers below. The replay will be available for 14 days.

Replay Number:

Toll Free: 877-481-4010International: 919-882-2331Replay Passcode: 37811

Teleconference Replay Expiration:

Thursday, October 29, 2020

About NurOwn

NurOwn (autologous MSC-NTF) cells represent a promising investigational therapeutic approach to targeting disease pathways important in neurodegenerative disorders. MSC-NTF cells are produced from autologous, bone marrow-derived mesenchymal stem cells (MSCs) that have been expanded and differentiated ex vivo. MSCs are converted into MSC-NTF cells by growing them under patented conditions that induce the cells to secrete high levels of neurotrophic factors (NTFs). Autologous MSC-NTF cells can effectively deliver multiple NTFs and immunomodulatory cytokines directly to the site of damage to elicit a desired biological effect and ultimately slow or stabilize disease progression. BrainStorm has fully enrolled a Phase 3 pivotal trial of autologous MSC-NTF cells for the treatment of amyotrophic lateral sclerosis (ALS). BrainStorm also recently received acceptance from theU.S. Food and Drug Administration(FDA) to initiate a Phase 2 open-label multicenter trial in progressive multiple sclerosis (MS) and initiated enrollment inMarch 2019.

AboutBrainStorm Cell Therapeutics Inc.

BrainStorm Cell Therapeutics Inc.is a leading developer of innovative autologous adult stem cell therapeutics for debilitating neurodegenerative diseases. The Company holds the rights to clinical development and commercialization of the NurOwn technology platform used to produce autologous MSC-NTF cells through an exclusive, worldwide licensing agreement. Autologous MSC-NTF cells have received Orphan Drug status designation from theU.S. Food and Drug Administration(FDA) and theEuropean Medicines Agency(EMA) for the treatment of amyotrophic lateral sclerosis (ALS). BrainStorm has fully enrolled a Phase 3 pivotal trial in ALS (NCT03280056), investigating repeat-administration of autologous MSC-NTF cells at sixU.S.sites supported by a grant from theCalifornia Institute for Regenerative Medicine(CIRM CLIN2-0989). The pivotal study is intended to support a filing forU.S.FDA approval of autologous MSC-NTF cells in ALS. BrainStorm also recently receivedU.S.FDA clearance to initiate a Phase 2 open-label multicenter trial in progressive multiple sclerosis (MS). The Phase 2 study of autologous MSC-NTF cells in patients with progressive MS (NCT03799718) started enrollment inMarch 2019. For more information, visit the company's website atwww.brainstorm-cell.com.

ContactsInvestor Relations:Corey Davis, Ph.D.LifeSci Advisors, LLCPhone: +1 646-465-1138cdavis@lifesciadvisors.com

Media:Paul TyahlaSmithSolvePhone: + 1.973.713.3768Paul.tyahla@smithsolve.com

View original content:http://www.prnewswire.com/news-releases/brainstorm-cell-therapeutics-to-announce-third-quarter-financial-results-and-provide-a-corporate-update-301144524.html

SOURCE Brainstorm Cell Therapeutics Inc

See original here:
BrainStorm Cell Therapeutics to Announce Third Quarter Financial Results and Provide a Corporate Upd - PharmiWeb.com

To Read More: BrainStorm Cell Therapeutics to Announce Third Quarter Financial Results and Provide a Corporate Upd – PharmiWeb.com
categoriaBone Marrow Stem Cells commentoComments Off on BrainStorm Cell Therapeutics to Announce Third Quarter Financial Results and Provide a Corporate Upd – PharmiWeb.com | dataOctober 2nd, 2020
Read All

Avalon GloboCare Provides Clinical Updates on Its CAR-T Immuno-Oncology and Allogeneic Mesenchymal Stromal Cell (MSC) Therapy Programs Following…

By daniellenierenberg

FREEHOLD, N.J., Oct. 01, 2020 (GLOBE NEWSWIRE) -- Avalon GloboCare Corp. (NASDAQ: AVCO), a clinical-stage global developer of cell-based technologies and therapeutics, today provided a clinical update on its chimeric antigen receptor (CAR) T-cell therapy and allogeneic mesenchymal stromal cell (MSC) therapy programs following successful completion of its Phase I clinical trial of AVA-001, the Companys leading CAR T-cell therapy candidate in development for patients with relapsed/refractory B-cell lymphoblastic leukemia (R/R B-ALL).

AVA-001

AVA-001 is a third generation CAR T-cell therapy which involves the 4-1BB (or CD28) co-stimulation signaling pathway, which we believe is designed to confer a more effective capacity for cancer cell-killing compared to older generation CAR T-cell therapies. As previously announced, Avalon has successfully completed a Phase I first-in-human clinical study of its leading CAR T-cell therapy candidate, AVA-001, for the treatment of R/R B-ALL (National Institute of Health clinical trial registration number: NCT03952923). Ninety percent of R/R B-ALL patients on trial achieved complete remission within one month of AVA-001 treatment and successfully proceeded to a curative-intent allogeneic bone marrow transplant.Accessory laboratory testing that accompanied this pilot clinical study has demonstrated evidence of enhancement in CAR T-cell persistence and protection against CAR T-cell exhaustion.

Given the positive results, Avalon is in the process of advancing AVA-001 CAR T-cell therapy for R/R B-ALL to the next phase of clinical development. In addition, Avalon is expanding its AVA-001 clinical trial to recruit patients with relapsed/refractory Non-Hodgkin lymphoma (R/R-NHL). This clinical paradigm of bridging CAR T-cell therapy to bone marrow transplant will provide a new therapeutic horizon with curative potential for patients with relapsed/refractory B-ALL, NHL and other hematologic malignancies.

CB-MSC-1

Avalons CB-MSC-1 is an innovative, allogeneic mesenchymal stromal cell (MSC) therapy candidate derived from human cord blood. Avalon plans to develop its MSC platform as a potential therapy for bone marrow transplant-related complications of acute graft-versus-host disease (aGVHD), and for acute respiratory distress syndrome (ARDS) associated with severe respiratory infection including SARS-CoV-2 virusthe causative agent of the ongoing global COVID-19 pandemic.

MSCs are typically isolated from the bone marrow, fat tissue and other tissue types and possess unique anti-inflammatory and immunomodulatory activities. These cells have the ability to suppress T-cell proliferation, cytokine secretion and regulate the balance of antibody-based and cell-based immune responses. MSCs can also tone down the abnormal release of antibodies from B-cells and cytokines from natural killer cells.

Avalon has completed pre-clinical studies and the standardized process development for its CB-MSC-1 cell therapy candidate, and anticipates initiation of a first-in-human clinical trial for aGVHD and ARDS during the fourth quarter of 2020. There is a substantial unmet need for the treatment of aGVHD and ARDS. Leveraging the Companys scientific and clinical expertise in cellular therapy and stem cell-derived exosome (ACTEX) technology, Avalon also plans to initiate a clinical trial of ACTEX-M, the clinical-grade exosomes derived from CB-MSC-1 as a candidate topical treatment for cutaneous aGVHD.

We are excited and encouraged by the clinical and technological progress we have made with these key cellular programs which are the cornerstone of Avalon, said David Jin, M.D., Ph.D., President and Chief Executive Officer of Avalon. We are committed to rapidly advancing these product candidates to address important unmet medical needs for patients, said David Jin, M.D., Ph.D., President and Chief Executive Officer of Avalon.

About Avalon GloboCare Corp.

Avalon GloboCare Corp. (NASDAQ: AVCO) is a clinical-stage, vertically integrated, leading CellTech bio-developer dedicated to advancing and empowering innovative, transformative immune effector cell therapy, exosome technology, as well as COVID-19 related diagnostics and therapeutics. Avalon also provides strategic advisory and outsourcing services to facilitate and enhance its clients' growth and development, as well as competitiveness in healthcare and CellTech industry markets. Through its subsidiary structure with unique integration of verticals from innovative R&D to automated bioproduction and accelerated clinical development, Avalon is establishing a leading role in the fields of cellular immunotherapy (including CAR-T/NK), exosome technology (ACTEX), and regenerative therapeutics. For more information about Avalon GloboCare, please visit http://www.avalon-globocare.com.

For the latest updates on Avalon GloboCare's developments, please follow our twitter at @avalongc_avco

Forward-Looking Statements

Certain statements contained in this press release may constitute "forward-looking statements." Forward-looking statements provide current expectations of future events based on certain assumptions and include any statement that does not directly relate to any historical or current fact. Actual results may differ materially from those indicated by such forward-looking statements as a result of various important factors as disclosed in our filings with the Securities and Exchange Commission located at their website (http://www.sec.gov). In addition to these factors, actual future performance, outcomes, and results may differ materially because of more general factors including (without limitation) general industry and market conditions and growth rates, economic conditions, and governmental and public policy changes. The forward-looking statements included in this press release represent the Company's views as of the date of this press release and these views could change. However, while the Company may elect to update these forward-looking statements at some point in the future, the Company specifically disclaims any obligation to do so. These forward-looking statements should not be relied upon as representing the Company's views as of any date subsequent to the date of the press release.

Contact Information:Avalon GloboCare Corp.4400 Route 9, Suite 3100Freehold, NJ 07728PR@Avalon-GloboCare.com

Investor Relations:Crescendo Communications, LLCTel: (212) 671-1020 Ext. 304avco@crescendo-ir.com

View original post here:
Avalon GloboCare Provides Clinical Updates on Its CAR-T Immuno-Oncology and Allogeneic Mesenchymal Stromal Cell (MSC) Therapy Programs Following...

To Read More: Avalon GloboCare Provides Clinical Updates on Its CAR-T Immuno-Oncology and Allogeneic Mesenchymal Stromal Cell (MSC) Therapy Programs Following…
categoriaBone Marrow Stem Cells commentoComments Off on Avalon GloboCare Provides Clinical Updates on Its CAR-T Immuno-Oncology and Allogeneic Mesenchymal Stromal Cell (MSC) Therapy Programs Following… | dataOctober 2nd, 2020
Read All

Here’s how area members of Congress voted – Mansfield News Journal

By daniellenierenberg

Targeted News Service Published 8:39 p.m. ET Oct. 2, 2020

WASHINGTON - Here's a look at how area members of Congress voted Sept. 25 to Oct. 1.

Along with its roll call votes, the House also passed these measures: the Cyber Sense Act (H.R. 360), to require the secretary of energy to establish a voluntary Cyber Sense program to test the cybersecurity of products and technologies intended for use in the bulk-power system; the Consumer Product Safety Inspection Enhancement Act (H.R. 8134), to support the Consumer Product Safety Commission's capability to protect consumers from unsafe consumer products; the School-Based Allergies and Asthma Management Program Act (H.R. 2468), to increase the preference given, in awarding certain allergies and asthma-related grants, to states that require certain public schools to have allergies and asthma management programs; and the Effective Suicide Screening and Assessment in the Emergency Department Act (H.R. 4861), to establish a program to improve the identification, assessment, and treatment of patients in the emergency department who are at risk of suicide.

House Vote 1:

PRESIDENTIAL ELECTION: The House has passed a resolution (H. Res. 1155), sponsored by Rep. Eric Swalwell, D-Calif., reaffirming the House's commitment to an orderly and peaceful transfer of presidential power after the November election. Swalwell said: "The peaceful transition of power is not only a bedrock principle of America's founding; it is a living ideal that we must exercise and pass down to our children." An opponent, Rep. Matt Gaetz, R-Fla., called the resolution "a way for Democrats to attack the president and disguise the fact that they will refuse to accept the election results unless they win." The vote, on Sept. 29, was 397 yeas to 5 nays.

YEAS: Bob Gibbs R-OH (7th), Troy Balderson R-OH (12th)

NOT VOTING: Jim Jordan R-OH (4th)

House Vote 2:

DISCLOSING TIES TO UYGHUR LABOR: The House has passed the Uyghur Forced Labor Disclosure Act (H.R. 6270), sponsored by Rep. Jennifer Wexton, D-Va., to require publicly traded companies to disclose whether they have business ties to China's Uyghur Autonomous Region in Xinjiang province. Wexton said the requirement would let investors know of a given company's "passive complicity or active exploitation of one of the most pressing and ongoing human rights violations of our lifetime." A bill opponent, Rep. Anthony Gonzalez, R-Ohio, said it wrongly tried to have the Securities and Exchange Commission police human rights violations, a role that would be better handled by the Treasury Department. The vote, on Sept. 30, was 253 yeas to 163 nays.

NAYS: Gibbs R-OH (7th), Balderson R-OH (12th),Jordan R-OH (4th)

House Vote 3:

DISEASE THERAPIES: The House has passed the Timely ReAuthorization of Necessary Stem-cell Programs Lends Access to Needed Therapies Act (H.R. 4764), sponsored by Rep. Doris O. Matsui, D-Calif. The bill would reauthorize a program for transplanting umbilical cord blood, stem cellsand bone marrow to adults and children suffering from various diseases. The vote, on Sept. 30, was unanimous with 414 yeas.

YEAS: Gibbs R-OH (7th), Balderson R-OH (12th),Jordan R-OH (4th)

House Vote 4:

FURTHER COVID-19 SPENDING: The House has approved an amendment to the America's Conservation Enhancement Act (H.R. 925). The amendment would spend $2.2 trillion on new COVID-19 measures, including testing and treatment efforts and unemployment benefits. A supporter, Rep. James P. McGovern, D-Mass., said the spending was needed "for families to pay for necessities like food, utilitiesand rent during this pandemic." An opponent, Rep. Tom Cole, R-Okla., said the amendment had been hurriedly brought to the floor without minority input or adequate time for review, and that it would not pass the Senate. The vote, on Oct. 1, was 214 yeas to 207 nays.

NAYS: Gibbs R-OH (7th), Balderson R-OH (12th),Jordan R-OH (4th)

Senate Vote 1:

CONTINUING APPROPRIATIONS: The Senate has passed the Continuing Appropriations Act and Other Extensions Act (H.R. 8337), sponsored by Rep. Nita M. Lowey, D-N.Y., to extend through Dec.11 funding for health programs, including Medicare, surface transportationand many other government programs. The vote, on Sept. 30, was 84 yeas to 10 nays.

YEAS: Sherrod Brown D-OH, Rob Portman R-OH

Senate Vote 2:

OBAMACARE LITIGATION: The Senate has rejected a cloture motion to end debate on a motion to consider a bill (S. 4653), sponsored by Senate Minority Leader Chuck Schumer, D-N.Y., that would block the Justice Department from making arguments in court for cancelling any provision of the 2010 health care reform law (Obamacare). The vote to end debate, on Oct. 1, was 51 yeas to 43 nays, with a three-fifths majority needed for approval.

YEAS: Brown D-OH

NAYS: Portman R-OH

Read or Share this story: https://www.mansfieldnewsjournal.com/story/news/2020/10/02/heres-how-area-members-congress-voted-sept-25-oct-1/3593470001/

Excerpt from:
Here's how area members of Congress voted - Mansfield News Journal

To Read More: Here’s how area members of Congress voted – Mansfield News Journal
categoriaBone Marrow Stem Cells commentoComments Off on Here’s how area members of Congress voted – Mansfield News Journal | dataOctober 2nd, 2020
Read All

Page 82«..1020..81828384..90100..»


Copyright :: 2024