Page 64«..1020..63646566..7080..»

Precigen Presents New Data Supporting the Safety, Clinical Activity, Expansion and Persistence of PRGN-3006 UltraCAR-T at the 62nd ASH Annual Meeting…

By daniellenierenberg

GERMANTOWN, Md., Dec. 7, 2020 /PRNewswire/ -- Precigen Inc., a biopharmaceutical company specializing in the development of innovative gene and cell therapies to improve the lives of patients, today announced at the 62nd ASH Annual Meeting and Exposition (Abstract 2864) clinical progress and new data from the ongoing Phase 1/1b clinical study of PRGN-3006UltraCAR-Tin patients with relapsed or refractory (r/r) acute myeloid leukemia (AML) and higher risk myelodysplastic syndrome (MDS) (clinical trial identifier: NCT03927261).

AML is a rapidly progressing disease with poor prognosis and high unmet need. Precigen's UltraCAR-T platform is designed to overcome limitations of currently available chimeric antigen receptor (CAR)-T therapies by utilizing an advanced overnight non-viral gene delivery manufacturing process at a medical center's cGMP facility without the need for ex vivo expansion. Current CAR-T cell therapies are limited due to, inter alia, the prolonged interval between apheresis to product infusion and an exhausted phenotype of T cells resulting from lengthy ex vivo expansion. As announced in November 2020, UltraCAR-T cells for the PRGN-3006 study are now manufacturedovernight using Precigen's proprietary UltraPorator device. PRGN-3006 UltraCAR-T is a multigenic autologous CAR-T simultaneously expressing a CAR specifically targeting CD33; membrane bound IL-15 (mbIL15) for enhanced in vivo expansion and persistence; and a kill switch to conditionally eliminate CAR-T cells for an improved safety profile. CD33 is over-expressed on AML blasts with lesser expression on normal hematopoietic stem cells.

An investigator-initiated, non-randomized Phase 1/1b dose-escalation study to evaluate the safety and maximal tolerated dose of PRGN-3006 UltraCAR-T is currently ongoing in collaboration with the H. Lee Moffitt Cancer Center & Research Institute (Moffitt). The study population includes adult patients ( 18 years) with r/r AML and hypomethylating agent (HMA) failure, higher risk MDS or chronic myelomonocytic leukemia (CMML) patients with 5% blasts. To test the hypothesis that expression of mbIL15 on PRGN-3006 can promote UltraCAR-T cell expansion and persistence without the need for lymphodepletion and improve the overall safety profile, studysubjects receive the PRGN-3006 infusion either without prior lymphodepletion (Cohort 1) or following lymphodepleting chemotherapy (Cohort 2). A multicenter expansion of the trial is planned.

Key findings:

A case study of the patient with the longest follow-up as of the data cutoff was also presented. This patient received, one day after gene transfer and without prior lymphodepletion, a very low dose, approximately three hundred thousand UltraCAR-T per kilogram (3 x 105 UltraCAR-T/kg) for a total of only 24 million UltraCAR-T. She is a 69 year old female with secondary AML (sAML) and four prior lines of therapy, including induction chemotherapy (IC), allogenic hematopoietic stem cell transplantation (allo-HSCT), HMA plus venetoclax (HMA+VEN), refractory to all therapy post allo-HSCT. The patient had approximately 40% peripheral blasts and 47% bone marrow blasts at baseline.

Case study findings:

"There is an urgent need for novel therapies for relapsed or refractory AML patients as the median overall survival for this patient population is less than six months. Current CAR-T approaches for AML have faced challenges due to long manufacturing durations resulting in subsequent delays in treatment," said David A. Sallman, MD, of Moffitt and lead investigator for the PRGN-3006 clinical study. "We are encouraged by the initial data, including safety and manufacturing success from patients treated with autologous UltraCAR-T cells, which were manufactured on-site with almost instant turnaround. We are excited by the expansion and continued persistence of PRGN-3006 UltraCAR-T cells in the patient case study for over seven months post-infusion without prior lymphodepletion and are looking forward to higher doses in the lymphodepleted and non-lymphodepletion cohorts."

"Currently commercialized CAR-T therapies have not demonstrated the persistence needed to drive sustained, durable responses," said Helen Sabzevari, PhD, President and CEO of Precigen. "The results from Dr. Sallman's patient case study are particularly encouraging as the patient received a very low dose of cells without any ex vivo expansion or activation and no lymphodepletion, which highlights the importance of membrane bound IL-15 in expansion and persistence of these cells and, we believe, differentiates the UltraCAR-T platform from other CAR-T's. In particular, expansion and persistence of UltraCAR-T cells in the patient's blood through seven months post-infusion show promise for the durability of PRGN-3006. We look forward to providing additional details for the PRGN-3006 study at our upcoming clinical update call this month."

About Acute Myeloid Leukemia (AML)AML is a cancer that starts in the bone marrow, but most often moves into the blood.1 Though consideredrare, AML is among the most common types of leukemia in adults.2 In 2019, it was estimated that 21,450 new cases of AML would be diagnosed in the US.2 AML is uncommon before the age of 45 and the average age of diagnosis is about 68.2 The prognosis for patients with AML is poor with an average 5year survival rate of approximately 25 percent overall, and less than a 5 percent 5year survival rate for patients older than 65.3 Amongst elderly AML patients ( 65 years of age), median survival isshort, ranging from 3.5 months for patients 65 to 74 years of age to 1.4 months for patients 85 years of age.3

About Myelodysplastic Syndrome (MDS)MDS are diseases of the bone marrow generally found in adults in their 70s.4 Incidence in the US is not known for sure, but estimates range from 10,000 each year and higher.4 Using International Prognostic Scoring System (IPSS-R), median survival for MDS patients can vary from less than one year for the "very high" IPSS-R risk group to more than eight years for the "very low" IPSS-R group.4

About PRGN-3006 UltraCAR-TPRGN-3006 UltraCAR-T is a multigenic autologous CAR-T cell treatment utilizing Precigen's non-viral Sleeping Beauty system to simultaneously express a CAR specifically targeting CD33, which is over expressed on acute myeloid leukemia blasts with lesser expression on normal hematopoietic stem cell populations and minimal non-hematopoietic expression; membrane bound IL-15 for enhanced in vivo expansion and persistence; and a kill switch to conditionally eliminate CAR-T cells for animproved safety profile. PRGN-3006 is being evaluated in collaboration with the Moffitt Cancer Center in a nonrandomized, investigatorinitiated Phase 1/1b dose escalation study to evaluate the safety and maximal tolerated dose of PRGN3006 UltraCAR-T (clinical trial identifier: NCT03927261). The study population includes patients with relapsed or refractory acute myeloid leukemia or higher risk myelodysplastic syndrome. The US Food and Drug Administration (FDA) has granted orphan drug designation (ODD) for PRGN-3006 UltraCAR-T in patients with AML.

Precigen: Advancing Medicine with PrecisionPrecigen (Nasdaq: PGEN) is a dedicated discovery and clinical stage biopharmaceutical company advancing the next generation of gene and cell therapies using precision technology to target urgent and intractable diseases in our core therapeutic areas of immuno-oncology, autoimmune disorders, and infectious diseases. Our technologies enable us to find innovative solutions for affordable biotherapeutics in a controlled manner. Precigen operates as an innovation engine progressing a preclinical and clinical pipeline of well-differentiated unique therapies toward clinical proof-of-concept and commercialization. For more information about Precigen, visit http://www.precigen.com or follow us on Twitter @Precigen and LinkedIn.

TrademarksPrecigen, UltraCAR-T, UltraPorator and Advancing Medicine with Precision are trademarks of Precigen and/or its affiliates. Other names may be trademarks of their respective owners.

Cautionary Statement Regarding Forward-Looking StatementsSome of the statements made in this press release are forward-looking statements. These forward-looking statements are based upon the Company's current expectations and projections about future events and generally relate to plans, objectives, and expectations for the development of the Company's business, including the timing and progress of preclinical studies, clinical trials, discovery programs and related milestones, the promise of the Company's portfolio of therapies, and in particular its CAR-T therapies, and the Company's refocus to a healthcare-oriented business. Although management believes that the plans and objectives reflected in or suggested by these forward-looking statements are reasonable, all forward-looking statements involve risks and uncertainties, including the possibility that the timeline for the Company's clinical trials might be impacted by the COVID-19 pandemic, and actual future results may be materially different from the plans, objectives and expectations expressed in this press release. The Company has no obligation to provide any updates to these forward-looking statements even if its expectations change. All forward-looking statements are expressly qualified in their entirety by this cautionary statement. For further information on potential risks and uncertainties, and other important factors, any of which could cause the Company's actual results to differ from those contained in the forward-looking statements, see the section entitled "Risk Factors" in the Company's most recent Annual Report on Form 10-K and subsequent reports filed with the Securities and Exchange Commission.

References1 American Cancer Society. What is Acute Myeloid Leukemia (AML)?2 American Cancer Society. Key Statistics for Acute Myeloid Leukemia (AML)3 Thein, M., et al., Outcome of older patients with acute myeloid leukemia: an analysis of SEER data over 3 decades. Cancer, 2013. 119(15): p.2720-74 American Cancer Society.Key Statistics for Myelodysplastic Syndromes

For more information, contact:

View original content to download multimedia:http://www.prnewswire.com/news-releases/precigen-presents-new-data-supporting-the-safety-clinical-activity-expansion-and-persistence-of--prgn-3006-ultracar-t-at-the-62nd-ash-annual-meeting-and-exposition-301186957.html

SOURCE Precigen, Inc.

Read the rest here:
Precigen Presents New Data Supporting the Safety, Clinical Activity, Expansion and Persistence of PRGN-3006 UltraCAR-T at the 62nd ASH Annual Meeting...

To Read More: Precigen Presents New Data Supporting the Safety, Clinical Activity, Expansion and Persistence of PRGN-3006 UltraCAR-T at the 62nd ASH Annual Meeting…
categoriaBone Marrow Stem Cells commentoComments Off on Precigen Presents New Data Supporting the Safety, Clinical Activity, Expansion and Persistence of PRGN-3006 UltraCAR-T at the 62nd ASH Annual Meeting… | dataDecember 13th, 2020
Read All

Rocket Pharmaceuticals Presents Positive Clinical Data from its Fanconi Anemia and Leukocyte Adhesion Deficiency-I Programs at the 62nd American…

By daniellenierenberg

NEW YORK--(BUSINESS WIRE)--Rocket Pharmaceuticals, Inc. (NASDAQ: RCKT) (Rocket), a clinical-stage company advancing an integrated and sustainable pipeline of genetic therapies for rare childhood disorders, today presents updated interim data from its Fanconi Anemia (FA) and Leukocyte Adhesion Deficiency-I (LAD-I) programs at the 62nd American Society of Hematology (ASH) Annual Meeting. The data are highlighted in two oral presentations.

We are highly pleased with the data presented at ASH demonstrating ongoing evidence of efficacy and durability using Process B in both FA and LAD-I as we move towards potential registration, said Gaurav Shah, M.D., Chief Executive Officer and President of Rocket. Follow-up data from the Phase 1 and 2 trials for FA continue to support RP-L102 as a potential hematologic treatment option in the absence of cytotoxic conditioning. In five of the seven patients treated as of October 2020, there was evidence of engraftment. In addition, stabilization of peripheral blood counts in two of the three patients with at least 12-month follow-up, which declined substantially in these patients prior to gene therapy, suggests a halt in bone marrow failure progression. We look forward to reporting longer-term follow-up on these patients in the first half of 2021.

Dr. Shah continued, Additionally, we continue to see encouraging evidence of efficacy for RP-L201 for the treatment of LAD-I. Patients have shown sustained CD18 expression of 23% to 40%, far exceeding the 4-10% threshold associated with survival into adulthood. These data, on top of our exciting results from our lentiviral program for PKD, show our steady progress across three of our five gene therapy programs. We are proud of this progress and are committed to advancing our investigational gene therapies through development for patients and families facing these devastating disorders.

Key findings and details for each presentation are highlighted below. To access the presentations at the conclusion of the oral presentation, please visit: https://www.rocketpharma.com/ash-presentations/

Gene Therapy for Fanconi Anemia, Complementation Group A: Updated Results from Ongoing Global Clinical Studies of RP-L102The data presented in the oral presentation are from seven of the nine patients treated as of the cutoff date of October 2020 in both the U.S. Phase 1 and global Phase 2 studies of RP-L102 for FA. Seven patients had follow-up data of at least 2-months, and three of the seven patients had been followed for 12-months or longer. Key highlights from the presentation include:

Presentation Details:Title: Gene Therapy for Fanconi Anemia, Complementation Group A: Updated Results from Ongoing Global Clinical Studies of RP-L102Session Title: Gene Editing, Therapy and Transfer IPresenter: Agnieszka Czechowicz, M.D., Ph.D., Assistant Professor of Pediatrics, Division of Stem Cell Transplantation, Stanford University School of MedicineSession Date: Monday, December 7, 2020Session Time: 11:30 a.m. - 1:00 p.m. (Pacific Time)Presentation Time: 12:15 p.m. (Pacific Time)

Phase 1/2 Study of Lentiviral-Mediated Ex-Vivo Gene Therapy for Pediatric Patients with Severe Leukocyte Adhesion Deficiency-I (LAD-I): Results from Phase 1The data presented in the oral presentation are from three pediatric patients with severe LAD-I, as defined by CD18 expression of less than 2%. The patients were treated with RP-L201, Rockets ex-vivo lentiviral gene therapy candidate. Patient L201-003-1001 was 9-years of age at enrollment and had been followed for 12-months as of a cutoff date of November 2020. Patient L201-003-1004 was 3-years of age at enrollment and had been followed for over 6-months. Patient L201-003-2006 was 7-months of age at enrollment and was recently treated with RP-L201. Key highlights from the presentation include:

Rockets LAD-I research is made possible by a grant from the California Institute for Regenerative Medicine (Grant Number CLIN2-11480). The contents of this press release are solely the responsibility of Rocket and do not necessarily represent the official views of CIRM or any other agency of the State of California.

Presentation Details:Title: Phase 1/2 Study of Lentiviral-Mediated Ex-Vivo Gene Therapy for Pediatric Patients with Severe Leukocyte Adhesion Deficiency-I (LAD-I): Results from Phase 1Session Title: Gene Editing, Therapy and Transfer IPresenter: Donald Kohn, M.D., Professor of Microbiology, Immunology and Molecular Genetics, Pediatrics (Hematology/Oncology), Molecular and Medical Pharmacology, and member of the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at the University of California, Los AngelesSession Date: Monday, December 7, 2020Session Time: 11:30 a.m. - 1:00 p.m. (Pacific Time)Presentation Time: 12:30 p.m. (Pacific Time)

Conference Call DetailsRocket management will host a conference call and webcast today December 7, at 6:00 p.m. EST. To access the call and webcast, please click here. The webcast replay will be available on the Rocket website following the completion of the call.

Investors may listen to the call by dialing (866) 866-1333 from locations in the United States or +1 (404) 260-1421 from outside the United States. Please refer to conference ID number 50038102

About Fanconi AnemiaFanconi Anemia (FA) is a rare pediatric disease characterized by bone marrow failure, malformations and cancer predisposition. The primary cause of death among patients with FA is bone marrow failure, which typically occurs during the first decade of life. Allogeneic hematopoietic stem cell transplantation (HSCT), when available, corrects the hematologic component of FA, but requires myeloablative conditioning. Graft-versus-host disease, a known complication of allogeneic HSCT, is associated with an increased risk of solid tumors, mainly squamous cell carcinomas of the head and neck region. Approximately 60-70% of patients with FA have a Fanconi Anemia complementation group A (FANCA) gene mutation, which encodes for a protein essential for DNA repair. Mutation in the FANCA gene leads to chromosomal breakage and increased sensitivity to oxidative and environmental stress. Increased sensitivity to DNA-alkylating agents such as mitomycin-C (MMC) or diepoxybutane (DEB) is a gold standard test for FA diagnosis. Somatic mosaicism occurs when there is a spontaneous correction of the mutated gene that can lead to stabilization or correction of a FA patients blood counts in the absence of any administered therapy. Somatic mosaicism, often referred to as natural gene therapy provides a strong rationale for the development of FA gene therapy because of the selective growth advantage of gene-corrected hematopoietic stem cells over FA cells.

About Leukocyte Adhesion Deficiency-ISevere Leukocyte Adhesion Deficiency-I (LAD-I) is a rare, autosomal recessive pediatric disease caused by mutations in the ITGB2 gene encoding for the beta-2 integrin component CD18. CD18 is a key protein that facilitates leukocyte adhesion and extravasation from blood vessels to combat infections. As a result, children with severe LAD-I are often affected immediately after birth. During infancy, they suffer from recurrent life-threatening bacterial and fungal infections that respond poorly to antibiotics and require frequent hospitalizations. Children who survive infancy experience recurrent severe infections including pneumonia, gingival ulcers, necrotic skin ulcers, and septicemia. Without a successful bone marrow transplant, mortality in patients with severe LAD-I is 60-75% prior to the age of 2 and survival beyond the age of 5 is uncommon. There is a high unmet medical need for patients with severe LAD-I.

About Rocket Pharmaceuticals, Inc.Rocket Pharmaceuticals, Inc. (NASDAQ: RCKT) (Rocket) is advancing an integrated and sustainable pipeline of genetic therapies that correct the root cause of complex and rare childhood disorders. The companys platform-agnostic approach enables it to design the best therapy for each indication, creating potentially transformative options for patients afflicted with rare genetic diseases. Rocket's clinical programs using lentiviral vector (LVV)-based gene therapy are for the treatment of Fanconi Anemia (FA), a difficult to treat genetic disease that leads to bone marrow failure and potentially cancer, Leukocyte Adhesion Deficiency-I (LAD-I), a severe pediatric genetic disorder that causes recurrent and life-threatening infections which are frequently fatal, Pyruvate Kinase Deficiency (PKD) a rare, monogenic red blood cell disorder resulting in increased red cell destruction and mild to life-threatening anemia and Infantile Malignant Osteopetrosis (IMO), a bone marrow-derived disorder. Rockets first clinical program using adeno-associated virus (AAV)-based gene therapy is for Danon disease, a devastating, pediatric heart failure condition. For more information about Rocket, please visit http://www.rocketpharma.com.

Rocket Cautionary Statement Regarding Forward-Looking StatementsVarious statements in this release concerning Rocket's future expectations, plans and prospects, including without limitation, Rocket's expectations regarding its guidance for 2020 in light of COVID-19, the safety, effectiveness and timing of product candidates that Rocket may develop, to treat Fanconi Anemia (FA), Leukocyte Adhesion Deficiency-I (LAD-I), Pyruvate Kinase Deficiency (PKD), Infantile Malignant Osteopetrosis (IMO) and Danon Disease, and the safety, effectiveness and timing of related pre-clinical studies and clinical trials, may constitute forward-looking statements for the purposes of the safe harbor provisions under the Private Securities Litigation Reform Act of 1995 and other federal securities laws and are subject to substantial risks, uncertainties and assumptions. You should not place reliance on these forward-looking statements, which often include words such as "believe," "expect," "anticipate," "intend," "plan," "will give," "estimate," "seek," "will," "may," "suggest" or similar terms, variations of such terms or the negative of those terms. Although Rocket believes that the expectations reflected in the forward-looking statements are reasonable, Rocket cannot guarantee such outcomes. Actual results may differ materially from those indicated by these forward-looking statements as a result of various important factors, including, without limitation, Rocket's ability to monitor the impact of COVID-19 on its business operations and take steps to ensure the safety of patients, families and employees, the interest from patients and families for participation in each of Rockets ongoing trials, our expectations regarding the delays and impact of COVID-19 on clinical sites, patient enrollment, trial timelines and data readouts, our expectations regarding our drug supply for our ongoing and anticipated trials, actions of regulatory agencies, which may affect the initiation, timing and progress of pre-clinical studies and clinical trials of its product candidates, Rocket's dependence on third parties for development, manufacture, marketing, sales and distribution of product candidates, the outcome of litigation, and unexpected expenditures, as well as those risks more fully discussed in the section entitled "Risk Factors" in Rocket's Quarterly Report on Form 10-Q for the quarter ended September 30, 2020, filed November 6, 2020 with the SEC. Accordingly, you should not place undue reliance on these forward-looking statements. All such statements speak only as of the date made, and Rocket undertakes no obligation to update or revise publicly any forward-looking statements, whether as a result of new information, future events or otherwise.

More here:
Rocket Pharmaceuticals Presents Positive Clinical Data from its Fanconi Anemia and Leukocyte Adhesion Deficiency-I Programs at the 62nd American...

To Read More: Rocket Pharmaceuticals Presents Positive Clinical Data from its Fanconi Anemia and Leukocyte Adhesion Deficiency-I Programs at the 62nd American…
categoriaBone Marrow Stem Cells commentoComments Off on Rocket Pharmaceuticals Presents Positive Clinical Data from its Fanconi Anemia and Leukocyte Adhesion Deficiency-I Programs at the 62nd American… | dataDecember 13th, 2020
Read All

CLL patients in England to get AZ’s Calquence after okay from NICE – – pharmaphorum

By daniellenierenberg

NHS England is to grant immediate access to AstraZenecas cancer drug Calquence (acalabrutinib) for certain patients with chronic lymphocytic leukaemia (CLL) after NICE backed it in first draft recommendations.

NICE recommended regular NHS funding for Calquence in CLL who are considered high-risk due to 17p deletion or TP53 mutations.

It is also recommended for adults with CLL who have had at least one previous treatment and only if AbbVie and Janssens class rival Imbruvica (ibrutinib) is their only suitable treatment option.

NHS England is granting access via an interim funding arrangement with AstraZeneca, which will end 30 days after publication of positive final guidance, after which treatment will be funded by routine commissioning budgets.

However the guidance has rejected Calquence for a third group of patients with untreated, non-high risk CLL who are unsuitable for treatment with chemotherapy.

AZ said it will provide further data analyses for continued discussions with NICE about this group of patients.

Calquence was approved in CLL by the EMA last month as monotherapy or in combination with Roches Gazyvaro (obinutuzumab).

In CLL, too many blood stem cells in the bone marrow become abnormal white blood cells, and these have difficulty in fighting infections.

As the number of abnormal cells grows there is less room for healthy white blood cells, red blood cells, and platelets. This could result in anaemia, infection, and bleeding.

B-cell receptor signalling through Brutons tyrosine kinase (BTK) is one of the essential growth pathways for CLL.

In B-cells, BTK signalling results in the activation of pathways necessary for growth: proliferation, trafficking, chemotaxis, and adhesion.

Calquence binds selectively to BTK, inhibiting its activity.

This is the second recommendation of a therapy for CLL in the space of a month in November it recommended AbbVie/Roches chemotherapy-free option of Venclyxto (venetoclax) and Gazyva.

NICEs decision allows for a 12-month fixed duration treatment option based on data from the phase 3 CLL14 trial.

Read more:
CLL patients in England to get AZ's Calquence after okay from NICE - - pharmaphorum

To Read More: CLL patients in England to get AZ’s Calquence after okay from NICE – – pharmaphorum
categoriaBone Marrow Stem Cells commentoComments Off on CLL patients in England to get AZ’s Calquence after okay from NICE – – pharmaphorum | dataDecember 13th, 2020
Read All

Regenerative Medicine: Market Trends and Legal Developments on the Horizon for 2021 – MedTech Intelligence

By daniellenierenberg

As the second wave of the pandemic engulfs us and the world works at warp speed to develop vaccines and therapies to respond, the importance of regenerative medicine has never been higher. Since 2017, Goldman Sachs has touted the sector as one of the most compelling areas for venture capital investment. With billions of dollars of global government spending being poured into the search for vaccines and therapies to respond to the novel coronavirus, and with the FDA having now granted approval to the first vaccines based on CRISPR mRNA gene-editing technologies, business models based on regenerative medicines are commanding record values. Despite the flood of cash into regenerative medicine, legal and ethical considerations will continue to cause much controversy.

Regenerative medicine ultimately accelerates the human bodys healing process. It is an area of biomedical sciences that involves medical treatments to repair or replace damaged cells, tissues, or organs. Instead of merely focusing on the symptoms, regenerative medicine uses cellular therapies, tissue engineering, medical devices, and artificial organs to improve peoples health. For example, stem cell therapies, tissue grafts, and organ transplants are all part of regenerative medicine.

Today, cellular and acellular regenerative medicines are often used in clinical procedures such as cell, immunomodulation, and tissue engineering therapies. They have the potential to effectively treat many chronic diseases, including Alzheimers, Parkinsons and cardiovascular disorders, osteoporosis, and spinal cord injuries.

A small number of unscrupulous actors, according to the FDA, however, have seized on the clinical promise of regenerative medicine to offer patients unproven treatments. The FDA and other regulators are challenged to provide assurances of safety for these therapies without stifling development, as well as to approve treatments based on manipulation of stem cells derived from human and animal embryos given the ethical issues involved.

In the future, stem cell research will play an increasingly outsized role in regenerative medicine techniques. In November 2020, voters in California narrowly passed Proposition 14, a referendum to approve $5.5 billion in new government funding for stem cell research. Other governments around the world are doing the same.

Today, the growing prevalence of chronic medical ailments and genetic disorders across the globe is a primary factor driving the regenerative medicine industrys growth, according to the Regenerative Medicine Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2020-2025. The increasing aging population, prone to various musculoskeletal, oncological, dermatological, and cardiological disorders, is a key growth driver. Widespread adoption of organ transplantation is another contributing factor to this growth in market share. The current pandemic that began in January 2020, however, has changed the paradigm for regenerative medicine.

Market applications are burgeoning. Regenerative medicine can prevent and cure disease through effective vaccines and efficacious therapies. It can minimize the risk of organ rejection post-transplant and speed recovery. Technological advancements in cell-based therapies, such as the development of 3-D bioprinting techniques and the adoption of artificial intelligence in the production of regenerative medicines, are also stimulating growth. These advancements also facilitate dermatological grafting procedures to treat burns, bone defects, and skin wounds. Other factors, including extensive research and development activities in medical sciences and improving healthcare infrastructure, are also predicted to drive the market even further.

According to the Alliance for Regenerative Medicine, there are approaching approximately 1,000 companies focusing on this evolving area worldwide. These new companies are focusing on gene therapy, cell therapy and tissue engineering therapeutic developers. More than half of these companies are in North America, followed by almost a quarter in Europe and Israel and approximately 20% in Asia. More than 50% of these companies are focusing on cell therapy and gene therapy.

From 2014 to 2019, the global regenerative medicine market experienced a nearly 16% CAGR. Companies involved in gene and cell therapies as well as other regenerative medicine areas raised $4.8 billion during the first half of 2019, including $2.6 billion in the second quarter. Meanwhile, companies in Europe and Israel saw an acceleration of fundraising, with $1.3 billion amassed in just the first half of 2019, representing a 17% increase over the same period in 2018. Project Warp Speed has attracted billions of dollars of U.S. government spending, and similar efforts are ongoing in China, Russia, the European Union and among other major powers. Consequently, regenerative medicine has never before benefited from such a combination of public and private investment.

Whenever the viability and quality of human life are at stake, ethical and legal considerations always arise.

The modern ethical controversy surrounding regenerative medicine began in 1998 when research scientists at the University of Wisconsin succeeded in deriving and growing stem cells from early-stage human embryos. Ethicists and right-to-life activists protested that scientists were taking away human life (embryos) to conduct scientific experiments. Left unchecked, so the argument went, doctors could usurp nature and play God by developing the power to create and terminate life. A society where human life could be fundamentally perverted by medicine conjured up comparisons to Nazi Germany and Frankenstein. In 2001, then-U.S. President George W. Bush cut off federal funding for any research involving newly created embryonic stem cell lines, but agreed to continue funding research on 60 existing stem cell lines, where the life and death decision ha[d] already been made. The State of California responded in 2004 and again in 2020 with voter-approved programs directing billions of funding into stem cell research, making the region the global hub of regenerative medicine.

The use of human-derived embryonic stem cells, or animal-derived stem cells, continues to cause much controversy among ethicists and society at large. Some fear the risks of enrolling humans in experimental stem cell studies. Others fear the use of organs from human-animal chimeras in transplantation.

While these techniques have the potential to cure disease and save lives, they also have the potential to forever alter the nature of life as we know it and fundamental aspects of our society.

In the United States, legal jurisdiction for regulating regenerative medicine on a federal level lies with the FDA and in a patchwork of state laws, R&D funding programs and non-binding, NGO-promulgated statements of policy. The main responsibility of the FDA is to protect the public from dangerous products and ensure its safety, including overseeing medications for humans and animals, vaccines, and more.

During the Trump Administration, the FDA has largely focused on enabling developers to gain product approvals through a less burdensome and costly process. In numerous policy statements, the FDA under President Trump has deferred questions about the efficacy of new regenerative health products to the free markets, so long as they posed no serious safety or toxicity concerns.

The U.S. federal government is now transitioning to an administration led by President-elect Biden. The president-elect has spent many years advocating for increased R&D funding and going for moonshots. With a new mandate from the U.S. electorate to address the coronavirus, more money will be earmarked for regenerative medicines and stem cell research. How this will affect the release of new products into the market remains to be seen.

Regenerative medicine is poised to change the way we live, work and interact like never before. The fourth industrial revolution is upon us. CRISPR gene-editing technologies, facilitated by quantum-computing capabilities at the edge of a computer network powered by 5G telecommunications bandwidths, artificial intelligence and machine learning, have changed the game for regenerative medicine. We can foresee a day when those suffering from paralysis regain movement, when a damaged heart reverses course through regeneration, and when a diagnosis of Alzheimers Disease no longer means neurodegeneration. What a wonderful day that will be.

Changing the traditional healthcare model and moving from cure to prevention will take time.

The rise in chronic disease and the effort to reduce healthcare costs presents a large opportunity for the field of regenerative medicine.

As the continent becomes a bigger player, western companies should explore the potential prospects.

Topics from regenerative medicine to artificial intelligence to cannabis will be discussed.

The rest is here:
Regenerative Medicine: Market Trends and Legal Developments on the Horizon for 2021 - MedTech Intelligence

To Read More: Regenerative Medicine: Market Trends and Legal Developments on the Horizon for 2021 – MedTech Intelligence
categoriaSpinal Cord Stem Cells commentoComments Off on Regenerative Medicine: Market Trends and Legal Developments on the Horizon for 2021 – MedTech Intelligence | dataDecember 13th, 2020
Read All

New health researchers at Dal, IWK and Nova Scotia Health receive funding from Research Nova Scotia – Dal News

By daniellenierenberg

Researchers with affiliations to Dalhousie University, Nova Scotia Health and the IWK Health Centre are the recipients of over $1.3 million in funding from Research Nova Scotia.

The funding has been provided by the New Health Investigator Grant, which supports new health researchers who are engaged in work that aligns with the provinces health research priorities. The grant aims to provide two years of support of up to $100,000 for researchers who are within the first five years of their academic appointment in Nova Scotia, or who are new to the field of health research.

There has never been a greater need to support new health researchers in Nova Scotia to help inform practice, policy and decision making, says Stefan Leslie, CEO of Research Nova Scotia in a news release. Were pleased to announce funding for these researchers and are confident their work will positively impact the health of Nova Scotians.

For the 2020-21 academic year, funding for this grant is provided by the Nova Scotia Department of Health and Wellness. It will support the establishment of independent programs of research and support and expand the research productivity necessary for obtaining long-term funding from national and external agencies and provide opportunities for early-career investigators to make significant contributions in their field.

Congratulations to all the recipients of funding from Research Nova Scotia, says Dr. Alice Aiken, vice president research and innovation at Dalhousie. With projects that span a wide range of topics, like diabetes, cancer, dementia care, and the COVID-19 pandemic, these researchers are improving health care and helping people in the Maritimes and beyond to be healthier.

Highlights of some of the funded projects:

Dr. Christine Cassidy, Faculty of Health

Designing an integrated pediatric inpatient-ambulatory care service delivery model

The health care system is facing challenges related to poor quality of care, rising health care costs, and outdated technology. Efforts are needed to redesign health services to improve outcomes for patients, health care providers, and the overall health system. One way to address these challenges is to integrate care across multiple health care providers and services. This means that care is coordinated to meet patient needs and preferences.

During the COVID-19 pandemic, the IWK Health Care Centre identified gaps in their current approach to delivering services to children, youth, and their families which includes the need to improve the integration of care across their outpatient and inpatient settings. Healthcare interventions are more effective when patients and care providers are included in the design process, and the integrated approach developed by Dr. Cassidy and her research team will help strengthen the delivery of care within the pediatric health system.

Dr. Parisa Ghanouni, Faculty of Health

Community-based services for individuals with developmental disabilities: Transition to adult care

Despite the great progress signaled by the United Nations Convention on the Rights of Persons with Disabilities, individuals with disabilities worldwide continue to confront barriers to equitable access to the health resources and social supports that enable their full participation in society. Gaps in access have improved for many, especially for children, but the transition to adulthood continues to represent a services cliff that people with disabilities confront in their late teens.

Through their research, Dr. Ghanouni and her team plan to uncover barriers and facilitators related to community-based healthcare services during the transition of adolescents with developmental disabilities to adulthood in rural areas, and co-develop a toolkit with stakeholders that outlines implementation strategies to promote successful transitions. This initiative will advance knowledge on services available that support the transition to adulthood in rural areas, highlight service gaps, point to important areas for investment, and contribute to academic, policy and community understandings and capacity around services for people with disabilities.

Dr. Brendan Leung, Faculty of Dentistry

Harnessing oral microbiota to prevent chemotherapy-induced oral mucositis: Functional screening using a bio-printed mammalian-microbe co-culture model

Chemotherapy induced oral mucositis (CIOM) is a painful and debilitating side effect of cancer treatment that affects 20-40% of cancer patients. Chemotherapy kills cancer cells, but it also affects fast growing normal cells in the body, especially those that line the mouth. When those are damaged, painful mouth ulcers form. These can affect patients ability to eat, drink, talk and even rest, and significantly reduce their quality of life. Currently there is no effective way to prevent CIOM from happening, and the only way to treat it is to provide supportive care such as numbing gels, ice chips and painkillers.

Research has found that the types of bacteria that normally live in the mouth change when someone develops CIOM. It is difficult to study cause and effect between bacteria and CIOM, partly because it is difficult to grow bacteria and human cells together in the lab in a controlled and repeatable way. Through his research, Dr. Leung will use a unique method to grow oral bacteria to investigate how microbes interact with oral cells during chemotherapy in order to identify microbial species that may offer protection against CIOM.

Dr. Elaine Moody, Faculty of Health

Primary healthcare for people with dementia: Exploring care provided by collaborative family practice teams in Nova Scotia

There is an increasing need to improve the health care of people with dementia in Nova Scotia. As the population ages, it will become even more important to provide good care to people with dementia to ensure they can live well in the community. In Nova Scotia, there has been a move to develop collaborative family practice teams, where physicians, nurse practitioners, family practice nurses and other healthcare providers work together to address the primary health care needs of individuals. Primary care providers in these teams require dementia-specific knowledge, skills, resources and supports to enable people with dementia and their caregivers to live well in the community.

Dr. Moody and her research team hope to better understand how collaborative family practice teams in Nova Scotia are addressing the needs of people living with dementia in the community, and to identify ways to improve their care. To achieve their goal, the researchers will gather the perspectives of people living with dementia and caregivers on how collaborative family practice teams provide care in order to identify gaps in current service provision and opportunities to improve care, with a particular focus on diversity and inclusion. Additionally, they will explore how care provided by collaborative family practice teams to people with dementia has been affected by the COVID-19 outbreak.

Other funded projects include:

Dr. Leah Cahill, Faculty of Medicine

Does a simple blood test predict who needs strict blood sugar control to prevent heart disease?

Dr. Sylvain Charlebois, Faculty of ManagementHome food gardening in response to the COVID-19 pandemic: Lessons for food security considerations

Dr. Ketul Chaudhary, Faculty of MedicineCardiac Vascular Stem Cells in Right Heart Failure

Dr. Jon Dorling, Faculty of MedicinePreterm Infant Gut microbiome associations with Environment and Outcomes in the NICU (PIGEON)

Dr. Denys Khaperskyy, Faculty of MedicineRole of stress granule formation in immune responses to respiratory viruses

Dr. Michael Kucharczyk, Faculty of MedicineCan Magnetic Resonance Imaging of the prostate combined with a Radiomics Evaluation determine the invasive capacity of a tumour (Can MRI-PREDICT)

Dr. Paula McLaughlin, Faculty of MedicineIdentifying, understanding, and mitigating gaps in dementia care

Dr. Sandra Meier, Faculty of MedicineAn app responding to behaviour of people to promote mental wellbeing in anxious youth

Dr. Deniz Top, Faculty of MedicineDifference in the regulation of behaviour genes as a proposed mechanism for mental illness

Dr. Igor Yakovenko, Faculty of ScienceScreening, self-management and referral to treatment for young cannabis users: Fulfilling an unmet need

For a complete list of recipients and projects, visit the Research Nova Scotia website.

See the original post here:
New health researchers at Dal, IWK and Nova Scotia Health receive funding from Research Nova Scotia - Dal News

To Read More: New health researchers at Dal, IWK and Nova Scotia Health receive funding from Research Nova Scotia – Dal News
categoriaCardiac Stem Cells commentoComments Off on New health researchers at Dal, IWK and Nova Scotia Health receive funding from Research Nova Scotia – Dal News | dataDecember 11th, 2020
Read All

BeyondSpring Announces New Positive PROTECTIVE-2 Phase 3 Registrational Trial Results at the 2020 San Antonio Breast Cancer Symposium – BioSpace

By daniellenierenberg

NEW YORK, Dec. 10, 2020 (GLOBE NEWSWIRE) -- BeyondSpring (the Company or BeyondSpring) (NASDAQ: BYSI), a global biopharmaceutical company focused on the development of innovative cancer therapies, today announced the new data from its Phase 3 PROTECTIVE-2 Study 106 demonstrating that plinabulin in combination with pegfilgrastim offers greater protection against chemotherapy-induced neutropenia (CIN) than the standard of care, pegfilgrastim alone. The study not only met the primary and key secondary objectives, as previously disclosed on Nov. 16, 2020, but also demonstrated that the combination was 53% more effective than pegfilgrastim alone in reducing the incidence of profound neutropenia (absolute neutrophil count or ANC < 0.1 x 10E9 cells/L), 21.6% vs. 46.4%, respectively, p=0.0001, in patients with breast cancer undergoing chemotherapy with TAC (docetaxel, doxorubicin, and cyclophosphamide). Profound neutropenia (PN) is a well-known risk factor to increase the rates of infection, febrile neutropenia (FN), and hospitalization among patients undergoing chemotherapy. Of clinical importance, the combination has shown to reduce the odds of having FN by 41% in comparison to pegfilgrastim, based on reduction of profound neutropenia.

It is clinically meaningful to reduce FN risk by 41% in the combination, compared to pegfilgrastim alone, which is the only major breakthrough advancement in CIN prevention in the last 30 years. The CIN protection from plinabulin added to pegfilgrastim, particularly in the first week of chemotherapy when 75% of CIN-related complications occur before the effect of pegfilgrastim kicks-in in Week 2, fills the treatment gap in current standard of care, said Douglas Blayney, M.D., Professor of Medicine at Stanford Medical School, and global PI for the plinabulin CIN studies. The combination of plinabulin with pegfilgrastim represents a major advancement in offering protection against CIN, with the potential to reduce FN risk, in the care of cancer patients.

The data were presented via a poster at the 2020 San Antonio Breast Cancer Symposium (SABCS): Superior and Clinically Meaningful Protection Against Profound Neutropenia with the Plinabulin/Pegfilgrastim (Plin/Peg) Combination versus Peg In Breast Cancer Patients ReceivingTAC Chemotherapy. Profound neutropenia, an exploratory endpoint representing the most severe form of CIN, is associated with significant risk to patients and may require antibacterial or antifungal prophylaxis [Flowers JCO 2013]. It is attributed to both febrile neutropenia (48%) and infection (50%) [Bodey Cancer 1978]. In BeyondSprings PROTECTIVE-2 studies, patients with profound neutropenia had close to nine times the risk of FN compared to patients with no profound neutropenia. The new data presented at SABCS included:

This trial is a global, multicenter, randomized, double-blinded study in patients with breast cancer undergoing myelosuppressive chemotherapy with TAC (docetaxel at 75 mg/m2, doxorubicin at 50 mg/m2, and cyclophosphamide at 500 mg/m2) for the evaluation of protection against CIN, comparing plinabulin (40 mg) in combination with pegfilgrastim (6 mg) in 111 patients to pegfilgrastim alone (6 mg) in 110 patients. On Day 1, they received TAC and plinabulin or placebo, and on Day 2, they received pegfilgrastim. Topline data from the Protective-2 Phase 3 trial were reported on November 16, 2020 highlighting that the study met its primary endpoint as well as key secondary endpoints.

It is well recognized that CIN is directly related to chemotherapys ability to kill rapidly dividing cells. Unfortunately, fast dividing neutrophils in the bone marrow are adversely affected regardless of the chemotherapy type. As a result, we believe these outcomes are universally applicable to any chemotherapy, and are independent of cancer types, added Gordon Schooley, Ph.D., BeyondSprings Chief Regulatory Officer. As both the U.S. FDA and China NMPA recently awarded BeyondSprings Plinabulin CIN program with Breakthrough Therapy Designation status based on the interim phase 3 data of PROTECTIVE-2, and the Company now completing the PROTECTIVE-2 trial with positive and consistent results to the interim, we are well on track to submit our NDA for CIN in Q1 2021. The improved CIN prevention benefit of the Plinabulin/G-CSF combination would have the potential for CIN prevention of the myelosuppressive effects of different chemotherapeutic agents in millions of patients with multiple tumor types.

Ramon Mohanlal, M.D., Ph.D., BeyondSprings Chief Medical Officer and Executive Vice President, Research and Development concluded, Plinabulin represents a new treatment paradigm for CIN prevention, an area wherein G-CSF has established efficacy, but with short-comings due to its delayed onset of action, next day dosing requirement, bone pain induction, and platelet count reduction. Plinabulin has a fast onset mechanism of action, without causing relevant bone pain or thrombocytopenia, and can be given on the same day as chemotherapy. Plinabulin added to G-CSF offers superior prevention of CIN, and has the potential to avoid life-threatening infections and to improve short-term and long-term survival. Plinabulins anticancer activity from its immune-enhancing mechanism of action, together with its CIN preventive effects, has the potential to become a universal add-on to anti-cancer treatments in general.

The above data are available on BeyondSpringswebsite in the Posters section.

About PlinabulinPlinabulin, BeyondSprings lead asset, is a differentiated immune and stem cell modulator. Plinabulin is currently in late-stage clinical development to increase overall survival in cancer patients, as well as to alleviate chemotherapy-induced neutropenia (CIN). The durable anticancer benefits of Plinabulin have been associated with its effect as a potent antigen-presenting cell (APC) inducer (through dendritic cell maturation) and T-cell activation (Chem and Cell Reports, 2019). Plinabulins CIN data highlight the ability to boost the number of hematopoietic stem / progenitor cells (HSPCs), or lineage-/cKit+/Sca1+ (LSK) cells in mice. Effects on HSPCs could explain the ability of Plinabulin not only to treat CIN, but also to reduce chemotherapy-induced thrombocytopenia and increase circulating CD34+ cells in patients.

About CINPatients receiving chemotherapy typically develop chemotherapy-induced neutropenia (CIN), a severe side effect that increases the risk of infection with fever (also called febrile neutropenia, or FN), which necessitates ER/hospital visits. The updated National Comprehensive Cancer Network (NCCN) guidelines expanded the use of prophylactic G-CSFs, such as pegfilgrastim, to include not only high- risk patients (chemo FN rate>20%), but also intermediate-risk patients (FN rate between 10-20%) to avoid hospital/ER visits during the COVID-19 pandemic. The revision of the NCCN guidelines effectively doubles the addressable market of patients who may benefit from treatment with plinabulin, if approved, to approximately 440,000 cancer patients in the U.S. annually. Plinabulin is designed to provide protection against the occurrence of CIN and its clinical consequences in week 1, for early onset of action after chemotherapy. CIN is the primary dose-limiting toxicity in cancer patients who receive chemotherapy treatment.

About BeyondSpringBeyondSpring is a global, clinical-stage biopharmaceutical company focused on the development of innovative cancer therapies. BeyondSprings lead asset, plinabulin, a first-in-class agent as an immune and stem cell modulator, is in a Phase 3 global clinical trial as a direct anticancer agent in the treatment of non-small cell lung cancer (NSCLC) and Phase 3 clinical programs in the prevention of CIN. The U.S. FDA granted Breakthrough Therapy designation to plinabulin for concurrent administration with myelosuppressive chemotherapeutic regimens in patients with non-myeloid malignancies for the prevention of chemotherapy-induced neutropenia (CIN). BeyondSpring has strong R&D capabilities with a robust pipeline in addition to plinabulin, including three immuno-oncology assets and a drug discovery platform using the protein degradation pathway, which is being developed in a subsidiary company, Seed Therapeutics, Inc. The Company also has a seasoned management team with many years of experience bringing drugs to the global market. BeyondSpring is headquartered in New York City.

Cautionary Note Regarding Forward-Looking StatementsThis press release includes forward-looking statements that are not historical facts. Words such as "will," "expect," "anticipate," "plan," "believe," "design," "may," "future," "estimate," "predict," "objective," "goal," or variations thereof and variations of such words and similar expressions are intended to identify such forward-looking statements. Forward-looking statements are based on BeyondSpring's current knowledge and its present beliefs and expectations regarding possible future events and are subject to risks, uncertainties and assumptions. Actual results and the timing of events could differ materially from those anticipated in these forward-looking statements as a result of several factors including, but not limited to, difficulties raising the anticipated amount needed to finance the Company's future operations on terms acceptable to the Company, if at all, unexpected results of clinical trials, delays or denial in regulatory approval process, results that do not meet our expectations regarding the potential safety, the ultimate efficacy or clinical utility of our product candidates, increased competition in the market, and other risks described in BeyondSprings most recent Form 20-F on file with the U.S. Securities and Exchange Commission. All forward-looking statements made herein speak only as of the date of this release and BeyondSpring undertakes no obligation to update publicly such forward-looking statements to reflect subsequent events or circumstances, except as otherwise required by law.

Media Contacts

Investor Contact:Ashley R. RobinsonLifeSci Advisors, LLC+1 617-430-7577arr@lifesciadvisors.com

Media Contact:Darren Opland, Ph.D.LifeSci Communications+1 646-627-8387darren@lifescicomms.com

Follow this link:
BeyondSpring Announces New Positive PROTECTIVE-2 Phase 3 Registrational Trial Results at the 2020 San Antonio Breast Cancer Symposium - BioSpace

To Read More: BeyondSpring Announces New Positive PROTECTIVE-2 Phase 3 Registrational Trial Results at the 2020 San Antonio Breast Cancer Symposium – BioSpace
categoriaBone Marrow Stem Cells commentoComments Off on BeyondSpring Announces New Positive PROTECTIVE-2 Phase 3 Registrational Trial Results at the 2020 San Antonio Breast Cancer Symposium – BioSpace | dataDecember 10th, 2020
Read All

Joliet 2-year-old gets pre-holiday gift: tests that show he’s cancer-free – The Herald-News

By daniellenierenberg

Thats how Valerie Mitchell of Joliet is expressing the pre-holiday news that her son Owen Buell, 2, is showing no evidence of disease in regards to the neuroblastoma hes been fighting all year.

We are really happy, Mitchell said. I still cannot believe he is cancer-free. Everyone is really overjoyed about it, especially being around Christmastime.

On Friday, Owen had a number of scans including CT MRI, MIBG and an echocardiogram, along with bone marrow and hearing tests. Mitchell said. All scans came back clear, she said.

He fought as hard as he could and beat cancer, Mitchell said.

But Owen must remain cancer-free for the next five years before the word remission can be used, she said. In addition, Owen also has more treatments ahead of him: six months of immunotherapy, which Mitchell said will be extremely painful and hard on the body.

Owen will need a five to six-day stay in the hospital each month and a pain pump just to receive the treatments, Mitchell said. But the treatment is necessary to eliminate any remaining cancer cells in Owens body; otherwise new tumors or spots of cancer may form.

Were all really tired, Mitchell said. But we can push through knowing that hes going to be cancer-free. Its just one more step and then he should be good.

When Owen was diagnosed in February, he had two tumors and 21 spots of cancer, Mitchell said. His father Brian was working a job and a half at the time and he and Mitchell shared the family van.

Since then, Owen has undergone many scans, a central line placement, five rounds of chemotherapy, surgery to remove tumors, a stem cell harvest, two stem cell transplants that required a three-month hospital stay, 12 rounds of radiation and 10 days of being intubated in the hospitals intensive care unit, Mitchell said.

Owen now also has damage to one kidney and high blood pressure, Mitchell said. The COVID-19 pandemic made treatments even harder on Owen and his family, she added, especially since Owen's brothers Elliott and Bentley, age 4.were just 7 and 4 when Owen was diagnosed.

We didn't have the help everyone was offering in fear Owen would catch this virus, Mitchell wrote on her Facebook page. We couldn't go anywhere in between treatment to cheer Owen up. We couldn't bring him into the store to pick out a new toy or get him out of the house. He couldn't go swimming; he couldn't go to any arcades; he couldn't even have his father or siblings by his side undergoing surgery or chemo. It wasn't/ isnt fair that Owen had to suffer as much as he did. But we are happy he is still here.

Mitchell said the family celebrated Owens good news with pizza, cake and silly string. And she said Owen is going to go crazy with happiness when he sees all the Christmas gifts toys theyve bought for him.

In the meantime, Owen is enjoying the holiday season like any other 2-year-old.

Hes already playing with the Christmas tree bulbs, Mitchell said.

Donate to the "Help for baby Owen Buell and his Family" GoFundMe page at bit.ly/3n0MThy.

See the rest here:
Joliet 2-year-old gets pre-holiday gift: tests that show he's cancer-free - The Herald-News

To Read More: Joliet 2-year-old gets pre-holiday gift: tests that show he’s cancer-free – The Herald-News
categoriaBone Marrow Stem Cells commentoComments Off on Joliet 2-year-old gets pre-holiday gift: tests that show he’s cancer-free – The Herald-News | dataDecember 10th, 2020
Read All

COVID-19 and graft-versus-host disease: a tale of two diseases (and why age matters) – DocWire News

By daniellenierenberg

This article was originally published here

Lab Invest. 2020 Dec 9. doi: 10.1038/s41374-020-00520-2. Online ahead of print.

ABSTRACT

Disorders involving injury to tissue stem cells that ensure normal tissue homeostasis and repair have potential to show unusually devastating clinical consequences. Acute graft-versus-host disease (aGVHD) is one condition where relatively few cytotoxic immune cells target skin stem cells to produce significant morbidity and mortality. By analogy, SARS-CoV-2 is a vector that initially homes to pulmonary stem cells that preferentially express the ACE2 receptor, thus potentially incurring similarly robust pathological consequences. In older individuals, stem cell number and/or function become depleted due to pathways independent of disease-related injury to these subpopulations. Accordingly, pathologic targeting of stem cells in conditions like aGVHD and COVID-19 infection where these cells are already deficient due to the aging process may have dire consequences in elderly individuals. A hypothesis is herein advanced that, as with aGVHD, lung stem cell targeting is a potential co-factor in explaining age-related severity of COVID-19 infection.

PMID:33299126 | DOI:10.1038/s41374-020-00520-2

Go here to read the rest:
COVID-19 and graft-versus-host disease: a tale of two diseases (and why age matters) - DocWire News

To Read More: COVID-19 and graft-versus-host disease: a tale of two diseases (and why age matters) – DocWire News
categoriaSkin Stem Cells commentoComments Off on COVID-19 and graft-versus-host disease: a tale of two diseases (and why age matters) – DocWire News | dataDecember 10th, 2020
Read All

Avenoir Cosmetics Launches Cell Repair Serum – Clinical Strength to Enhance Skin Tone & Minimize Appearance of Sunspots, Blemishes, Discoloration,…

By daniellenierenberg

TipRanks

Investing is all about profits, and part of generating profits is knowing when to start the game. The old adage says to buy low and sell high, and while its tempting just to discount cliches like that, theyve passed into common currency because they embody a fundamental truth. Buying low is always a good start in building a portfolio.The trick, however, is recognizing the right stocks to buy low. Prices fall for a reason, and sometimes that reason is fundamental unsoundness. Fortunately, Wall Streets analysts are busy separating the wheat from the chaff among the markets low-priced stocks, and some top stock experts have tagged several equities for big gains. These stocks are trading low now but the reasons are not necessarily bad for investors.Weve used the TipRanks database to pull up the data and reviews on two stocks that are priced low now, but may be primed for gains. Theyve been getting positive reviews, and despite their share depreciation, they hold Buy ratings and show upwards of 60% upside potential.Digital Media Solutions (DMS)We will start with Digital Media Solutions, an adtech company which connects online advertisers with customers through performance-based branding and marketplace solutions. DMS boasts a powerful consumer intelligence database, which it uses to fine-tune customer acquisition campaigns while offering advertisers accountability for the project budget.DMS went public in July of this year, via a merger with a special purpose acquisition company, Leo Holdings. The combination took the DMS name for the ticker, and initiated trading at $10 per share. The stock has been volatile since, and is currently down 27% since it started trading.Digital advertising is a huge and growing sector, worth $100 billion in 2019 and expected to reach $130 billion by the end of next year. DMS has a solid piece of that cash cow, and the Q3 numbers demonstrate that. Quarterly revenue hit a company record, of $82.8 million, which was up 10% sequentially and 44% year-over-year. Of that total revenue, the company saw a gross profit of $25.1 million, for a 30% gross margin. All in all, DMSs first quarter as a publicly traded company showed strong results.Covering the stock for Canaccord is analyst Maria Ripps, who is rated 5 stars by TipRanks, and stands in the top 1% out of more than 7,100 stock analysts. The company saw meaningful volume growth from both new and existing clients, with particular strength from its auto insurance business along with the eCommerce, education, and non-profit verticals We continue to think investors will gradually come to appreciate DMS similarities with other leading digital marketing peers that trade at more premium valuations, and expect multiple expansion over time as the story becomes better understood, Ripps noted.To this end, Ripps rates DMS stock a Buy, and her $15 price target suggests an upside of 106% from the current share price of $7.20. (To watch Ripps track record, click here)Overall, DMS Moderate Buy consensus rating is based on 2 recent reviews, both positive. The stock has an average price target of $14, which indicates a 92% upside potential. (See DMS stock analysis on TipRanks)ViaSat, Inc. (VSAT)From digital advertising we move on to digital networking. ViaSat provides customers with high-speed broadband access through a secure satellite network system. The company serves both military and commercial markets, meeting the growing need for secure communications links.The anti-coronavirus shutdown policies have particularly hard on ViaSat. This may sound counterintuitive, as online networking has been busier than ever, but a large segment of ViaSats business comes from the airlines, and with air travel first grounded and still facing depressed travel volumes, ViaSats shares have yet to recover from their February/March swoon.On a positive note and one that is indicative of the essential nature of secure satellite communications in todays networked economy ViaSat reported $577 million in Q3 contract awards, representing a 29% yoy gain. For the year to date, the company has seen awards totaling $1.9 billion, which is up 5% from this time last year. The third quarter (the companys fiscal Q2) revenues and earnings were somewhat mixed, reflecting both the increase in contract awards and the decline in airline business. Revenues were $554 million, down 6% yoy, but up almost 4% sequentially. EPS was 3 cents per share, beating the predicted 5 cent loss by a wide margin.JPMorgan analyst Philip Cusick writes of ViaSat: [We] believe long-term growth levers remain intact highlighted by record segment backlog of $1.1b We view ViaSat as a satellite innovation leader and believe the companys future ViaSat-3 fleet will accelerate growth in satellite services over the coming years. At the same time, we see a long-term government systems tailwind driven by the companys radio portfolio, mobile broadband, and SATCOM.In line with his bullish comments, Cusick rates VSAT shares an Overweight (i.e. Buy), and his $60 price target implies ~72% upside on the one-year time horizon. (To watch Cusicks track record, click here)Overall, the stock has 5 recent reviews, including 3 Buys and 2 Holds. Shares are priced at $34.14, and the average price target of $55 suggests a 61% upside potential from that level. (See VSAT stock analysis on TipRanks)To find good ideas for stocks trading at attractive valuations, visit TipRanks Best Stocks to Buy, a newly launched tool that unites all of TipRanks equity insights.Disclaimer: The opinions expressed in this article are solely those of the featured analysts. The content is intended to be used for informational purposes only. It is very important to do your own analysis before making any investment.

See more here:
Avenoir Cosmetics Launches Cell Repair Serum - Clinical Strength to Enhance Skin Tone & Minimize Appearance of Sunspots, Blemishes, Discoloration,...

To Read More: Avenoir Cosmetics Launches Cell Repair Serum – Clinical Strength to Enhance Skin Tone & Minimize Appearance of Sunspots, Blemishes, Discoloration,…
categoriaSkin Stem Cells commentoComments Off on Avenoir Cosmetics Launches Cell Repair Serum – Clinical Strength to Enhance Skin Tone & Minimize Appearance of Sunspots, Blemishes, Discoloration,… | dataDecember 10th, 2020
Read All

CBD: the beauty ingredient trend that can’t be stopped – CosmeticsDesign.com USA

By daniellenierenberg

Even while legalization and regulations are in flux throughout the Americas region and around the globe, cannabis beauty is making tremendous progress.

The cannabis market is emerging very, very rapidly around the world, said Shane MacGuill, Senior Head of Nicotine and Cannabis at Euromonitor during a webinar last month reviewing the global cannabis industry across market sectors and showcasing the launch of the market research companys newest Passport Research System focus: cannabis. And he added,the market is currently heavily concentrated in US Canada.

This year2020was the year that both Amway and Avon launched CBD skin care. Avon made the announcement first. In April, as Cosmetics Design reported, the social-selling beauty maker announced plans for a new vegan skin care line that would include a CBD oil. And today, Avon has 3 CBD products in its portfolio: Green Goddess Facial Oil, Veilment CBD Soothing & Nourishing Body Cream, and Veilment CBD Nourishing Body Cream, all of which contain 100mg of CBD. Though as the online product descriptions note, our collection does NOT contain THC. The only high youll get is knowing your skin feels cool, calm and collected.

Amway, as Cosmetics Design reported, announced the launch of its new Artistry Skin Studio product collection in September 2020. And that product line now includes Artistry Studio Zen Daze Ahead Facial Oil +300 mg CBD.

Colgate also got involved in the CBD Beauty market this year. In January the company announced an acquisition deal to buy Hello Products and the following month, Hello launched its CBD product collection, as Cosmetics Design reported. Hello is best known for its oral care products but the brand also makes CBD lip balm, for instance.

Ayuna, a luxury skin care brand out of Spain, just launched the latest limited-edition product in its sought-after Terra collection at the start of November: Terra Bella.

There are no cannabinoids, no THC, no CBD in this new cream. But the Terra Bella face cream is formulated with a remarkable extract derived from cultured Cannabis Sativa stem cells, as Isabel Ramos, Chief Scientific Officer at Ayuna, tells Cosmetics Design.

And the ingredient does something truly extraordinary: it instigates communication between the skin microbiome and the brain, explains Ramos. This topical ingredient is, she says, the first known instance of a skin care input helping and demonstrating that microbiota are acting on [or affecting] how we feel.

As the Ayuna example illustrates, theres a lot more to cannabis beauty than the ever-enchanting CBD. In fact, the entire cannabis plant and a full range of cannabinoid molecules are shaping the future of this buzz-worthy cosmetics and personal care category.

In October, Jennifer Grant, a biomedical engineer turned beauty entrepreneur launched a clean skin care brand called empyri that relies on upcycled cannabis root at its hero ingredient. And not long before that news made headlines here on Cosmetics Design, the biotechnology company behind brands like Bissance and Pipette, announced having successfully scaled production of biotech CBG (one of many cannabinoids naturally occurring in cannabis) for use in skin care product formulations. So while CBD beauty is here to stay, theres much more to Cannabis Sativa and to cannabis beauty than this one molecule. Ready to learn more? Revisit all the top CBD beauty news from 2019 here on CosmeticsDesign.com.

Originally posted here:
CBD: the beauty ingredient trend that can't be stopped - CosmeticsDesign.com USA

To Read More: CBD: the beauty ingredient trend that can’t be stopped – CosmeticsDesign.com USA
categoriaSkin Stem Cells commentoComments Off on CBD: the beauty ingredient trend that can’t be stopped – CosmeticsDesign.com USA | dataDecember 10th, 2020
Read All

A Potential Therapy for One of the Leading Causes of Heart Disease – PRNewswire

By daniellenierenberg

After 15 years of unrelenting work, a team of scientists from Gladstone Institutes has now discovered a potential drug candidate for heart valve disease that works in both human cells and animals and is ready to move toward a clinical trial. Their findings were just published in the journal Science.

"The disease is often diagnosed at an early stage and calcification of the heart valves worsens over the patient's lifetime as they age," says Gladstone President and Director of the Roddenberry Stem Cell Center Deepak Srivastava, MD,who led the study. "If we could intervene early in life with an effective drug, we could potentially prevent the disease from occurring. By simply slowing the progression and shifting the age of people who require interventions by 5 or 10 years, we could avoid tens of thousands of surgical valve replacements every year."

This also applies to the millions of Americansabout one to two percent of the populationwith a congenital anomaly called bicuspid aortic valve, in which the aortic valve only has two leaflets instead of the normal three. While some people may not even know they have this common heart anomaly, many will be diagnosed as early as their forties.

"We can detect this valve anomaly through an ultrasound," explains Srivastava, who is also a pediatric cardiologist and a professor in the Department of Pediatrics at UC San Francisco (UCSF). "About a third of patients with bicuspid aortic valve, which is a very large number, will develop enough calcification to require an intervention."

Srivastava's research into heart valve disease started in 2005, when he treated a family in Texas who had this type of early-onset calcification. All these years later, thanks to the family's donated cells, his team has finally found a solution to help them and so many others.

A Holistic Approach in the Hunt for a Therapy

Members of the family treated by Srivastava had disease that crossed five generations, enabling the team to identify the causea mutation in one copy of the gene NOTCH1. Mutations in this gene cause calcific aortic valve disease in approximately four percent of patients and can also cause thickening of valves that trigger problems in newborns. In the other 96 percent of cases, the disease occurs sporadically.

"The NOTCH1 mutation provided a foothold for us to figure out what goes wrong in this common disease, but most people won't have that mutation," says Srivastava. "However, we found that the process that leads to the calcification of the valve is mostly the same whether individuals have the mutation or not. The valve cells get confused and start thinking they're bone cells, so they start laying down calcium and that leads to hardening and narrowing of the valves."

In the hunt for a treatment, the group of scientists chose a novel, holistic approach rather than simply focusing on a single target, such as the NOTCH1 gene.

"Our goal was to develop a new framework to discover therapeutics for human disease," says Christina V. Theodoris, MD, PhD, lead author of the study who is now completing her residency in pediatric genetics at Boston Children's Hospital. "We wanted to find promising therapies that could treat the disease at its core, as opposed to just treating some specific symptoms or peripheral aspects of the disease."

When Theodoris first joined Srivastava's lab at Gladstone, she was a graduate student at UCSF. At the time, they knew the NOTCH1 gene mutation caused valve disease, but they didn't have the tools to study the problem further, largely because it was very difficult to obtain valve cells from patients.

"My first project was to convert the cells from the patient families into induced pluripotent stem (iPS) cells, which have the potential of becoming any cell in the body, and turn them into cells that line the valve, allowing us to understand why the disease occurs," says Theodoris. "My second project was to make a mouse model of calcific aortic valve disease. Only then could we start using these models to identify a therapy."

One Drug Candidate Rises to the Top

For this latest study, the scientists searched for drug-like molecules that could correct the overall network that goes awry in heart valve disease and leads to calcification. To do so, they first had to determine the network of genes that are turned on or off in diseased cells.

Then, they used an artificial intelligence method, training a machine learning program to detect whether a cell was healthy or sick based on this network of genes. They subsequently treated diseased human cells with nearly 1,600 molecules to see if any drugs shifted the network in the cells enough that the machine learning program would reclassify them as healthy. The researchers identified a few molecules that could correct diseased cells back to the normal state.

"Our first screen was done with cells that have the NOTCH1 mutation, but we didn't know if the drugs would work on the other 96 percent of patients with the disease," says Srivastava.

Fortunately, Anna Malashicheva, PhD, from the Russian Academy of Sciences, had collected valve cells from over 20 patients at the time of surgical replacement, and Srivastava struck up a fruitful collaboration with her group to do a "clinical trial in a dish."

"We tested the promising molecules on cells from these 20 patients with aortic valve calcification without known genetic causes," Srivastava adds. "Remarkably, the molecule that seemed most effective in the initial study was able to restore the network in these patients' cells as well."

Once they had identified a promising candidate in cells in a dish for both NOTCH1 and sporadic cases of calcific aortic valve disease, Srivastava and his team did a "pre-clinical trial" in a mouse model of the disease. They wanted to determine whether the drug-like molecule would actually work in a whole, living organ.

The scientists confirmed that the therapeutic candidate could successfully prevent and treat aortic valve disease. In young mice who had not yet developed the disease, the therapy prevented the calcification of the valve. And in mice that already had the disease, the therapy actually halted the disease and, in some cases, led to reversal of the disease. This finding is especially important since most patients aren't diagnosed until calcification has already begun.

"Our strategy to identify gene networkcorrecting therapies that treat the core disease mechanism may represent a compelling path for drug discovery in a range of other human diseases," says Theodoris. "Many therapeutics found in the lab don't translate well to humans or focus only on a specific symptom. We hope our approach can offer a new direction that could increase the likelihood of candidate therapies being effective in patients."

The researchers' strategy relied heavily on technological advancements, including human iPS cells, gene editing, targeted RNA sequencing, network analysis, and machine learning.

"Our study is a really good example of how modern technologies are facilitating the kinds of discoveries that are possible today, but weren't not so long ago," says Srivastava. "Using human iPS cells and gene editing allowed us to create a large number of cells that are relevant to the disease process, while powerful machine learning algorithms helped us identify, in a non-biased fashion, the important genes for distinguishing between healthy and diseased cells."

"By using all the knowledge we gathered over a decade and a half, combined with the latest tools, we were able to find a drug candidate that can be taken to clinical trials," he adds. "Our ultimate goal is always to help patients, so the whole team is very pleased that we found a therapy that could truly improve lives."

About the Research Project

The paper, "Network-based screen in iPSC-derived cells reveals therapeutic candidate for heart valve disease,"was published online by Science on December 10, 2020.

Other authors include Ping Zhou, Lei Liu, Yu Zhang, Tomohiro Nishino, Yu Huang, Sanjeev S. Ranade, Casey A. Gifford, Sheng Ding from Gladstone; Aleksandra Kostina from the Russian Academy of Sciences; and Vladimir Uspensky from the Almazov Federal Medical Research Centre in Russia.

The work was funded by the California Institute of Regenerative Medicine; the National Heart, Lung, and Blood Institute; and the National Center for Research Resources. Gladstone researchers also received support from the Winslow Family, the L.K. Whittier Foundation, The Roddenberry Foundation, the Younger Family Fund, the American Heart Association, several programs and fellowships at UCSF, residency programs from Boston Children's Hospital and the Harvard Medical School, the Uehara Memorial Foundation, and a Howard Hughes Medical Institute Fellowship of the Damon Runyon Cancer Research Foundation.

About Gladstone Institutes

To ensure our work does the greatest good, Gladstone Institutes focuses on conditions with profound medical, economic, and social impactunsolved diseases. Gladstone is an independent, nonprofit life science research organization that uses visionary science and technology to overcome disease.

Media Contact: Julie Langelier | Assistant Director, Communications | [emailprotected] | 415.734.5000

SOURCE Gladstone Institutes

https://gladstone.org

Go here to see the original:
A Potential Therapy for One of the Leading Causes of Heart Disease - PRNewswire

To Read More: A Potential Therapy for One of the Leading Causes of Heart Disease – PRNewswire
categoriaIPS Cell Therapy commentoComments Off on A Potential Therapy for One of the Leading Causes of Heart Disease – PRNewswire | dataDecember 10th, 2020
Read All

Creative Medical Technology Holdings files Patent on Induction of Infectious Tolerance by Ex Vivo Reprogrammed Immune Cells Utilizing ImmCelz Cellular…

By daniellenierenberg

PHOENIX, Dec. 10, 2020 /PRNewswire/ --Creative Medical Technology Holdings trading under the ticker symbol CELZ announced today its patent filing based on data covering utilization of the Company's ImmCelz product at generating what is termed in the field of immunology as "infectious tolerance."

Using an animal model of rheumatoid arthritis, investigators demonstrated administration of ImmCel protected mice from immunologically mediated joint damage. Importantly, cells from treated mice were able to reverse disease when transferred to arthritic mice. Detailed scientific analysis revealed that ImmCelz administration caused generation of T regulatory cells and tolerogenic dendritic cells. Both of these cell types have previously been described to possess ability to suppress autoimmunity.

"In 2003, Dr. Weiping Min from the University of Western Ontario and myself published a paper describing the Tolerogenic Loop, in which we were able to perform fully mis-matched cardiac transplants without need for long term immune suppression1." Said Dr. Thomas Ichim, Chief Scientific Officer of the Company. "We are extremely enthusiastic to discover that ImmCelz, which is a personalized immunotherapy can induce similar biological processes and in this case suppress autoimmunity."

Creative Medical Technology Holdings possesses numerous issued patents in the area of cellular therapy including patent no. 10,842,815 covering use of T regulatory cells for spinal disc regeneration, patent no. 9,598,673 covering stem cell therapy for disc regeneration, patent no. 10,792,310 covering regeneration of ovaries using endothelial progenitor cells and mesenchymal stem cells, patent no. 8,372,797 covering use of stem cells for erectile dysfunction, and patent no. 7,569,385 licensed from the University of California covering a novel stem cell type.

"Given that our issued intellectual property covers multi-billion dollar markets, it is critical in our development plans to establish scientific mechanisms of action. By understanding how our products work at a cellular and molecular level, we feel we have an advantage when engaging Big Pharma in discussions for licensing/partnering interactions." Said Timothy Warbington, President and CEO of the Company.

The company intends to publish an update on the overall 2020 activities in the coming weeks.

About Creative Medical Technology Holdings

Creative Medical Technology Holdings, Inc. is a commercial stage biotechnology company specializing in stem cell technology in the fields of urology, neurology and orthopedics and trades on the OTC under the ticker symbol CELZ. For further information about the company, please visitwww.creativemedicaltechnology.com.

Forward Looking Statements

OTC Markets has not reviewed and does not accept responsibility for the adequacy or accuracy of this release. This news release may contain forward-looking statements including but not limited to comments regarding the timing and content of upcoming clinical trials and laboratory results, marketing efforts, funding, etc. Forward-looking statements address future events and conditions and, therefore, involve inherent risks and uncertainties. Actual results may differ materially from those currently anticipated in such statements. See the periodic and other reports filed by Creative Medical Technology Holdings, Inc. with the Securities and Exchange Commission and available on the Commission's website atwww.sec.gov.

Timothy Warbington, CEO[emailprotected] CreativeMedicalHealth.com

Creativemedicaltechnology.comwww.StemSpine.comwww.Caverstem.comwww.Femcelz.com

1 https://www.jimmunol.org/content/170/3/1304

SOURCE Creative Medical Technology Holdings, Inc.

Home

Follow this link:
Creative Medical Technology Holdings files Patent on Induction of Infectious Tolerance by Ex Vivo Reprogrammed Immune Cells Utilizing ImmCelz Cellular...

To Read More: Creative Medical Technology Holdings files Patent on Induction of Infectious Tolerance by Ex Vivo Reprogrammed Immune Cells Utilizing ImmCelz Cellular…
categoriaCardiac Stem Cells commentoComments Off on Creative Medical Technology Holdings files Patent on Induction of Infectious Tolerance by Ex Vivo Reprogrammed Immune Cells Utilizing ImmCelz Cellular… | dataDecember 10th, 2020
Read All

The Technology Behind Bone Marrow Cellular Processing: The PXP System – marketscreener.com

By daniellenierenberg

Cell therapies involve the transfer of live cells into a patient to help treat, prevent or potentially cure diseases. One category of cell therapy focuses specifically on the use of stem cells, or cells within the body that have the potential to replace those that are lost through injury or disease. Their versatility and ability to transform allow them to replace problematic or deactivated cells with new, healthy ones is giving patients around the world a second chance at life.Stem cells are found all throughout the human bodyincluding the skin, muscle tissue and even deep inside bone marrow.

Bone marrow, the spongy substance that fills the inner cavities of our bones, is a rich source ofhematopoietic stem cells. These cells are particularly valuable for their ability to develop into all types of blood cells, including white blood cells, red blood cells and platelets. Due to their unique ability,hematopoietic cells can be used to treat certain types of cancer, such as leukemia and lymphomaand have become a staple in the field of regenerative medicine.

Bone marrow aspirate concentrate(BMAC) is a procedure that collects bone marrow from a patient's body and then concentrates it to create the optimal level of stem cells and other crucial growth factors, which can offer a variety of health benefits that traditional surgical methods simply can't offer. Stem cells and their descendants, known as progenitor cells, combined with other bone marrow cells and platelets, have the potential to restore function when injected directly into the patient's damaged tissue. The BMAC procedure is popularly used by physicians who practice orthopedic surgery, pain management and sports medicine. It has been shown torepair tissue damage, preserving function and strengthand in some cases has even beenused as an alternative for more intensive procedures such as joint and hip replacements.

Bone Marrow Aspirate Concentrate is currently being used to:

While there are many bone marrow concentrate technologies currently out on the market, there are none quite like theThermoGenesis PXPSystem. The PXPSystem is an automated, closed system designed for sterile bone marrow separation and concentration. The automated system utilizes highly sensitive sensors to reduce the amount of red blood cells (RBCs) from the initial bone marrow aspirate, providing physicians with a high-quality final product.Red blood cell contaminationis, by far, the biggest issue physicians encounter when using open, non-automated bone marrow processing systems. When high RBC contamination occurs in the bone marrow concentrate, it can impair cell function and diminish the overall effectiveness of the cell treatments. The PXPSystem is specifically designed to eliminate RBCs contamination head-on, boasting aRBC reduction of over 99 percent.

[Link]

The PXPSystem obtains bone marrow concentrates easily, consistently, and reliably, setting itself apart from any other competitors on the market today. The automated nature of the system eliminates factors created by human error and allows for increased precision and control. It gives its user the ability to harvest a precise volume of cell concentrate from the bone marrow aspirate, while producing consistently high mononuclear cells (MNCs) and CD34+ progenitor cell recoveries.

[Link][Link]

Bone marrow aspirate is collected from the patient through a minimally invasive procedure, usually done under local or general anesthesia. After extraction, the aspirate is transferred into the PXP System and processed in a centrifuge to compartmentalize the aspirate into three separate chambers within the Disposable Cartridge - the central processing chamber, the red blood cell depletion chamber and the harvest chamber. The plasma, nucleated cells and RBCs are all sorted by density to create maximum separation of components. The RBCs are then removed and transferred to the depletion chamber, leaving users with a 6 ml harvest of enriched bone marrow concentrate (containing stem cells, platelets, growth factors) ready to be reintroduced into the patient.

The entire process only takes about twenty minutes from the moment the bone marrow aspirate is placed in the system to the point where it can be reinjected. For added convenience, the automated control module provides users with accurate data tracking and serves as a record for the entire process.

The PXPSystem is a tool for physicians looking for a quick, easy and efficient system for processing bone marrow. It is one of the most innovative systems available on the market and our mission is to make it even better. We are currently working with our partners in the field and evolving our products based on their feedback. Based on their response, we've begun designing a stripped-down version of the PXPSystem that requires less accessories and generates a smaller footprint, while still delivering a high-quality final product. Our applications are being developed with the needs of laboratories and physicians in mind, giving them the resources, they need to better serve their patients.

ThermoGenesis Holdings, Inc. (formerly Cesca Therapeutics Inc.), is a pioneer and market leader in the development and commercialization of automated cell processing technologies for the cell and gene therapy fields. We market a full suite of solutions for automated clinical biobanking, COVID-19 testing, point-of-care applications and large-scale cell processing and manufacturing with a special emphasis on the emerging CAR-T immunotherapy market. We are committed to making the world a healthier place by creating innovative solutions for those in need.

To see our full suiteof automated solutions,please visit the shop portion of our website today.

Disclaimer

Thermogenesis Holdings Inc. published this content on 08 December 2020 and is solely responsible for the information contained therein. Distributed by Public, unedited and unaltered, on 09 December 2020 18:24:01 UTC

Read the original post:
The Technology Behind Bone Marrow Cellular Processing: The PXP System - marketscreener.com

To Read More: The Technology Behind Bone Marrow Cellular Processing: The PXP System – marketscreener.com
categoriaSkin Stem Cells commentoComments Off on The Technology Behind Bone Marrow Cellular Processing: The PXP System – marketscreener.com | dataDecember 9th, 2020
Read All

City of Hope Doctors Present Innovative Therapies to Better Treat Blood Cancers at American Society of Hematology Virtual Conference – BioSpace

By daniellenierenberg

Dec. 8, 2020 16:00 UTC

DUARTE, Calif.--(BUSINESS WIRE)-- City of Hope doctors participated in research presented at the American Society of Hematology (ASH) virtual meeting, Dec. 5 to 8, that are helping advance the treatment of blood cancers, including one study which demonstrated allogeneic stem cell transplants do have a survival benefit for older adults with myelodysplastic syndromes (MDS) compared with current standard of care.

The study is the largest and most definitive trial to demonstrate the benefits of an allogeneic stem cell transplantation for older adults with MDS, and is just one of numerous studies that City of Hope doctors help lead with the aim of finding more effective treatments of various blood cancers.

This years ASH conference truly showcases City of Hopes leadership in finding more effective treatments for blood cancers, said Stephen J. Forman, M.D., director of City of Hopes Hematologic Malignancies Research Institute. Whether its finding innovative treatments to make it possible for more older adults with cancer to receive stem cell transplants, or pursuing therapies that are more effective with fewer side effects, City of Hope doctors continue to lead innovative research in blood cancers and other hematological malignancies.

City of Hope doctors are leading novel clinical trials for patients with leukemia, lymphoma and other blood cancers.

Multicenter clinical trial led by City of Hope makes stem cell transplant possible for older adults with myelodysplastic syndromes

Allogeneic hematopoietic cell transplantation, or stem cell/bone marrow transplants, for blood cancers that have recurred or are difficult to treat can put the disease into long-term remission and provide a potential cure. The therapy establishes a new, disease-free blood and immune system by transplanting healthy blood stem cells from a donor into a cancer patient after destroying the patients unhealthy bone marrow.

City of Hope and other institutions started this therapy in 1976, primarily for younger patients with blood cancers. The therapy involves using high-dose chemotherapy and/or radiotherapy to make room for a person to receive new stem cells; serious side effects can also occur after transplant. Because of these and other considerations, for many years, older adults with blood cancers have not been considered for transplants.

City of Hope has been leading the way to make transplants possible for more older adults with various cancers.

A new study presented at ASH demonstrates transplants are now a possibility and beneficial for patients with myelodysplastic syndromes (MDS). Approximately 13,000 people in the United States each year are diagnosed with MDS, an umbrella term describing several blood disorders that begin in the bone marrow.

Co-led by City of Hopes Ryotaro Nakamura, M.D., director of City of Hopes Center for Stem Cell Transplantation, the study is the largest and first trial to demonstrate the benefits of an allogeneic stem cell transplantation for older adults with MDS as opposed to the standard of care currently provided to these patients. The multicenter trial for patients aged 50 to 75 with serious MDS compared how long transplant patients survived with those who didnt receive a transplant, as well as disease progression and quality of life. The transplant therapy used reduced-intensity conditioning, which delivers less chemotherapy and radiation before transplant and relies more on the anti-tumor effects of the therapy.

Between 2014 and 2018, the study enrolled 384 participants at 34 cancer centers nationwide. It included 260 patients who were able to find a donor for a transplant, as well as 124 patients who did not find a donor for a transplant.

After three years, nearly 48% of MDS patients who found a donor for transplant had survived compared with about 27% of those patients who didnt have a donor for transplant and received current hypomethylating therapy, a type of chemotherapy that is current standard of care for MDS. Leukemia-free survival which is relevant because myelodysplastic syndrome can develop into leukemia was also greater in transplant recipients after three years nearly 36% compared with about 21% for those who did not have a transplant.

There was a large and significant improvement in survival for patients who had a transplant, Nakamura said. The benefit margin in overall survival was over 20% (21.3%) for patients who had a transplant.

In addition, quality of life was the same for both transplant and nontransplant patients. There were no clinically significant differences when taking such measurements as physical and mental competency scores.

This is an extremely exciting study because it provides evidence that stem cell transplant is highly beneficial for older patients with serious MDS and will likely be practice-changing for this group, Nakamura said. Before, many doctors wouldnt even consider a transplant for this group of patients, but our study demonstrates that these patients should be evaluated for a transplant, which could potentially provide a cure for their disease.

The trial is part of Blood and Marrow Transplant Clinical Trials Network, which was established with support from the National Heart, Lung, and Blood Institute and National Cancer Institute, because of a critical need for multi-institutional clinical trials focused directly on improving survival for patients undergoing hematopoietic cell transplantation.

Updated results from a study of a potential new CAR T cell therapy, liso-cel, for relapsed/refractory chronic lymphocytic leukemia

Patients with relapsed or difficult-to-treat chronic lymphocytic leukemia/small lymphocytic leukemia continue to do well 24 months after receiving lisocabtagene maraleucel (liso-cel) chimeric antigen receptor (CAR) T cells, according to Tanya Siddiqi, M.D., director of City of Hopes Chronic Lymphocytic Leukemia (CLL) Program, which is part of the Toni Stephenson Lymphoma Center. She presented these findings during the 2020 ASH annual meeting virtual conference.

Overall, 23 and 22 patients were evaluated for safety and efficacy in this phase 1 trial, respectively. Their median age was 66 and they had received a median of four prior therapies; all patients had received prior ibrutinib, which is one of the standard of care drugs for CLL.

The overall response rate, or patients whose CLL diminished after liso-cel CAR T cell therapy, was 82%, and 45% of patients also had complete responses, or remissions.

After 15 months of treatment, 53% of patients maintained their responses to the therapy, and six patients continued to be in remission. After 18 months, 50% of patients maintained their response, and there were five remissions. All seven patients who completed the 24-month study maintained their response. Median progression-free survival, or the amount of time the cancer did not worsen during and after treatment, was 18 months.

As early as 30 days after receiving liso-cel, about 75% of 20 patients evaluated for the therapys efficacy had undetectable minimal residual disease (MRD, or no detectable traces of cancer) in the blood and 65% had undetectable MRD in the marrow.

These are remarkable results for a group of patients that prior to this CAR T treatment had no good treatment options if they had already progressed on novel targeted therapies like ibrutinib and venetoclax, Siddiqi said. Liso-cel is providing new hope for CLL patients, and the remissions are also long lasting with few serious side effects.

Because of its safety and effectiveness in clinical trials, liso-cel, which targets the CD19 protein on cancer cells, may soon receive approval from the Food and Drug Administration as a commercial therapy for relapsed or refractory B cell lymphoma. City of Hope is also taking part in the phase 2 trial of liso-cel in CLL patients.

Consolidation treatment with brentuximab vedotin/nivolumab after auto stem cell transplant for relapsed/refractory Hodgkin lymphoma patients leads to 18-month progression free-survival

Patients who have Hodgkin lymphoma that has not been cured by initial treatment will usually receive more chemotherapy and an autologous hematopoietic cell transplant. But even after a stem cell transplant, recurrence of the lymphoma is possible.

This multicenter phase 2 clinical trial, led by City of Hope, examined whether treating patients with brentuximab vedotin (BV), an antibody-based treatment that targets delivery of chemotherapy only to Hodgkin lymphoma cells, and nivolumab, which works by blocking the PD-1 immune checkpoint pathway that Hodgkin lymphoma hijacks to evade the immune system, was safe and effective as consolidation to prevent disease recurrence after transplant in patients with high-risk Hodgkin lymphoma.

Alex Herrera, M.D., assistant professor in City of Hope's Department of Hematology & Hematopoietic Cell Transplantation, discussed 19-month progression-free survival for trial participants, as well as overall survival, safety and response rates during ASH.

Fifty-nine patients were enrolled in the trial. Patients received the consolidation treatment starting a median of 54 days after transplant, and received a median of eight cycles of the therapy. The 19-month progression-free survival in patients was 92%, and overall survival in patients was 98%. Only three patients relapsed after receiving BV and nivolumab consolidation after transplant, and one patient passed away due to PCP pneumonia unrelated to the study treatment.

The most common sides effects related to the treatment were peripheral neuropathy (51%), neutropenia (42%), fatigue (37%) and diarrhea (29%).

Using brentuximab vedotin and nivolumab after transplant is a promising approach for preventing relapse of Hodgkin lymphoma after transplant that merits further study, Herrera said.

City of Hope doctors published research on innovative approaches against graft-versus-host-disease

Historically, a bone marrow/stem cell transplant is more likely to be effective if patients have a donor who is a 100% match, or as close to that as possible. Finding that perfect match is more difficult for African Americans, Latinos, Asian Americans and other ethnic groups as bone marrow donor registries are still trying to increase the number of non-white donors.

Transplant doctors are also looking for ways to make the transplant more effective if a perfect match cant be found; donors who are not a 100% or close match are referred to as mismatched unrelated. One major barrier to these transplants being effective is a condition known as graft-versus-host-disease (GVHD). The condition, which is more common in transplants involving mismatched donors, is caused by donated cells that recognize the recipient's cells as foreign and attack them, damaging the skin, eyes, lungs, liver and digestive tract.

In order to help prevent GVHD, therapies can be given to patients after transplant. A prospective clinical trial at City of Hope examined whether using cyclophosphamide after an infusion of stem cells could prevent GVHD.

Thirty-eight patients were enrolled in the trial, which is the first to examine the use of cyclophosphamide in transplants with a mismatched unrelated donor.

With a median follow-up period of 18 months, 87% of patients had survived, and the majority did not relapse or develop severe GVHD.

During the first 100 days post-transplant, acute GVHD incidence was around 50%; most cases were mild to moderate while severe GVHD was only 15%. A year after transplant, 52% of patients had some form of chronic GVHD, but only 3% had moderate or severe chronic GVHD.

The trial also examined toxicities, infections and immune system recovery after the transplant.

Our study showed that patients who received a transplant from a mismatched unrelated donor using post-transplant cyclophosphamide had a comparable outcome to what we see in matched donor transplants with few cases of serious GVHD cases, said Monzr Al Malki, M.D., associate clinical professor of City of Hopes Department of Hematology & Hematopoietic Cell Transplantation and director of unrelated donor BMT and haploidentical transplant programs. Our data support further development of this therapy in transplant patients who would otherwise have no suitable donors and limited treatment options.

City of Hopes Anthony Stein, M.D., also led a pilot trial that examined whether a new treatment approach may reduce the rate of GVHD in patients with acute myelogenous leukemia (AML) who have received an allogeneic hematopoietic cell transplant. Although a transplant can put AML into remission, GVHD remains the main serious complication after transplant, impacting a patients quality of life and increasing health care costs.

Eighteen patients between the ages of 18 and 60 enrolled in the trial. Each patient received a novel conditioning regimen of total marrow and lymphoid irradiation, which targets a patients marrow and lymph nodes while reducing radiation to other parts of the body, and cyclophosphamide, a therapy that suppresses the immune system. Tacrolimus was also provided to patients.

Radiation was delivered twice daily on the fourth day before transplant and on the day of transplant without chemotherapy. Cyclophosphamide was given to patients on the third and fourth day after transplant.

There were mild to moderate toxicities. Acute GVHD developed in two patients and only one patient developed the most serious GVHD. Five patients developed mild chronic GVHD. Nearly 60% of patients had not developed GVHD or the condition had not worsened after a year.

After a year, all patients had survived, and 83% had not relapsed. After two years, nearly 86% of patients had survived, and the relapse number remained the same.

The therapeutic approach did not interfere with the transplant process as all patients engrafted, or the donors cells started to produce bone marrow and immune cells.

This is welcome news for AML patients who receive an allogeneic transplant and are concerned about developing GVHD, said Stein, associate director of City of Hope's Gehr Family Center for Leukemia Research. Our study demonstrated that using this new combination of therapies is safe and feasible and does not interfere with the engraftment process.

In addition, after a year, patients in this trial were no longer taking immunosuppressive therapy and had an improved quality of life, Stein said. He added that because many of the patients didnt have GVHD, health care costs after a year were also lower than if patients required treatment for the condition.

City of Hope now plans to start a larger phase 2 trial using this treatment approach.

Bispecific antibodies continue to show promise against blood cancers

Mosunetuzumab is a promising new immunotherapy for the treatment of relapsed/refractory non-Hodgkin lymphoma (NHL) that recently received breakthrough therapy designation from the Food and Drug Administration. The designation is intended to expedite the development and review of drugs for serious or life-threatening diseases.

Elizabeth Budde, M.D., Ph.D., assistant professor in City of Hope's Department of Hematology & Hematopoietic Cell Transplantation, is leading clinical trials that are showing how well mosunetuzumab works against NHL. At this years ASH, one trial discussed is how the therapy is working for patients with follicular lymphoma.

Mosunetuzumab is a bispecific antibody targeting both CD3 (a protein found on the surface on T cells) and CD20 on the surface of B cells. The therapy redirects T cells to engage and eliminate malignant B cells.

Sixty-two patients, ranging in age from 27 to 85 years old, were enrolled in the trial for follicular lymphoma. They received intravenous doses of mosunetuzumab.

Sixty-eight percent of the patients responded to the therapy, and 50% had a complete response, or went into remission. Consistent complete response rates occurred even in patients with double refractory disease and patients who received prior CAR T cell therapy. Median duration of response was approximately 20 months, and media progression free survival was nearly one year.

Side effects were reported in 60 patients with serious adverse effects in 22 patients. The most frequently reported serious side effects were hypophosphatemia, an electrolyte disorder, and neutropenia, a condition caused by low numbers of white blood cells. Fourteen patients experienced cytokine release syndrome, but none required extensive treatment for it.

Neurological side effects included headache, insomnia and dizziness.

Patients in this trial had high response rates and their disease remained in control for a year, Budde said. This is remarkable because many patients were no longer responding to other therapies.

About City of Hope

City of Hope is an independent biomedical research and treatment center for cancer, diabetes and other life-threatening diseases. Founded in 1913, City of Hope is a leader in bone marrow transplantation and immunotherapy such as CAR T cell therapy. City of Hopes translational research and personalized treatment protocols advance care throughout the world. Human synthetic insulin and numerous breakthrough cancer drugs are based on technology developed at the institution. A National Cancer Institute-designated comprehensive cancer center and a founding member of the National Comprehensive Cancer Network, City of Hope has been ranked among the nations Best Hospitals in cancer by U.S. News & World Report for 14 consecutive years. Its main campus is located near Los Angeles, with additional locations throughout Southern California. For more information about City of Hope, follow us on Facebook, Twitter, YouTube or Instagram.

View source version on businesswire.com: https://www.businesswire.com/news/home/20201208005458/en/

See the original post:
City of Hope Doctors Present Innovative Therapies to Better Treat Blood Cancers at American Society of Hematology Virtual Conference - BioSpace

To Read More: City of Hope Doctors Present Innovative Therapies to Better Treat Blood Cancers at American Society of Hematology Virtual Conference – BioSpace
categoriaSkin Stem Cells commentoComments Off on City of Hope Doctors Present Innovative Therapies to Better Treat Blood Cancers at American Society of Hematology Virtual Conference – BioSpace | dataDecember 9th, 2020
Read All

Evotec and Sartorius Partner with Start-Up Curexsys on IPSC-Based Therapeutic Exosome Approach – BioSpace

By daniellenierenberg

HAMBURG, GERMANY / ACCESSWIRE / December 9, 2020 / Evotec SE (Frankfurt Stock Exchange: EVT, MDAX/TecDAX, ISIN: DE0005664809) and the life science company Sartorius announced today that they have entered into a partnership with the recently established Curexsys GmbH, a Goettingen, Germany-based technology leader specialising in the emerging field of therapeutic exosomes.

Curexsys delivers a proprietary isolation technology for exosomes based on a traceless immune-affinity process. This process is different from commonly used antibody-based processes and enables the company to overcome a key hurdle in exosome preparation, i.e. remaining antibodies in the final preparation. Curexsys is founded by Herbert Stadler, a serial biotech entrepreneur, and Jens Gruber, a former group leader of Medical RNA Biology who is going to lead Curexsys as Chief Scientific Officer.

Under the terms of the agreement, Evotec and Curexsys will collaborate with the production of Human Mesenchymal Stem Cells ("MSCs"), which serve as a source for exosomes. These are small vesicles that are naturally released from a cell. They contain proteins, nucleic acids and metabolites, which carry information from secreting to receiving cells. Exosomes have immunomodulatory and anti-inflammatory effects, which makes them a promising novel approach for innovative regenerative therapies, as therapeutics in age-related conditions, but also for diagnostic purposes. Curexsys aims to develop targeted approaches for a variety of diseases, initially focusing on Sicca Syndrome, commonly known as "dry eye", an inflammatory condition affecting 14% to 17% of the adult population for whom there is currently no effective treatment available.

The collaboration combines Evotec's industry-leading induced Pluripotent Stem Cell ("iPSC") platform with Curexsys' proprietary technology to selectively isolate exosomes. Sartorius will support Curexsys to set up a GMP-compliant and scalable manufacturing platform.

Furthermore, Evotec and Sartorius have formed a consortium to jointly invest in Curexsys' 8.2 m seed financing round with Evotec acquiring an equity stake of approx. 37% in Curexsys and Sartorius of approx. 21%.

Dr Cord Dohrmann, Chief Scientific Officer of Evotec, commented: "Therapeutic exosomes hold significant promise for regenerative medicine and beyond. Steadily increasing evidence suggests that exosomes derived from stem cells can aid tissue repair and engineering vesicles could carry drugs to diseased tissues. These efforts have been held back by a dearth of standardised methods to isolate and study vesicles. Combining Evotec's industrial-grade iPSC and PanOmics platforms with Curexsys' proprietary exosome isolation technology and Sartorius' ability to translate these into a fully GMP-compliant process is a unique opportunity to build the leading exosome company in the industry."

Dr Ren Faber, Head of Sartorius' Bioprocess Solutions Division, said: "With our integrated portfolio of manufacturing solutions Sartorius is the 'go-to' partner for developers of such new modalities when it comes to implementing GMP-compliant, flexible production processes. We are very much looking forward to contributing our proven and scalable technology platform to Curexsys process and help them achieve their next milestones faster."

Dr Jens Gruber, Chief Scientific Officer of Curexsys, added: "We are very happy that we were able to form such a consortium with industry leaders in their field. This unique constellation gives Curexsys an optimal starting position to advance our technologies for highly specific isolation of exosomes and to rapidly approach therapeutic applications."

About Exosomes and CurexsysExosomes are extracellular, nanoscale vesicles that are actively secreted from cells to transfer information to neighbouring cells and distant tissues. Exosomes carry information of secreting to receiving cells utilising proteins, nucleic acids and metabolites. MSC-derived exosomes function as paracrine mediators that limit inflammation, reprogram immune cells, and activate endogenous repair pathways, recapitulating to a large extent the therapeutic effects of parental MSCs. Exosomes hold potential as diagnostics, as therapeutics and cosmeceuticals. More than 100 clinical trials involving exosomes are currently ongoing, demonstrating their broad therapeutic potential.

Curexsys is a Goettingen, Germany-based start-up company founded by molecular biologist Dr Jens Gruber and the biochemist and serial entrepreneur Dr Herbert Stadler. With a scalable and semi-automated proprietary system for traceless immune-affinity cell sorting, Curexsys aims to become the leading supplier for clinical grade exosomes in regenerative medicine and anti-aging therapies.

About Evotec and iPSCInduced pluripotent stem cells (also known as iPS cells or iPSCs) are a type of pluripotent stem cell that can be generated directly from adult cells. Pluripotent stem cells hold great promise in the field of regenerative medicine. Because they can propagate indefinitely, as well as give rise to every other cell type in the body (such as neurons, heart, pancreatic and liver cells), they represent a single source of cells that could be used to replace those lost to damage or disease.

Evotec has built an industrialised iPSC infrastructure that represents one of the largest and most sophisticated iPSC platforms in the industry. Evotec's iPSC platform has been developed over the last years with the goal to industrialise iPSC-based drug screening in terms of throughput, reproducibility and robustness to reach the highest industrial standards, and to use iPSC-based cells in cell therapy approaches via the Company's proprietary EVOcells platform.

ABOUT SARTORIUSThe Sartorius Group is a leading international partner of life science research and the biopharmaceutical industry. With innovative laboratory instruments and consumables, the Group's Lab Products & Services Division concentrates on serving the needs of laboratories performing research and quality control at pharma and biopharma companies and those of academic research institutes. The Bioprocess Solutions Division with its broad product portfolio focusing on single-use solutions helps customers to manufacture biotech medications and vaccines safely and efficiently. The Group has been annually growing by double digits on average and has been regularly expanding its portfolio by acquisitions of complementary technologies. In fiscal 2019, the company earned sales revenue of some 1.83 billion euros. At the end of 2019, more than 9,000 people were employed at the Group's approximately 60 manufacturing and sales sites, serving customers around the globe.

SARTORIUS CONTACTPetra KirchhoffHead of Corporate Communications and Investor Relations+49 (0)551.308.3684 petra.kirchhoff@sartorius.comwww.sartorius.com

ABOUT EVOTEC SEEvotec is a drug discovery alliance and development partnership company focused on rapidly progressing innovative product approaches with leading pharmaceutical and biotechnology companies, academics, patient advocacy groups and venture capitalists. We operate worldwide and our more than 3,400 employees provide the highest quality stand-alone and integrated drug discovery and development solutions. We cover all activities from target-to-clinic to meet the industry's need for innovation and efficiency in drug discovery and development (EVT Execute). The Company has established a unique position by assembling top-class scientific experts and integrating state-of-the-art technologies as well as substantial experience and expertise in key therapeutic areas including neuronal diseases, diabetes and complications of diabetes, pain and inflammation, oncology, infectious diseases, respiratory diseases, fibrosis, rare diseases and women's health. On this basis, Evotec has built a broad and deep pipeline of more than 100 co-owned product opportunities at clinical, pre-clinical and discovery stages (EVT Innovate). Evotec has established multiple long-term alliances with partners including Bayer, Boehringer Ingelheim, Bristol Myers Squibb, CHDI, Novartis, Novo Nordisk, Pfizer, Sanofi, Takeda, UCB and others. For additional information please go to http://www.evotec.com and follow us on Twitter @Evotec.

FORWARD LOOKING STATEMENTSInformation set forth in this press release contains forward-looking statements, which involve a number of risks and uncertainties. The forward-looking statements contained herein represent the judgement of Evotec as of the date of this press release. Such forward-looking statements are neither promises nor guarantees, but are subject to a variety of risks and uncertainties, many of which are beyond our control, and which could cause actual results to differ materially from those contemplated in these forward-looking statements. We expressly disclaim any obligation or undertaking to release publicly any updates or revisions to any such statements to reflect any change in our expectations or any change in events, conditions or circumstances on which any such statement is based.

SOURCE: Evotec AG via EQS Newswire

View source version on accesswire.com:https://www.accesswire.com/620112/Evotec-and-Sartorius-Partner-with-Start-Up-Curexsys-on-IPSC-Based-Therapeutic-Exosome-Approach

Read more:
Evotec and Sartorius Partner with Start-Up Curexsys on IPSC-Based Therapeutic Exosome Approach - BioSpace

To Read More: Evotec and Sartorius Partner with Start-Up Curexsys on IPSC-Based Therapeutic Exosome Approach – BioSpace
categoriaIPS Cell Therapy commentoComments Off on Evotec and Sartorius Partner with Start-Up Curexsys on IPSC-Based Therapeutic Exosome Approach – BioSpace | dataDecember 9th, 2020
Read All

RA Capital backs Oxford spinout PepGen with a $45M Series A, seeking to treat Duchenne and other similar diseases – Endpoints News

By daniellenierenberg

Less than two months after Peter Kolchinsky and Raj Shah announced a new $461 million fund, the partners at RA Capital Management appear to have made another investment.

RA is headlining a $45 million Series A round for the Oxford, UK-based biotech PepGen, which focuses on severe neuromuscular diseases like Duchenne muscular dystrophy. The company will use the funding to advance a slate of what theyre calling cell-penetrating peptides combined with some of their proprietary conjugates into the clinic.

We believe PepGens PPMOs have enormous potential for the treatment of severe neuromuscular and cardiac disorders, RA venture partner Ramin Farzaneh-Far told Endpoints News in an email. The financing reflects our confidence, and that of our syndicate partners, in the technology.

Oxford Sciences Innovation, PepGens seed investor, also participated in the round, as well as the University of Oxford and CureDuchenne Ventures. Wednesdays cash will also allow PepGen to build out a corporate team in the new Boston headquarters and expand the R&D hub in the UK, Farzaneh-Far said.

The move from RA comes shortly after Shah told Endpoints News in October that the cash for its Nexus I life sciences fund, roughly $300 million, was churned through at a relatively rapid pace. In just 15 months of investment, RA had spent about 80% of their fund, which prompted the Nexus II raise.

Though the new fund built off largely the first, the cash pools remain separate. Farzaneh-Far declined to comment to which Nexus fund Wednesdays investment belonged.

PepGen itself was spun out of Oxford in 2018 in order to further develop the peptides at the heart of its research. The biotech says that the cell-penetrating nature of the peptides, when conjugated with phosphorodiamidate morpholino oligomers or PPMOs, could allow for enhanced delivery of oligonucleotides to key tissues, while also improving safety compared to other medicines.

Specifically, PepGen is hoping to leapfrog the exon-skipping approaches already available in order to restore dystrophin expression in DMD patients, CEO and co-founder Caroline Godfrey said in a statement.

One of the areas where PepGen says its programs are beneficial is in the cardiovascular comorbidities that often accompany DMD. Because the peptides can penetrate cells, the company says its drug candidates strongly distribute to cardiac tissue.

With the recent approvals of treatments that generate small increases in dystrophin in skeletal muscle, patients may be ambulating and living longer, but this in turn is expected to shift the burden of morbidity and mortality towards an epidemic of heart disease, which is not adequately addressed by current DMD therapies, Farzaneh-Far said in an earlier statement.

This past summer, the FDA green-lit the third DMD drug when Japanese developer NS Pharma gained an accelerated approval for viltolarsen. That followed a wild back-and-forth between regulators and Sarepta, who originally rejected their DMD candidate in August 2019 but reversed course later that year.

The agency, however, still doesnt have full efficacy data on any of the three approved DMD drugs, as the OKs were all based on the same disease biomarker.

See original here:
RA Capital backs Oxford spinout PepGen with a $45M Series A, seeking to treat Duchenne and other similar diseases - Endpoints News

To Read More: RA Capital backs Oxford spinout PepGen with a $45M Series A, seeking to treat Duchenne and other similar diseases – Endpoints News
categoriaCardiac Stem Cells commentoComments Off on RA Capital backs Oxford spinout PepGen with a $45M Series A, seeking to treat Duchenne and other similar diseases – Endpoints News | dataDecember 9th, 2020
Read All

Treatment with Investigational LentiGlobin Gene Therapy for Sickle Cell Disease (bb1111) Results in Complete Elimination of SCD-Related Severe…

By daniellenierenberg

CAMBRIDGE, Mass.--(BUSINESS WIRE)--bluebird bio, Inc. (Nasdaq: BLUE) announced that new data from Group C of its ongoing Phase 1/2 HGB-206 study of investigational LentiGlobin gene therapy (bb1111) for adult and adolescent patients with sickle cell disease (SCD) show a complete elimination of severe VOEs and VOEs between six and 24 months of follow-up. These data are being presented at the 62nd American Society of Hematology (ASH) Annual Meeting and Exposition, taking place virtually from December 5-8, 2020.

Now with more than two years of data, we continue to observe promising results in our studies of LentiGlobin for SCD that further illustrate its potential to eliminate the symptoms and devastating complications of sickle cell disease. Consistently achieving the complete resolution of severe vaso-occlusive events (VOEs) and VOEs between Month 6 and Month 24 follow-up is unprecedented other than with allogeneic stem cell transplantation. Importantly, our data show the potential for LentiGlobin for SCD to produce fundamentally disease-modifying effects with sustained pancellular distribution of gene therapy-derived anti-sickling HbAT87Q and improvement of key markers of hemolysis that approach normal levels, said David Davidson, M.D., chief medical officer, bluebird bio. In addition to these clinical outcomes, for the first time with a gene therapy we now have patient-reported outcomes through the validated PROMIS-57 tool, showing reduction in pain intensity at 12 months after treatment with LentiGlobin for SCD. These results provide insight into the potential real-life impact LentiGlobin for SCD may offer patients.

SCD is a serious, progressive and debilitating genetic disease. In the U.S., the median age of death for someone with sickle cell disease is 43 46 years. SCD is caused by a mutation in the -globin gene that leads to the production of abnormal sickle hemoglobin (HbS). HbS causes red blood cells to become sickled and fragile, resulting in chronic hemolytic anemia, vasculopathy and unpredictable, painful VOEs.

In the HGB-206 study of LentiGlobin for SCD, VOEs are defined as episodes of acute pain with no medically determined cause other than a vaso-occlusion, lasting more than two hours and severe enough to require care at a medical facility. This includes acute episodes of pain, acute chest syndrome (ACS), acute hepatic sequestration and acute splenic sequestration. A severe VOE requires a 24-hour hospital stay or emergency room visit or at least two visits to a hospital or emergency room over a 72-hour period, with both visits requiring intravenous treatment.

LentiGlobin for SCD was designed to add functional copies of a modified form of the -globin gene (A-T87Q-globin gene) into a patients own hematopoietic (blood) stem cells (HSCs). Once patients have the A-T87Q-globin gene, their red blood cells can produce anti-sickling hemoglobin (HbAT87Q) that decreases the proportion of HbS, with the goal of reducing sickled red blood cells, hemolysis and other complications.

As a hematologist, I regularly see the debilitating effects of pain events caused by sickle cell disease. Pain has an overwhelmingly negative impact on many facets of my patients lives and can lead to prolonged hospitalizations, said presenting study author Alexis A. Thompson, M.D., professor of pediatrics at Northwestern University Feinberg School of Medicine and head of hematology at Ann and Robert H. Lurie Childrens Hospital of Chicago. The results observed with LentiGlobin gene therapy for SCD include the complete elimination of severe vaso-occlusive pain episodes, which is certainly clinically meaningful, but also for the first time, we have documented patients reporting that they are experiencing improved quality of life. This degree of early clinical benefit is extraordinarily rewarding to observe as a provider."

As of the data cut-off date of August 20, 2020, a total of 44 patients have been treated with LentiGlobin for SCD in the HGB-205 (n=3) and HGB-206 (n=41) clinical studies. The HGB-206 total includes: Groups A (n=7), B (n=2) and C (n=32).

HGB-206: Group C Updated Efficacy Results

The 32 patients treated with LentiGlobin for SCD gene therapy in Group C of HGB-206 had up to 30.9 months of follow-up (median of 13.0; min-max: 1.1 30.9 months).

In patients with six or more months of follow-up whose hemoglobin fractions were available (n=22), median levels of gene therapy-derived anti-sickling hemoglobin, HbAT87Q, were maintained with HbAT87Q contributing at least 40% of total hemoglobin at Month 6. At last visit reported, total hemoglobin ranged from 9.6 15.1 g/dL and HbAT87Q levels ranged from 2.7 8.9 g/dL. At Month 6, the production of HbAT87Q was associated with a reduction in the proportion of HbS in total hemoglobin; median HbS was 50% and remained less than 60% at all follow-up timepoints. All patients in Group C were able to stop regular blood transfusions by three months post-treatment and remain off transfusions as of the data cut-off.

Nineteen patients treated in Group C had a history of severe VOEs, defined as at least four severe VOEs in the 24 months prior to informed consent (annualized rate of severe VOE min-max: 2.0 10.5 events) and at least six months follow-up after treatment with LentiGlobin for SCD. There have been no reports of severe VOEs in these Group C patients following treatment with LentiGlobin for SCD. In addition, all 19 patients had a complete resolution of VOEs after Month 6.

Hemolysis Markers

In SCD, red blood cells become sickled and fragile, rupturing more easily than healthy red blood cells. The breakdown of red blood cells, called hemolysis, occurs normally in the body. However, in sickle cell disease, hemolysis happens too quickly due to the fragility of the red blood cells, which results in hemolytic anemia.

Patients treated with LentiGlobin for SCD in Group C demonstrated near-normal levels in key markers of hemolysis, which are indicators of the health of red blood cells. Lab results assessing these indicators were available for the majority of the 25 patients with 6 months of follow-up.

The medians for reticulocyte counts (n=23), lactate dehydrogenase (LDH) levels (n=21) and total bilirubin (n=24) continued to improve compared to screening values and stabilized by Month 6. In patients with Month 24 data (n=7), these values approached the upper limit of normal by Month 24. These results continue to suggest that treatment with LentiGlobin for SCD may improve biological markers to near-normal levels for SCD.

Pancellularity

As previously reported, assays were developed by bluebird bio to enable the detection of HbAT87Q and HbS protein in individual red blood cells, as well as to assess if HbAT87Q was pancellular, or present throughout all of a patients red blood cells. In 25 patients with at least six months of follow-up, on average, more than 80% of red blood cells contained HbAT87Q, suggesting near-complete pancellularity of HbAT87Q distribution and with pancellularity further increasing over time.

HGB-206: Improvements in Health-Related Quality of Life

Health-related quality of life (HRQoL) findings in Group C patients treated with LentiGlobin for SCD in the HGB-206 study were generated using the Patient Reported Outcomes Measurement Information System 57 (PROMIS-57), a validated instrument in SCD.

Data assessing pain intensity experienced by nine Group C patients were analyzed according to baseline pain intensity scores relative to the general population normative value: 2.6 on a scale of 0-10, where 10 equals the most intense pain. Data were assessed at baseline, Month 6 and Month 12.

Of the five patients with baseline scores worse than the population normative value average, four demonstrated clinically meaningful reductions in pain intensity at Month 12; the group had a mean score of 6.0 at baseline and a mean score of 2.4 at Month 12. Of the four patients with better than or near population normative values at baseline, two reported improvement and two remained stable with a mean score of 2.3 at baseline and 0.8 at Month 12.

HGB-206: Group C Safety Results

As of August 20, 2020, the safety data from Group C patients in HGB-206 remain generally consistent with the known side effects of hematopoietic stem cell collection and myeloablative single-agent busulfan conditioning, as well as underlying SCD. One non-serious, Grade 2 adverse event (AE) of febrile neutropenia was considered related to LentiGlobin for SCD. There were no serious AEs related to LentiGlobin for SCD.

One patient with significant baseline SCD-related and cardiopulmonary disease died 20 months post-treatment; the treating physician and an independent monitoring committee agreed his death was unlikely related to LentiGlobin for SCD and that SCD-related cardiac and pulmonary disease contributed.

LentiGlobin for SCD Data at ASH

The presentation of HGB-206 Group C results and patient reported outcomes research are now available on demand on the ASH conference website:

About HGB-206

HGB-206 is an ongoing, Phase 1/2 open-label study designed to evaluate the efficacy and safety of LentiGlobin gene therapy for sickle cell disease (SCD) that includes three treatment cohorts: Groups A (n=7), B (n=2) and C (n=32). A refined manufacturing process designed to increase vector copy number (VCN) and further protocol refinements made to improve engraftment potential of gene-modified stem cells were used for Group C. Group C patients also received LentiGlobin for SCD made from HSCs collected from peripheral blood after mobilization with plerixafor, rather than via bone marrow harvest, which was used in Groups A and B of HGB-206.

About LentiGlobin for SCD (bb1111)

LentiGlobin gene therapy for sickle cell disease (bb1111) is an investigational treatment being studied as a potential treatment for SCD. bluebird bios clinical development program for LentiGlobin for SCD includes the completed Phase 1/2 HGB-205 study, the ongoing Phase 1/2 HGB-206 study, and the ongoing Phase 3 HGB-210 study.

The U.S. Food and Drug Administration granted orphan drug designation, fast track designation, regenerative medicine advanced therapy (RMAT) designation and rare pediatric disease designation for LentiGlobin for SCD.

LentiGlobin for SCD received orphan medicinal product designation from the European Commission for the treatment of SCD, and Priority Medicines (PRIME) eligibility by the European Medicines Agency (EMA) in September 2020.

bluebird bio is conducting a long-term safety and efficacy follow-up study (LTF-307) for people who have participated in bluebird bio-sponsored clinical studies of LentiGlobin for SCD. For more information visit: https://www.bluebirdbio.com/our-science/clinical-trials or clinicaltrials.gov and use identifier NCT04628585 for LTF-307.

LentiGlobin for SCD is investigational and has not been approved in any geography.

About bluebird bio, Inc.

bluebird bio is pioneering gene therapy with purpose. From our Cambridge, Mass., headquarters, were developing gene and cell therapies for severe genetic diseases and cancer, with the goal that people facing potentially fatal conditions with limited treatment options can live their lives fully. Beyond our labs, were working to positively disrupt the healthcare system to create access, transparency and education so that gene therapy can become available to all those who can benefit.

bluebird bio is a human company powered by human stories. Were putting our care and expertise to work across a spectrum of disorders: cerebral adrenoleukodystrophy, sickle cell disease, -thalassemia and multiple myeloma, using gene and cell therapy technologies including gene addition, and (megaTAL-enabled) gene editing.

bluebird bio has additional nests in Seattle, Wash.; Durham, N.C.; and Zug, Switzerland. For more information, visit bluebirdbio.com.

Follow bluebird bio on social media: @bluebirdbio, LinkedIn, Instagram and YouTube.

LentiGlobin and bluebird bio are trademarks of bluebird bio, Inc.

Forward-Looking Statements

This release contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Any forward-looking statements are based on managements current expectations of future events and are subject to a number of risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in or implied by such forward-looking statements. These risks and uncertainties include, but are not limited to: regarding the potential for LentiGlobin for Sickle Cell Disease to treat SCD; the risk that the efficacy and safety results from our prior and ongoing clinical trials will not continue or be repeated in our ongoing or planned clinical trials; the risk that the current or planned clinical trials of our product candidates will be insufficient to support regulatory submissions or marketing approval in the United States and European Union; the risk that regulatory authorities will require additional information regarding our product candidates, resulting in delay to our anticipated timelines for regulatory submissions, including our applications for marketing approval; and the risk that any one or more of our product candidates, will not be successfully developed, approved or commercialized. For a discussion of other risks and uncertainties, and other important factors, any of which could cause our actual results to differ from those contained in the forward-looking statements, see the section entitled Risk Factors in our most recent Form 10-Q, as well as discussions of potential risks, uncertainties, and other important factors in our subsequent filings with the Securities and Exchange Commission. All information in this press release is as of the date of the release, and bluebird bio undertakes no duty to update this information unless required by law.

Read more:
Treatment with Investigational LentiGlobin Gene Therapy for Sickle Cell Disease (bb1111) Results in Complete Elimination of SCD-Related Severe...

To Read More: Treatment with Investigational LentiGlobin Gene Therapy for Sickle Cell Disease (bb1111) Results in Complete Elimination of SCD-Related Severe…
categoriaCardiac Stem Cells commentoComments Off on Treatment with Investigational LentiGlobin Gene Therapy for Sickle Cell Disease (bb1111) Results in Complete Elimination of SCD-Related Severe… | dataDecember 8th, 2020
Read All

Could Gene Therapy Be Used To Mimic the Positive Effects of Exercise? – Technology Networks

By daniellenierenberg

It sounds too good to be true - and it is. But Jose Bianco Moreira and the CERG research group at the Norwegian University of Science and Technology (NTNU) are convinced that some of the positive health effects of physical exercise can be achieved using gene therapy and medication.

"We're not talking about healthy people and everyone who can exercise. They still have to train, of course," says Moreira. He and his colleagues at NTNU's Department of Circulation and Medical Imaging are studying the effect of exercise on our cells.

"But some people can't train, or only in a limited way. This could include individuals who've been in accidents, who are in wheelchairs, or who have diseases that prevent the possibility of physical expression. We want to create hope for these folks."

"A small group of healthy people out there also obtain very little effect from physical exercise - so-called low responders - and would benefit from a method that worked at the cellular level," says Moreira.

A lot of research confirms the health benefits of physical exercise, but we know far less about what happens in the cells that provides the positive effects.

"International research in this field is brand new. We've barely scratched the surface," says the researcher.

"We think increasing our knowledge about what happens at the cellular level will be important for discovering medications and treatments for heart disease. My group studies genes, proteins and mitochondria that produce energy and are key for chemical processes in the cells."

Moreira believes that gene therapy is the most effective method for reproducing the health benefits we normally get through physical exercise.

A medicine that uses gene therapy is already in use for spinal muscle atrophy, a serious disease that leads to muscle wasting. The drug uses a harmless virus to deliver a copy that replaces the damaged motor neuron network in patients.

This form of therapy can inhibit or enhance the expression of a gene. This is a very expensive medicine and has not been tried for heart disease, for example.

Moreira believes CRISPR will be the future go-to gene therapy method. He believes this method of editing the genes will revolutionize a lot of disease treatments.

"CRISPR is easier to use, faster and cheaper than today's gene therapy, which only attenuates or enhances the expression of a gene. CRISPR's potential is almost limitless. It can alter the gene itself. The parts of the gene that don't work properly are replaced with well-functioning parts."

Experiments on rats and mice have shown that the method works. Experiments have also been performed on human cells in the laboratory to confirm CRISPR's effectiveness, but it has not yet been tested on humans.

"CRISPR still has to be tested in large clinical studies. I'd be optimistic if I say gene editing will come into regular use in 10-15 years," says Moreira.

Moreira's research group has used CRISPR in its research, but the results are not yet ready for publication.

"We believe gene therapy is the most powerful method because patients don't have to take a pill every day. Usually, gene therapy changes the gene forever, perhaps with an injection or two. The challenge is to find the right gene that needs change, and an effective method to repair it," he says.

NTNU researchers are focusing on the heart. They have identified a protein that heart-diseased rats are deficit in, but which increases when the rats go through training.

"By increasing the amount of this protein through gene therapy, we've managed to strengthen the muscle cells and have replicated some of the positive effects of physical exercise," says Moreira.

Medications are another possible method of mimicking the effects of exercise. Some existing medicines might even be able to recreate some of the positive effect on the heart.

"The research now has powerful technology platforms to find possible other uses for medicines we already have. One problem, of course, is that medicine is chemistry that affects the whole body, not just the organ you want to help. Something that's good for the heart could be detrimental for the liver, for example. Compared to gene therapy, though, the potential for medications is much more limited," Moreira says.

When the research group at NTNU started their study, they had no idea which genes were affected by exercise. They performed experiments where rats with heart defects underwent training. Afterwards, the hearts were removed and examined. Then these hearts were compared with those from untrained rats with heart disease. Afterwards, the hearts of the trained and untrained rats with heart disease were compared to healthy rat hearts.

"We observed that genes were altered in the diseased hearts, but discovered that some of them were repaired in the rats that had trained. This way, we find genes that we can target. Through our measurements, we can find out exactly what training changes at the cellular level," says Moreira.

Reference: Moreira, J.B.N., Wohlwend, M. & Wislff, U. Exercise and cardiac health: physiological and molecular insights. Nat Metab. 2020;2,829839. doi:10.1038/s42255-020-0262-1

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.

Read more:
Could Gene Therapy Be Used To Mimic the Positive Effects of Exercise? - Technology Networks

To Read More: Could Gene Therapy Be Used To Mimic the Positive Effects of Exercise? – Technology Networks
categoriaCardiac Stem Cells commentoComments Off on Could Gene Therapy Be Used To Mimic the Positive Effects of Exercise? – Technology Networks | dataDecember 8th, 2020
Read All

Tissue chips and organoids: SpaceX is launching lots of science to space for NASA on Sunday – Space.com

By daniellenierenberg

Editor's note: SpaceX has successfully launched the Dragon CRS-21 cargo mission for NASA and landed its Falcon 9 rocket. Read our launch wrap story here.

CAPE CANAVERAL, Fla. The next SpaceX resupply launch to the International Space Station, scheduled for Sunday (Dec. 6), will carry a host of science gear to the astronauts living and working on the orbiting laboratory.

The robotic flight, called CRS-21, marks the 21st mission for SpaceX under its commercial cargo resupply services contract with NASA. Launch is scheduled for 11:17 a.m. EST (1617 GMT) on Sunday from NASA's Kennedy Space Center in Florida, and you can watch the action live here at Space.com, courtesy of NASA. You can also watch directly via NASA TV or SpaceX.

SpaceX initially aimed to launch the CRS-21 cargo mission for NASA on Saturday (Dec. 5), but foul weather prompted a delay. "Due to poor weather in the recovery area for todays attempt, now targeting Sunday, December 6 at 11:17 a.m. EST for launch of CRS-21," SpaceX wrote in an update early Saturday morning. SpaceX plans to recover the mission's Falcon 9 booster for later reuse.

The upgraded Dragon cargo capsule that will launch atop a veteran SpaceX Falcon 9 rocket is filled with 6,400 lbs. (2,903 kilograms) of supplies and science investigations. The research gear will support a variety of experiments in the life sciences, regenerative medicine and many other fields.

Related: How SpaceX's Dragon space capsule works (infographic)

Saturday's flight will mark the first time SpaceXs upgraded Dragon spacecraft will carry cargo. (Up until now, the advanced Dragon variant has solely carried astronauts.) The vehicle is a modified version of the Crew Dragon spacecraft that lacks the systems necessary for human missions, such as seats, cockpit controls and a life-support system, as well as the SuperDraco thrusters that provide a special emergency escape system that's only used if a problem occurs during launch.

This new Dragon allows more science to ride skyward. Costello explained that the interior of Dragon can now support more powered payloads, which is a huge benefit for the life sciences as it allows for more cold storage and other types of investigations. It also allows for the crew to store some of the powered payloads onboard Dragon while the craft is on orbit.

Several of the payloads on Dragon feature a unique piece of hardware called a tissue chip. Human cells and tissue grow on the chip scaffold, creating a 3D structure in microgravity that researchers can observe to learn more about how fundamental processes work in space, including aging and bone and muscle loss.

One such investigation, run by the University of Florida, will study how muscles atrophy in space. Sixteen samples of skeletal muscle will be sent to the space station, where the bundles of muscle tissue will be observed in microgravity. Half of the muscle samples were donated by younger, active individuals while the other half are from older, more sedentary volunteers.

Half of the samples in each group will be subjected to electric stimuli to see how the muscles contract in the absence of gravity. Researchers will use this experiment as a starting point for future research that will eventually test therapies to see if muscle degradation can be prevented.

Another payload will look at brain organoids created using stem cell technology. This investigation seeks to understand how microgravity affects the survival and function of brain cells, which could lead to advances in treatments for autism and Alzheimers disease, researchers said.

"Space travel mimics the effects of aging we see on Earth, only in a much shorter time span, making it easier to examine the processes that are taking place," Bill McLamb, chief scientist at Kentucky-based company Space Tango, told Space.com. "Its hard to study human brains in space, which is why these types of experiments are so beneficial."

The investigation will take stem cells and convert them into brain cells that will form three-dimensional structures called brain organoids. Stored in a special container called a well, these types of mini organs are able to mimic both the cellular variety and the function of the developing human brain.

This type of research could help NASA and its partners prepare for crewed missions to distant destinations such as Mars, which will expose astronauts to the rigors of space for long stretches, and also help combat degenerative brain disease here on Earth, researchers said.

A team of researchers from Stanford University will be looking at how engineered heart tissue behaves in microgravity. The Cardinal Heart investigation will send tissue samples that consist of cardiomyocytes, endothelial cells and cardiac fibroblasts to study how changes in gravity affect the heart at the cellular level.

Researchers know that microgravity causes changes in the workload and shape of the human heart, but it's still unknown if these changes could become permanent if a person lived for long periods of time in space.

The project's tissue bundles will be affixed to tissue chips. The experiment's results could help identify new treatments and support development of screening measures to predict cardiovascular risk prior to spaceflight, team members said. Follow-on investigations will include therapies that could treat heart disease.

The HemoCue investigation will look at how white blood cells react in space. Here on Earth, doctors use the total number of white blood cells, as well as the various types observed, to diagnose illness. HemoCue will debut a new type of technology that will allow users to do white blood cell counts on orbit.

The goal is to test how well the device works in microgravity. If effective, it could be a valuable tool in an astronauts medical kit, researchers said.

Another payload called Micro-14 looks at how yeast, in particular Candida albicans, responds to the space environment. C. albicans is an opportunistic pathogen, capable of causing severe and even life-threatening illness in immunocompromised hosts. Micro-14 will evaluate how the yeast responds to microgravity, looking for changes at the cellular and molecular levels.

Since astronauts can become immunocompromised during spaceflight, researchers are especially interested in how best to predict the health risks from this organism. Previous research has shown that many microbes exhibit increased virulence in a microgravity environment, but more research is needed on this particular pathogen.

NASAs Jet Propulsion Laboratory in Southern California is spearheading a project that will take swab samples from various locations within the station to look at the relationship between bacteria and their metabolites (chemicals produced by bacterial growth). The project will help researchers better understand the distribution of microbes and metabolites within closed environments and how this distribution affects human health. The research could aid administrators of hospitals and nursing homes, where residents are often immunocompromised.

Related: SpaceX rocket launches for record 7th time, nails landing at sea

Sunday's launch marks the 101st flight overall for SpaceXs workhorse two-stage Falcon 9 rocket. The liftoff is expected to feature a veteran Falcon 9 first stage, designated B1058, that already has three flights under its belt. This frequent flyer previously launched SpaceX's Demo-2 mission, which sent two NASA astronauts to the space station this past summer, well as a communications satellite for the South Korean military and a batch of the companys own Starlink satellites.

Flying previously flown boosters has become commonplace for SpaceX, as the company continues to prove the Falcon 9's reliability. In fact, CRS-21 marks the 24th flight of 2020 for SpaceX, with the majority of those missions having flown on veteran rockets rather than brand-new ones.

To date, SpaceX has successfully landed its first-stage boosters 67 times. Now that the company has two fully operational drone-ship landing platforms "Of Course I Still Love You" and "Just Read the Instructions" in Florida, its able to launch (and land) more rockets. "Of Course I Still Love You" is already at the recovery zone waiting for its turn to catch B1058 when it returns to Earth shortly after liftoff.

Weather was a concern for SpaceX going into the weekend. Forecasts predicted iffy weather for a Saturday launch attempt, with the 45th Weather Squadron predicting a 50% chance of favorable conditions for liftoff. The primary concerns were thick clouds and cumulus clouds. The backup attempt on Sunday looks much better, with the forecast improving to 70% favorable on that day.

If all goes as planned, the Dragon will arrive at the station and dock at the Harmony modules space-facing port just over 24 hours after it blasts off.

Editor's note: This story was updated at 8:22 a.m. EST to include SpaceX's launch delay to Sunday, Dec. 6, due to bad weather.

Follow Amy Thompson on Twitter @astrogingersnap. Follow us on Twitter @Spacedotcom or Facebook.

See the article here:
Tissue chips and organoids: SpaceX is launching lots of science to space for NASA on Sunday - Space.com

To Read More: Tissue chips and organoids: SpaceX is launching lots of science to space for NASA on Sunday – Space.com
categoriaCardiac Stem Cells commentoComments Off on Tissue chips and organoids: SpaceX is launching lots of science to space for NASA on Sunday – Space.com | dataDecember 6th, 2020
Read All

Autologous Stem Cell Based Therapies Market Research Report 2020: Market Competition Trend and Price by Manufacturers till 2026 – Factory Maintenance

By daniellenierenberg

The Autologous Stem Cell Based Therapies Market was valued at US$ XX million in 2019 and is projected to reach US$ XX million by 2025, at a CAGR of XX percentage during the forecast period. In this study, 2019 has been considered as the base and 2020 to 2025 as the forecast period to estimate the market size for Autologous Stem Cell Based Therapies Market

Deep analysis about market status (2016-2019), competition pattern, advantages and disadvantages of products, industry development trends (2019-2025), regional industrial layout characteristics and macroeconomic policies, industrial policy has also been included. From raw materials to downstream buyers of this industry have been analysed scientifically. This report will help you to establish comprehensive overview of the Autologous Stem Cell Based Therapies Market

Get a Sample Copy of the Report at: https://i2iresearch.com/report/global-autologous-stem-cell-based-therapies-market-2020-market-size-share-growth-trends-forecast-2025/

The Autologous Stem Cell Based Therapies Market is analysed based on product types, major applications and key players

Key product type:Embryonic Stem CellResident Cardiac Stem CellsUmbilical Cord Blood Stem Cells

Key applications:Neurodegenerative DisordersAutoimmune DiseasesCardiovascular Diseases

Key players or companies covered are:RegeneusMesoblastPluristem Therapeutics IncU.S. STEM CELL, INC.Brainstorm Cell TherapeuticsTigenixMed cell Europe

The report provides analysis & data at a regional level (North America, Europe, Asia Pacific, Middle East & Africa , Rest of the world) & Country level (13 key countries The U.S, Canada, Germany, France, UK, Italy, China, Japan, India, Middle East, Africa, South America)

Inquire or share your questions, if any: https://i2iresearch.com/report/global-autologous-stem-cell-based-therapies-market-2020-market-size-share-growth-trends-forecast-2025/

Key questions answered in the report:1. What is the current size of the Autologous Stem Cell Based Therapies Market, at a global, regional & country level?2. How is the market segmented, who are the key end user segments?3. What are the key drivers, challenges & trends that is likely to impact businesses in the Autologous Stem Cell Based Therapies Market?4. What is the likely market forecast & how will be Autologous Stem Cell Based Therapies Market impacted?5. What is the competitive landscape, who are the key players?6. What are some of the recent M&A, PE / VC deals that have happened in the Autologous Stem Cell Based Therapies Market?

The report also analysis the impact of COVID 19 based on a scenario-based modelling. This provides a clear view of how has COVID impacted the growth cycle & when is the likely recovery of the industry is expected to pre-covid levels.

Contact us:i2iResearch info to intelligenceLocational Office: *India, *United State, *GermanyEmail: [emailprotected]Toll-free: +1-800-419-8865 | Phone: +91 98801 53667

Read more here:
Autologous Stem Cell Based Therapies Market Research Report 2020: Market Competition Trend and Price by Manufacturers till 2026 - Factory Maintenance

To Read More: Autologous Stem Cell Based Therapies Market Research Report 2020: Market Competition Trend and Price by Manufacturers till 2026 – Factory Maintenance
categoriaCardiac Stem Cells commentoComments Off on Autologous Stem Cell Based Therapies Market Research Report 2020: Market Competition Trend and Price by Manufacturers till 2026 – Factory Maintenance | dataDecember 6th, 2020
Read All

Page 64«..1020..63646566..7080..»


Copyright :: 2024