Page 187«..1020..186187188189..200210..»

New Weill Neurohub will unite UCSF, UC Berkeley, UW in race to find new treatments for brain diseases – UW Today

By daniellenierenberg

Engineering | Health and medicine | News releases | Population Health | Research | Science | Technology

November 12, 2019

Microscopy image showing the cytoskeleton within neurons, which are differentiating from induced pluripotent stem cells.UC San Francisco

With a $106 million gift from the Weill Family Foundation, UC Berkeley, UC San Francisco and the University of Washington have launched the Weill Neurohub, an innovative research network that will forge and nurture new collaborations between neuroscientists and researchers working in an array of other disciplines including engineering, computer science, physics, chemistry and mathematics to speed the development of new therapies for diseases and disorders that affect the brain and nervous system.

A 2016 study by the Information Technology & Innovation Foundation estimated that, in the U.S. alone, neurological and psychiatric disorders and diseases including Alzheimers; Parkinsons; anxiety and depression; traumatic brain injury and spinal cord injury; multiple sclerosis; ALS; and schizophrenia carry an economic cost of more than $1.5 trillion per year, nearly 9 percent of GDP.

The gains in knowledge amassed by neuroscientists over the past few decades can now be brought to the next level with supercomputers, electronic braincomputer interfaces, nanotechnology, robotics and powerful imaging tools, said philanthropist Sanford I. Sandy Weill, chairman of the Weill Family Foundation. The Neurohub will seize this opportunity by building bridges between people with diverse talents and training and bringing them together in a common cause: discovering new treatments to help the millions of patients with such conditions as Alzheimers disease and mental illness.

Complementing the strengths of UCSF, Berkeley and the UW, the Weill Neurohub will draw on the expertise and resources of the 17 National Laboratories overseen by the Department of Energy, which excel in bioengineering, imaging, and data science. In August 2019, the Weill Family Foundation and the DOE signed a Memorandum of Understanding creating a new publicprivate partnership. The partnership is exploring the use of the Departments artificial intelligence and supercomputing capabilities, in conjunction with Bay Area universities and the private sector, to advance the study of traumatic brain injury, or TBI, and neurodegenerative diseases.

Secretary of Energy Rick Perry, who has spearheaded the creation of an AI and Technology Office during his tenure at DOE, said that the vision for the Weill Neurohub dovetails with his own mission to make publicly funded AI and supercomputing resources more widely accessible to advance scientific discovery. We are on the cusp of great discoveries that could transform our approach to TBI, Alzheimers disease and other neurological and psychiatric disorders, and easing access to the world-class computational power of our National Laboratories to initiatives like the Weill Neurohub is a win-win for science and the public sector and, eventually, for patients.

As many neurological disorders, such as dementia, are associated with aging, the costs of these unmet medical needs are expected to increase significantly in the coming years. California, with the largest aging population in the U.S., with one in five residents reaching age 65 or older in the next decade, faces particularly formidable challenges, said Gov. Gavin Newsom.

Every day, millions of people in California, the nation, and the world are facing the uncertainty of neuro-related diseases, mental illness and brain injuries, and collaboration between different disciplines in science, academia, government and philanthropy is critical to meet this challenge. Together, we must accelerate the development and use cutting-edge technology, innovation and tools that will advance research and practical application that will benefit people across the world and for generations to come, said Newsom. I want to thank Sandy Weill and his wife, Joan, for their amazing work, kindness, dedication and commitment to philanthropic causes, especially when they open doors, bridge gaps, and make innovation and collaboration possible to advance causes that can truly have an impact on peoples quality of life.

Sanford and Joan Weill.UC San Francisco

The Weill Neurohub will enable the three universities to work together on these pressing problems. For example, the UW and UCSF, renowned research universities with long traditions of excellence in basic neuroscience research, also have federally sponsored Alzheimers Disease Research Centers, or ADRCs. Through the Weill Neurohub, members of the UWs ARDC, part of the UW Medicine Memory and Brain Wellness Center, and UCSFs ADRC, led by the UCSF Memory and Aging Center, will collaborate with top neurodegeneration researchers at Berkeley.

The Weill Neurohub will provide funding for faculty, postdoctoral fellows, and graduate students at the UW, Berkeley and UCSF working on cross-disciplinary projects, including funding for high-risk/high-reward proposals that are particularly innovative and less likely to find support through conventional funding sources. But the bulk of the Weill Neurohubs funding will support highly novel cross-institutional projects built on one or more of four scientific pillars that Weill Neurohub leaders have deemed priority areas for answering the toughest questions about the brain and discovering new approaches to disease: imaging; engineering; genomics and molecular therapeutics; and computation and data analytics.

The Weill Neurohub may seek additional academic, corporate and philanthropic partners to harness resources collaboratively, better scale research and development efforts, share information and data and create partnerships to make breakthroughs faster and at a lower cost than the current paradigm allows.

Relevant examples of interdisciplinary or cross-institutional neuroscience projects now underway at UCSF, Berkeley and/or the UW include:

This gift expands on the unique vision and mission of the UCSF Weill Institute for Neurosciences, established in 2016 with a $185 million gift from the Weill Family Foundation and Joan and Sandy Weill whose giving to the neuroscience community now exceeds $300 million said UCSFs Dr. Stephen Hauser, the Robert A. Fishman Distinguished Professor of Neurology and Weill Institute director.

The UCSF Weill Institute set out to break down walls between the clinical disciplines of neurology, neurosurgery and psychiatry, and also bring these clinical specialties together with the basic neurosciences, said Hauser. Now, with the Weill Neurohub, were going even further: eliminating institutional boundaries between three great public research universities, and also other disciplinary walls between traditional neuroscience and non-traditional approaches to understanding the brain. By embracing engineering, data analysis and imaging science at this dramatically higher level areas in which both Berkeley and the UW are among the best in the world neuroscientists on all three campuses will gain crucial tools and insights that will bring us closer to our shared goal of reducing suffering from brain diseases.

Hauser will serve as one of two co-directors of the new Weill Neurohub along with Berkeleys Ehud Udi Isacoff, the Evan Rauch Chair of Neuroscience. Together with Tom Daniel, the Joan and Richard Komen Endowed Chair and professor of biology at the UW, they will serve on the Weill Neurohubs Leadership Committee.

In the Weill Neurohub, the emphasis will be on technology to enable discovery of disease mechanisms, and thus development of novel treatments and early detection of neurologic diseases, to allow intervention before conditions become severe, said Isacoff, who heads Berkeleys Helen Wills Neuroscience Institute. The technologies include next-generation neuroimaging and therapeutic manipulations ranging from brain implants to CRISPR gene editing, with major efforts in machine learning and high-speed computation. I think these three campuses can succeed in this joint mission in a way that no others can the combined expertise this group brings to the table, especially when you bring in the National Labs, really is unparalleled.

Tom Daniel, the Joan and Richard Komen Endowed Chair and professor of biology at the University of Washington.University of Washington

The UWs Daniel added, The Weill Neurohub brings together three outstanding public institutions, each with a deep commitment to bridge boundaries between science, engineering, computer science and data science to address fundamental problems in neuroscience and neural disorders. To my knowledge, this is a nationally unique enterprise drawing on diverse approaches to accomplish goals no single institution could reach alone, as well as seeding and accelerating research and discovery.

Neuroscientists have made huge strides in understanding the brain in the 30 years since President George H. W. Bush designated the 1990s as the Decade of the Brain, and subsequently through the National Institute of Healths ongoing BRAIN Initiative, first announced by President Obama in 2013. But treatments for neurological and psychiatric diseases have lagged far behind those for other common afflictions, such as cardiovascular disease and cancer.

Much of the lack of progress on neurological and psychiatric disease is due to the unparalleled complexity of the nervous system, in which hundreds of billions of nerve cells and support cells form as many as 100 trillion connections in intricate three-dimensional networks throughout the brain and spinal cord. The Weill Neurohubs leaders believe reaching beyond conventional approaches is essential to grappling with this complexity.

Despite amazing advances in neuroscience, new therapies are not reaching patients with mental illness and neurological disorders nearly as quickly as they have for heart disease and cancer. And in addition to the terrible personal toll these illnesses exact on patients and their families, they also have a massive impact on our healthcare system and on the global economy, said Joan Weill, president of the Weill Family Foundation. Our goal, through the broad and multifaceted approach of the Weill Neurohub, is to begin to change that.

Read the original:
New Weill Neurohub will unite UCSF, UC Berkeley, UW in race to find new treatments for brain diseases - UW Today

To Read More: New Weill Neurohub will unite UCSF, UC Berkeley, UW in race to find new treatments for brain diseases – UW Today
categoriaSkin Stem Cells commentoComments Off on New Weill Neurohub will unite UCSF, UC Berkeley, UW in race to find new treatments for brain diseases – UW Today | dataNovember 12th, 2019
Read All

Humanigen Announces Two Abstracts Accepted at the 2019 Annual Meeting of the Society for Neuro-Oncology, including Oral Presentation on its Next…

By daniellenierenberg

BURLINGAME, CA / ACCESSWIRE / November 12, 2019 / Humanigen, Inc., (OTC PINK:HGEN) ("Humanigen"), a clinical stage biopharmaceutical company focused on the development of next generation chimeric antigen receptor T cell (CAR-T) and other cell therapies, today announced that two abstracts supporting development of its next generation EphA3-CAR-T program, built on the backbone of ifabotuzumab, the company's proprietary Humaneered anti-EphA3 monoclonal antibody, have been accepted for presentation at the 2019 annual meeting of the Society for Neuro-Oncology (SNO) being held November 20-24, 2019 in Phoenix, AZ.

While CAR-T therapy has revolutionized the treatment landscape for hematological malignancies, its efficacy remains limited in solid tumors. The majority of CAR-T therapies targeting solid tumors have focused on cell surface receptors expressed on tumor cells. However, given the heterogeneity of surface receptor expression on solid tumors and the difficulty of navigating the immunosuppressive stromal microenvironment, strategies to target tumor neovasculature and tumor stromal cells are emerging. Targeting non-transformed, tumor neovasculature and tumor stroma cells may overcome antigen loss and may modulate the suppressive TME. EphA3, an oncofetal antigen, is selectively expressed in tumor neovasculature and tumor stromal cells in brain cancers and other solid tumors making it a novel target for CAR-T development.

The phase I clinical study, led by Prof. Hui Gan and Prof. Andrew Scott from the Olivia Newton-John Cancer Research Institute in Melbourne, Australia, was funded by the Cure Brain Cancer Foundation. The study used radiolabeled ifabotuzumab followed by sequential positron emission tomography (PET) imaging to determine biodistribution, frequency of in situ EphA3 expression and quantitative tumor uptake of ifabotuzumab. The preliminary results include data from eight patients who have been enrolled to date. PET/computed tomography (CT) imaging showed that ifabotuzumab is effectively delivered across the blood-tumor barrier and accumulates specifically at the tumor site in all patients treated to date with no observed normal tissue uptake. Magnetic resonance imaging (MRI) scans showed predominant T2/FLAIR changes, consistent with the treatment effect of ifabotuzumab on tumor vasculature. Treatment emergent adverse events were readily managed with increased premedications after the first occurrence. The abstract is available online at: https://academic.oup.com/neuro-oncology/article-abstract/21/Supplement_6/vi6/5619490?redirectedFrom=fulltext.

Professors Gan and Scott stated "Our results show that ifabotuzumab is safe and very effective at targeting the tumor. We are also excited that there are early indications that ifabotuzumab may help to control disease growth in some patients."

Using a single chain variable region fragment of ifabotuzumab, a second generation CD28 co-stimulated CAR construct was developed. Using primary patient derived GBM cell lines, the EphA3 CAR-T demonstrated specific and potent anti-tumor activity. Data from in vivo and combinatorial CAR-T experiments will be reported during the oral presentation scheduled on Friday, November 22, 2019 at 4:40pm. The abstract is available online at: https://academic.oup.com/neuro-oncology/article-abstract/21/Supplement_6/vi88/5619352?redirectedFrom=fulltext.

"These results indicate for the first time that targeting EphA3 with CAR-T cells is feasible, efficacious, and represents a novel therapeutic strategy for solid tumors" stated Dr. Cameron Durrant, CEO of Humanigen. "Our EphA3-CAR-T program as another pillar in our developing cell therapy pipeline. While we continue to develop our GM-CSF neutralization platform with Kite, we are also busy building next generation CAR-T therapies with our combinatorial GM-CSF gene-editing platform and our other CAR-T programs focused on novel tumor targets", Dr. Durrant continued.

About Humanigen, Inc.

Humanigen, Inc. is developing its portfolio of next-generation cell and gene therapies for the treatment of cancers via its novel, cutting-edge GM-CSF neutralization and gene-knockout platforms. There is a direct correlation between the efficacy of CAR-T therapy and the incidence of life-threatening toxicities (referred to as the efficacy/toxicity linkage). We believe that our GM-CSF neutralization and gene-editing platform technologies have the potential to reduce the inflammatory cascade associated with serious and potentially life-threatening CAR-T therapy-related side effects while preserving and potentially improving the efficacy of the CAR-T therapy itself, thereby breaking the efficacy/toxicity linkage. The company's immediate focus is combining FDA-approved and development stage CAR-T therapies with lenzilumab, the company's proprietary Humaneered anti-human-GM-CSF immunotherapy, which is its lead product candidate. A clinical collaboration with Kite, a Gilead Company, was recently announced to evaluate the sequential use of lenzilumab with Yescarta, axicabtagene ciloleucel, in a multicenter clinical trial in adults with relapsed or refractory large B-cell lymphoma. The company is also focused on creating next-generation combinatory gene-edited CAR-T therapies using strategies to improve efficacy while employing GM-CSF gene knockout technologies to control toxicity. In addition, the company is developing its own portfolio of proprietary first-in-class EphA3-CAR-T for various solid cancers and EMR1-CAR-T for various eosinophilic disorders. The company is also exploring the effectiveness of its GM-CSF neutralization technologies (either through the use of lenzilumab as a neutralizing antibody or through GM-CSF gene knockout) in combination with other CAR-T, bispecific or natural killer (NK) T cell engaging immunotherapy treatments to break the efficacy/toxicity linkage, including to prevent and/or treat graft-versus-host disease (GvHD) in patients undergoing allogeneic hematopoietic stem cell transplantation (HSCT). The company has established several partnerships with leading institutions to advance its innovative cell and gene therapy pipeline. For more information, visit http://www.humanigen.com

Story continues

About the Olivia Newton-John Cancer Research Institute

The Olivia Newton-John Cancer Research Institute is a leader in the development of experimental and breakthrough cancer treatments. We investigate and develop treatments for cancers of the breast, lung, skin, prostate, liver, gastrointestinal tract and brain. Our researchers and clinicians are running more than 120 clinical trials, giving patients access to potential new treatments including immunotherapies and personalized medicine.

Located in Heidelberg, Victoria, Australia, the Institute is integrated within the ONJ Centre, with research laboratories only metres away from where patients are cared for and receive treatment. This inspires and enables the rapid translation of scientific discovery into clinical trial of new, better, cancer treatments.

Forward-Looking Statements

This release contains forward-looking statements. Forward-looking statements reflect management's current knowledge, assumptions, judgment and expectations regarding future performance or events. Although management believes that the expectations reflected in such statements are reasonable, they give no assurance that such expectations will prove to be correct and you should be aware that actual events or results may differ materially from those contained in the forward-looking statements. Words such as "will," "expect," "intend," "plan," "potential," "possible," "goals," "accelerate," "continue," and similar expressions identify forward-looking statements, including, without limitation, statements regarding our expectations for future development of lenzilumab to help CAR-T reach its full potential or to deliver benefit in preventing GvHD. Forward-looking statements are subject to a number of risks and uncertainties including, but not limited to, the risks inherent in Black Horse Capital and its affiliates owning more than 50% of our outstanding common stock, including their ability to control the company; our lack of profitability and need for additional capital to operate our business as a going concern; the uncertainties inherent in the development and launch of any new pharmaceutical product; the outcome of pending or future litigation; and the various risks and uncertainties described in the "Risk Factors" sections and elsewhere in the Company's periodic and other filings with the Securities and Exchange Commission.

All forward-looking statements are expressly qualified in their entirety by this cautionary notice. You should not place undue reliance on any forward-looking statements, which speak only as of the date of this release. We undertake no obligation to revise or update any forward-looking statements made in this press release to reflect events or circumstances after the date hereof or to reflect new information or the occurrence of unanticipated events, except as required by law.

CONTACT:

Media:Chris Bowe(646) 662-7628cbowe@humanigen.com

SOURCE: Humanigen, Inc.

View source version on accesswire.com: https://www.accesswire.com/566037/Humanigen-Announces-Two-Abstracts-Accepted-at-the-2019-Annual-Meeting-of-the-Society-for-Neuro-Oncology-including-Oral-Presentation-on-its-Next-Generation-EphA3-CAR-T

See the article here:
Humanigen Announces Two Abstracts Accepted at the 2019 Annual Meeting of the Society for Neuro-Oncology, including Oral Presentation on its Next...

To Read More: Humanigen Announces Two Abstracts Accepted at the 2019 Annual Meeting of the Society for Neuro-Oncology, including Oral Presentation on its Next…
categoriaSkin Stem Cells commentoComments Off on Humanigen Announces Two Abstracts Accepted at the 2019 Annual Meeting of the Society for Neuro-Oncology, including Oral Presentation on its Next… | dataNovember 12th, 2019
Read All

How to stop throwing away your veggies and fruit – CNN International

By daniellenierenberg

One tweetfest tapped into our pervasive shame over store-bought salad: "Almost left the grocery store without buying a bag of spring mix to throw, unopened, into the garbage in two weeks."

It doesn't have to be that way. You can learn to choose the freshest fruits and veggies, clean and store them properly and be assured at least a few more days of usable life.

Let's start with our "universal" waste disgrace -- store-bought spring mix. First, check out the best-by or expiration date (it may help to pull from the bottom or back of the stack to get a date further in the future). Then before you buy, inspect. Are any wet or bruised leaves visible? If so, keep looking.

Once you've bought the freshest and driest salad you can find, you'll want to open it as soon as you get home and, with freshly washed hands, transfer the leaves into a large bowl. As you put those leaves back into the plastic container, remove any bruised or spoiled pieces and discard. Just as a bad apple will more quickly rot the barrel, those leaves will shorten the life of the rest of your salad greens.

Trouble keeping spinach fresh in those large, cheap containers? The same trick applies.

Greens by the bunch

If you buy lettuce by the head or greens by the bunch from the farmer's market or grow your own, they may contain sand or dirt as well as bacteria.

Immersing the leaves in a bowl of tap water for a few minutes can loosen up any dirt. Again, don't use the dirty sink to soak.

But be careful with the water temperature -- and this applies to all vegetables and fruits -- it should be about the same temperature as the produce you are washing.

If immersed in water more than 10 degrees Fahrenheit colder than the produce, it will create a vacuum -- due to air cells contracting within the produce -- and pull in wash water, Ghimire said.

"If the wash water is contaminated, anything in that water, including foodborne pathogens, will be internalized or sucked into the produce," he explained, adding that it's likely to happen at the weak points of the stem and blossoms.

"Hot water is not desired as it would increase the temperature of the produce and decrease shelf-life," Ghimire said.

After washing, spin the leaves in a salad spinner. If you're storing, pat dry with paper towels before putting them into perforated or vented plastic bags and putting them into the crisper section of your refrigerator.

"I rinse and dry lettuce leaves or raw veggies, such as celery, broccoli, and cauliflower, wrap them in paper towels, and store them in plastic bags or in plastic containers lined with paper towels," Drayer added.

And don't forget to wash your salad spinner after about three uses -- if it will fit into the dishwasher, that's a great option to sanitize it.

Veggies

"Select veggies in season for maximum freshness, flavor, and nutritional value," said Drayer. And they cost less when in season, an extra bonus.

"Firmness, shape, color, texture of skin, and aroma are keys to selecting the freshest produce," Ghimire said. "For example, a fresh broccoli would be firm, closed, dark-green florets, and tender stalks. Yellowing green-colored heads of broccoli are over mature."

Once they are home, you'll want to take them out of the plastic bags if the bags aren't breathable or perforated.

"Produce are alive even after harvest and they continue to breath and transpire even on your counter top," Ghimire said.

Brush off any loose dirt before storing.

Storing veggies depends on the type. Many do fine in vented plastic bags or plastic containers. Others may fare better in brown paper bags.

"As brown paper bags absorb moisture and are breathable, they would better work for produce like mushrooms and strawberries that have a short shelf-life," Ghimire said.

Potatoes and onions are also good choices for paper bags, Ghimire said. Because brown paper restricts the ability of light to penetrate, onions and potatoes won't turn as green as they would in clear plastic bags; it also reduces the chance of "hollow heart" in potatoes -- the black center you sometimes see which is caused by a lack of oxygen.

Some vegetables need to be kept out of the 40-degree Fahrenheit refrigerator to stay fresh and tasty. You probably know that tomatoes should be stored on the countertop.

But did you know the same is true for basil, cucumbers, eggplants, onions, peppers, potatoes, pumpkins, squash and sweet potatoes?

Cucumbers, for example, "may develop chilling injury if stored below 50 degrees Fahrenheit for more than two or three days," Ghimire said. "Produce kept outside the fridge should be stored in a cool, dry and well ventilated space."

Wash before eating, of course, by using a vegetable brush on hard varieties like potatoes and carrots before peeling; more sensitive veggies can be rubbed briskly between your hands under running water.

Fruits

Again, selecting fruits that are in season will allow you to buy them at the height of their freshness, flavor, and nutritional value.

"Look for fruits that are firm, don't have soft brown spots or bruises, and are not overly ripe," Al Bochi said, adding that they should not have an odor.

Pears, peaches, plums and other soft fruits should be washed under slightly cool running water and dried with a paper towel before storing or eating.

"You should also wash the peels of bananas, oranges, avocados, and grapefruit with cool tap water as bacteria can transfer from the peel to the edible flesh," Drayer said.

Melons, especially the type that have rough, pocked surfaces such as cantaloupes, should be washed with a vegetable brush under running water and patted dry before storing or eating. Why? Bacteria and other microorganisms can hide in those pits and be transferred to the inside flesh while cutting, or to other veggies and fruits while storing.

The exception to the rule are grapes, cherries and berries.

"Berries should be washed just prior to eating because the moisture can cause them to spoil earlier," Drayer said.

And here's a wrinkle: Some veggies and fruits don't play nicely together. That's because some release ethylene gas as they ripen, which can hurt some other produce.

"For example, apples, avocados, unripe bananas, peaches, nectarines, plums and tomatoes release ethylene gas -- and should not be stored with ethylene-sensitive produce, such as broccoli, Brussels sprouts, ripe bananas, lettuce, peppers, cucumber, eggplant, carrots, cauliflower, and sweet potatoes, as this can speed the decay of the sensitive produce," Dryer said.

Fresh herbs

Look for bright green foliage that isn't wilted. Once home, rinse them under cool water and then lay on paper towels in a single layer to dry. Some suggest using a salad spinner -- but gently.

Storage will depend on whether the herb has a soft or woody stem.

Soft herbs: Treat soft herbs like tarragon, parsley, cilantro, dill and mint like they are fresh flowers. Cut a half-inch off the ends and put the ends down in a jar of water. Cover the jar loosely with a plastic wrap and store in the fridge, changing the water every few days.

Do the same with basil, but store it uncovered on the counter where it can get a bit of light.

Woody herbs: Wrap herbs such as rosemary, thyme, oregano, sage, and chives in wet paper towels and store them in an air-tight container or sealed plastic bag to keep the oxygen out.

Plan ahead

There's one more tip you need to be a star at getting the most out of your produce dollar: Plan your menus for the week in advance.

"Having a general plan of the meals you plan on cooking for the week will help you know what fruits and veggies to buy at the grocery store and help you use up your produce efficiently," Al Bochi said. "You'll reduce food waste and ultimately save money."

Read more:
How to stop throwing away your veggies and fruit - CNN International

To Read More: How to stop throwing away your veggies and fruit – CNN International
categoriaSkin Stem Cells commentoComments Off on How to stop throwing away your veggies and fruit – CNN International | dataNovember 12th, 2019
Read All

Neuroscience Is Taking the Spotlight at Xconomy’s Bay Area Xchange – Xconomy

By daniellenierenberg

XconomySan Francisco

These are heady times for neuroscience research. Startups developing new approaches to brain disorders are raising money to advance their discoveries toward clinical trials. One failed neuro drug is getting another shot.

On Nov. 19 in San Francisco, well hold the latest in our Xchange event series. Whats Next in Neuroscience Therapies will take a look at new technologies that are changing how we understand brain diseases and spinal injuries, as well as novel approaches that companies are taking to treat these conditions. One such company, Alector (NASDAQ: ALEC), aims to treat neurodegeneration as an immune system problem. The South San Francisco biotech is developing antibody therapies that bolster immune cells that help the brain clear away proteins and debris associated with neurodegenerative disorders.

Earlier this year, Alector completed a $176 million IPO. The company is now deploying that cash in clinical trials: a drug candidate for frontotemporal dementia and two experimental therapies for Alzheimers disease. Stephanie Yonker, the companys vice president of legal, will talk about her companys approach to neurodegeneration at the upcoming event.

BlackThorn Therapeutics is deploying technologies such as artificial intelligence and brain imaging to help it discover new drugs and enroll the clinical trials to test them. The San Francisco companys focus is neurobehavioral disease. BlackThorn quietly emerged four years ago based on research from the Scripps Research Institute in San Diego. At our forum, Jane Tiller, BlackThorns chief medical officer, and Kristina Burow of ARCH Venture Partners will tell BlackThorns story from its Scripps origins to the present day as a clinical-stage company backed by $130 million in financing. BlackThorn has completed Phase 1 tests of it lead drug in depressionand is preparing for Phase 2; an experimental autism spectrum disorder drug is being readied to start tests in humans next year.

Spinal cord injury continues to pose obstacles to treatment. The California Institute for Regenerative Medicine is pursuing new therapies through grants awarded to universities and companies. Much of this research aims to develop ways to use stem cells to heal the injury. Abla Creasey, CIRMs vice president of therapeutics and strategic infrastructure, will discuss these efforts. Meanwhile, the Christopher & Dana Reeve Foundation is raising a venture philanthropy fund to support new research. Ethan Perlstein, the Reeve Foundations chief scientific officer, will talk about the foundations efforts to find new treatments and potential cures for spinal cord injury.

If youd like to hear more about these new efforts to treat brain disorders and spinal cord injury, join us at the Hyatt Regency San Francisco for Whats Next in Neuroscience Therapies. You can see the agenda for the event here. Additional information, including registration details, are here. We hope to see you on Nov. 19.

Photo by Depositphotos

Frank Vinluan is an Xconomy editor based in Research Triangle Park. You can reach him at fvinluan [[at]] xconomy.com.

Read the original post:
Neuroscience Is Taking the Spotlight at Xconomy's Bay Area Xchange - Xconomy

To Read More: Neuroscience Is Taking the Spotlight at Xconomy’s Bay Area Xchange – Xconomy
categoriaSpinal Cord Stem Cells commentoComments Off on Neuroscience Is Taking the Spotlight at Xconomy’s Bay Area Xchange – Xconomy | dataNovember 11th, 2019
Read All

Kadimastem to Present Interim Results of Cohort A of Its Phase 1/2a Clinical Trial in ALS at the 7th International Stem Cell Meeting, in Tel-Aviv,…

By daniellenierenberg

NESS ZIONA, Israel, Nov. 11, 2019 /PRNewswire/ --Kadimastem Ltd.(TASE: KDST),a clinical stage cell therapy company, today announced that it will present the interim results of Cohort A of its ongoing Phase 1/2a Clinical Trial in ALS (as published in Company's press release) at the 7th International Stem Cell Meeting, to be held on November 12-13 at the Dan Panorama Hotel in Tel Aviv, Israel.

The International Stem Cell Meeting, hosted by the Israel Stem Cell Society, is a highly reputed conference, participated by international world leaders in stem cell research.

Presentation Details:

Title: "FIRST IN HUMAN CLINICAL TRIALS WITH HUMAN ASTROCYTES AS A NOVEL CELL THERAPY FOR THE TREATMENT OF ALS"

Session:ONGOING CLINICAL TRIALS WITH CELL THERAPY

Presenter:Arik Hasson, PhD, Executive VP, Research and Development, Kadimastem

Date:Wednesday, November 13, 2019

Time:1:50 pm Israel

Location: Dan Panorama Hotel, Tel Aviv, Israel

Rami Epstein, CEO of Kadimastem, stated: "We are pleased to share these results with global leaders in the cell therapy and stem cells industry,demonstrating the potential of AstroRx, our astrocyte-based cell therapy product,to bring treatment to ALS patients, and possibly other neurodegenerative diseases. We look forward to further share data of this ongoing trial, with final results of cohort A expected by year-end 2019and results of cohort B expected in Q3, 2020."

About the Phase 1/2a ALS Clinical Trial

The Phase 1/2a trial is an open label, dose escalating clinical study to evaluate the safety, tolerability and preliminary efficacy of AstroRxcells in patients with ALS. The trial is expected to include 21 patients and is being conducted at the Hadassah Medical Center, Jerusalem, Israel. The primary endpoints of the trial are safety evaluation and tolerability of a single administration of allogeneic astrocytes derived from human Embryonic Stem Cells (hESC), administered in escalating low, medium and high doses (100x106, 250x106, and 500x106 cells, respectively). The medium dose will also be administered in 2 consecutive injections separated by an interval of ~60 days. Secondary end points include efficacy evaluation and measurements. Treatment is administered in addition to the appropriate standard-of-care.

About AstroRx

AstroRx is a clinical grade cell therapy product developed and manufactured by Kadimastem in its GMP-compliant facility, containing functional healthy astrocytes (nervous system support cells) derived from human Embryonic Stem Cells (hESC) that aim to protect diseased motor neurons through several mechanisms of action. The Company's technology enables the injection of AstroRxcells into the spinal cord fluid of patients suffering from Amyotrophic Lateral Sclerosis (ALS) with the goal of supporting the malfunctioning cells in the brain and spinal cord, in order to slow the progression of the disease and improve patients' quality of life and life expectancy. AstroRxhas been shown to be safe and effective in preclinical studies. AstroRxhas been granted orphan drug designation by the FDA.

About ALS

Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive fatal neurodegenerative disease causing disfunction in the upper and lower motor nerves that control muscle function. ALS leads to muscle weakness, loss of motor function, paralysis, breathing problems, and eventually death. The average life expectancy of ALS patients is 2-5 years. According to the ALS Therapy Development Institute, it is estimated that there are approximately 450,000 ALS patients worldwide of which 30,000 reside in the US. According to the ALS Foundation for Life, the annual average healthcare costs of an ALS patient in the US are estimated at US$ 200,000. Thus, the annual healthcare costs of ALS patients in the US alone amount to US$ 6 Billion.

About Kadimastem

Kadimastem is a clinical stage cell therapy company, developing and manufacturing "off-the-shelf" allogeneic proprietary cell products based on its platform technology for the expansion and differentiation of Human Embryonic Stem Cells (hESCs) into clinical grade functional cells. AstroRx, the Company's lead program, is a clinical-grade astrocyte cell therapy for the treatment of ALS, currently undergoing a Phase 1/2a clinical trial. In addition, preclinical trials are ongoing with the Company's IsletRx pancreatic functional islet cells for the treatment of insulin dependent diabetes. Kadimastem was founded by Prof. Michel Revel, CSO of the Companyand Professor Emeritus of Molecular Genetics at the Weizmann Institute of Science. Prof. Revel received the Israel Prize for the invention and development of Rebif, a multiple sclerosis blockbuster drug sold worldwide. Kadimastem is traded on the Tel Aviv Stock Exchange (TASE: KDST).

Company Contacts:Yossi Nizhar, CFOy.nizhar@kadimastem.com+972-73-797-1613

Investor and Media Contact:Meirav Gomeh-Bauermeirav@bauerg.com+972-54-476-4979

Global Media Contact:Dasy (Hadas) MandelDirector of Business Development, Kadimastemd.mandel@kadimastem.com+972-73-797-1613

View original content:http://www.prnewswire.com/news-releases/kadimastem-to-present-interim-results-of-cohort-a-of-its-phase-12a-clinical-trial-in-als-at-the-7th-international-stem-cell-meeting-in-tel-aviv-israel-300955414.html

SOURCE Kadimastem

Read more:
Kadimastem to Present Interim Results of Cohort A of Its Phase 1/2a Clinical Trial in ALS at the 7th International Stem Cell Meeting, in Tel-Aviv,...

To Read More: Kadimastem to Present Interim Results of Cohort A of Its Phase 1/2a Clinical Trial in ALS at the 7th International Stem Cell Meeting, in Tel-Aviv,…
categoriaSpinal Cord Stem Cells commentoComments Off on Kadimastem to Present Interim Results of Cohort A of Its Phase 1/2a Clinical Trial in ALS at the 7th International Stem Cell Meeting, in Tel-Aviv,… | dataNovember 11th, 2019
Read All

The Value and Versatility of Clinical Flow Cytometry – Technology Networks

By daniellenierenberg

What is flow cytometry and how does it work?Flow cytometry(FCM) is a scientific technique used to measure the physical and biochemical characteristics of cells.1The sample is injected into the flow cytometer instrument, where it is typically focused to flow one cell at a time past light sources and detectors. Tens of thousands of cells can be examined in seconds to determine their morphology, granularity, scattering and transmission of light, or fluorescence of biomarkers, depending on the variation of FCM used.

The first conventional fluorescence-based flow cytometer was developed and commercialized in the late 60s/early 70s in Germany.2 Over the last five decades, FCM has developed rapidly in terms of the number of its applications and the quantity and dimensionality of the data it generates.1,3 Dr. Minh Doan, formerly of the Imaging Platform of the Broad Institute (USA) and now head of Bioimaging Analytics at GlaxoSmithKline in the USA, states, There have been significant advances in all three Vs of flow cytometry data: velocity (throughput/speed of data acquisition), volume (data content), and variety (sample types and signal acquisition technology).

Michael Parsons, manager of the Flow Cytometry Core of the Lunenfeld-Tanenbaum Research Institute in Toronto, Canada, agrees. The two biggest trends in flow cytometry are high content data and the merging of technologies from separate disciplines. For example, the last five years or so have seen the emergence of mass cytometry, which merges the disciplines of flow cytometry and mass spectrometry. In its latest iteration, an image cytometry module has been incorporated to generate unprecedented amounts of content (number of measured parameters) from relatively small amounts of patient tissue. Spectral flow cytometry has also established itself as an important emerging technology. Indeed, mass cytometry can now measure up to 50 features on a single cell simultaneously using antibodies tagged with rare earth metals,4 and imaging flow cytometry allows for 1000s of morphological features and multiple fluorescence markers to be analyzed per cell.3Flow cytometry, therefore, has inarguable potential as a clinical tool for disease diagnosis, prognosis, and therapeutic monitoring. However, some challenges remain in translating the full promise of FCM into clinical practice. Here, some of the current clinical applications of FCM will be discussed, as well as some of the compelling new applications being researched.

Similarly, FCM of liquid biopsies could be used to detect circulating tumor cells in the bloodstream.3 These cells are extremely rare, and with its high sensitivity, FCM is perfectly poised to make a significant impact in this area. This approach has potential for the clinical detection of early-stage cancer as well as the detection of circulating metastatic or drug-resistant cancer cells. For example, a study published earlier this year described label-free liquid biopsy with very high throughput (> 1 million cells/second) for drug-susceptibility testing during leukemia treatment.8

Prior to an organ transplant, FCM can be used to crossmatch the patient's serum with donor lymphocytes to detect antibodies that could result in organ rejection.1 Postoperatively, the analysis of various cell markers on the peripheral blood lymphocytes can indicate early transplant rejection, detect bone marrow toxicity arising from immunosuppressive therapies, and help differentiate infections from organ rejection. For blood transfusions, FCM can be used to detect contamination of blood with residual white blood cells, which can have adverse effects such as pulmonary edema.9Groups such as Dr. Roshini Abrahams at Nationwide Childrens Hospital in Ohio, USA, are using FCM to diagnose primary immunodeficiency disorders with the use of immunophenotyping and functional assays.10 These disorders are caused by genetic mutations that result in defects in the immune system, such as X-linked (Brutons) agammaglobulinemia and X-linked hyper-IgM syndrome. Over 300 of these disorders have been identified thus far, and the causative mutations lower immune defense against the attack of infections.

HIV is, of course, an example of a secondary (acquired) immunodeficiency disorder. FCM analysis of CD4 and other markers on lymphocytes in the peripheral blood is used to monitor the treatment of HIV patients, and a CD4 count <200 cells/mL together with a positive antibody test for HIV is used as a diagnostic for AIDS.1 Secondary immunodeficiencies can also be caused by e.g., substance abuse, malnutrition, other medical conditions, and certain medical treatments. FCM of a panel of markers can be used to confirm suspected cases.1In pregnancy, when a Rhesus blood group D-negative mother carries a D-positive fetus, fetal-maternal bleeding can sensitize the mother to the D-positive blood cells from the fetus and this can be fatal to subsequent D-positive newborns.11 FCM is used to measure the degree of fetal-maternal hemorrhage to determine the correct dose of prophylactics to be administered shortly after delivery.

In addition to oncology and immunology applications, FCM is also used to diagnose a variety of rare hematologic disorders12 as well as autoimmune/autoinflammatory disorders such as spondylarthritis (arthritis of the spine).13 Another area of research that is likely to give rise to increasing clinical applications in the future is that of platelet activity, which is important in many clinical conditions.1,14

Experts suggest that it may be possible to overcome this data analysis hurdle by applying machine learning approaches coupled with further standardization of FCM workflows.3,15 The most exciting applications of high content data revolve around the use of machine learning, in particular, deep learning, to extract relevant meaning from large data sets. Machine learning, coupled with big data, has the potential for driving diagnosis and treatment options tailored to the patients disease in a timely manner, says Dr. Parsons. In addition, Prof. Sadao Ota of RCAST at the University of Tokyo, Japan, points out, We still need to figure out how to design a workflow that convincingly validates diagnostic results, especially if the diagnosis employs the power of machine learning. Such developments are necessary before the rich information content of advanced FCM technology can be fully applied in the clinic.

In terms of other future advances in the field, Prof. Ota specifically makes mention of the potential of cell sorters combined with FCM.16 There are exciting and unique applications of sorters in fields such as cell therapy and regenerative medicine. Also, creating key applications of imaging cell sorters in pharmaceutical fields may accelerate global drug discovery. Dr. Doan concurs, Disease heterogeneity makes it hard to validate findings. Perhaps the use of flow cytometry with sorting capability can help such validation, where events-of-interest collected by flow cytometry can be validated with other downstream assays. Finally, as Dr. Doan notes, With multiple layers of data(types) incorporated altogether, there are now possibilities to do more with less, i.e., label-free sample measurement, which could lead to more direct, faster, and smarter diagnoses. Rare events (e.g., metastatic cancer cells) may soon be detected better than before.References1.Bakke A.C. Clinical Applications of Flow Cytometry. Laboratory Medicine. 2000; 31(2): 97104. doi: 10.1309/FC96-DDY4-2CRA-71FK.2.Herzenberg L.A., Parks D., Sahaf B., Perez O., Roederer M., Herzenberg L.A. The history and future of the fluorescence activated cell sorter and flow cytometry: a view from Stanford. Clinical Chemistry. 2002;48(10):181918273.Doan M., Vorobjev I., Rees P., Filby A., Wolkenhauer O., Goldfeld A.E., Lieberman J., Barteneva N., Carpenter A.E., Hennig H. Diagnostic potential of imaging flow cytometry. Trends in Biotechnology. 2018;36(7):649652. doi: 10.1016/j.tibtech.2017.12.008.4.Olsen L.R, Leipold M.D., Pedersen C.B., Maecker H.T. The anatomy of single cell mass cytometry data. Cytometry Part A. 2019;95(2):156172. doi: 10.1002/cyto.a.23621.5.Laerum O.D., Farsund T. Clinical application of flow cytometry: a review. Cytometry. 1981;2(1):113. doi: 10.1002/cyto.990020102.6.Li J., Wertheim G., Paessler M., Pillai V. Flow cytometry in pediatric hematopoietic malignancies. Clinics in Laboratory Medicine. 2017;37(4):879893. doi: 10.1016/j.cll.2017.07.009.7.Gupta S., Devidas M., Loh M.L., Raetz E.A., Chen S., Wang C., Brown P., Carroll A.J., Heerema N.A., Gastier-Foster J.M., Dunsmore K.P., Larsen E.C., Maloney K.W., Mattano L.A. Jr., Winter S.S., Winick N.J., Carroll W.L., Hunger S.P., Borowitz M.J., Wood B.L. Flow-cytometric vs. -morphologic assessment of remission in childhood acute lymphoblastic leukemia: a report from the Childrens Oncology Group (COG). Leukemia. 2018;32(6):13701379. doi: 10.1038/s41375-018-0039-7.8.Kobayashi H., Lei C., Wu Y., Huang C-J., Yasumoto A., Jona M., Li W., Wu Y., Yalikun Y., Jiang Y., Guo B., Sun C-W., Tanaka Y., Yamada M., Yatomi Y., Goda K. Intelligent whole-blood imaging flow cytometry for simple, rapid, and cost-effective drug-susceptibility testing of leukemia. Lab on a Chip. 2019;19(16):26882698. doi: 10.1039/c8lc01370e.9.Castegnaro S., Dragone P., Chieregato K., Alghisi A., Rodeghiero F., Astori G. Enumeration of residual white blood cells in leukoreduced blood products: Comparing flow cytometry with a portable microscopic cell counter. Transfusion and Apheresis Science. 2016;54(2):266270. doi: 10.1016/j.transci.2015.10.001.10.Abraham R.S., Aubert G. Flow cytometry, a versatile tool for diagnosis and monitoring of primary immunodeficiencies. Clinical and Vaccine Immunology. 2016;23(4):254271. doi: 10.1128/CVI.00001-16.11.Kim Y.A., Makar R.S. Detection of fetomaternal hemorrhage. American Journal of Hematology. 2012;87(4):417423. doi: 10.1002/ajh.22255.12.Bn M.C., Le Bris Y., Robillard N., Wuillme S., Fouassier M., Eveillard M. Flow cytometry in hematological nonmalignant disorders. International Journal of Laboratory Hematology. 2016;38(1):516. doi: 10.1111/ijlh.12438.13.Duan Z., Gui Y., Li C., Lin J., Gober H.J., Qin J., Li D., Wang L. The immune dysfunction in ankylosing spondylitis patients. Bioscience Trends. 2017;11(1):6976. doi: 10.5582/bst.2016.01171.14.Pasalic L. Assessment of platelet function in whole blood by flow cytometry. Methods in Molecular Biology. 2017;1646:349367. doi: 10.1007/978-1-4939-7196-1_27.15.Doan M., Carpenter A.E. Leveraging machine vision in cell-based diagnostics to do more with less. Nature Materials. 2019;18(5):414418. doi: 10.1038/s41563-019-0339-y.16.Ota S., Horisaki R., Kawamura Y., Ugawa M., Sato I., Hashimoto K., Kamesawa R., Setoyama K., Yamaguchi S., Fujiu K., Waki K., Noji H. Ghost cytometry. Science. 2018;360(6394):12461251. doi: 10.1126/science.aan0096.

Read more here:
The Value and Versatility of Clinical Flow Cytometry - Technology Networks

To Read More: The Value and Versatility of Clinical Flow Cytometry – Technology Networks
categoriaBone Marrow Stem Cells commentoComments Off on The Value and Versatility of Clinical Flow Cytometry – Technology Networks | dataNovember 11th, 2019
Read All

An introduction to the use of transplantation for the treatment of AML – AML Global Portal

By daniellenierenberg

Transplant strategies for AML

Today, the only curative approach to treat patients with AML is the administration of high-dose chemotherapy followed by allogeneic HSCT (allo-SCT). Although autologous HSCT (auto-SCT) may still be an option for certain patients with favorable or intermediate risk AML, its use has been debated due to the fact that AML is a blood and bone marrow malignancy, thus transplantation with the patients own cells runs the risk of giving back some of the patients leukemia cells.1 In contrast, during the process of allo-SCT, cells from a donor are infused. This provides an additional benefit, called the graft-versus-leukemia or tumor (GvL or GvT) effect, whereby the donor immune cells have the potential of recognising and eradicating remaining leukemia cells in the host, thus reducing the risk of relapse.2

Various donors can be used for an allo-SCT, while the best stem cell source remains to be from a human leukocyte antigen (HLA)-matched sibling donor (MSD). However, in approximately 70% of the cases such donors are unavailable, leaving the next best option of an HLA-matched unrelated donor (MUD).3 For patients where MSD or MUD are unavailable, a partially HLA-matched related donor can be used. This is referred to as haploidentical transplant (HD) and is usually a 50% HLA-match. In the past, HD has been associated with a slow immune reconstitution and high mortality from infections. Today, the use of post-transplant management treatments, like post-transplant cyclophosphamide (PTCy), reduces mortality and has made HD a viable option for patients with AML. This was further discussed by Arnon Nagler in his interview4 with the AML Global Portal (AGP) during the 2019 European Society for Blood and Marrow Transplantation (EBMT) meeting (video below). Nevertheless, HD still leads to inferior outcomes when compared to MSD in patients with AML (read AGP article here). Other donor types include cells from umbilical cord (read AGP article here) or from HLA-mismatched unrelated donors (MMUD).2 The impact of donor type on the outcomes of allo-SCT has recently been explored in an article by the AGP here. The authors of the study concluded that the traditional hierarchy of donors (MSD, MUD, and then others) remains true in patients with AML and should be used as a treatment algorithm.

VIDEO INTERVIEW: EBMT 2019 | Haploidentical hematopoietic transplantation: current status and future perspectives

How to choose the right patients for transplantation

Choosing the right patient to receive transplantation following chemotherapy is crucial for maximising outcomes and reducing the risk of relapse and toxicity. As mentioned by Uwe Platzbecker in his AGP interview during the 2019 EBMT meeting (video below), there are two main considerations when choosing the right candidate for allo-SCT:

According to the ELN guidelines, patients are classified as favorable-risk, intermediate-risk, or poor-risk depending on the possibility of disease relapse. Patients with favorable-risk are usually not considered for allo-SCT after achieving their first complete remission (CR1), as the risk of toxicity and serious side effects outweighs the potential benefit from allo-SCT. For these patients, auto-SCT instead of chemotherapy after CR1 could be beneficial (read AGP article here). On the contrary, allo-SCT at CR1 is a common strategy for poor-risk patients with AML. In the case of intermediate-risk patients (the majority of patients with AML), the most suitable treatment option is less clear.6 Due to the high relapse rates seen in AML, allo-SCT has also been considered as a potential treatment strategy in second remission (CR2), although outcome is inferior compared to allo-SCT performed in CR1.7 In a recent study, summarized here by the AGP, it seems that myeloablative conditioning (MAC) and reduced intensity conditioning (RIC) lead to similar outcomes after allo-SCT in CR2, however more prospective trials are needed to tailor them for maximum efficacy and minimum toxicity.7 To date, it is evident that clinical decisions to perform transplantation need to be made on an individual basis. Recently, measurable residual disease (MRD) as a marker for disease severity and relapse risk has emerged as an important factor that can guide treatment decisions in the context of HSCT and has been reviewed in depth here by the AGP.

VIDEO INTERVIEW: EBMT 2019 | Considerations for transplantation in AML

Post-transplant issues & how to tackle them

Regardless of the advances in the transplantation field, allo-SCTs are associated with two main post-transplant issues: disease relapse and graft-versus-host disease (GvHD).

There is still a considerable number of patients that relapse after HSCT. At the moment, the best strategies to decrease the risk of post-transplantation relapse include:

Such agents include the use of FMS-like tyrosine kinase-3 (FTL3) inhibitors that are shown to delay disease relapse and to potentiate the GvL effect in patients with FLT3 mutations after allo-SCT.7 Multiple pre-clinical and clinical trials are currently underway to examine the efficacy of other targeted inhibitors, like sorafenib, lestaurtinib, sunitinib, tandutinib, quizartinib, and midostaurin, amongst others.8 Another drug that has been shown to prevent disease relapse and to potentially increase the GvL effect is azacitidine. This is a hypomethylating agent that is currently used as a safe and effective prophylactic therapy in high-risk patients following allo-SCT (read AGP article here).9

Charlie Craddock provided an extensive presentation on the strategies for GvL effect optimization at the 2019 EBMT meeting (see full article on the AGP here):

VIDEO INTERVIEW: American Society of Clinical Oncology (ASCO) 2019 | Who should get azacitidine after transplant?

GvHD remains a major post-transplant challenge, occurring when transplanted donor cells start attacking host cells and tissues.10 There are two main strategies used today to prevent GvHD:

In a clinical trial, PTCy has shown superior outcomes when compared to ATG in patients undergoing HD transplant, leading to improved overall survival, leukemia-free survival, and GvHD-relapse free survival. The results of this study were discussed by Arnon Nagler in his interview with the AGP at European Hematology Association (EHA) 2019. A comprehensive review on available treatments for GvHD prophylaxis and their efficacies has been published here by our GvHD Hub.

VIDEO INTERVIEW: EHA 2019 | Should we use PTCy or ATG as GvHD prophylaxis in haploidentical stem cell transplantation?

In patients who develop severe GvHD, systemic administration of steroids remains the first choice of treatment. Treating GvHD is considered by many as a double-edged sword, since on one side it is necessary, but on the other hand it may hinder the GvL effect, thus contributing to potential disease relapse. Further research is needed to clarify the role of GvHD treatment on the GvL effect and to establish the best agent to treat GvHD without hindering the benefits of graft transplantation to the host. Some patients do not respond to post allo-SCT corticosteroids and are classified as steroid-refractory GvHD patients. These patients have a high mortality rate after allo-SCT with a 1-year survival between 30-35%. Many novel approaches are being tested for these patients with the Janus kinase 1/2 (JAK1/2) inhibitor, ruxolitinib, and the Brutons tyrosine kinase (BTK) inhibitor, ibrutinib, being recently approved by the Food and Drug Administration (FDA) for steroid-refractory GvHD.11,12

VIDEO INTERVIEW: EHA 2019 | What are the current treatment recommendations for acute GvHD and the promotion of the GvL effect?

Can the new treatments for AML reduce the need for transplantation?

With the recent therapeutic advances in the field of AML, one major question arises: Can these advances in diagnostics and new therapies replace allo-SCT? During the 1st National Cancer Research Institute (NCRI) AML academy meeting, AGP was pleased to film the headline debate on recently licensed drugs versus recent advances in transplantation, which can be accessed here. Although an unresolved issue, it is evident that some of the new treatments lack the toxicity associated with allo-SCT and have demonstrated improved survival rates. Moreover, with new diagnostic tools, the identification of the right subgroups of patients who may benefit from a transplant-free and more targeted approach will be feasible. One such novel approach to AML treatment is the use of CAR-T cells. Their use as monotherapy or in combination with allo-SCT for the treatment of relapsed or refractory AML is currently under consideration and of great interest in the field. More details on the potential of CAR-T cell therapy for AML can be found here in a recently published article by the AGP. However, it is too early to say whether these new treatment approaches can replace allo-SCT as a curative approach to treat AML. This topic was discussed by Gert Ossenkoppele in the interview with the AGP shown below.

VIDEO INTERVIEW: EHA 2019 | What is the clinical value of new drugs in AML?

Conclusions

Despite the curative potential conferred by allo-SCT in patients with AML, there is still a high risk of non-relapse mortality (mostly due to severe GvHD) in addition to the risk of relapse associated with transplantation. This warrants the need for the development of either novel management and prophylactic therapies that can improve post-transplantation outcomes or of transplantation-free approaches for the treatment of AML. With numerous clinical trials underway with novel targeted agents as monotherapy or in combination, the future of AML treatment starts to look more promising.

Originally posted here:
An introduction to the use of transplantation for the treatment of AML - AML Global Portal

To Read More: An introduction to the use of transplantation for the treatment of AML – AML Global Portal
categoriaBone Marrow Stem Cells commentoComments Off on An introduction to the use of transplantation for the treatment of AML – AML Global Portal | dataNovember 11th, 2019
Read All

Stem Cell Therapy Market by Treatment,Application,End Users and Geography Forecast To 2026 – Markets Gazette 24

By daniellenierenberg

Stem Cell Therapy Market is expected to reach 202.77 billion by 2026 from 12.25 billion in 2017 at CAGR of 42.02%.(Detailed analysis of the market CAGR is provided in the report) stands for use of stem cells to treat or prevent disease or condition.

Bone marrow transplant and some therapies derived from umbilical cord blood are mainly used in stem cell therapy. Advancement, in order to establish new sources for stem cells, and to apply stem-cell treatments for neurodegenerative diseases and conditions such as diabetes, heart disease, and other conditions, are increased in recent years. Stem Cell Therapy Market Researchers are making efforts to discover novel methods to create human stem cells. This will increase the demand as well as supply for stem cell production and potential investigation in disease management. Increasing investment & research grants for developing safe and effective stem cell therapy products, the growing patient base for target diseases, concentrated product pipelines, increasing approval of the new clinical trials, rapid technological advancement in genomics, and the rising awareness about the stem cell are expected to drive the growth of the Stem Cell Therapy solutions market during the forecast period.

REQUEST FOR FREE SAMPLE REPORT: https://www.maximizemarketresearch.com/request-sample/522

However, improper infrastructure, insufficient storage systems, nascent technology in underdeveloped economies, Ethical issues related to an embryonic stem cell, low patient acceptance rate, Difficulty in the preservation of stem cell are expected to restrain the market growth. North America is expected to be the largest growing region by 2026; the reason behind that is extensive funding by Government. However, Emerging countries like India, china, Korea have low growth rate as compared to Developed regions in 2017 but increase in awareness about stem cell therapy will lead the Asia Pacific to generate a significant level of revenue by 2026.

Key Highlights of Stem Cell Therapy Market report

Detailed quantitative analysis of the current and future trends from 2017 to 2026, which helps to identify the prevailing market opportunities.Comprehensive analysis of factors instrumental in changing the market scenario, rising prospective opportunities, market shares, core competencies in terms of market development, growth strategies and identification of key companies that can influence this market on a global and regional scale.Assessment of Market definition along with the identification of key drivers, restraints opportunities and challenges for this market during the forecast period.Complete analysis of micro-markets with respect to individual growth trends, prospects, and contributions to the overall Stem Cell Therapy Solutions market.Stem Cell Therapy market analysis and comprehensive segmentation with respect to the Application, End users, Treatment, and geography to assist in strategic business planning.Stem Cell Therapy market analysis and forecast for five major geographies-North America, Europe, Asia Pacific, Middle East & Africa, Latin America, and their key regions.For company profiles, 2017 has been considered as the base year. In cases, wherein information was unavailable for the base year, the years prior to it have been considered.

Research Methodology:

The market is estimated by triangulation of data points obtained from various sources and feeding them into a simulation model created individually for each market. The data points are obtained from paid and unpaid sources along with paid primary interviews with key opinion leaders (KOLs) in the market. KOLs from both, demand and supply side were considered while conducting interviews to get an unbiased idea of the market. This exercise was done at a country level to get a fair idea of the market in countries considered for this study. Later this country-specific data was accumulated to come up with regional numbers and then arrive at a global market value for the stem cell therapy market.

Key Players in the Stem Cell Therapy Market are:

Chiesi Farmaceutici S.P.A Are:Gamida CellReNeuron Group, plcOsiris Therapeutics, Inc.Stem Cells, Inc.Vericel Corporation.Mesoblast, Ltd.

Key Target Audience:

Stem Cell Associations and OrganizationsGovernment Research Boards and OrganizationsResearch and consulting firmsStem Cell Therapy Market InvestorsHealthcare Service Providers (including Hospitals and Diagnostic Centers)Stem Cell Therapeutic Product Manufacturing OrganizationsResearch LabsClinical research organizations (CROs)Stem Cell Therapy Marketing PlayersPharmaceutical Product Manufacturing Companies

DO INQUIRY BEFORE PURCHASING REPORT HERE: https://www.maximizemarketresearch.com/inquiry-before-buying/522

Scope of the Stem Cell Therapy Market Report:

Stem Cell Therapy market research report categorizes the Stem Cell Therapy market based on Application, End users, Treatment, and geography (region wise). Market size by value is estimated and forecasted with the revenues of leading companies operating in the Stem Cell Therapy market with key developments in companies and market trends.

Stem Cell Therapy Market, By Treatments:

Allogeneic Stem Cell TherapyAutologous Stem Cell Therapy

Stem Cell Therapy Market, By End Users:

HospitalsAmbulatory Surgical Centers

Stem Cell Therapy Market, By Application:

OncologyCentral Nervous System DiseasesEye DiseasesMusculoskeletal DiseasesWound & InjuriesMetabolic DisordersCardiovascular DisordersImmune System Disorders

Stem Cell Therapy Market, By Geography:

North AmericaEuropeAsia PacificMiddle East & AfricaLatin America

Available Customization:

With the given market data, Maximize Market Research offers customization of report and scope of the report as per the requirement

Regional Analysis:

Breakdown of the North America stem cell therapy marketBreakdown of the Europe stem cell therapy marketBreakdown of the Asia Pacific stem cell therapy marketBreakdown of the Middle East & Africa stem cell therapy marketBreakdown of the Latin America stem cell therapy market

Company Information:Detailed analysis and profiles of addition

Browse Full Report with Facts and Figures of Stem Cell Therapy Market Report at: https://www.maximizemarketresearch.com/market-report/stem-cell-therapy-market/522/

MAJOR TOC OF THE REPORT

Chapter One: Stem Cell Therapy Market Overview

Chapter Two: Manufacturers Profiles

Chapter Three: Global Stem Cell Therapy Market Competition, by Players

Chapter Four: Global Stem Cell Therapy Market Size by Regions

Chapter Five: North America Stem Cell Therapy Revenue by Countries

Chapter Six: Europe Stem Cell Therapy Revenue by Countries

Chapter Seven: Asia-Pacific Stem Cell Therapy Revenue by Countries

Chapter Eight: South America Stem Cell Therapy Revenue by Countries

Chapter Nine: Middle East and Africa Revenue Stem Cell Therapy by Countries

Chapter Ten: Global Stem Cell Therapy Market Segment by Type

Chapter Eleven: Global Stem Cell Therapy Market Segment by Application

Chapter Twelve: Global Stem Cell Therapy Market Size Forecast (2019-2026)

About Us:

Maximize Market Research provides B2B and B2C market research on 20,000 high growth emerging technologies & opportunities in Chemical, Healthcare, Pharmaceuticals, Electronics & Communications, Internet of Things, Food and Beverages, Aerospace and Defense and other manufacturing sectors.

Contact info:

Name: Lumawant Godage

Organization: MAXIMIZE MARKET RESEARCH PVT. LTD.

Email: sales@maximizemarketresearch.com

Contact: +919607065656/ +919607195908

Website: http://www.maximizemarketresearch.com

View post:
Stem Cell Therapy Market by Treatment,Application,End Users and Geography Forecast To 2026 - Markets Gazette 24

To Read More: Stem Cell Therapy Market by Treatment,Application,End Users and Geography Forecast To 2026 – Markets Gazette 24
categoriaBone Marrow Stem Cells commentoComments Off on Stem Cell Therapy Market by Treatment,Application,End Users and Geography Forecast To 2026 – Markets Gazette 24 | dataNovember 11th, 2019
Read All

Myelofibrosis Treatment Market To Witness an Outstanding Growth During 2016-2022 – Zebvo

By daniellenierenberg

Myelofibrosis or osteomyelofibrosis is a myeloproliferative disorder which is characterized by proliferation of abnormal clone of hematopoietic stem cells. Myelofibrosis is a rare type of chronic leukemia which affects the blood forming function of the bone marrow tissue. National Institute of Health (NIH) has listed it as a rare disease as the prevalence of myelofibrosis in UK is as low as 0.5 cases per 100,000 population. The cause of myelofibrosis is the genetic mutation in bone marrow stem cells. The disorder is found to occur mainly in the people of age 50 or more and shows no symptoms at an early stage. The common symptoms associated with myelofibrosis include weakness, fatigue, anemia, splenomegaly (spleen enlargement) and gout. However, the disease progresses very slowly and 10% of the patients eventually develop acute myeloid leukemia. Treatment options for myelofibrosis are mainly to prevent the complications associated with low blood count and splenomegaly.

To Remain Ahead Of Your Competitors, Request for a Sample Here @https://www.persistencemarketresearch.com/samples/11341

The global market for myelofibrosis treatment is expected to grow moderately due to low incidence of a disease. However, increasing incidence of genetic disorders, lifestyle up-gradation and rise in smoking population are the factors which can boost the growth of global myelofibrosis treatment market. The high cost of therapy will the growth of global myelofibrosis treatment market.

The global market for myelofibrosis treatment is segmented on basis of treatment type, end user and geography:

As myelofibrosis is considered as non-curable disease treatment options mainly depend on visible symptoms of a disease. Primary stages of the myelofibrosis are treated with supportive therapies such as chemotherapy and radiation therapy. However, there are serious unmet needs in myelofibrosis treatment market due to lack of disease modifying agents. Approval of JAK1/JAK2 inhibitor Ruxolitinib in 2011 is considered as a breakthrough in myelofibrosis treatment. Stem cell transplantation for the treatment of myelofibrosis also holds tremendous potential for market growth but high cost of therapy is foreseen to limits the growth of the segment.

On the basis of treatment type, the global myelofibrosis treatment market has been segmented into blood transfusion, chemotherapy, androgen therapy and stem cell or bone marrow transplantation. Chemotherapy segment is expected to contribute major share due to easy availability of chemotherapeutic agents. Ruxolitinib is the only chemotherapeutic agent approved by the USFDA specifically for the treatment of myelofibrosis, which will drive the global myelofibrosis treatment market over the forecast period.

Geographically, global myelofibrosis treatment market is segmented into five regions viz. North America, Latin America, Europe, Asia Pacific and Middle East & Africa. Northe America is anticipated to lead the global myelofibrosis treatment market due to comparatively high prevalence of the disease in the region.

For Critical Insights On Keyword Market, Request For Customization Here @https://www.persistencemarketresearch.com/request-customization/11341

Some of the key market players in the global myelofibrosis treatment market are Incyte Corporation, Novartis AG, Celgene Corporation, Mylan Pharmaceuticals Ulc., Bristol-Myers Squibb Company, Eli Lilly and Company, Taro Pharmaceuticals Inc., AllCells LLC, Lonza Group Ltd., ATCC Inc. and others.

Read the original post:
Myelofibrosis Treatment Market To Witness an Outstanding Growth During 2016-2022 - Zebvo

To Read More: Myelofibrosis Treatment Market To Witness an Outstanding Growth During 2016-2022 – Zebvo
categoriaBone Marrow Stem Cells commentoComments Off on Myelofibrosis Treatment Market To Witness an Outstanding Growth During 2016-2022 – Zebvo | dataNovember 11th, 2019
Read All

First Patient in CytoDyn’s Triple-Negative Metastatic Breast Cancer Trial Shows Significant Reduction in Circulating Tumor Cells (CTC) and Reduced…

By daniellenierenberg

VANCOUVER, Washington, Nov. 11, 2019 (GLOBE NEWSWIRE) -- CytoDyn Inc. (OTC.QB: CYDY), (CytoDyn or the Company"), a late-stage biotechnology company developing leronlimab (PRO 140), a CCR5 antagonist with the potential for multiple therapeutic indications, announced today encouraging initial results from the first patient in a Phase 1b/2 clinical trial with metastatic triple-negative breast cancer (mTNBC). Circulating tumor cells (CTC) in the patients blood decreased significantly after leronlimab therapy at both two-week and five-week time points. Furthermore, a reduction in CCR5 expression on presumed metastatic tumor cells was evident.

We are excited to be involved with CytoDyn in evaluating the efficacy of leronlimab in mTNBC," stated IncellDx CEO, Bruce Patterson, M.D. These results at both two-week and five-week time intervals post-leronlimab therapy indicate initial efficacy against this most aggressive tumor type. Moreover, the reduction of CCR5 expression on EMT cells may prove to be significant, as high CCR5 expression is believed to be crucial for metastases.

The treatment of mTNBC with leronlimab in this Phase 1b/2 trial is in addition to metastatic breast cancer (MBC) patients treated with leronlimab under an emergency use IND. Results from both of the ongoing trials in MBC will dictate the Companys regulatory pathway, including the potential to seek Breakthrough Therapy designation and accelerated approval with the U.S. FDA for the use of leronlimab in MBC. Leronlimab has been granted Fast Track designation for mTNBC by the FDA based on a greater than 98% reduction of metastatic tumor volume in a murine xenograft model.

Today marks yet another significant milestone in our Companys history, advancing CytoDyns clinical development in oncology. Although these are early results in our first patient, we are encouraged by the reduction in both CTC and tumor size. Our safety record with leronlimab, and preclinical results in multiple oncology trials in various cancer indications, solidifies our vision to explore oncology indications. We are optimistic about the opportunity to provide a potential new therapeutic option for the women that are diagnosed with invasive breast cancer each year in the United States. We wish to thank the women who have agreed to participate in our trials and will endeavor to provide each of them with clinical benefit," stated CytoDyn President and CEO, Nader Pourhassan, Ph.D.

About Leronlimab (PRO 140)The U.S. Food and Drug Administration (FDA) has granted a "Fast Track" designation to CytoDyn for two potential indications of leronlimab for deadly diseases. The first as a combination therapy with highly active antiretroviral therapy (HAART) for HIV-infected patients, and the second is for metastatic triple-negative breast cancer. Leronlimab is an investigational humanized IgG4 mAb that blocks CCR5, a cellular receptor that is important in HIV infection, tumor metastases, and other diseases, including non-alcoholic steatohepatitis (NASH). Leronlimab has successfully completed nine clinical trials in over 800 people, including meeting its primary endpoints in a pivotal Phase 3 trial (leronlimab in combination with standard anti-retroviral therapies in HIV-infected treatment-experienced patients).

In the setting of HIV/AIDS, leronlimab is a viral-entry inhibitor; it masks CCR5, thus protecting healthy T cells from viral infection by blocking the predominant HIV (R5) subtype from entering those cells. Leronlimab has been the subject of nine clinical trials, each of which demonstrated that leronlimab can significantly reduce or control HIV viral load in humans. The leronlimab antibody appears to be a powerful antiviral agent leading to potentially fewer side effects and less frequent dosing requirements compared with daily drug therapies currently in use.

In the setting of cancer, research has shown that CCR5 plays a vital role in tumor invasion and metastasis. Increased CCR5 expression is an indicator of disease status in several cancers. Published studies have shown that blocking CCR5 can reduce tumor metastases in laboratory and animal models of aggressive breast and prostate cancer. Leronlimab reduced human breast cancer metastasis by more than 98% in a murine xenograft model. CytoDyn is, therefore, conducting a Phase 2 human clinical trial in metastatic triple-negative breast cancer and was granted Fast Track designation in May 2019. CytoDyn is conducting additional research with leronlimab in the setting of oncology and NASH with plans to conduct further clinical studies when appropriate.

The CCR5 receptor appears to play a central role in modulating immune cell trafficking to sites of inflammation. It may be important in the development of acute graft-versus-host disease (GvHD) and other inflammatory conditions. Clinical studies by others further support the concept that blocking CCR5 using a chemical inhibitor can reduce the clinical impact of acute GvHD without significantly affecting the engraftment of transplanted bone marrow stem cells. CytoDyn is currently conducting a Phase 2 clinical study with leronlimab to support further the concept that the CCR5 receptor on engrafted cells is critical for the development of acute GvHD. Blocking the CCR5 receptor from recognizing specific immune signaling molecules is a viable approach to mitigating acute GvHD. The FDA has granted "orphan drug" designation to leronlimab for the prevention of GvHD.

About CytoDynCytoDyn is a biotechnology company developing innovative treatments for multiple therapeutic indications based on leronlimab, a novel humanized monoclonal antibody targeting the CCR5 receptor. CCR5 appears to play a crucial role in the ability of HIV to enter and infect healthy T-cells. The CCR5 receptor also appears to be implicated in tumor metastasis and immune-mediated illnesses, such as GvHD and NASH. CytoDyn has completed a Phase 3 pivotal trial with leronlimab in combination with standard anti-retroviral therapies in HIV-infected treatment-experienced patients. CytoDyn plans to seek FDA approval for leronlimab in combination therapy and plans to complete the filing of a Biologics License Application (BLA) in 2019 for that indication. CytoDyn is also conducting a Phase 3 investigative trial with leronlimab as a once-weekly monotherapy for HIV-infected patients. CytoDyn plans to initiate a registration-directed study of leronlimab monotherapy indication, which, if successful, could support a label extension. Clinical results to date from multiple trials have shown that leronlimab can significantly reduce viral burden in people infected with HIV with no reported drug-related serious adverse events (SAEs).Moreover, results from a Phase 2b clinical trial demonstrated that leronlimab monotherapy can prevent viral escape in HIV-infected patients. Some patients on leronlimab monotherapy have viral suppression for more than four years. CytoDyn is also conducting a Phase 2 trial to evaluate leronlimab for the prevention of GvHD and has received clearance to initiate a clinical trial with leronlimab in metastatic triple-negative breast cancer. More information is at http://www.cytodyn.com.

Forward-Looking StatementsThis press release contains certain forward-looking statements that involve risks, uncertainties, and assumptions that are difficult to predict. Words and expressions reflecting optimism, satisfaction or disappointment with current prospects, as well as words such as "believes," "hopes," "intends," "estimates," "expects," "projects," "plans," "anticipates" and variations thereof, or the use of future tense, identify forward-looking statements but, their absence does not mean that a statement is not forward-looking. The Company's forward-looking statements are not guarantees of performance, and actual results could vary materially from those contained in or expressed by such statements due to risks and uncertainties including: (i)the sufficiency of the Companys cash position, (ii)the Companys ability to raise additional capital to fund its operations, (iii) the Companys ability to meet its debt obligations, if any, (iv)the Companys ability to enter into partnership or licensing arrangements with third parties, (v)the Companys ability to identify patients to enroll in its clinical trials in a timely fashion, (vi)the Companys ability to achieve approval of a marketable product, (vii)the design, implementation and conduct of the Companys clinical trials, (viii)the results of the Companys clinical trials, including the possibility of unfavorable clinical trial results, (ix)the market for, and marketability of, any product that is approved, (x)the existence or development of vaccines, drugs, or other treatments that are viewed by medical professionals or patients as superior to the Companys products, (xi)regulatory initiatives, compliance with governmental regulations and the regulatory approval process, (xii)general economic and business conditions, (xiii)changes in foreign, political, and social conditions, and (xiv)various other matters, many of which are beyond the Companys control. The Company urges investors to consider specifically the various risk factors identified in its most recent Form10-K, and any risk factors or cautionary statements included in any subsequent Form10-Q or Form8-K, filed with the Securities and Exchange Commission. Except as required by law, the Company does not undertake any responsibility to update any forward-looking statements to take into account events or circumstances that occur after the date of this press release.

CONTACTSInvestors: Nader Pourhassan, Ph.D.President & CEOnpourhassan@cytodyn.com

See the article here:
First Patient in CytoDyn's Triple-Negative Metastatic Breast Cancer Trial Shows Significant Reduction in Circulating Tumor Cells (CTC) and Reduced...

To Read More: First Patient in CytoDyn’s Triple-Negative Metastatic Breast Cancer Trial Shows Significant Reduction in Circulating Tumor Cells (CTC) and Reduced…
categoriaBone Marrow Stem Cells commentoComments Off on First Patient in CytoDyn’s Triple-Negative Metastatic Breast Cancer Trial Shows Significant Reduction in Circulating Tumor Cells (CTC) and Reduced… | dataNovember 11th, 2019
Read All

Serving those who serve – The Hub at Johns Hopkins

By daniellenierenberg

ByKristin Hanson

This article was originally published on Nov. 8 on giving.jhu.edu

Between 2001 and the beginning of 2018, more than 1,500 U.S. military service members lost limbs in the line of duty. Although technology has improved the prosthetic devices these people can use, a stubborn obstacle remains: the fragility of human skin.

"Skin was never meant to hold this kind of pressure," says Lee Childers, the senior scientist for the Extremity Trauma and Amputation Center of Excellence at Brooke Army Medical Center in San Antonio, Texas.

"Think about it like a blister on your foot. It's painful, but you can still get by," he continues. "In an amputation, it's a blister on your residual limb. You can't use your prosthesis until the blister is completely healed. If it's your leg [that is affected], you can't walk for two or three weeks. Think about how that would impact your life."

What if there were a way to make the skin at an amputation site tougher, like the palm of your hand or the sole of your foot? Luis Garza, an associate professor of dermatology at Johns Hopkins and leader of the Veteran Amputee Skin Regeneration Program, is developing a cell therapy that could enable prosthetics wearers to use their devices longer.

"This is an example of personalized medicine," Garza says. "We're taking each person's own cells, growing them up, and inserting them back in."

Garza's postdoctoral research focused on skin stem cells. In 2009, he and his department chair, Sewon Kang, began having conversations about how that work could help the increasing numbers of veterans coming back from war with amputations. Garza and his team received grants from the U.S. Department of Defense, National Institutes of Health, and Maryland Stem Cell Fund that have moved the program forward in the past decade.

Garza's team spent the summer of 2019 testing "normal" subjectsthose without amputationsto perfect the procedure, including the dose, content, method, and frequency of the injections. During one appointment, members of Garza's team took biopsies of skin from a subject's scalp and sole. The cells went to a lab where they were grown under an FDA-approved protocol and passed through quality control tests.

In a second appointment, subjects completed a questionnaire and underwent baseline measurements of their skin's thickness and strength. Garza's team then injected a site on the subjects' skin with the stem cells grown from their cells in the lab.

Image caption: Luis Garza, associate professor of dermatology at Johns Hopkins, leads the Veteran Amputee Skin Regeneration Program.

"We're hoping that these stem cell populations will engraft in the new skin," Garza says.

The subjects returned to Hopkins several months later to go through the questionnaire and measurements once more, and Garza's team documented changes.

Confident in the results they gleaned from the normal subjects, Garza's team enrolled its first subject with an amputation in August. Moving from the normal population to the amputation-affected population quickly unearthed some aspects of the therapy Garza didn't anticipate.

"When we talked with him, he said 'I don't want to mess with my one remaining footdo you have to take skin from there?' And we said, 'Actually, no, we could do your palm,'" Garza says.

His team then tested the biopsy and growth of palm cells from subjects in the normal population. "We're moving away from having our product informed purely by biology to letting our therapy development be shaped by the user."

Although federal grants have supported much of the program's progress, private philanthropy has played a role, too. Corporations like Northrop Grumman, foundations like the Alliance for Veteran Support, and grateful patients with and without ties to the armed forces have contributed nearly $300,000. Those gifts have enabled the program to persevere through gaps between federal grants.

Private funds will be increasingly important as the project enters its next phase: extension to military medical centers around the country. Garza's team must prove that the safeguards to protect cells on their round-trip voyage from a test site to Hopkins are effective. They also must secure approval by local institutional review boards for clinical studies.

"Soldiers are used to getting orders, but you can't order someone to be part of a [medical] study," Garza says. "There are hard medical ethics questions around how to make this open to them but ensure they don't feel obligated. We've been working on that for a year, and we probably have another six months or so to go."

Childers stands ready for whenever the program's extension is a go. He will lead the study at Brooke Army Medical Center and feels motivated by the prospect of helping many of the veterans he works with every day.

"We do everything we can to serve those who serve us. This can enable people to return to duty and be redeployed if they choose," he says. "This is game-changing technology that will have an impact for our service members, but also others who live with amputation."

That population includes the hundreds of thousands of Americans who've undergone amputations for complications of diabetes, who must use a wheelchair, or who wear ankle or foot orthoses for help with walking, among others.

"Having the ability to transform skin anywhere you want to target on the body will have gigantic implications across the entire spectrum of our society in many ways," Childers says.

There's a lot of work to be done before such benefits reach the public, Garza cautions. With continued support from donors and the military community, though, he's optimistic about the program's future.

"The challenges are pretty big, but I think within five years, it could happen," he says. "That's the hope."

Disclaimer: The view(s) expressed herein are those of the author(s) and do not reflect the official policy or position of the Brooke Army Medical Center, the U.S. Army Medical Department, the U.S. Army Office of the Surgeon General, the Department of the Army, the Department of the Air Force and Department of Defense or the U.S. Government.

Read more:
Serving those who serve - The Hub at Johns Hopkins

To Read More: Serving those who serve – The Hub at Johns Hopkins
categoriaSkin Stem Cells commentoComments Off on Serving those who serve – The Hub at Johns Hopkins | dataNovember 11th, 2019
Read All

Hair regrowth depends on lymphatic system, finds study giving hope to find way to cure baldness – International Business Times, Singapore Edition

By daniellenierenberg

Even though your skin goes through unlimited wear and tear, it is able to repair itself. How does it undertake these regrowth factory activities? There are reservoirs of stem cells within supportive micro-environments, also called niches, throughout the skin. They can keep a tight leash on this repairing process. Too much tissue can lead to complications such as cancer, even though too less may enhance ageing.

Can stem cells direct other stem cells to reform into new skin when they reshape their niches? A study published in Science, led by Prof. Elaine Fuchs actually shows that stem cells have an effect on tissue regeneration. It marks out a molecular coordination tool that can be leveraged by stem cells to convey signals across niches.

The scientists wrote in the abstract of their article, published in Science: "Tissues rely on stem cells (SCs) for homeostasis and wound-repair. SCs reside in specialized microenvironments (niches) whose complexities and roles in orchestrating tissue growth are still unfolding. Here, we identify lymphatic capillaries as critical SC-niche components. In skin, lymphatics form intimate networks around hair follicle (HF) SCs."

Hence, another component of the niche that was revealed was the lymphatic capillaries, specialized types of vessels. They transport immune cells and also drain out excess fluids and toxins from tissues. As the capillaries integrate into a close network around the stem cell niche inside every hair follicle, all the niches get interconnected.

"By turning the skin completely transparent," says postdoctoral fellow Shiri Gur-Cohen, "we were able to reveal the complex architecture of this network of tubes." Researchers identified that the hair-follicle stem cells manage the behavior of lymphatic capillaries. They do this by secreting molecules acting as on-off switches for drainage. They enabled them to monitor the compositions of fluids and cells around them and finally synchronize regeneration across the tissues.

"The involvement of the lymphatic system in this process is a new concept," says Fuchs, "and might potentially provide new therapeutic targets for lymph-related conditions such as wound-healing defects and hair loss." The scientists summarized their findings in Science: "When lymphatics are perturbed or the secretome switch is disrupted, HFs cycle precociously and tissue regeneration becomes asynchronous. In unearthing lymphatic capillaries as a critical SC-niche element, we have learned how SCs coordinate their activity across a tissue."

Hence, to those who haven't understood why they are losing hair in tufts, checking out the scientific experiments on your lymphatic systems can go a long way in figuring out how it can be regrown.

Continue reading here:
Hair regrowth depends on lymphatic system, finds study giving hope to find way to cure baldness - International Business Times, Singapore Edition

To Read More: Hair regrowth depends on lymphatic system, finds study giving hope to find way to cure baldness – International Business Times, Singapore Edition
categoriaSkin Stem Cells commentoComments Off on Hair regrowth depends on lymphatic system, finds study giving hope to find way to cure baldness – International Business Times, Singapore Edition | dataNovember 11th, 2019
Read All

Kadmon Announces that KD025 Met Primary Endpoint at Interim Analysis of Pivotal Trial in Chronic Graft-Versus-Host Disease – Yahoo Finance

By daniellenierenberg

NEW YORK / ACCESSWIRE / November 11, 2019 / Kadmon Holdings, Inc. (KDMN) today announced positive topline results from the planned interim analysis of ROCKstar (KD025-213), the fully enrolled pivotal trial evaluating KD025 in patients with chronic graft-versus-host disease (cGVHD) who have received at least two prior lines of systemic therapy. The trial met the primary endpoint of Overall Response Rate (ORR) at the interim analysis, which was conducted as scheduled two months after completion of enrollment.

KD025 showed statistically significant ORRs of 64% with KD025 200 mg once daily (QD) (95% Confidence Interval (CI): 51%, 75%; p<0.0001) and 67% with KD025 200 mg twice daily (BID) (95% CI: 54%, 78%; p<0.0001). KD025 has been well tolerated and adverse events have been consistent with those expected in the patient population.

"We are extremely pleased with the outcomes of the interim analysis, which showed that KD025 has already greatly exceeded the threshold for success in this pivotal trial," said Harlan W. Waksal, M.D., President and CEO of Kadmon. "We look forward to sharing these results with the FDA at a pre-NDA meeting, where we will also discuss the timing for a regulatory filing for KD025 in cGVHD, which we expect to occur in 2020, subject to FDA input."

"KD025 was shown to be a highly active and well-tolerated therapy across the spectrum of this complex, multi-organ disease," said Corey Cutler, MD, MPH, FRCPC, Associate Professor of Medicine, Harvard Medical School; Medical Director, Adult Stem Cell Transplantation Program, Dana-Farber Cancer Institute and a KD025-213 study investigator and Steering Committee member. "The response rates observed are particularly impressive since this study is being conducted in a real-world population with severe disease, supporting the potential role of KD025 in cGVHD patients who are in need of effective and well-tolerated therapies."

"It is highly encouraging to see the positive results from the pivotal trial are in line with those observed in the earlier Phase 2 study of KD025 in this difficult-to-treat disease," said Madan Jagasia, MD, Vanderbilt University, an investigator of the KD025-208 and KD025-213 studies and the KD025-213 Steering Committee chair. "These latest KD025 data continue to underscore the value that KD025 may offer to cGVHD patients."

KD025-213 is an ongoing open-label trial of KD025 in adults and adolescents with cGVHD who have received at least two prior lines of systemic therapy. Patients were randomized to receive KD025 200 mg QD or KD025 200 mg BID, enrolling 66 patients per arm. Statistical significance is achieved if the lower bound of the 95% CI of ORR exceeds 30%, which was achieved in both arms of the trial at the interim analysis.

While the ORR endpoint was met at the interim analysis, the primary analysis of the KD025-213 study will occur in the first quarter of 2020, six months after completion of enrollment. This analysis will include updated safety data and efficacy data, including ORRs and secondary endpoints, such as duration of response, changes in corticosteroid dose and changes in quality of life. Kadmon plans to submit results from the KD025-213 study for presentation at an upcoming scientific meeting.

Conference Call and Webcast

Kadmon will host a conference call and webcast on Monday, November 11, 2019, at 5:00 p.m., Eastern time, to discuss the topline results of the interim analysis of the KD025-213 study.

To participate in the conference call, please dial (866) 762-3021 (domestic) or (703) 925-2661 (international) and reference the conference ID: 6468498. The accompanying slides will be available for download on Kadmon's website beginning at 5:00 p.m. Eastern time.

To listen online via webcast, please visit: https://edge.media-server.com/mmc/p/9b9w8p38. The webcast will be archived and will be available at http://investors.kadmon.com/presentations-and-events.

About KD025

KD025 is a selective oral inhibitor of Rho-associated coiled-coil kinase 2 (ROCK2), a signaling pathway that modulates inflammatory response. In addition to cGVHD, KD025 is being studied in an ongoing Phase 2 clinical trial in adults with diffuse cutaneous systemic sclerosis (KD025-209). KD025 was granted Breakthrough Therapy Designation and Orphan Drug Designation by the U.S. Food and Drug Administration for the treatment of patients with cGVHD who have received at least two prior lines of systemic therapy.

Story continues

About cGVHD

cGVHD is a common and often fatal complication following hematopoietic stem cell transplantation. In cGVHD, transplanted immune cells (graft) attack the patient's cells (host), leading to inflammation and fibrosis in multiple tissues, including skin, mouth, eye, joints, liver, lung, esophagus and gastrointestinal tract. Approximately 14,000 patients in the United States are currently living with cGVHD, and approximately 5,000 new patients are diagnosed with cGVHD per year.

About Kadmon

Kadmon is a biopharmaceutical company developing innovative products for significant unmet medical needs. Our product pipeline is focused on inflammatory and fibrotic diseases as well as immuno-oncology.

Forward Looking Statements

This press release contains forward-looking statements. Such statements may be preceded by the words "may," "will," "should," "expects," "plans," "anticipates," "could," "intends," "targets," "projects," "contemplates," "believes," "estimates," "predicts," "potential" or "continue" or the negative of these terms or other similar expressions. Forward-looking statements involve known and unknown risks, uncertainties and other important factors that may cause our actual results, performance or achievements to be materially different from any future results, performance or achievements expressed or implied by the forward-looking statements. We believe that these factors include, but are not limited to, (i) the initiation, timing, progress and results of our preclinical studies and clinical trials, including KD025-213, and our research and development programs; (ii) our ability to advance product candidates into, and successfully complete, clinical trials; (iii) our reliance on the success of our product candidates, including KD025; (iv) the timing or likelihood of regulatory filings and approvals, including in connection with KD025-213; (v) our ability to expand our sales and marketing capabilities; (vi) the commercialization of our product candidates, if approved; (vii) the pricing and reimbursement of our product candidates, if approved; (viii) the implementation of our business model, strategic plans for our business, product candidates and technology; (ix) the scope of protection we are able to establish and maintain for intellectual property rights covering our product candidates and technology; (x) our ability to operate our business without infringing the intellectual property rights and proprietary technology of third parties; (xi) costs associated with defending intellectual property infringement, product liability and other claims; (xii) regulatory developments in the United States, Europe and other jurisdictions; (xiii) estimates of our expenses, future revenues, capital requirements and our needs for additional financing; (xiv) the potential benefits of strategic collaboration agreements and our ability to enter into strategic arrangements; (xv) our ability to maintain and establish collaborations or obtain additional grant funding; (xvi) the rate and degree of market acceptance of our product candidates; (xvii) developments relating to our competitors and our industry, including competing therapies; (xviii) our ability to effectively manage our anticipated growth; (xix) our ability to attract and retain qualified employees and key personnel; (xx) our ability to achieve cost savings and other benefits from our efforts to streamline our operations and to not harm our business with such efforts; (xxi) the use of proceeds from our recent public offerings; (xxii) the potential benefits of any of our product candidates being granted orphan drug designation; (xxiii) the future trading price of the shares of our common stock and impact of securities analysts' reports on these prices; and/or (xxiv) other risks and uncertainties. More detailed information about Kadmon and the risk factors that may affect the realization of forward-looking statements is set forth in Kadmon's filings with the U.S. Securities and Exchange Commission (the "SEC"), including Kadmon's Annual Report on Form 10-K for the fiscal year ended December 31, 2018 and subsequent Quarterly Reports on Form 10-Q. Investors and security holders are urged to read these documents free of charge on the SEC's website at http://www.sec.gov. Kadmon assumes no obligation to publicly update or revise its forward-looking statements as a result of new information, future events or otherwise.

Contact Information

Ellen Cavaleri, Investor Relations646.490.2989ellen.cavaleri@kadmon.com

SOURCE: Kadmon Holdings, Inc.

View source version on accesswire.com: https://www.accesswire.com/566116/Kadmon-Announces-that-KD025-Met-Primary-Endpoint-at-Interim-Analysis-of-Pivotal-Trial-in-Chronic-Graft-Versus-Host-Disease

See the article here:
Kadmon Announces that KD025 Met Primary Endpoint at Interim Analysis of Pivotal Trial in Chronic Graft-Versus-Host Disease - Yahoo Finance

To Read More: Kadmon Announces that KD025 Met Primary Endpoint at Interim Analysis of Pivotal Trial in Chronic Graft-Versus-Host Disease – Yahoo Finance
categoriaSkin Stem Cells commentoComments Off on Kadmon Announces that KD025 Met Primary Endpoint at Interim Analysis of Pivotal Trial in Chronic Graft-Versus-Host Disease – Yahoo Finance | dataNovember 11th, 2019
Read All

Stem Cell Therapy Market Poised to Expand at a Robust Pace Over 2025 – Tech Admirers

By daniellenierenberg

Share

Share

Share

Email

Global Stem Cell Therapy Market: Overview

Also called regenerative medicine, stem cell therapy encourages the reparative response of damaged, diseased, or dysfunctional tissue via the use of stem cells and their derivatives. Replacing the practice of organ transplantations, stem cell therapies have eliminated the dependence on availability of donors. Bone marrow transplant is perhaps the most commonly employed stem cell therapy.

Osteoarthritis, cerebral palsy, heart failure, multiple sclerosis and even hearing loss could be treated using stem cell therapies. Doctors have successfully performed stem cell transplants that significantly aid patients fight cancers such as leukemia and other blood-related diseases.

Know the Growth Opportunities in Emerging Markets

Global Stem Cell Therapy Market: Key Trends

The key factors influencing the growth of the global stem cell therapy market are increasing funds in the development of new stem lines, the advent of advanced genomic procedures used in stem cell analysis, and greater emphasis on human embryonic stem cells. As the traditional organ transplantations are associated with limitations such as infection, rejection, and immunosuppression along with high reliance on organ donors, the demand for stem cell therapy is likely to soar. The growing deployment of stem cells in the treatment of wounds and damaged skin, scarring, and grafts is another prominent catalyst of the market.

On the contrary, inadequate infrastructural facilities coupled with ethical issues related to embryonic stem cells might impede the growth of the market. However, the ongoing research for the manipulation of stem cells from cord blood cells, bone marrow, and skin for the treatment of ailments including cardiovascular and diabetes will open up new doors for the advancement of the market.

Global Stem Cell Therapy Market: Market Potential

A number of new studies, research projects, and development of novel therapies have come forth in the global market for stem cell therapy. Several of these treatments are in the pipeline, while many others have received approvals by regulatory bodies.

In March 2017, Belgian biotech company TiGenix announced that its cardiac stem cell therapy, AlloCSC-01 has successfully reached its phase I/II with positive results. Subsequently, it has been approved by the U.S. FDA. If this therapy is well- received by the market, nearly 1.9 million AMI patients could be treated through this stem cell therapy.

Another significant development is the granting of a patent to Israel-based Kadimastem Ltd. for its novel stem-cell based technology to be used in the treatment of multiple sclerosis (MS) and other similar conditions of the nervous system. The companys technology used for producing supporting cells in the central nervous system, taken from human stem cells such as myelin-producing cells is also covered in the patent.

The regional analysis covers:

Order this Report TOC for Detailed Statistics

Global Stem Cell Therapy Market: Regional Outlook

The global market for stem cell therapy can be segmented into Asia Pacific, North America, Latin America, Europe, and the Middle East and Africa. North America emerged as the leading regional market, triggered by the rising incidence of chronic health conditions and government support. Europe also displays significant growth potential, as the benefits of this therapy are increasingly acknowledged.

Asia Pacific is slated for maximum growth, thanks to the massive patient pool, bulk of investments in stem cell therapy projects, and the increasing recognition of growth opportunities in countries such as China, Japan, and India by the leading market players.

Global Stem Cell Therapy Market: Competitive Analysis

Several firms are adopting strategies such as mergers and acquisitions, collaborations, and partnerships, apart from product development with a view to attain a strong foothold in the global market for stem cell therapy.

Some of the major companies operating in the global market for stem cell therapy are RTI Surgical, Inc., MEDIPOST Co., Ltd., Osiris Therapeutics, Inc., NuVasive, Inc., Pharmicell Co., Ltd., Anterogen Co., Ltd., JCR Pharmaceuticals Co., Ltd., and Holostem Terapie Avanzate S.r.l.

The rest is here:
Stem Cell Therapy Market Poised to Expand at a Robust Pace Over 2025 - Tech Admirers

To Read More: Stem Cell Therapy Market Poised to Expand at a Robust Pace Over 2025 – Tech Admirers
categoriaCardiac Stem Cells commentoComments Off on Stem Cell Therapy Market Poised to Expand at a Robust Pace Over 2025 – Tech Admirers | dataNovember 11th, 2019
Read All

Reviewing US Stem Cell (OTCMKTS:USRM) and Auxly Cannabis Group (OTCMKTS:CBWTF) – Riverton Roll

By daniellenierenberg

US Stem Cell (OTCMKTS:USRM) and Auxly Cannabis Group (OTCMKTS:CBWTF) are both small-cap medical companies, but which is the superior business? We will contrast the two businesses based on the strength of their risk, earnings, analyst recommendations, valuation, profitability, dividends and institutional ownership.

Valuation & Earnings

This table compares US Stem Cell and Auxly Cannabis Groups gross revenue, earnings per share (EPS) and valuation.

US Stem Cell has higher revenue and earnings than Auxly Cannabis Group.

Risk & Volatility

US Stem Cell has a beta of 5.05, suggesting that its stock price is 405% more volatile than the S&P 500. Comparatively, Auxly Cannabis Group has a beta of 0.62, suggesting that its stock price is 38% less volatile than the S&P 500.

Analyst Ratings

This is a summary of current ratings for US Stem Cell and Auxly Cannabis Group, as provided by MarketBeat.com.

Institutional and Insider Ownership

0.0% of Auxly Cannabis Group shares are held by institutional investors. 16.7% of US Stem Cell shares are held by company insiders. Strong institutional ownership is an indication that large money managers, endowments and hedge funds believe a company will outperform the market over the long term.

Profitability

This table compares US Stem Cell and Auxly Cannabis Groups net margins, return on equity and return on assets.

Summary

US Stem Cell beats Auxly Cannabis Group on 6 of the 9 factors compared between the two stocks.

US Stem Cell Company Profile

U.S. Stem Cell, Inc., a biotechnology company, focuses on the discovery, development, and commercialization of autologous cellular therapies for the treatment of chronic and acute heart damage, and vascular and autoimmune diseases in the United States and internationally. Its lead product candidates include MyoCell, a clinical therapy designed to populate regions of scar tissue within a patient's heart with autologous muscle cells or cells from a patient's body for enhancing cardiac function in chronic heart failure patients; and AdipoCell, a patient-derived cell therapy for the treatment of acute myocardial infarction, chronic heart ischemia, and lower limb ischemia. The company's product development pipeline includes MyoCell SDF-1, an autologous muscle-derived cellular therapy for improving cardiac function in chronic heart failure patients. It is also developing MyoCath, a deflecting tip needle injection catheter that is used to inject cells into cardiac tissue in therapeutic procedures to treat chronic heart ischemia and congestive heart failure. In addition, the company provides physician and patient based regenerative medicine/cell therapy training, cell collection, and cell storage services; and cell collection and treatment kits for humans and animals, as well operates a cell therapy clinic. The company was formerly known as Bioheart, Inc. and changed its name to U.S. Stem Cell, Inc. in October 2015. U.S. Stem Cell, Inc. was founded in 1999 and is headquartered in Sunrise, Florida.

Auxly Cannabis Group Company Profile

Auxly Cannabis Group Inc. operates as a cannabis streaming company. It provides funding for cannabis production; and holds contractual rights and minority equity interest relating to the operation of cannabis facilities. The company was formerly known as Cannabis Wheaton Income Corp. and changed its name to Auxly Cannabis Group Inc. in June 2018. Auxly Cannabis Group Inc. was incorporated in 1987 and is headquartered in Vancouver, Canada.

Receive News & Ratings for US Stem Cell Daily - Enter your email address below to receive a concise daily summary of the latest news and analysts' ratings for US Stem Cell and related companies with MarketBeat.com's FREE daily email newsletter.

See the rest here:
Reviewing US Stem Cell (OTCMKTS:USRM) and Auxly Cannabis Group (OTCMKTS:CBWTF) - Riverton Roll

To Read More: Reviewing US Stem Cell (OTCMKTS:USRM) and Auxly Cannabis Group (OTCMKTS:CBWTF) – Riverton Roll
categoriaCardiac Stem Cells commentoComments Off on Reviewing US Stem Cell (OTCMKTS:USRM) and Auxly Cannabis Group (OTCMKTS:CBWTF) – Riverton Roll | dataNovember 11th, 2019
Read All

Dystrogen Therapeutics Announces That Treatment With DEC Cells Improves Cardiac Function Cardiology2.0 – Cardiology2.0

By daniellenierenberg

Scientists from Dystrogen Therapeutics Corp. published data supporting cardioprotective effects of the Companys therapy for muscular dystrophy disorders. Cardiomyopathy is the most devastating cause of morbidity and mortality in Duchenne Muscular Dystrophy (DMD) patients and affects 30% of patients by 14years of age and 50% of patients by 18years of age. Heart failure in these patients is the result of cardiac myocyte death and fibrosis, leading to both diastolic and systolic dysfunction.

Dystrogen Therapeutics Corp has developed an engineered chimeric cell therapy which has been previously shown to restore muscle function in pre-clinical studies. For Duchennes muscular dystrophy, the company has developed dystrophin expressing chimeras DECs. Using the companys proprietary technology, DECs are created by an ex vivo fusion of allogeneic human myoblast from a healthy donor with autologous human myoblast received from DMD patient. DECs have been shown to maintain the ability to express normal dystrophin protein in previously published pre-clinical studies.

The new study published in theOctober 15th, 2019online edition of the journalStem Cell Reports and Reviewsconfirmed the protective effect of DEC on cardiac function after intraosseous delivery shown by increased values of both ejection fraction and fractional shortening, which at 90days revealed a rebound effect when compared to the vehicle injected controls and mice receiving not-chimeric cell therapy. Moreover, these functional improvements correlated with restoration of dystrophin expression in cardiac muscle at 90days post-DEC treatment.

These findings are potentially significant for the treatment of DMD, said Dr. Maria Siemionow, MD, PhD Dystrogen Therapeutics Corp chief scientific officer and the therapys inventor. This study establishes DEC as a promising new option for cardiac protection and potential amelioration of DMD related cardiac pathology.

These data add to the growing body of literature supporting the potential of our chimeric cell platform to restore systemic muscle function, with less potential side effects then gene therapy-based approaches, said Dr. Kris Siemionow, MD, PhD Dystrogen Therapeutics Corp CEO. We are very pleased to have these data published in a highly relevant journal for the field and look forward to further exploring this opportunity.

See original here:
Dystrogen Therapeutics Announces That Treatment With DEC Cells Improves Cardiac Function Cardiology2.0 - Cardiology2.0

To Read More: Dystrogen Therapeutics Announces That Treatment With DEC Cells Improves Cardiac Function Cardiology2.0 – Cardiology2.0
categoriaCardiac Stem Cells commentoComments Off on Dystrogen Therapeutics Announces That Treatment With DEC Cells Improves Cardiac Function Cardiology2.0 – Cardiology2.0 | dataNovember 11th, 2019
Read All

Gary Pesselt: Vitality Healthcare is it worth the cost? – The Union of Grass Valley

By daniellenierenberg

Another seminar is again advertised in The Union. I first thought it might help my wife with neuropathy until I did some extensive research.

First off, Medicare does not cover stem cell injections. Bone marrow stem cell injections range from $2,000 to $5,000 or more. Read Consumer Research report at: https://www.consumerreports.org/medical-treatments-procedures/trouble-with-stem-cell-therapy.

Stem cell treatments are widely accepted only for two broad medical indications: to help treat a handful of blood disorders including leukemia and some forms of anemia and in some cases to help burn victims. Ask questions. Any doctor who offers stem cell therapy should be able to explain where the cells will come from, what will be done to them before theyre injected into your body, and how, exactly, they will resolve your illness or injury. He or she should also be able to offer you proof of safety and efficacy, even for experimental treatments. Dont rely on patient testimonials.

Stem cells survive much longer than ordinary cells, increasing the chance that they might accumulate genetic mutations. It might take only a few mutations for one cell to lose control over its self-renewal and growth and become the source of cancer. Please do your own research.

Gary Pesselt

Grass Valley

View post:
Gary Pesselt: Vitality Healthcare is it worth the cost? - The Union of Grass Valley

To Read More: Gary Pesselt: Vitality Healthcare is it worth the cost? – The Union of Grass Valley
categoriaBone Marrow Stem Cells commentoComments Off on Gary Pesselt: Vitality Healthcare is it worth the cost? – The Union of Grass Valley | dataNovember 10th, 2019
Read All

Perfect match: How Birthright alumni saved the lives of 100s of strangers – The Jerusalem Post

By daniellenierenberg

Whoever saves a single life is considered by the Talmud to have saved the whole world.

In August 2013, Jeffrey Altadonna, who was on a Birthright trip, was tested at a bone marrow testing drive at the Jerusalem Gate Hotel.

It was perfectly ordinary summer day when the 29-year-old accountant from Sherman Oaks, California received the fateful phone call.

A 77-year-old woman from Los Angeles was the perfect stranger that he was deemed to save.

Diane Gebel, a widow from Cyprus, California was diagnosed with Acute Myeloid Leukemia (AML). Her husband had passed away right before she was diagnosed with cancer.

For an entire year, the donor and recipient need to remain anonymous to each other, but last week, the time came for the two to finally meet.

The two were honored at the Los Angeles One Huge Night Gala event hosted by Gift of Life.

In a statement, Birthright Israel explained that the gala also celebrated the successful 15-year partnership of Birthright Israel and Gift of Life.

This partnership has so far resulted in 83,000 Birthright donors joining the registry, with 1,900 matches made between patients and Birthright donors, and 241 life-saving transplants to date.

Prior to the meeting, Altadonna recalled his Birthright trip explaining that it was really great to see that part of the world, to go to where its our given right to visit.

It had a profound effect on my friendships and cultural Jewish identity to see that Jewish people are one people, and we have each others backs, he said. It left me with the feeling that I had backing in anything that I wanted to do in my life. It really felt like a family.

He recalled that after being swabbed at the drive, he didnt really think too much of it because everyone did it.

I got the donation call 15 months ago, he explained, adding that he immediately decided to donate. I find it very bizarre, that everyone is telling me Its such a great thing that you are doing. For me, it wasnt an option to say yes or no, its just, Okay, lets do this, Im a match. Im surprised that more people dont donate.

After doing preliminary tests, he took the plunge and donated.

I had to do it early in the morning, it lasted 6-8 hours a marathon blood donation and it was finished,Altadonna continued. It didnt seem all that hard to me.

He made it clear that this opportunity to help only came about because of the Birthright Israel and Gift of Life collaboration.

It wasnt a mission of mine. I wouldnt have gone out of my way to get swabbed, so it only happened as a result of their collaboration, he said.

In an emotional meeting, the two finally met. Of the meeting, Gebel stressed that she is here because of my selfless and generous donor.

For me, it was easy, I just had an infusion, but for him it was hard, she said. It takes a very special person to do that, to actually give the gift of life.

Gebel said she had been waiting to meet him.

I didnt know he was such a good looking guy, Gebel joked. Im here because of him. I was not ready to die. I had too much to live for.

She stressed that she has changed because of my new life.

I take risks, I live my life fully, she explained. My motto has always been that I want to go through life with a Cosmopolitan in one hand and a travel book in the other. Because of my donor, I can do that, so I thank him from the bottom of my heart.

Altadonna called on others to also take the plunge by getting tested and donating.

I stand here for my recipients valor, for her victory. I ask you to do the same: sit and swab today, so someone can swim and live tomorrow, he said.

Birthrights International CEO Gidi Mark said he was proud of our participants who register as donors and the powerful impact of such a simple choice when they get the call that they are the perfect match for a perfect stranger.

It is a great honor that Birthright Israel is able to assist in this mission, he added.

var cont = `Join Jerusalem Post Premium Plus now for just $5 and upgrade your experience with an ads-free website and exclusive content. Click here>>

`;document.getElementById("linkPremium").innerHTML = cont;(function (v, i){});

Share on facebook

View original post here:
Perfect match: How Birthright alumni saved the lives of 100s of strangers - The Jerusalem Post

To Read More: Perfect match: How Birthright alumni saved the lives of 100s of strangers – The Jerusalem Post
categoriaBone Marrow Stem Cells commentoComments Off on Perfect match: How Birthright alumni saved the lives of 100s of strangers – The Jerusalem Post | dataNovember 10th, 2019
Read All

Going into Space Changes the Human Heart Cells, but What Happens When They Get Back on Earth? – Henri Le Chat Noir

By daniellenierenberg

Home News Going into Space Changes the Human Heart Cells, but What Happens When They Get Back on Earth?

Commonly, astronauts stay in space for a more extended period of time, and NASA is planning longer missions to the Moon and Mars. Researchers say that we need to understand better the effects that microgravity has on the heart.

Studies have shown that spaceflight can reduce heart rate and the lower arterial pressure, and can also increase cardiac output. However, new research shows how microgravity zero gravity has an impact on the human heart when it comes to the cellular level.

Scientists have been able to check the health of astronauts while they were in space, which was a great way to understand the molecular cell changes. This comes from Joseph C. Wu, from Stanford Universitys School of Medicine. He is the author of the study.

The health of humans can be sustained for about a year in space, says NASA. When trying to answer this, researchers from Stanford University have taken a look at the cardiac function and at the gene expression in the human heart cells from three people. The cells did not come from biopsies, but they were made by reprogramming a sample of blood into the human stem cells. Then, the heart cells were cultured abroad the International Space Station for around 5 weeks. This is the first study of this kind.

Scientists found that the exposure to microgravity changed the expression of 2.635 genes, which was a temporary change in the RNA, that is made from DNA. Most of them returned to the normal patterns of gene expression in about 10 days after coming back to Earth. RNA is a temporary and handwritten copy of the DNA. So the gene expression was temporarily changed by the environment microgravity. The changes were subtle, but they were still significant.

Visit link:
Going into Space Changes the Human Heart Cells, but What Happens When They Get Back on Earth? - Henri Le Chat Noir

To Read More: Going into Space Changes the Human Heart Cells, but What Happens When They Get Back on Earth? – Henri Le Chat Noir
categoriaCardiac Stem Cells commentoComments Off on Going into Space Changes the Human Heart Cells, but What Happens When They Get Back on Earth? – Henri Le Chat Noir | dataNovember 10th, 2019
Read All

Exercise found to block chronic inflammation in mice – Harvard Gazette

By daniellenierenberg

Scientists at Harvard-affiliated Massachusetts General Hospital (MGH) have identified a previously unknown biological pathway that promotes chronic inflammation and may help explain why sedentary people have an increased risk for heart disease and strokes.

In a study to be published in the November issue ofNature Medicine, MGH scientists and colleagues at several other institutions found that regular exercise blocks this pathway. This discovery could aid the development of new therapies to prevent cardiovascular disease.

Regular exercise protects the cardiovascular system by reducing risk factors such as cholesterol and blood pressure. But we believe there are certain risk factors for cardiovascular disease that are not fully understood, said Matthias Nahrendorf of the Center for Systems Biology at MGH. In particular, Nahrendorf and his team wanted to better understand the role of chronic inflammation, which contributes to the formation of artery-clogging blockages called plaques.

Nahrendorf and colleagues examined how physical activity affects the activity of bone marrow, specifically hematopoietic stem and progenitor cells (HSPCs). HSPCs can turn into any type of blood cell, including white blood cells called leukocytes, which promote inflammation. The body needs leukocytes to defend against infection and remove foreign bodies.

When these [white blood] cells become overzealous, they start inflammation in places where they shouldnt, including the walls of arteries.

Matthias Nahrendorf

But when these cells become overzealous, they start inflammation in places where they shouldnt, including the walls of arteries, said Nahrendorf.

Nahrendorf and his colleagues studied a group of laboratory mice that were housed in cages with treadmills. Some of the mice ran as much as six miles a night on the spinning wheels. Mice in a second group were housed in cages without treadmills. After six weeks, the running mice had significantly reduced HSPC activity and lower levels of inflammatory leukocytes than the mice that simply sat around their cages all day.

Nahrendorf explains that exercising caused the mice to produce less leptin, a hormone made by fat tissue that helps control appetite, but also signaled HSPCs to become more active and increase production of leukocytes. In two large studies, the team detected high levels of leptin and leukocytes in sedentary humans who have cardiovascular disease linked to chronic inflammation.

This study identifies a new molecular connection between exercise and inflammation that takes place in the bone marrow and highlights a previously unappreciated role of leptin in exercise-mediated cardiovascular protection, said Michelle Olive, program officer at the National Heart, Lung, and Blood Institute Division of Cardiovascular Sciences. This work adds a new piece to the puzzle of how sedentary lifestyles affect cardiovascular health and underscores the importance of following physical-activity guidelines.

Reassuringly, the study found that lowering leukocyte levels by exercising didnt make the running mice vulnerable to infection. This study underscores the importance of regular physical activity, but further focus on how exercise dampens inflammation could lead to novel strategies for preventing heart attacks and strokes. We hope this research will give rise to new therapeutics that approach cardiovascular disease from a completely new angle, said Nahrendorf.

The primary authors of theNature Medicinepaper are Nahrendorf, who is also a professor of radiology at Harvard Medical School; Vanessa Frodermann, a former postdoctoral fellow at MGH who is now a senior scientist at Novo Nordisk; David Rohde, a research fellow in the Department of Radiology at MGH; and Filip K. Swirski, an investigator in the Department of Radiology at MGH.

The work was funded bygrantsHL142494 andHL139598from the National Heart, Lung, and Blood Institute (NHLBI), part of the National Institutes of Health.

Sign up for daily emails to get the latest Harvardnews.

See more here:
Exercise found to block chronic inflammation in mice - Harvard Gazette

To Read More: Exercise found to block chronic inflammation in mice – Harvard Gazette
categoriaBone Marrow Stem Cells commentoComments Off on Exercise found to block chronic inflammation in mice – Harvard Gazette | dataNovember 9th, 2019
Read All

Page 187«..1020..186187188189..200210..»


Copyright :: 2024