Maybe Memorizing the Krebs Cycle Was Worthwhile After All – Medscape
By daniellenierenberg
Like most medical students, I struggled to memorize the Krebs cycle, the complex energy-producing process that takes place in the body's mitochondria. Rote learning of Sir Hans Krebs' eponymous cascade of reactions persists and has been cited as a waste of time in modern medical education. However, it looks like that specialized knowledge about mitochondrial structure and function may finally come in handy in the clinic.
Advances in genetics have contributed to improved diagnostic accuracy of a diverse spectrum of mitochondrial disorders. Respiratory chain, nuclear gene, and mitochondrial proteome mutations can lead to multisystem or organ-specific dysfunction.
A new potential treatment for mitochondrial disorders, elamipretide, has received orphan drug designation from the US Food and Drug Administration (FDA) and is in clinical trials sponsored by Stealth Biotherapeutics. [Dr Wilner has consulted for Stealth Biotherapeutics.] Recently I had the opportunity to interview Hilary Vernon, MD, PhD, associate professor of genetic medicine at Johns Hopkins University, Baltimore, Maryland, and an expert on mitochondrial disorders. Dr Vernon discussed her research on elamipretide as a treatment for Barth syndrome, a rare form of mitochondrial disease.
I am the director of the Mitochondrial Medicine Center at Johns Hopkins Hospital. I work with individuals from infancy through adulthood who have mitochondrial conditions. I became interested in this particular area when I was early in my pediatrics/genetics residency at Johns Hopkins and saw the toll that mitochondrial disorders took on patients' lives and the limited effective therapies. At that point, I decided to focus on patient care and research in this area.
Mitochondrial disorders can be difficult to recognize because of their inherent multisystem nature and variable presentations (even between affected members of the same family). However, there are several considerations that should raise a clinician's suspicion for a mitochondrial condition. Ascertaining a family history of disease inheritance through the maternal line can raise the suspicion for a mitochondrial DNA disorder. Identification of a combination of medical issues in different organ systems that are seemingly unrelated in an individual (ie, optic atrophy and muscle weakness or diabetes and hearing loss) can also raise suspicion for a mitochondrial condition.
Due to the nature of mitochondria as the major energy producers of the cells, high-energy-requiring tissues such as the brain and the muscles are often affected. Perhaps the best known mitochondrial diseases to neurologists are MELAS (mitochondrial encephalopathy, lactic acidosis, and stroke) as well as MERFF (myoclonic epilepsy with ragged red fibers). There is a nice body of literature on the effects of arginine and citrulline in modifying stroke-like episodes in MELAS, and this is a therapy that is in current practice.
Mitochondria are complex organelles whose structure and function are encoded in hundreds of genes originating from both the nucleus of the cell and the mitochondria themselves. Mitochondria have many key roles in cellular function, including energy production through the respiratory chain, coordination of apoptosis, nitrogen metabolism, fatty acid oxidation, and much more.
Various cofactors and vitamins can be employed to improve mitochondrial function for different reasons. For example, if a specific enzyme is dysfunctional, supplying the cofactor for that enzyme may improve its function (ie, pyruvate dehydrogenase and thiamine). Antioxidants have also been considered to help reduce the oxidant load that could potentially cause ongoing damage to the mitochondrial membrane resulting from respiratory chain dysfunction (ie, coenzyme Q-10).
It is important to remember that the highest number of individual mitochondrial disorders result from mutations in genes located in the nuclear DNA. For example, the TAZ gene that is abnormal in Barth syndrome is a nuclear gene located on the X chromosome. These genes are amenable to the "regular" approaches to gene therapy.
Targeting mitochondrial DNA for gene therapy requires a different set of approaches because the gene delivery has to overcome the barrier of the mitochondrial membranes. However, research is ongoing to overcome these obstacles.
Barth syndrome is a very rare genetic X-linked disorder that usually only affects males. The genetic defect leads to an abnormal composition of cardiolipin on the inner mitochondrial membrane. Cardiolipin is an important phospholipid involved in many mitochondrial functions, including organization of inner mitochondrial membrane cristae, involvement in apoptosis, and organization of the respiratory chain (which is responsible for producing ATP via the process of oxidative phosphorylation), and many of these functions are abnormal in Barth syndrome. Individuals with Barth syndrome typically have early-onset cardiomyopathy, myopathy, intermittent neutropenia, fatigue, poor early growth, among other health concerns.
Early in my post-residency career, I followed several patients with Barth syndrome and was quickly welcomed into the Barth syndrome community by the families and the Barth Syndrome Foundation. From there, I founded the only interdisciplinary Barth syndrome clinic in the US and began to focus a significant amount of my clinical and laboratory research on this condition.
Most commonly, these individuals come to medical attention because of cardiomyopathy, but a minority of patients do come to attention due to repeated infections and neutropenia. Patients were identified for study participation through the Barth Syndrome Foundation or because they were already patients of my study team.
All participants were known to have Barth syndrome prior to study entry, and all had confirmatory genetic testing showing a pathogenic mutation in the TAZ gene.
By binding to cardiolipin in the inner mitochondrial membrane, elamipretide is believed to stabilize cristae architecture and electron transport chain structure during oxidative stress. I thought it would be great if this could help to stabilize the abnormal cardiolipin components on the inner mitochondrial membrane in Barth syndrome.
We observed improvements in several areas across the study population in the open-label extension part of the study. This includes a significant improvement in exercise performance (as measured by the 6-minute walk test, with an average improvement of 95.9 meters at 36 weeks) and a significant improvement in muscle strength. We also observed a potential improvement in cardiac stroke volume. Most of the adverse events were local injection-site reactions and were mild to moderate in nature.
The TAZPOWER trial has an ongoing open-label extension with the same endpoints as the placebo-controlled portion evaluated on an ongoing basis. In addition, in my laboratory, we are using induced pluripotent stem cells to learn more about how cardiolipin abnormalities affect different cell types in an effort to understand the tissue specificity of disease. This will help us to understand whether different aspects of Barth syndrome would necessitate individual management or clinical monitoring strategies.
Mitochondrial inner membrane dysfunction is increasingly recognized as a major aspect of the pathology of a wide range of mitochondrial conditions. Therefore, based on the role of stabilizing mitochondrial membrane components, elamipretide has a potential role in many disorders of the mitochondria.
Yes, this is what we would call "secondary mitochondrial dysfunction" (meant to differentiate from "primary mitochondrial disease," which is caused by defects in genes that encode for mitochondrial structure and function). Approaches intended to protect the mitochondria from further damage, such as antioxidants or strategies that can bypass the mitochondria for ATP production, could overlap as treatment for primary mitochondrial disease and secondary mitochondrial dysfunction.
This is something that is much discussed as a newer consideration for families who are affected by disorders of the mitochondrial DNA, but not something I have experience with firsthand.
Yes. The United Mitochondrial Disease Foundation and the Mitochondrial Medicine Society collaborated to develop the Mito Care Network, with 19 sites identified as Mitochondrial Medicine Centers across the US.
Andrew Wilner is an associate professor of neurology at the University of Tennessee Health Science Center in Memphis, a health journalist, and an avid SCUBA diver. His latest book is The Locum Life: A Physician's Guide to Locum Tenens.
Follow Dr Wilner on Twitter
Follow Medscape on Facebook, Twitter, Instagram, and YouTube
Read the original:
Maybe Memorizing the Krebs Cycle Was Worthwhile After All - Medscape
- 001 Cardiac Stem Cell Therapy [Last Updated On: June 24th, 2011] [Originally Added On: June 24th, 2011]
- 002 Wow! UW Research labs [Last Updated On: June 25th, 2011] [Originally Added On: June 25th, 2011]
- 003 cellalign [Last Updated On: June 28th, 2011] [Originally Added On: June 28th, 2011]
- 004 Cardiac Stem Cells in End-Stage Human Failing Hearts: Are they functional? [Last Updated On: August 25th, 2011] [Originally Added On: August 25th, 2011]
- 005 Designer Life: repair brain, heart with stem cells - Future Health keynote speaker [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- 006 Cardiac Stem Cell Therapy at Rostock University [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- 007 Stem Cells: Mending a broken heart? [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- 008 Cardiovascular Derivatives of Embryonic Stem Cells in Cardiac Repair and Drug Discovery [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- 009 Stem Cell Therapy in Cardiac Disease [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- 010 Cardiac Recovery Points to Adult Stem Cells [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- 011 Oral Surgeon utilizes StemSave to preserve stem cells in wisdom teeth to combat cardiac disease [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- 012 Stem Cells and Cardiac Regeneration [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- 013 Dr Victor Dzau on Stem Cells for Cardiac Repair. [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- 014 Cardiomyogenic differentiation of Mesenchymal Stem cells (KUM2/9-15c) [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- 015 Heart Failure Patient After Adult Stem Cell Therapy [Last Updated On: September 5th, 2011] [Originally Added On: September 5th, 2011]
- 016 Stem Cell operation in Cardiac Surgery-Al-Jazeerah [Last Updated On: September 7th, 2011] [Originally Added On: September 7th, 2011]
- 017 Heart Disease Patient Describes His Stem Cell Treatment [Last Updated On: September 9th, 2011] [Originally Added On: September 9th, 2011]
- 018 Cardiovascular Therapies: Spotlight on Stem Cell Research - Douglas Boyd [Last Updated On: September 16th, 2011] [Originally Added On: September 16th, 2011]
- 019 Adult Stem Cell [Last Updated On: September 20th, 2011] [Originally Added On: September 20th, 2011]
- 020 Heart repair using own stem cells after heart attack: Future Health keynote speaker [Last Updated On: September 20th, 2011] [Originally Added On: September 20th, 2011]
- 021 Stem Cell #8 Vas Cath Removal 04/28/11 [Last Updated On: September 20th, 2011] [Originally Added On: September 20th, 2011]
- 022 Adult Stem Cells Used To Rebuild Heart Tissue Video. More at http://www.stemcellfusion.com [Last Updated On: September 20th, 2011] [Originally Added On: September 20th, 2011]
- 023 Davos Question: Stem Cell Answer [Last Updated On: September 22nd, 2011] [Originally Added On: September 22nd, 2011]
- 024 Did you have a Heart Attack and Need to Recover your Cardiac Muscle? [Last Updated On: September 22nd, 2011] [Originally Added On: September 22nd, 2011]
- 025 Cardiac Tissue Can Regenerate [Last Updated On: September 22nd, 2011] [Originally Added On: September 22nd, 2011]
- 026 William F. Testimonial of Treatment Stem Cell [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- 027 Stem Cell Heart Surgery must see [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- 028 Valentine's Day Stem Cell Wish: Mending Broken Hearts [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- 029 Advanced Cell Technology OneMedForum 2011 [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- 030 Human 2.0: The Helix of Our Future [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- 031 heart cell generation from human ES and iPS cells (embryonic and induced pluripotent stem cells).flv [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- 032 Stem Cell Therapy and Stem Cell Treatment with Dell [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- 033 UCD Med Student Receives Fulbright Award [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- 034 Cardiomyocytes derived from mouse Embryonic stem cells [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- 035 Immune Control of Stem Cell Mobilization [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- 036 Better Drugs Through Stem Cells [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- 037 stem cell derived cardiomyocytes [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- 038 Stem Cells: Heart cells grown from mouse stem cells [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- 039 Patel Stem Cell Heart Failure [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- 040 Turning Adult Stem Cells into Medicine - Zannos Grekos, MD [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- 041 Kevin's 2 Heart Transplants and Stem Cell Transplant [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- 042 Breakthrough in Stem cell technology [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- 043 Affordable Stem Cell Therapy in Guatemala (2hrs from Miami) [Last Updated On: September 26th, 2011] [Originally Added On: September 26th, 2011]
- 044 Cadiomyogenesis of human mesenchymal stem cells [Last Updated On: September 26th, 2011] [Originally Added On: September 26th, 2011]
- 045 Mark Mercola: Differentiating embryonic stem cells into adult tissues [Last Updated On: September 26th, 2011] [Originally Added On: September 26th, 2011]
- 046 Cardiomyocytic differentiation of endometrial stem cells. [Last Updated On: September 26th, 2011] [Originally Added On: September 26th, 2011]
- 047 Adult Stem Cell vs Embryonic Stem Cell Research Ethics Video [Last Updated On: September 26th, 2011] [Originally Added On: September 26th, 2011]
- 048 Pt. 1--Dr. Ali Denktas--Stem Cells as Markers after Myocardial Infarctions [Last Updated On: September 27th, 2011] [Originally Added On: September 27th, 2011]
- 049 Repairing Damaged Hearts with Stem Cells [Last Updated On: September 29th, 2011] [Originally Added On: September 29th, 2011]
- 050 Mouse GEN cells overexpressing Csx/Nkx2.5 and GATA4 behave like transient amplifying cells [Last Updated On: September 29th, 2011] [Originally Added On: September 29th, 2011]
- 051 20100804_axiogenesis.wmv [Last Updated On: September 29th, 2011] [Originally Added On: September 29th, 2011]
- 052 Beating Cardiomyocytes from E14 Cells [Last Updated On: September 29th, 2011] [Originally Added On: September 29th, 2011]
- 053 Heart cells grown from human embryonic stem cells [Last Updated On: September 29th, 2011] [Originally Added On: September 29th, 2011]
- 054 First US Patient In Stem Cell Transplant [Last Updated On: September 29th, 2011] [Originally Added On: September 29th, 2011]
- 055 Be still my beating stem cell heart [Last Updated On: October 1st, 2011] [Originally Added On: October 1st, 2011]
- 056 Beating Human Heart Cells from Embryonic Stem Cells [Last Updated On: October 1st, 2011] [Originally Added On: October 1st, 2011]
- 057 Spontaneously and rhythmically beating engineered human heart tissue from pluripotent stem cells [Last Updated On: October 3rd, 2011] [Originally Added On: October 3rd, 2011]
- 058 Cardiac Stem Cell Therapy - How it works [Last Updated On: October 3rd, 2011] [Originally Added On: October 3rd, 2011]
- 059 Doctors To Use 'Trained' Stem Cells To Heal Heart [Last Updated On: October 5th, 2011] [Originally Added On: October 5th, 2011]
- 060 Beating Heart Stem Cells [Last Updated On: October 5th, 2011] [Originally Added On: October 5th, 2011]
- 061 AM RADIO, DR. AMIT PATEL AND STEM CELLS SAVED MY LIFE - Video [Last Updated On: October 14th, 2011] [Originally Added On: October 14th, 2011]
- 062 New heart built with stem cells - Video [Last Updated On: October 15th, 2011] [Originally Added On: October 15th, 2011]
- 063 Adult Stem Cells For Heart Disease: Today's Reality - Video [Last Updated On: October 15th, 2011] [Originally Added On: October 15th, 2011]
- 064 H9 beating stem cells - Video [Last Updated On: October 27th, 2011] [Originally Added On: October 27th, 2011]
- 065 Double Blind Trial of Stem Cells for Heart Failure - Video [Last Updated On: October 27th, 2011] [Originally Added On: October 27th, 2011]
- 066 Repairing Damaged Hearts with Stem Cells - Video [Last Updated On: October 27th, 2011] [Originally Added On: October 27th, 2011]
- 067 Cardiac differentiation of hES cells at 20x - Video [Last Updated On: October 27th, 2011] [Originally Added On: October 27th, 2011]
- 068 SPRAY-ON STEM CELLS - Video [Last Updated On: October 28th, 2011] [Originally Added On: October 28th, 2011]
- 069 Stem Cells: A smart use for wisdom teeth - Video [Last Updated On: November 12th, 2011] [Originally Added On: November 12th, 2011]
- 070 VistaGen's Stem Cell Derived Cardiomyocytes - Video [Last Updated On: November 12th, 2011] [Originally Added On: November 12th, 2011]
- 071 Stem Cell Research [Last Updated On: November 12th, 2011] [Originally Added On: November 12th, 2011]
- 072 The Power of Stem Cells - Video [Last Updated On: November 12th, 2011] [Originally Added On: November 12th, 2011]
- 073 Beating iCellĀ® Cardiomyocytes - Video [Last Updated On: November 13th, 2011] [Originally Added On: November 13th, 2011]
- 074 SCIPIO: Cardiac stem cells and postinfarction heart failure - Video [Last Updated On: November 15th, 2011] [Originally Added On: November 15th, 2011]
- 075 Beating Cardiomyocytes in Cell Culture - Video [Last Updated On: November 15th, 2011] [Originally Added On: November 15th, 2011]
- 076 Stem Cells Heal Heart Attack Damage. - Video [Last Updated On: December 7th, 2011] [Originally Added On: December 7th, 2011]
- 077 C2CAM - 2011.11.15 - Dulce Base - Regenerative Medicine - Info - Video [Last Updated On: December 7th, 2011] [Originally Added On: December 7th, 2011]
- 078 Latest Update on Stem Cell Research at UW - Dr. Timothy Kamp - Video [Last Updated On: December 7th, 2011] [Originally Added On: December 7th, 2011]
- 079 Coast To Coast AM: Regenerative Medicine / Dulce Base 11-15-2011 Download Link - Video [Last Updated On: December 7th, 2011] [Originally Added On: December 7th, 2011]
- 080 C2CAM - 2011.11.15 - Dulce Base - Regenerative Medicine - Video [Last Updated On: December 7th, 2011] [Originally Added On: December 7th, 2011]
