Myocyte – Wikipedia
By raymumme
"Muscle fiber" and "Myofiber" redirect here. For protein structures inside cells, see Myofibril.
A myocyte (also known as a muscle cell)[1] is the type of cell found in muscle tissue. Myocytes are long, tubular cells that develop from myoblasts to form muscles in a process known as myogenesis.[2] There are various specialized forms of myocytes: cardiac, skeletal, and smooth muscle cells, with various properties. The striated cells of cardiac and skeletal muscles are referred to as muscle fibers.[3] Cardiomyocytes are the muscle fibres that form the chambers of the heart, and have a single central nucleus.[4] Skeletal muscle fibers help support and move the body and tend to have peripheral nuclei.[5][6] Smooth muscle cells control involuntary movements such as the peristalsis contractions in the oesophagus and stomach.
The unusual microstructure of muscle cells has led cell biologists to create specialized terminology. However, each term specific to muscle cells has a counterpart that is used in the terminology applied to other types of cells:
The sarcoplasm is the cytoplasm of a muscle fiber. Most of the sarcoplasm is filled with myofibrils, which are long protein cords composed of myofilaments. The sarcoplasm is also composed of glycogen, a polysaccharide of glucose monomers, which provides energy to the cell with heightened exercise, and myoglobin, the red pigment that stores oxygen until needed for muscular activity.[7]
There are three types of myofilaments:[7]
Together, these myofilaments work to produce a muscle contraction.
The sarcoplasmic reticulum, a specialized type of smooth endoplasmic reticulum, forms a network around each myofibril of the muscle fiber. This network is composed of groupings of two dilated end-sacs called terminal cisternae, and a single transverse tubule, or T tubule, which bores through the cell and emerge on the other side; together these three components form the triads that exist within the network of the sarcoplasmic reticulum, in which each T tubule has two terminal cisternae on each side of it. The sarcoplasmic reticulum serves as reservoir for calcium ions, so when an action potential spreads over the T tubule, it signals the sarcoplasmic reticulum to release calcium ions from the gated membrane channels to stimulate a muscle contraction.[7][8]
The sarcolemma is the cell membrane of a striated muscle fiber and receives and conducts stimuli. At the end of each muscle fiber, the outer layer of the sarcolemma combines with tendon fibers.[9] Within the muscle fiber pressed against the sarcolemma are multiple flattened nuclei; this multinuclear condition results from multiple myoblasts fusing to produce each muscle fiber, where each myoblast contributes one nucleus.[7]
The cell membrane of a myocyte has several specialized regions, which may include the intercalated disk and the transverse tubular system. The cell membrane is covered by a lamina coat which is approximately 50nm wide. The laminar coat is separable into two layers; the lamina densa and lamina lucida. In between these two layers can be several different types of ions, including calcium.[10]
The cell membrane is anchored to the cell's cytoskeleton by anchor fibers that are approximately 10nm wide. These are generally located at the Z lines so that they form grooves and transverse tubules emanate. In cardiac myocytes this forms a scalloped surface.[10]
The cytoskeleton is what the rest of the cell builds off of and has two primary purposes; the first is to stabilize the topography of the intracellular components and the second is to help control the size and shape of the cell. While the first function is important for biochemical processes, the latter is crucial in defining the surface to volume ratio of the cell. This heavily influences the potential electrical properties of excitable cells. Additionally deviation from the standard shape and size of the cell can have negative prognostic impact.[10]
Each muscle fiber contains myofibrils, which are very long chains of sarcomeres, the contractile units of the cell. A cell from the biceps brachii muscle may contain 100,000 sarcomeres.[11][verification needed] The myofibrils of smooth muscle cells are not arranged into sarcomeres. The sarcomeres are composed of thin and thick filaments. Thin filaments are made of actin and attach at Z lines which help them line up correctly with each other.[12] Troponins are found at intervals along the thin filaments. Thick filaments are made of the elongated protein myosin.[13] The sarcomere does not contain organelles or a nucleus. Sarcomeres are marked by Z lines which show the beginning and the end of a sarcomere. Individual myocytes are surrounded by endomysium.
Myocytes are bound together by perimysium into bundles called fascicles; the bundles are then grouped together to form muscle tissue, which is enclosed in a sheath of epimysium. The perimysium contains blood vessels and nerves which provide for the muscle fibers. Muscle spindles are distributed throughout the muscles and provide sensory feedback information to the central nervous system. Myosin is shaped like a long shaft with a rounded end pointed out towards the surface. This structure forms the cross bridge that connects with the thin filaments.[13]
A myoblast is a type of embryonic progenitor cell that differentiates to give rise to muscle cells.[14] Differentiation is regulated by myogenic regulatory factors, including MyoD, Myf5, myogenin, and MRF4.[15] GATA4 and GATA6 also play a role in myocyte differentiation.[16]
Skeletal muscle fibers are made when myoblasts fuse together; muscle fibers therefore are cells with multiple nuclei, known as myonuclei, with each cell nucleus originating from a single myoblast. The fusion of myoblasts is specific to skeletal muscle (e.g., biceps brachii) and not cardiac muscle or smooth muscle.
Myoblasts in skeletal muscle that do not form muscle fibers dedifferentiate back into myosatellite cells. These satellite cells remain adjacent to a skeletal muscle fiber, situated between the sarcolemma and the basement membrane[17] of the endomysium (the connective tissue investment that divides the muscle fascicles into individual fibers). To re-activate myogenesis, the satellite cells must be stimulated to differentiate into new fibers.
Myoblasts and their derivatives, including satellite cells, can now be generated in vitro through directed differentiation of pluripotent stem cells.[18]
Kindlin-2 plays a role in developmental elongation during myogenesis.[19]
Muscle fibers grow when exercised and shrink when not in use. This is due to the fact that exercise stimulates the increase in myofibrils which increase the overall size of muscle cells. Well exercised muscles can not only add more size but can also develop more mitochondria, myoglobin, glycogen and a higher density of capillaries. However muscle cells cannot divide to produce new cells, and as a result we have fewer muscle cells as an adult than a newborn.[20]
When contracting, thin and thick filaments slide with respect to each other by using adenosine triphosphate. This pulls the Z discs closer together in a process called sliding filament mechanism. The contraction of all the sarcomeres results in the contraction of the whole muscle fiber. This contraction of the myocyte is triggered by the action potential over the cell membrane of the myocyte. The action potential uses transverse tubules to get from the surface to the interior of the myocyte, which is continuous within the cell membrane. Sarcoplasmic reticula are membranous bags that transverse tubules touch but remain separate from. These wrap themselves around each sarcomere and are filled with Ca2+.[13]
Excitation of a myocyte causes depolarization at its synapses, the neuromuscular junctions, which triggers action potential. With a singular neuromuscular junction, each muscle fiber receives input from just one somatic efferent neuron. Action potential in a somatic efferent neuron causes the release of the neurotransmitter acetylcholine.[21]
When the acetylcholine is released it diffuses across the synapse and binds to a receptor on the sarcolemma, a term unique to muscle cells that refers to the cell membrane. This initiates an impulse that travels across the sarcolemma.[20]
When the action potential reaches the sarcoplasmic reticulum it triggers the release of Ca2+ from the Ca2+ channels. The Ca2+ flows from the sarcoplasmic reticulum into the sarcomere with both of its filaments. This causes the filaments to start sliding and the sarcomeres to become shorter. This requires a large amount of ATP, as it is used in both the attachment and release of every myosin head. Very quickly Ca2+ is actively transported back into the sarcoplasmic reticulum, which blocks the interaction between the thin and thick filament. This in turn causes the muscle cell to relax.[20]
There are four main different types of muscle contraction: twitch, treppe, tetanus and isometric/isotonic. Twitch contraction is the process previously described, in which a single stimulus signals for a single contraction. In twitch contraction the length of the contraction may vary depending on the size of the muscle cell. During treppe (or summation) contraction muscles do not start at maximum efficiency; instead they achieve increased strength of contraction due to repeated stimuli. Tetanus involves a sustained contraction of muscles due to a series of rapid stimuli, which can continue until the muscles fatigue. Isometric contractions are skeletal muscle contractions that do not cause movement of the muscle. However, isotonic contractions are skeletal muscle contractions that do cause movement.[20]
Specialized cardiomyocytes located in the sinoatrial node are responsible for generating the electrical impulses that control the heart rate. These electrical impulses coordinate contraction throughout the remaining heart muscle via the electrical conduction system of the heart. Sinoatrial node activity is modulated, in turn, by nerve fibres of both the sympathetic and parasympathetic nervous systems. These systems act to increase and decrease, respectively, the rate of production of electrical impulses by the sinoatrial node.
There are numerous methods employed for fiber-typing, and confusion between the methods is common among non-experts. Two commonly confused methods are histochemical staining for myosin ATPase activity and immunohistochemical staining for Myosin heavy chain (MHC) type. Myosin ATPase activity is commonlyand correctlyreferred to as simply "fiber type", and results from the direct assaying of ATPase activity under various conditions (e.g. pH).[22] Myosin heavy chain staining is most accurately referred to as "MHC fiber type", e.g. "MHC IIa fibers", and results from determination of different MHC isoforms.[22] These methods are closely related physiologically, as the MHC type is the primary determinant of ATPase activity. Note, however, that neither of these typing methods is directly metabolic in nature; they do not directly address oxidative or glycolytic capacity of the fiber. When "type I" or "type II" fibers are referred to generically, this most accurately refers to the sum of numerical fiber types (I vs. II) as assessed by myosin ATPase activity staining (e.g. "type II" fibers refers to type IIA + type IIAX + type IIXA... etc.).
Below is a table showing the relationship between these two methods, limited to fiber types found in humans. Note the sub-type capitalization used in fiber typing vs. MHC typing, and that some ATPase types actually contain multiple MHC types. Also, a subtype B or b is not expressed in humans by either method.[23] Early researchers believed humans to express a MHC IIb, which led to the ATPase classification of IIB. However, later research showed that the human MHC IIb was in fact IIx,[23] indicating that the IIB is better named IIX. IIb is expressed in other mammals, so is still accurately seen (along with IIB) in the literature. Non human fiber types include true IIb fibers, IIc, IId, etc.
Further fiber typing methods are less formally delineated, and exist on more of a spectrum. They tend to be focused more on metabolic and functional capacities (i.e., oxidative vs. glycolytic, fast vs. slow contraction time). As noted above, fiber typing by ATPase or MHC does not directly measure or dictate these parameters. However, many of the various methods are mechanistically linked, while others are correlated in vivo.[26][27] For instance, ATPase fiber type is related to contraction speed, because high ATPase activity allows faster crossbridge cycling.[22] While ATPase activity is only one component of contraction speed, type I fibers are "slow", in part, because they have low speeds of ATPase activity in comparison to type II fibers. However, measuring contraction speed is not the same as ATPase fiber typing.
Because of these types of relationships, Type I and Type II fibers have relatively distinct metabolic, contractile, and motor-unit properties. The table below differentiates these types of properties. These types of propertieswhile they are partly dependent on the properties of individual fiberstend to be relevant and measured at the level of the motor unit, rather than individual fiber.[22]
Traditionally, fibers were categorized depending on their varying color, which is a reflection of myoglobin content. Type I fibers appear red due to the high levels of myoglobin. Red muscle fibers tend to have more mitochondria and greater local capillary density. These fibers are more suited for endurance and are slow to fatigue because they use oxidative metabolism to generate ATP (adenosine triphosphate). Less oxidative type II fibers are white due to relatively low myoglobin and a reliance on glycolytic enzymes.
Fibers can also be classified on their twitch capabilities, into fast and slow twitch. These traits largely, but not completely, overlap the classifications based on color, ATPase, or MHC.
Some authors define a fast twitch fiber as one in which the myosin can split ATP very quickly. These mainly include the ATPase type II and MHC type II fibers. However, fast twitch fibers also demonstrate a higher capability for electrochemical transmission of action potentials and a rapid level of calcium release and uptake by the sarcoplasmic reticulum. The fast twitch fibers rely on a well-developed, short term, glycolytic system for energy transfer and can contract and develop tension at 23 times the rate of slow twitch fibers. Fast twitch muscles are much better at generating short bursts of strength or speed than slow muscles, and so fatigue more quickly.[28]
The slow twitch fibers generate energy for ATP re-synthesis by means of a long term system of aerobic energy transfer. These mainly include the ATPase type I and MHC type I fibers. They tend to have a low activity level of ATPase, a slower speed of contraction with a less well developed glycolytic capacity. They contain high mitochondrial volumes, and the high levels of myoglobin that give them a red pigmentation. They have been demonstrated to have high concentrations of mitochondrial enzymes, thus they are fatigue resistant. Slow twitch muscles fire more slowly than fast twitch fibers, but are able to contract for a longer time before fatiguing.[28]
Individual muscles tend to be a mixture of various fiber types, but their proportions vary depending on the actions of that muscle and the species. For instance, in humans, the quadriceps muscles contain ~52% type I fibers, while the soleus is ~80% type I.[29] The orbicularis oculi muscle of the eye is only ~15% type I.[29] Motor units within the muscle, however, have minimal variation between the fibers of that unit. It is this fact that makes the size principal of motor unit recruitment viable.
The total number of skeletal muscle fibers has traditionally been thought not to change.It is believed there are no sex or age differences in fiber distribution; however, proportions of fiber types vary considerably from muscle to muscle and person to person.Sedentary men and women (as well as young children) have 45% type II and 55% type I fibers.[citation needed]People at the higher end of any sport tend to demonstrate patterns of fiber distribution e.g. endurance athletes show a higher level of type I fibers.Sprint athletes, on the other hand, require large numbers of type IIX fibers.Middle distance event athletes show approximately equal distribution of the two types. This is also often the case for power athletes such as throwers and jumpers.It has been suggested that various types of exercise can induce changes in the fibers of a skeletal muscle.[30]It is thought that if you perform endurance type events for a sustained period of time, some of the type IIX fibers transform into type IIA fibers. However, there is no consensus on the subject.It may well be that the type IIX fibers show enhancements of the oxidative capacity after high intensity endurance training which brings them to a level at which they are able to perform oxidative metabolism as effectively as slow twitch fibers of untrained subjects. This would be brought about by an increase in mitochondrial size and number and the associated related changes, not a change in fiber type.
Continued here:
Myocyte - Wikipedia
- 001 Cardiac Stem Cell Therapy [Last Updated On: June 24th, 2011] [Originally Added On: June 24th, 2011]
- 002 Wow! UW Research labs [Last Updated On: June 25th, 2011] [Originally Added On: June 25th, 2011]
- 003 cellalign [Last Updated On: June 28th, 2011] [Originally Added On: June 28th, 2011]
- 004 Cardiac Stem Cells in End-Stage Human Failing Hearts: Are they functional? [Last Updated On: August 25th, 2011] [Originally Added On: August 25th, 2011]
- 005 Designer Life: repair brain, heart with stem cells - Future Health keynote speaker [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- 006 Cardiac Stem Cell Therapy at Rostock University [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- 007 Stem Cells: Mending a broken heart? [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- 008 Cardiovascular Derivatives of Embryonic Stem Cells in Cardiac Repair and Drug Discovery [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- 009 Stem Cell Therapy in Cardiac Disease [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- 010 Cardiac Recovery Points to Adult Stem Cells [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- 011 Oral Surgeon utilizes StemSave to preserve stem cells in wisdom teeth to combat cardiac disease [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- 012 Stem Cells and Cardiac Regeneration [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- 013 Dr Victor Dzau on Stem Cells for Cardiac Repair. [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- 014 Cardiomyogenic differentiation of Mesenchymal Stem cells (KUM2/9-15c) [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- 015 Heart Failure Patient After Adult Stem Cell Therapy [Last Updated On: September 5th, 2011] [Originally Added On: September 5th, 2011]
- 016 Stem Cell operation in Cardiac Surgery-Al-Jazeerah [Last Updated On: September 7th, 2011] [Originally Added On: September 7th, 2011]
- 017 Heart Disease Patient Describes His Stem Cell Treatment [Last Updated On: September 9th, 2011] [Originally Added On: September 9th, 2011]
- 018 Cardiovascular Therapies: Spotlight on Stem Cell Research - Douglas Boyd [Last Updated On: September 16th, 2011] [Originally Added On: September 16th, 2011]
- 019 Adult Stem Cell [Last Updated On: September 20th, 2011] [Originally Added On: September 20th, 2011]
- 020 Heart repair using own stem cells after heart attack: Future Health keynote speaker [Last Updated On: September 20th, 2011] [Originally Added On: September 20th, 2011]
- 021 Stem Cell #8 Vas Cath Removal 04/28/11 [Last Updated On: September 20th, 2011] [Originally Added On: September 20th, 2011]
- 022 Adult Stem Cells Used To Rebuild Heart Tissue Video. More at http://www.stemcellfusion.com [Last Updated On: September 20th, 2011] [Originally Added On: September 20th, 2011]
- 023 Davos Question: Stem Cell Answer [Last Updated On: September 22nd, 2011] [Originally Added On: September 22nd, 2011]
- 024 Did you have a Heart Attack and Need to Recover your Cardiac Muscle? [Last Updated On: September 22nd, 2011] [Originally Added On: September 22nd, 2011]
- 025 Cardiac Tissue Can Regenerate [Last Updated On: September 22nd, 2011] [Originally Added On: September 22nd, 2011]
- 026 William F. Testimonial of Treatment Stem Cell [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- 027 Stem Cell Heart Surgery must see [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- 028 Valentine's Day Stem Cell Wish: Mending Broken Hearts [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- 029 Advanced Cell Technology OneMedForum 2011 [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- 030 Human 2.0: The Helix of Our Future [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- 031 heart cell generation from human ES and iPS cells (embryonic and induced pluripotent stem cells).flv [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- 032 Stem Cell Therapy and Stem Cell Treatment with Dell [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- 033 UCD Med Student Receives Fulbright Award [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- 034 Cardiomyocytes derived from mouse Embryonic stem cells [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- 035 Immune Control of Stem Cell Mobilization [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- 036 Better Drugs Through Stem Cells [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- 037 stem cell derived cardiomyocytes [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- 038 Stem Cells: Heart cells grown from mouse stem cells [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- 039 Patel Stem Cell Heart Failure [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- 040 Turning Adult Stem Cells into Medicine - Zannos Grekos, MD [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- 041 Kevin's 2 Heart Transplants and Stem Cell Transplant [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- 042 Breakthrough in Stem cell technology [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- 043 Affordable Stem Cell Therapy in Guatemala (2hrs from Miami) [Last Updated On: September 26th, 2011] [Originally Added On: September 26th, 2011]
- 044 Cadiomyogenesis of human mesenchymal stem cells [Last Updated On: September 26th, 2011] [Originally Added On: September 26th, 2011]
- 045 Mark Mercola: Differentiating embryonic stem cells into adult tissues [Last Updated On: September 26th, 2011] [Originally Added On: September 26th, 2011]
- 046 Cardiomyocytic differentiation of endometrial stem cells. [Last Updated On: September 26th, 2011] [Originally Added On: September 26th, 2011]
- 047 Adult Stem Cell vs Embryonic Stem Cell Research Ethics Video [Last Updated On: September 26th, 2011] [Originally Added On: September 26th, 2011]
- 048 Pt. 1--Dr. Ali Denktas--Stem Cells as Markers after Myocardial Infarctions [Last Updated On: September 27th, 2011] [Originally Added On: September 27th, 2011]
- 049 Repairing Damaged Hearts with Stem Cells [Last Updated On: September 29th, 2011] [Originally Added On: September 29th, 2011]
- 050 Mouse GEN cells overexpressing Csx/Nkx2.5 and GATA4 behave like transient amplifying cells [Last Updated On: September 29th, 2011] [Originally Added On: September 29th, 2011]
- 051 20100804_axiogenesis.wmv [Last Updated On: September 29th, 2011] [Originally Added On: September 29th, 2011]
- 052 Beating Cardiomyocytes from E14 Cells [Last Updated On: September 29th, 2011] [Originally Added On: September 29th, 2011]
- 053 Heart cells grown from human embryonic stem cells [Last Updated On: September 29th, 2011] [Originally Added On: September 29th, 2011]
- 054 First US Patient In Stem Cell Transplant [Last Updated On: September 29th, 2011] [Originally Added On: September 29th, 2011]
- 055 Be still my beating stem cell heart [Last Updated On: October 1st, 2011] [Originally Added On: October 1st, 2011]
- 056 Beating Human Heart Cells from Embryonic Stem Cells [Last Updated On: October 1st, 2011] [Originally Added On: October 1st, 2011]
- 057 Spontaneously and rhythmically beating engineered human heart tissue from pluripotent stem cells [Last Updated On: October 3rd, 2011] [Originally Added On: October 3rd, 2011]
- 058 Cardiac Stem Cell Therapy - How it works [Last Updated On: October 3rd, 2011] [Originally Added On: October 3rd, 2011]
- 059 Doctors To Use 'Trained' Stem Cells To Heal Heart [Last Updated On: October 5th, 2011] [Originally Added On: October 5th, 2011]
- 060 Beating Heart Stem Cells [Last Updated On: October 5th, 2011] [Originally Added On: October 5th, 2011]
- 061 AM RADIO, DR. AMIT PATEL AND STEM CELLS SAVED MY LIFE - Video [Last Updated On: October 14th, 2011] [Originally Added On: October 14th, 2011]
- 062 New heart built with stem cells - Video [Last Updated On: October 15th, 2011] [Originally Added On: October 15th, 2011]
- 063 Adult Stem Cells For Heart Disease: Today's Reality - Video [Last Updated On: October 15th, 2011] [Originally Added On: October 15th, 2011]
- 064 H9 beating stem cells - Video [Last Updated On: October 27th, 2011] [Originally Added On: October 27th, 2011]
- 065 Double Blind Trial of Stem Cells for Heart Failure - Video [Last Updated On: October 27th, 2011] [Originally Added On: October 27th, 2011]
- 066 Repairing Damaged Hearts with Stem Cells - Video [Last Updated On: October 27th, 2011] [Originally Added On: October 27th, 2011]
- 067 Cardiac differentiation of hES cells at 20x - Video [Last Updated On: October 27th, 2011] [Originally Added On: October 27th, 2011]
- 068 SPRAY-ON STEM CELLS - Video [Last Updated On: October 28th, 2011] [Originally Added On: October 28th, 2011]
- 069 Stem Cells: A smart use for wisdom teeth - Video [Last Updated On: November 12th, 2011] [Originally Added On: November 12th, 2011]
- 070 VistaGen's Stem Cell Derived Cardiomyocytes - Video [Last Updated On: November 12th, 2011] [Originally Added On: November 12th, 2011]
- 071 Stem Cell Research [Last Updated On: November 12th, 2011] [Originally Added On: November 12th, 2011]
- 072 The Power of Stem Cells - Video [Last Updated On: November 12th, 2011] [Originally Added On: November 12th, 2011]
- 073 Beating iCellĀ® Cardiomyocytes - Video [Last Updated On: November 13th, 2011] [Originally Added On: November 13th, 2011]
- 074 SCIPIO: Cardiac stem cells and postinfarction heart failure - Video [Last Updated On: November 15th, 2011] [Originally Added On: November 15th, 2011]
- 075 Beating Cardiomyocytes in Cell Culture - Video [Last Updated On: November 15th, 2011] [Originally Added On: November 15th, 2011]
- 076 Stem Cells Heal Heart Attack Damage. - Video [Last Updated On: December 7th, 2011] [Originally Added On: December 7th, 2011]
- 077 C2CAM - 2011.11.15 - Dulce Base - Regenerative Medicine - Info - Video [Last Updated On: December 7th, 2011] [Originally Added On: December 7th, 2011]
- 078 Latest Update on Stem Cell Research at UW - Dr. Timothy Kamp - Video [Last Updated On: December 7th, 2011] [Originally Added On: December 7th, 2011]
- 079 Coast To Coast AM: Regenerative Medicine / Dulce Base 11-15-2011 Download Link - Video [Last Updated On: December 7th, 2011] [Originally Added On: December 7th, 2011]
- 080 C2CAM - 2011.11.15 - Dulce Base - Regenerative Medicine - Video [Last Updated On: December 7th, 2011] [Originally Added On: December 7th, 2011]
