Bio-inspired Materials Give Boost to Regenerative Medicine – Bioscience Technology
By JoanneRUSSELL25
What if one day, we could teach our bodies to self-heal like a lizards tail, and make severe injury or disease no more threatening than a paper cut?
Or heal tissues by coaxing cells to multiply, repair or replace damaged regions in loved ones whose lives have been ravaged by stroke, Alzheimers or Parkinsons disease?
Such is the vision, promise and excitement in the burgeoning field of regenerative medicine, now a major ASU initiative to boost 21st-century medical research discoveries.
ASU Biodesign Institute researcher Nick Stephanopoulos is one of several rising stars in regenerative medicine. In 2015, Stephanopoulos, along with Alex Green and Jeremy Mills, were recruited to the Biodesign Institutes Center for Molecular Design and Biomimetics (CMDB), directed by Hao Yan, a world-recognized leader in nanotechnology.
One of the things that that attracted me most to the ASU and the Biodesign CMDB was Haos vision to build a group of researchers that use biological molecules and design principles to make new materials that can mimic, and one day surpass, the most complex functions of biology, Stephanopoulos said.
I have always been fascinated by using biological building blocks like proteins, peptides and DNA to construct self-assembled structures, devices and materials, and the interdisciplinary and highly collaborative team in the CMDB is the ideal place to put this vision into practice.
Yans research center uses DNA and other basic building blocks to build their nanotechnology structures only at a scale 1,000 times smaller than the width of a human hair.
Theyve already used nanotechnology to build containers to specially deliver drugs to tissues, build robots to navigate a maze or nanowires for electronics.
To build a manufacturing industry at that tiny scale, their bricks and mortar use a colorful assortment of molecular Legos. Just combine the ingredients, and these building blocks can self-assemble in a seemingly infinite number of ways only limited by the laws of chemistry and physics and the creative imaginations of these budding nano-architects.
Learning from nature
The goal of the Center for Molecular Design and Biomimetics is to usenatures design rulesas an inspiration in advancing biomedical, energy and electronics innovation throughself-assembling moleculesto create intelligent materials for better component control and for synthesis intohigher-order systems, said Yan, who also holds the Milton Glick Chair in Chemistry and Biochemistry.
Prior to joining ASU, Stephanopoulos trained with experts in biological nanomaterials, obtaining his doctorate with the University of California Berkeleys Matthew Francis, and completed postdoctoral studies with Samuel Stupp at Northwestern University. At Northwestern, he was part of a team that developed a new category of quilt-like, self-assembling peptide and peptide-DNA biomaterials for regenerative medicine, with an emphasis in neural tissue engineering.
Weve learned from nature many of the rules behind materials that can self-assemble. Some of the most elegant complex and adaptable examples of self-assembly are found in biological systems, Stephanopoulos said.
Because they are built from the ground-up using molecules found in nature, these materials are also biocompatible and biodegradable, opening up brand-new vistas for regenerative medicine.
Stephanopoulos tool kit includes using proteins, peptides, lipids and nucleic acids like DNA that have a rich biological lexicon of self-assembly.
DNA possesses great potential for the construction of self-assembled biomaterials due to its highly programmable nature; any two strands of DNA can be coaxed to assemble to make nanoscale constructs and devices with exquisite precision and complexity, Stephanopoulos said.
Proof all in the design
During his time at Northwestern, Stephanopoulos worked on a number of projects and developed proof-of-concept technologies for spinal cord injury, bone regeneration and nanomaterials to guide stem cell differentiation.
Now, more recently, in a new studyin Nature Communications, Stephanopoulos and his colleague Ronit Freeman in the Stupp laboratory successfully demonstrated the ability to dynamically control the environment around stem cells, to guide their behavior in new and powerful ways.
In the new technology, materials are first chemically decorated with different strands of DNA, each with a unique code for a different signal to cells.
To activate signals within the cells, soluble molecules containing complementary DNA strands are coupled to short protein fragments, called peptides, and added to the material to create DNA double helices displaying the signal.
By adding a few drops of the DNA-peptide mixture, the material effectively gives a green light to stem cells to reproduce and generate more cells. In order to dynamically tune the signal presentation, the surface is exposed to a soluble single-stranded DNA molecule designed to grab the signal-containing strand of the duplex and form a new DNA double helix, displacing the old signal from the surface.
This new duplex can then be washed away, turning the signal off. To turn the signal back on, all that is needed is to now introduce a new copy of single-stranded DNA bearing a signal that will reattach to the materials surface.
One of the findings of this work is the possibility of using the synthetic material to signal neural stem cells to proliferate, then at a specific time selected by the scientist, trigger their differentiation into neurons for a while, before returning the stem cells to a proliferative state on demand.
One potential use of the new technology to manipulate cells could help cure a patient with neurodegenerative conditions like Parkinsons disease.
The patients own skin cells could be converted to stem cells using existing techniques. The new technology could help expand the newly converted stem cells back in the lab and then direct their growth into specific dopamine-producing neurons before transplantation back to the patient.
People would love to have cell therapies that utilize stem cells derived from their own bodies to regenerate tissue, Stupp said. In principle, this will eventually be possible, but one needs procedures that are effective at expanding and differentiating cells in order to do so. Our technology does that.
In the future, it might be possible to perform this process entirely within the body. The stem cells would be implanted in the clinic, encapsulated in the type of material described in the new work, and injected into a particular spot. Then the soluble peptide-DNA molecules would be given to the patient to bind to the material and manipulate the proliferation and differentiation of transplanted cells.
Scaling the barriers
One of the future challenges in this area will be to develop materials that can respond better to external stimuli and reconfigure their physical or chemical properties accordingly.
Biological systems are complex, and treating injury or disease will in many cases necessitate a material that can mimic the complex spatiotemporal dynamics of the tissues they are used to treat, Stephanopoulos said.
It is likely that hybrid systems that combine multiple chemical elements will be necessary; some components may provide structure, others biological signaling and yet others a switchable element to imbue dynamic ability to the material.
A second challenge, and opportunity, for regenerative medicine lies in creating nanostructures that can organize material across multiple length scales. Biological systems themselves are hierarchically organized: from molecules to cells to tissues, and up to entire organisms.
Consider that for all of us, life starts simple, with just a single cell. By the time we reach adulthood, every adult human body is its own universe of cells, with recent estimates of 37 trillion or so. The human brain alone has 100 billion cells or about the same number of cells as stars in the Milky Way galaxy.
But over the course of a life, or by disease, whole constellations of cells are lost due to the ravages of time or the genetic blueprints going awry.
Collaborative DNA
To overcome these obstacles, much more research funding and recruitment of additional talent to ASU will be needed to build the necessary regenerative medicine workforce.
Last year, Stephanopoulos research received a boost with funding from the U.S. Air Forces Young Investigator Research Program (YIP).
The Air Force Office of Scientific ResearchYIP award will facilitate Nicks research agenda in this direction, and is a significant recognition of his creativity and track record at the early stage of his careers, Yan said.
Theyll need this and more to meet the ultimate challenge in the development of self-assembled biomaterials and translation to clinical applications.
Buoyed by the funding, during the next research steps, Stephanopoulos wants to further expand horizons with collaborations from other ASU colleagues to take his research teams efforts one step closer to the clinic.
ASU and the Biodesign Institute also offer world-class researchers in engineering, physics and biology for collaborations, not to mention close ties with the Mayo Clinic or a number of Phoenix-area institutes so we can translate our materials to medically relevant applications, Stephanopoulos said.
There is growing recognition that regenerative medicine in the Valley could be a win-win for the area, in delivering new cures to patients and building, person by person, a brand-new medicinal manufacturing industry.
Stephanopoulos recent research was carried out at Stupps Northwesterns Simpson Querrey Institute for BioNanotechnology. The National Institute of Dental and Craniofacial Research of the National Institutes of Health (grant 5R01DE015920) provided funding for biological experiments, and the U.S. Department of Energy, Office of Science, Basic Energy Sciences provided funding for the development of the new materials (grants DE-FG01-00ER45810 and DE-SC0000989 supporting an Energy Frontiers Research Center on Bio-Inspired Energy Science (CBES)).
The paper is titled Instructing cells with programmable peptide DNA hybrids. Samuel I. Stupp is the senior author of the paper, and post-doctoral fellows Ronit Freeman and Nicholas Stephanopoulos are primary authors.
See original here:
Bio-inspired Materials Give Boost to Regenerative Medicine - Bioscience Technology
- 001 Paralyzed rat walks with own stem cells in 11 wks. [Last Updated On: July 11th, 2011] [Originally Added On: July 11th, 2011]
- 002 Stem Cells for Spinal Cord Injury: Community Outreach San Diego 2011 - Trish Stressman [Last Updated On: August 9th, 2011] [Originally Added On: August 9th, 2011]
- 003 Non-controversial Stem Cells: Rationale for Clinical Use: Neil Riordan, Ph.D. - Miami, FL [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- 004 Cure for blindness - retina repair using stem cells. Future health keynote speaker [Last Updated On: September 5th, 2011] [Originally Added On: September 5th, 2011]
- 005 Geron's Embryonic Stem Cell Clinical Trial for Spinal Cord Injury [Last Updated On: September 6th, 2011] [Originally Added On: September 6th, 2011]
- 006 William Rader MD - Paralyzed Spinal Cord Injury Patient Walks Again [Last Updated On: September 7th, 2011] [Originally Added On: September 7th, 2011]
- 007 Adult Stem Cell Sucess Stories - Laura Dominguez [Last Updated On: September 7th, 2011] [Originally Added On: September 7th, 2011]
- 008 Spinal Cord Injury Treatment With Stem Cells [Last Updated On: September 9th, 2011] [Originally Added On: September 9th, 2011]
- 009 Over Comes Spinal Cord Injury - No Surgery or Stem Cells http://www.releasetechnique.com [Last Updated On: September 10th, 2011] [Originally Added On: September 10th, 2011]
- 010 Non-controversial Stem Cells: Rationale for Clinical Use - Dr. Neil Riordan [Last Updated On: September 11th, 2011] [Originally Added On: September 11th, 2011]
- 011 Stem Cells Therapy for Spinal Cord Injury.flv [Last Updated On: September 12th, 2011] [Originally Added On: September 12th, 2011]
- 012 Walking after Spinal Cord injury and Stem Cells [Last Updated On: September 16th, 2011] [Originally Added On: September 16th, 2011]
- 013 Stem Cells May Reverse Paralysis, Brain Damage, and Organ Failure [Last Updated On: September 18th, 2011] [Originally Added On: September 18th, 2011]
- 014 The Usefulness of Adult Olfactory Stem Cells in Spinal Cord Injury and Brain Injury [Last Updated On: September 20th, 2011] [Originally Added On: September 20th, 2011]
- 015 Stem cells for Parkinson's Disease, Spinal Cord Injury [Last Updated On: September 22nd, 2011] [Originally Added On: September 22nd, 2011]
- 016 Embryonal Stem Cells Promote Functional Recovery in Spinal Injured Animals [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- 017 First Spinal-Cord Surgery With Stem Cells [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- 018 Medra Inc - Paralyzed Spinal Cord Injury Patient Walks Again [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- 019 Spinal Cord Injury - Embryonic Stem Cells - Dr. Keirstead [Last Updated On: September 26th, 2011] [Originally Added On: September 26th, 2011]
- 020 Stem cell treatment by Adiva Health Care India after Spinal Cord Injury [Last Updated On: September 29th, 2011] [Originally Added On: September 29th, 2011]
- 021 Embryonic Stem Cells Cure Spinal Cord Injury? [Last Updated On: October 1st, 2011] [Originally Added On: October 1st, 2011]
- 022 Stem Cells for Spinal Cord Injury [Last Updated On: October 5th, 2011] [Originally Added On: October 5th, 2011]
- 023 Stem Cells and Neurogenesis [Last Updated On: October 5th, 2011] [Originally Added On: October 5th, 2011]
- 024 Stemcells come alive: Fix Mouse with severed spine ABCnews [Last Updated On: October 5th, 2011] [Originally Added On: October 5th, 2011]
- 025 The Spinal Cord Journey - Stem cell therapy stories from three spinal cord injury patients [Last Updated On: October 5th, 2011] [Originally Added On: October 5th, 2011]
- 026 Spinal Cord Injury patient 10 years after injury after Stem Cell Treatment [Last Updated On: October 5th, 2011] [Originally Added On: October 5th, 2011]
- 027 StemCells Gains 5% on Neural Stem Cell Trial in Spinal Cord Injury [Last Updated On: October 5th, 2011] [Originally Added On: October 5th, 2011]
- 028 The Promises of Neural Stem Cells in Motor Neuron Disease [Last Updated On: October 5th, 2011] [Originally Added On: October 5th, 2011]
- 029 Stem Cell Series: Part 3 [Last Updated On: October 5th, 2011] [Originally Added On: October 5th, 2011]
- 030 Christopher "Kit" Bond - Spinal Cord Injury Stem Cell Patient [Last Updated On: October 5th, 2011] [Originally Added On: October 5th, 2011]
- 031 Roman Reed: What all patient advocates at the World Stem Cell Summit should know [Last Updated On: October 6th, 2011] [Originally Added On: October 6th, 2011]
- 032 Noah Stem Cell Transplant Day 3 [Last Updated On: October 6th, 2011] [Originally Added On: October 6th, 2011]
- 033 Spinal Patient Receives Stem Cells in First Experimental Treatment [Last Updated On: October 6th, 2011] [Originally Added On: October 6th, 2011]
- 034 Health and Home Stem-1 [Last Updated On: October 6th, 2011] [Originally Added On: October 6th, 2011]
- 035 UK's first approved adult stem cell bank Oristem® explained [Last Updated On: October 6th, 2011] [Originally Added On: October 6th, 2011]
- 036 Stem Cells: Hope, Hype and Progress - Session 1b [Last Updated On: October 8th, 2011] [Originally Added On: October 8th, 2011]
- 037 Stem Cells: Hope, Hype and Progress - Session 3 - Video [Last Updated On: October 13th, 2011] [Originally Added On: October 13th, 2011]
- 038 Human Trials of Embryonic Stem Cell Treatment Beginning - Video [Last Updated On: October 18th, 2011] [Originally Added On: October 18th, 2011]
- 039 (Film Trailer) - The Spinal Cord Journey: Stem Cell Therapy Stories of Recovery - Video [Last Updated On: October 26th, 2011] [Originally Added On: October 26th, 2011]
- 040 Stem Cell Treatment for Spinal Cord Injury - Video [Last Updated On: October 28th, 2011] [Originally Added On: October 28th, 2011]
- 041 Public Symposium: The Stem Cell Promise: Moving to the Clinic - Video [Last Updated On: October 28th, 2011] [Originally Added On: October 28th, 2011]
- 042 Stem Cells: Hope, Hype and Progress - Session 1a - Video [Last Updated On: October 29th, 2011] [Originally Added On: October 29th, 2011]
- 043 Stem Cell Treatment for T-6 Spinal Cord Injury - Video [Last Updated On: October 29th, 2011] [Originally Added On: October 29th, 2011]
- 044 Tamara Marquis - SCI Stem Cell Patient - Video [Last Updated On: October 31st, 2011] [Originally Added On: October 31st, 2011]
- 045 Stem Cells - Treatment for Spinal Cord Injury - Video [Last Updated On: October 31st, 2011] [Originally Added On: October 31st, 2011]
- 046 Electro-Medicine : Biological Physics - Paralysis Spinal Chord Injury Treatment - Video [Last Updated On: November 10th, 2011] [Originally Added On: November 10th, 2011]
- 047 Biological Physics : Stem Cells - Paralyzed Spinal Cord Injury Patient Walks Again - Video [Last Updated On: November 10th, 2011] [Originally Added On: November 10th, 2011]
- 048 Innovative stem cell treatment for Spinal Cord Injuries - Video [Last Updated On: November 22nd, 2011] [Originally Added On: November 22nd, 2011]
- 049 Stem Cells Treatment for Spinal Cord Injuries, Successfully Results, Stem Therapy - Video [Last Updated On: November 23rd, 2011] [Originally Added On: November 23rd, 2011]
- 050 Gabi - SCI Stem Cell Patient - Video [Last Updated On: November 23rd, 2011] [Originally Added On: November 23rd, 2011]
- 051 Stem Cell Treatment for Spinal Cord Injury - Patient Interview - Video [Last Updated On: December 7th, 2011] [Originally Added On: December 7th, 2011]
- 052 StemCellTV Daily Report-November 22, 2011 - Video [Last Updated On: December 14th, 2011] [Originally Added On: December 14th, 2011]
- 053 Which Stem Cell Will Win The Race To Repair The Spinal Cord? - Video [Last Updated On: December 23rd, 2011] [Originally Added On: December 23rd, 2011]
- 054 China medical tourism--spinal cord injury--stem cells therapy - Video [Last Updated On: December 27th, 2011] [Originally Added On: December 27th, 2011]
- 055 MouseVideo-SCI - Video [Last Updated On: January 1st, 2012] [Originally Added On: January 1st, 2012]
- 056 Explaining stem cells - Video [Last Updated On: January 3rd, 2012] [Originally Added On: January 3rd, 2012]
- 057 China medical tourism--Spinal Injury--Stem Cell - Video [Last Updated On: January 22nd, 2012] [Originally Added On: January 22nd, 2012]
- 058 Stem cell therapy at VMC - Video [Last Updated On: January 22nd, 2012] [Originally Added On: January 22nd, 2012]
- 059 Breakthrough Spinal Cord Injury Treatment - Stem Cell Of America - Video [Last Updated On: January 31st, 2012] [Originally Added On: January 31st, 2012]
- 060 Stem cell treatments change girl's life [Last Updated On: February 14th, 2012] [Originally Added On: February 14th, 2012]
- 061 Neuralstem Announces Closing of $5.2-Million Registered Direct Offering [Last Updated On: February 15th, 2012] [Originally Added On: February 15th, 2012]
- 062 Stem-cell scientists find right chemistry [Last Updated On: February 19th, 2012] [Originally Added On: February 19th, 2012]
- 063 Panamanian-US Scientific Research Supports Using Fat Stem Cells to Treat Rheumatoid Arthritis [Last Updated On: February 21st, 2012] [Originally Added On: February 21st, 2012]
- 064 Qatari students to present research on stem cells [Last Updated On: February 21st, 2012] [Originally Added On: February 21st, 2012]
- 065 Bioethics Backlash [Last Updated On: February 23rd, 2012] [Originally Added On: February 23rd, 2012]
- 066 Waisan Poon, "Clinical trial of umbilical cord blood stem cells in spinal cord injury" - Video [Last Updated On: February 23rd, 2012] [Originally Added On: February 23rd, 2012]
- 067 Osamu Honmou, "Transplantation of bone marrow stem cells" - Video [Last Updated On: February 23rd, 2012] [Originally Added On: February 23rd, 2012]
- 068 Dah-Ching Ding, "Human umbilical cord mesenchymal stem cells support prolonged expansion of... - Video [Last Updated On: February 23rd, 2012] [Originally Added On: February 23rd, 2012]
- 069 Stem Cell Action Coalition Opposes Virginia Personhood Bill [Last Updated On: February 24th, 2012] [Originally Added On: February 24th, 2012]
- 070 Adding Six More, Omeros Now Has a Total of 33 Unlocked Orphan GPCRs in its Portfolio [Last Updated On: February 29th, 2012] [Originally Added On: February 29th, 2012]
- 071 It's not pulp fiction [Last Updated On: March 4th, 2012] [Originally Added On: March 4th, 2012]
- 072 Cryo-Cell's Affiliate, Saneron CCEL Therapeutics, Releases Pre-clinical Data Indicating That Cord Blood Stem Cells ... [Last Updated On: March 6th, 2012] [Originally Added On: March 6th, 2012]
- 073 Will StemCells Walk The Talk? [Last Updated On: March 7th, 2012] [Originally Added On: March 7th, 2012]
- 074 Young aims for spinal injury 'cure' [Last Updated On: March 7th, 2012] [Originally Added On: March 7th, 2012]
- 075 Doctor looks to China for spinal injury 'cure' [Last Updated On: March 7th, 2012] [Originally Added On: March 7th, 2012]
- 076 Fourteenth Patient Dosed in Neuralstem ALS Stem Cell Trial [Last Updated On: March 7th, 2012] [Originally Added On: March 7th, 2012]
- 077 Neuralstem Shows Solid Progress in Spinal Cord Neural Stem Cell Trial for ALS [Last Updated On: March 8th, 2012] [Originally Added On: March 8th, 2012]
- 078 Oklahoma bill proposes umbilical cord blood bank [Last Updated On: March 8th, 2012] [Originally Added On: March 8th, 2012]
- 079 Research suggests new therapeutic approach for spinal cord injury [Last Updated On: March 13th, 2012] [Originally Added On: March 13th, 2012]
- 080 Doctor looks to China for spinal injury ‘cure’ [Last Updated On: March 13th, 2012] [Originally Added On: March 13th, 2012]
