Page 462«..1020..461462463464..470480..»

Stem cell therapy of a dog in the Netherlands. – Video

By LizaAVILA


Stem cell therapy of a dog in the Netherlands.
One a half years later he is juming and playing after first almost not being able not walk anymore. info@fat-stem.com.

By: Fat Stem NV

Go here to read the rest:
Stem cell therapy of a dog in the Netherlands. - Video

To Read More: Stem cell therapy of a dog in the Netherlands. – Video
categoriaUncategorized commentoComments Off on Stem cell therapy of a dog in the Netherlands. – Video | dataOctober 4th, 2014
Read All

Dr. Raj Live – Stem Cell Therapy – Video

By daniellenierenberg


Dr. Raj Live - Stem Cell Therapy
Dr. Raj discusses benefits of stem cell therapy.

By: SPORTSDOC RAJ

See the original post here:
Dr. Raj Live - Stem Cell Therapy - Video

To Read More: Dr. Raj Live – Stem Cell Therapy – Video
categoriaUncategorized commentoComments Off on Dr. Raj Live – Stem Cell Therapy – Video | dataOctober 4th, 2014
Read All

Gold Nanoparticles Used to Improve Cardiac Patches

By daniellenierenberg

Category: Science & Technology Posted: October 3, 2014 01:55PM Author: Guest_Jim_*

Heart attacks are pretty serious and something very hard to recover from, in part because heart cells do not multiply and there are few cardiac muscle stem cells to repair the damage. Cardiac patches have been created to replace damaged cells, but because of how they are made, these patches can cause their own health problems. Researchers at Tel Aviv University have recently developed a new hybrid patch that could address those problems.

Traditionally the patches are made by growing cardiac tissue on a collagen scaffold from pig hearts. One of the problems with this approach is the potential for antigens that will trigger an immune response, causing the patient's body to attack the patch. To get around this the researchers instead harvest fatty tissue from the patient's stomach, as the body will not attack its own cells. This left an issue with connectivity, as the cells in the patch must respond to the electrical signals of the heart, and engineered patches do not immediately form the necessary connections. The solution the researchers tried was to deposit gold nanoparticles onto the cardiac tissue, providing the needed conductivity.

So far the nonimmunogenic hybrid patch has shown itself to transfer electrical signals faster and more efficiently than scaffolds without the gold nanoparticles, when tested in animals. The next step for the technology is to test it in larger animals, and eventually perform clinical trials.

Source: American Friends of Tel Aviv University

Link:
Gold Nanoparticles Used to Improve Cardiac Patches

To Read More: Gold Nanoparticles Used to Improve Cardiac Patches
categoriaCardiac Stem Cells commentoComments Off on Gold Nanoparticles Used to Improve Cardiac Patches | dataOctober 4th, 2014
Read All

Unknown donor helps Struthers woman through cancer battle

By LizaAVILA

Published: Sat, October 4, 2014 @ 12:09 a.m.

By EMMALEE C. TORISK

etorisk@vindy.com

STRUTHERS

Missy Ginnetti began to tear up as she re-read a typed letter from her bone-marrow donor.

Sitting at her kitchen table, with her husband, Mahoning County Engineer Pat Ginnetti, across from her, Missy explained that she doesnt know anything specific a name, an occupation, a city of residence about her donor. In fact, any bits of potentially revealing information, no matter how seemingly minute or insignificant, were blacked out of the letter.

What wasnt, however, was her donors closing: Sincerely, The other part of your marrow.

I wrote back, Dear All of my marrow, Missy said, laughing.

Its true. Within 30 days of her allogeneic stem-cell transplant in late March, Missys body had accepted 100 percent of the donor cells something that often doesnt happen for up to a year afterward.

Now, more than four years after Missys initial diagnosis of stage 3 Hodgkin lymphoma, life for the Ginnettis is beginning to move closer to normal once again. The next big thing, she said, is undergoing tests and scans within the next couple of weeks that will reveal whether cancer cells [are] showing up anywhere.

Excerpt from:
Unknown donor helps Struthers woman through cancer battle

To Read More: Unknown donor helps Struthers woman through cancer battle
categoriaBone Marrow Stem Cells commentoComments Off on Unknown donor helps Struthers woman through cancer battle | dataOctober 4th, 2014
Read All

Stem Cell Therapy Walkthrough – Watch This Before Calling Or Scheduling – Video

By LizaAVILA


Stem Cell Therapy Walkthrough - Watch This Before Calling Or Scheduling
http://www.innovationsstemcellcenter.com Call: 214.420.7970 Facebook: https://www.facebook.com/innovationsmedical Twitter: https://twitter.com/dallasdrj Instagram: http://instagram.com/drbilljo...

By: dallasdrj

Read this article:
Stem Cell Therapy Walkthrough - Watch This Before Calling Or Scheduling - Video

To Read More: Stem Cell Therapy Walkthrough – Watch This Before Calling Or Scheduling – Video
categoriaUncategorized commentoComments Off on Stem Cell Therapy Walkthrough – Watch This Before Calling Or Scheduling – Video | dataOctober 3rd, 2014
Read All

Stem-Cell Therapy and Repair after Heart Attack and Heart …

By raymumme

Stem Cell Therapy: Helping the Body Heal Itself

Stem cells are natures own transformers. When the body is injured, stem cells travel the scene of the accident. Some come from the bone marrow, a modest number of others, from the heart itself. Additionally, theyre not all the same. There, they may help heal damaged tissue. They do this by secreting local hormones to rescue damaged heart cells and occasionally turning into heart muscle cells themselves. Stem cells do a fairly good job. But they could do better for some reason, the heart stops signaling for heart cells after only a week or so after the damage has occurred, leaving the repair job mostly undone. The partially repaired tissue becomes a burden to the heart, forcing it to work harder and less efficiently, leading to heart failure.

Initial research used a patients own stem cells, derived from the bone marrow, mainly because they were readily available and had worked in animal studies. Careful study revealed only a very modest benefit, so researchers have moved on to evaluate more promising approaches, including:

No matter what you may read, stem cell therapy for damaged hearts has yet to be proven fully safe and beneficial. It is important to know that many patients are not receiving the most current and optimal therapies available for their heart failure. If you have heart failure, and wondering about treatment options, an evaluation or a second opinion at a Center of Excellence can be worthwhile.

Randomized clinical trials evaluating these different approaches typically allow enrollment of only a few patients from each hospital, and hence what may be available at the Cleveland Clinic varies from time to time. To inquire about current trials, please call 866-289-6911 and speak to our Resource Nurses.

Cleveland Clinic is a large referral center for advanced heart disease and heart failure we offer a wide range of therapies including medications, devices and surgery. Patients will be evaluated for the treatments that best address their condition. Whether patients meet the criteria for stem cell therapy or not, they will be offered the most advanced array of treatment options.

Allogenic: from one person to another (for example: organ transplant)

Autogenic: use of one's own tissue

Myoblasts: immature muscle cells, may be able to change into functioning heart muscle cells

Stem Cells: cells that have the ability to reproduce, generate new cells, and send signals to promote healing

Read this article:
Stem-Cell Therapy and Repair after Heart Attack and Heart ...

To Read More: Stem-Cell Therapy and Repair after Heart Attack and Heart …
categoriaCardiac Stem Cells commentoComments Off on Stem-Cell Therapy and Repair after Heart Attack and Heart … | dataOctober 2nd, 2014
Read All

Okyanos Presents the Science, Safety, and Efficacy of Adult Stem Cell Therapy

By raymumme

Freeport, Grand Bahama (PRWEB) October 02, 2014

Dr. Todd K. Malan, M.D., presented to the Grand Bahama Medical & Dental Association 14th Annual Scientific Educational Conference on the science, safety and efficacy of adipose- (fat) derived stem and regenerative cells (ADRCs) for ischemic heart disease and other unmet healthcare needs.

"It was an honor to participate in this conference with medical leadership that values this technology and works so tirelessly to serve the people of Grand Bahama," said Dr. Todd Malan." It is an opportunity for us to work closely with local doctors to improve the quality and standards of care for all patients."

Dr. Malan explained the interrelationship between tissue ischemia, inflammation, autoimmune response and cell death and how ADRCs have combined mechanisms known to assist in repairing multi-factorial illnesses associated with those issues.

According to Malan,The procedure begins with the extraction of a persons body fat, a process done using advanced water-assisted liposuction technology. The persons own adult stem cells are then separated from the fat tissue using a European Union-approved cell processing device."

Immediately following this, the cardiologist injects these cells into and around the low blood flow regions of the heart via a cathetera protocol which allows for better targeting of the cells to repair damaged heart tissue.

Adult stem cell therapy for heart disease is emerging as a new alternative for patients with severe heart conditions who want to live a normal life but are restricted in activities they can no longer do.

"As a leader in providing cell therapy, Okyanos is very excited to bring this innovative treatment to patients in a near-shore, regulated jurisdiction with a new standard of care, said Matt Feshbach, CEO of Okyanos. We welcome the opportunity to help those patients with limited options a chance to live a normal life.

Offering this minimally invasive adult stem cell treatment in their new cardiac catherization lab, Okyanos is scheduled to open in October in Freeport, Grand Bahama.

About Okyanos Heart Institute: (Oh key AH nos)

Original post:
Okyanos Presents the Science, Safety, and Efficacy of Adult Stem Cell Therapy

To Read More: Okyanos Presents the Science, Safety, and Efficacy of Adult Stem Cell Therapy
categoriaCardiac Stem Cells commentoComments Off on Okyanos Presents the Science, Safety, and Efficacy of Adult Stem Cell Therapy | dataOctober 2nd, 2014
Read All

Embryonic stem cells to tackle major killer diseases

By JoanneRUSSELL25

Stem cells are getting serious. Two decades after they were discovered, human embryonic stem cells (hESCs) are being tested as a treatment for two major diseases: heart failure and type 1 diabetes.

Treatments based on hESCs have been slow coming because of controversy over their source and fears that they could turn into tumours once implanted. They have enormous potential because hESCs can be grown into any of the body's 200 tissue types, unlike the stems cells isolated from adult tissues that have mostly been used in treatments until now.

In the most rigorous test of embryonic stems cells' potential yet, six people with heart failure will be treated in France with a patch of immature heart cells made from hESCs, and 40 people with diabetes in the US will receive pouches containing immature pancreatic cells made from hESCs.

The hope is that the heart patch will help to regenerate heart muscle destroyed by heart attacks. Trials in monkeys showed that the patch could regenerate up to 20 per cent of the lost muscle within two months.

The pancreatic cells are supposed to mature into beta cells, which produce the hormone insulin. These would act as a substitute for the cells that are destroyed by the immune systems of people with type 1 diabetes.

Although treatments based on hESCs have already been given to people with a type of age-related blindness and with spinal paralysis, the latest trials are the therapy's first foray into major fatal diseases. Heart disease is the biggest killer in the world, and cases of type 1 diabetes are growing.

"Both are landmark studies, and are different from what we've had up to now," says Chris Mason, head of regenerative medicine at University College London. "The blindness already being treated is serious, but diabetes and heart failure are killers, and things we don't have solutions for, so this brings hESCs into the mainstream."

Some people with heart disease and diabetes have received experimental treatments based on stem cells isolated from adult tissue, often from bone marrow, with varying degrees of success. These mesenchymal stem cells, or MSCs, can mature into several tissues including muscle, bone, cartilage and fat but there is no guarantee that they will grow into cardiac muscle.

A recent review of 23 trials involving 1255 people with heart disease found that there is some evidence that recipients of stem cell therapy are less likely to die or be readmitted to hospital a year or more after treatment than people who received standard treatment.

The hope is that using hESCs in place of MSCs will improve these outcomes further because they can be grown from scratch into cells exactly suited to their medical purpose. "We think our cells are more committed to the heart lineage," says Philippe Menasch, head of the French trial at the Georges Pompidou European Hospital in Paris.

See original here:
Embryonic stem cells to tackle major killer diseases

To Read More: Embryonic stem cells to tackle major killer diseases
categoriaBone Marrow Stem Cells commentoComments Off on Embryonic stem cells to tackle major killer diseases | dataOctober 2nd, 2014
Read All

Plant stem cells may help skin look younger, healthier

By LizaAVILA

HOUSTON -

Stem cells, the body's so called "master cells," are used to treat heart disease and cancer and to grow tissue. But plants also have stem cells and they're some of the hottest ingredients in anti-aging products.

Andrea Vizcaino, 49, is trying out a new phyto-facial that comes in the form of a freeze dried serum in a vial. One of the main ingredients is stem cells from the argon tree in Morocco. She described the procedure.

"It feels warm, especially around my chin and it feels good," said Vizcaino. "Very hydrating; the skin feels moist."

Apple, echinacea and grape stem cells are already used in many skin care products, but some scientists think the argon tree cells will penetrate even deeper.

"The plant stem cells stimulate our stem cells to regenerate the skin," said skin care specialist Candy Bonura.

Allenby agrees the new products can be hydrating, but said the jury is still out about the real effectiveness of plant stem cells.

"Stem cells are kind of the buzz word right now, but we have to remember that stem cells are different in plants and different in people," Allenby said.

Bonura acknowledged these new products won't take years off your face, but many clients do see a difference.

"I see a brightening, I see a hydration, I also see the skin is more supple looking and more youthful with a glow to it," Bonura said.

Here is the original post:
Plant stem cells may help skin look younger, healthier

To Read More: Plant stem cells may help skin look younger, healthier
categoriaSkin Stem Cells commentoComments Off on Plant stem cells may help skin look younger, healthier | dataOctober 2nd, 2014
Read All

Grafted Stem Cells Display Vigorous Growth in Spinal Cord Injury Model

By NEVAGiles23

Contact Information

Available for logged-in reporters only

Newswise NIBIB-funded researchers report in a recent study that they were able to use human stem cells to grow brand new nerves in a rat model of spinal cord injury. The neurons grew tens of thousands of axons that extended the entire length of the spinal cord, out from the area of injury. The procedure employs induced pluripotent stem cells or iPSCs, which are stem cells that can be driven to become a specific cell type -- in this case nerve cells-- to repair an experimentally damaged spinal cord. The iPSCs were made using the skin cells of an 86 year old male, demonstrating that even in an individual of advanced age, the ability of the cells to be turned into a different cell type (pluripotency) remained.

Lead author Paul Lu, Ph.D., and senior author Mark Tuszynski, MD, PhD, and their team at the University of California - San Diego Center for Neural Repair, performed the experiment building on earlier work using human embryonic stem cells in a similar rat spinal cord injury model.1 The current work, described in the August 20 edition of Neuron, was performed to determine whether iPSCs could be used for spinal cord repair.2

The group is interested in using iPSCs to develop a potential repair for spinal cord injury (SCI) because with iPSCs, they can use cells taken from the person with the injury, rather than use donated cells such as human embryonic stem cells, which are foreign to the patient. This is an important advantage because it avoids any immune rejection that could occur with foreign repair cells.

In the current work, the iPSC-derived human neurons were embedded in a matrix that included a cocktail of growth factors, which was grafted onto the experimentally injured spinal cord in the rat model. After three months the researchers observed extensive axonal growth projecting from the grafted neurons, reaching long distances in both directions along the spinal cord, from the brain to the tail end of the spinal cord. The axons appeared to make connections with the existing rat neurons. Importantly, the axons extended out from the site of injury, an area with a complex combination of post-injury factors and processes going on, some of which are known to hinder neuronal growth and axon extension.

In the earlier study, Tuszynski and colleagues used human embryonic stem cells in a similar grafting experiment. In that study, axons grew out from the site of spinal cord injury and the treated animals had some restoration of ability to move affected limbs. The current study was undertaken to see if the same result could be achieved using the iPSC method to create the neurons used in the graft. While the use of iPSCs in the current study resulted in dramatic growth of the grafted neurons across the central nervous system of the rats, the treated animals did not show restoration of function in their forelimbs (hands). The researchers note that the human cells were still at a fairly early stage of development when function was tested, and that more time will likely be needed to be able to detect functional improvement.

Tuszynski went on to state, There are several important considerations that future studies will address. These include whether the extensive number of human axons make correct or incorrect connections; whether the new connections contain the appropriate chemical neurotransmitters to form functional connections; whether connections, once formed, are permanent or transient; and exactly how long it takes human cells to become mature. These considerations will determine how viable a candidate these cells might be for use in humans.

Lu, Tuszynski and their colleagues hope to identify the most promising neural stem cell type for repairing spinal cord injuries. Tuszynski emphasizes their commitment to a careful, methodical approach: Ultimately, we can only translate our animal studies into reliable human treatments by testing different neural stem cell types, carefully analyzing the results, and improving the procedure. We are encouraged, but we continue to work hard to rationally to identify the optimal cell type and procedural methods that can be safely and effectively used for human clinical trials.

1. Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Lu P, Wang Y, Graham L, McHale K, Gao M, Wu D, Brock J, Blesch A, Rosenzweig ES, Havton LA, Zheng B, Conner JM, Marsala M, Tuszynski MH. Cell. 2012 Sep 14;150(6):1264-73

Continue reading here:
Grafted Stem Cells Display Vigorous Growth in Spinal Cord Injury Model

To Read More: Grafted Stem Cells Display Vigorous Growth in Spinal Cord Injury Model
categoriaSkin Stem Cells commentoComments Off on Grafted Stem Cells Display Vigorous Growth in Spinal Cord Injury Model | dataOctober 2nd, 2014
Read All

Stem Cell Therapy for Hair Growth – Video

By daniellenierenberg


Stem Cell Therapy for Hair Growth
Award winning dr devesh clinic is pioneer in stem cell hair restoration in india. visit @ http://www.drdevesh.in http://www.hairtransplantsdelhi.in facebook page- prp hair india http://www.fb.com/biofuehairtransplant.

By: dr.devesh aggarwal

Excerpt from:
Stem Cell Therapy for Hair Growth - Video

To Read More: Stem Cell Therapy for Hair Growth – Video
categoriaUncategorized commentoComments Off on Stem Cell Therapy for Hair Growth – Video | dataOctober 2nd, 2014
Read All

The Goal of Cardiac Stem Cell Therapy at Okyanos – Video

By daniellenierenberg


The Goal of Cardiac Stem Cell Therapy at Okyanos
Leslie Miller, M.D., F.A.C.C. and Okyanos Chief Science Officer, describes the goal of treating congestive heart failure and coronary artery disease patients with their own fat-derived stem...

By: Okyanos Heart Institute

Here is the original post:
The Goal of Cardiac Stem Cell Therapy at Okyanos - Video

To Read More: The Goal of Cardiac Stem Cell Therapy at Okyanos – Video
categoriaUncategorized commentoComments Off on The Goal of Cardiac Stem Cell Therapy at Okyanos – Video | dataOctober 2nd, 2014
Read All

Adult Stem Cell Therapy Today: The Future is Here – Video

By Sykes24Tracey


Adult Stem Cell Therapy Today: The Future is Here
Leslie Miller, M.D., F.A.C.C. and Okyanos Chief Science Officer, gives an overview of the benefits of adult stem cell therapy for severe heart disease patients. Okyanos provides Cardiac Cell...

By: Okyanos Heart Institute

Original post:
Adult Stem Cell Therapy Today: The Future is Here - Video

To Read More: Adult Stem Cell Therapy Today: The Future is Here – Video
categoriaUncategorized commentoComments Off on Adult Stem Cell Therapy Today: The Future is Here – Video | dataOctober 2nd, 2014
Read All

Natural Stem Cell Therapy Revealed – with David Wolfe – Video

By Dr. Matthew Watson


Natural Stem Cell Therapy Revealed - with David Wolfe
For more information please visit: http://www.womenswellnessconference.com/2014/womens-wellness-conference-2014-webcast/

By: Longevity Now

Continue reading here:
Natural Stem Cell Therapy Revealed - with David Wolfe - Video

To Read More: Natural Stem Cell Therapy Revealed – with David Wolfe – Video
categoriaUncategorized commentoComments Off on Natural Stem Cell Therapy Revealed – with David Wolfe – Video | dataOctober 2nd, 2014
Read All

A heartbeat away? Hybrid 'patch' could replace transplants

By daniellenierenberg

Because heart cells cannot multiply and cardiac muscles contain few stem cells, heart tissue is unable to repair itself after a heart attack. Now Tel Aviv University researchers are literally setting a new gold standard in cardiac tissue engineering.

Dr. Tal Dvir and his graduate student Michal Shevach of TAU's Department of Biotechnology, Department of Materials Science and Engineering, and Center for Nanoscience and Nanotechnology, have been developing sophisticated micro- and nanotechnological tools -- ranging in size from one millionth to one billionth of a meter -- to develop functional substitutes for damaged heart tissues. Searching for innovative methods to restore heart function, especially cardiac "patches" that could be transplanted into the body to replace damaged heart tissue, Dr. Dvir literally struck gold. He and his team discovered that gold particles are able to increase the conductivity of biomaterials.

In a study published by Nano Letters, Dr. Dvir's team presented their model for a superior hybrid cardiac patch, which incorporates biomaterial harvested from patients and gold nanoparticles. "Our goal was twofold," said Dr. Dvir. "To engineer tissue that would not trigger an immune response in the patient, and to fabricate a functional patch not beset by signalling or conductivity problems."

A scaffold for heart cells

Cardiac tissue is engineered by allowing cells, taken from the patient or other sources, to grow on a three-dimensional scaffold, similar to the collagen grid that naturally supports the cells in the heart. Over time, the cells come together to form a tissue that generates its own electrical impulses and expands and contracts spontaneously. The tissue can then be surgically implanted as a patch to replace damaged tissue and improve heart function in patients.

According to Dr. Dvir, recent efforts in the scientific world focus on the use of scaffolds from pig hearts to supply the collagen grid, called the extracellular matrix, with the goal of implanting them in human patients. However, due to residual remnants of antigens such as sugar or other molecules, the human patients' immune cells are likely to attack the animal matrix.

In order to address this immunogenic response, Dr. Dvir's group suggested a new approach. Fatty tissue from a patient's own stomach could be easily and quickly harvested, its cells efficiently removed, and the remaining matrix preserved. This scaffold does not provoke an immune response.

Using gold to create a cardiac network

The second dilemma, to establish functional network signals, was complicated by the use of the human extracellular matrix. "Engineered patches do not establish connections immediately," said Dr. Dvir. "Biomaterial harvested for a matrix tends to be insulating and thus disruptive to network signals."

At his Laboratory for Tissue Engineering and Regenerative Medicine, Dr. Dvir explored the integration of gold nanoparticles into cardiac tissue to optimize electrical signaling between cells. "To address our electrical signalling problem, we deposited gold nanoparticles on the surface of our patient-harvested matrix, 'decorating' the biomaterial with conductors," said Dr. Dvir. "The result was that the nonimmunogenic hybrid patch contracted nicely due to the nanoparticles, transferring electrical signals much faster and more efficiently than non-modified scaffolds."

Excerpt from:
A heartbeat away? Hybrid 'patch' could replace transplants

To Read More: A heartbeat away? Hybrid 'patch' could replace transplants
categoriaCardiac Stem Cells commentoComments Off on A heartbeat away? Hybrid 'patch' could replace transplants | dataOctober 1st, 2014
Read All

Disease decoded: Gene mutation may lead to development of new cancer drugs

By NEVAGiles23

PUBLIC RELEASE DATE:

30-Sep-2014

Contact: Laura Bailey baileylm@umich.edu 734-647-1848 University of Michigan @umich

ANN ARBORThe discovery of a gene mutation that causes a rare premature aging disease could lead to the development of drugs that block the rapid, unstoppable cell division that makes cancer so deadly.

Scientists at the University of Michigan and the U-M Health System recently discovered a protein mutation that causes the devastating disease dyskeratosis congenita, in which precious hematopoietic stem cells can't regenerate and make new blood. People with DC age prematurely and are prone to cancer and bone marrow failure.

But the study findings reach far beyond the roughly one in 1 million known DC patients, and could ultimately lead to developing new drugs that prevent cancer from spreading, said Jayakrishnan Nandakumar, assistant professor in the U-M Department of Molecular, Cellular, and Developmental Biology.

The DC-causing mutation occurs in a protein called TPP1. The mutation inhibits TPP1's ability to bind the enzyme telomerase to the ends of chromosomes, which ultimately results in reduced hematopoietic stem cell division. While telomerase is underproduced in DC patients, the opposite is true for cells in cancer patients.

"Telomerase overproduction in cancer cells helps them divide uncontrollably, which is a hallmark of all cancers," Nandakumar said. "Inhibiting telomerase will be an effective way to kill cancer cells."

The findings could lead to the development of gene therapies to repair the mutation and start cell division in DC patients, or drugs to inhibit telomerase and cell division in cancer patients. Both would amount to huge treatment breakthroughs for DC and cancer patients, Nandakumar said.

Nandakumar said that a major step moving forward is to culture DC patient-derived cells and try to repair the TPP1 mutation to see if telomerase function can be restored. Ultimately, the U-M scientist hopes that fixing the TPP1 mutation repairs telomerase function and fuels cell division in the stem cells of DC patients.

Continued here:
Disease decoded: Gene mutation may lead to development of new cancer drugs

To Read More: Disease decoded: Gene mutation may lead to development of new cancer drugs
categoriaBone Marrow Stem Cells commentoComments Off on Disease decoded: Gene mutation may lead to development of new cancer drugs | dataOctober 1st, 2014
Read All

PrintAlive 3D bioprinter creates on-demand skin grafts for burn victims

By NEVAGiles23

While most are familiar with the potential for 3D printers to pump out plastic odds and ends for around the home, the technology also has far-reaching applications in the medical field. Research is already underway to develop 3D bioprinters able to create things as complex as human organs, and now engineering students in Canada have created a 3D printer that produces skin grafts for burn victims.

Called PrintAlive, the new machine was developed by University of Toronto engineering students Arianna McAllister and Lian Leng, who worked in collaboration with Professor Axel Guenther, Boyang Zhang and Dr. Marc Jeschke, the head of Sunnybrook Hospital's Ross Tilley Burn Centre.

While the traditional treatment for serious burns involves removing healthy skin from another part of the body so it can be grafted onto the affected area, the PrintAlive machine could put an end to such painful harvesting by printing large, continuous layers of tissue including hair follicles, sweat glands and other human skin complexities onto a hydrogel. Importantly, the device uses the patient's own cells, thereby eliminating the problem of the tissue being rejected by their immune system.

Because growing a culture of a patient's skin cells ready for grafting can typically take more than two weeks, the machine prints the patient's cells out in patterns of spots or stripes rather than a continuous sheet, to make them go further. The result is a cell-populated wound dressing that reproduces key features of human skin and can be precisely controlled in terms of thickness, structure and composition.

Having been under development since 2008, the team recently completed a second-generation, pre-commercial prototype that they say is smaller than an average microwave. This makes it portable enough to easily transport, which gives it the potential to one day revolutionize burn care in rural and developing areas around the world.

"Ninety per cent of burns occur in low and middle income countries, with greater mortality and morbidity due to poorly-equipped health care systems and inadequate access to burn care facilities," says Jeschke. "Regenerating skin using a patients own stem cells can significantly decrease the risk of death in developing countries."

So far, the 3D-printed skin grafts have been tested on mice, with the team planning to move onto pigs before clinical trials on humans in the next few years. They were recently named the Canadian winners in the 2014 James Dyson Awards, giving them US$3,500 to continue development and putting them in the running for the $60,000 main prize.

The PrintAlive bioprinter is detailed in the video below.

Sources: University of Toronto, James Dyson Award

Read the rest here:
PrintAlive 3D bioprinter creates on-demand skin grafts for burn victims

To Read More: PrintAlive 3D bioprinter creates on-demand skin grafts for burn victims
categoriaSkin Stem Cells commentoComments Off on PrintAlive 3D bioprinter creates on-demand skin grafts for burn victims | dataOctober 1st, 2014
Read All

Stem Cell Therapy The Aspen Institute for Anti Aging & Regenerative Medicine – Video

By daniellenierenberg


Stem Cell Therapy The Aspen Institute for Anti Aging Regenerative Medicine

By: Cupio Media

Read the original here:
Stem Cell Therapy The Aspen Institute for Anti Aging & Regenerative Medicine - Video

To Read More: Stem Cell Therapy The Aspen Institute for Anti Aging & Regenerative Medicine – Video
categoriaUncategorized commentoComments Off on Stem Cell Therapy The Aspen Institute for Anti Aging & Regenerative Medicine – Video | dataOctober 1st, 2014
Read All

China tests stem cell therapy for heart disease – Video

By Sykes24Tracey


China tests stem cell therapy for heart disease
Monday marks World Heart Day. One of the most serious conditions is Chronic Heart Disease. It has no cure to date, but in China, scientists are hoping to find one, using stem-cell technology.

By: CCTV America

Read this article:
China tests stem cell therapy for heart disease - Video

To Read More: China tests stem cell therapy for heart disease – Video
categoriaUncategorized commentoComments Off on China tests stem cell therapy for heart disease – Video | dataOctober 1st, 2014
Read All

Cell therapy – Institute of Cell Therapy – …

By NEVAGiles23

About cell therapy

Cell therapy is a new official direction in medicine, based on the use of regenerative potential of the adult stem cells, aimed at the treatment of a variety of serious diseases, rehabilitation of patients after injuries and fighting with the premature signs of aging. Stem cells are also considered to be the promising biological material for the creation of the prosthetic heart valves, blood vessels, trachea, they are also used as the unique biofiller for the reconstitution of bone defects and other purposes of the plastic and reconstructive surgery.

The scientists explain the regenerative mechanism of action of stem cells both by their ability to transform into the cells of blood, liver, myocardium, bone, cartilage or nervous tissue and thus restore damaged organs and also by the reovery of the functional activity of the other cells (through the so-called paracrine type) by means of the production of a variety of growth factors.

For clinical purposes, in most cases stem cells are obtained from the bone marrow and cord blood, it is also known that the amount of stem cells, sufficient for treatment, can be isolated from the peripheral blood of an adult person, but after pre-stimulation of hematopoiesis. In recent years there is an increasing number of reports worldwide on the clinical application of stem cells, derived from the placenta, adipose tissue, umbilical cord tissue, amniotic fluid, and even pulp of the milk teeth. Depending on the disease, age and condition of the patient, one or another source of stem cells may be preferred. Hematopoietic (blood-forming) stem cells are used for more than 50 years in the treatment of leukemia and lymphomas, and this treatment is commonly known as the bone marrow transplantation, but today hematopoietic stem cells, derived from umbilical cord blood and peripheral blood are more often used in the hematologic clinics of the world. At the same time, for the treatment of traumatic brain and spinal cord injuries, the stimulation of fractures and chronic wounds healing the mesenchymal stem cells are more preferred, being the precursors of the connective tissue. Mesenchymal stem cells are found in big quantity in fatty tissue, placenta, umbilical cord blood, amniotic fluid. Due to the immunosuppressive effects of mesenchymal stem cells, they are also used in the treatment of a variety of autoimmune diseases (multiple sclerosis, ulcerative colitis, Crohns disease, etc.), as well as post-transplantation complications (to prevent the rejection of the transplanted donor organ). For the treatment of cardiovascular diseases, including lower limbs ischemia, the umbilical cord blood is considered to be the most promising, as it contains a special kind of the endothelial progenitor stem cells, which can not be found in any other human tissue.

Cell therapy may be autologous (own cells are used) and allogeneic (donor cells are used). However, it is known that every nucleated cell in the human body has certain immunological characteristics (HLA-phenotype or immune passport), that is why the use of donor stem cells requires immunological compatibility. This fact determines the appropriateness of the banking of the own stem cells, frozen until the person is still young and healthy. In this aspect the human umbilical cord blood has undisputed medical and biological value as the source of several unique lines of stem cells. Collected in the first minutes of life, umbilical cord blood stem cells have the highest potential for proliferation (growth) and directed differentiation.

Stem cell therapy can be applied both intravenously like a drug, and directly into the damaged tissue. In recent years the method of intraosseous transplantation of cord blood stem cells is more widely used, contributing to the more rapid engraftment. Also a method of introducing stem cells directly into the coronary arteries (coronary heart disease, myocardial infarction) was introduced and it is called cellular cardiomyoplasty.

Cell therapy can be carried out both in monotherapy and complementary to the surgical or drug treatment.

Currently stem cells are successfully used in the treatment of about 100 serious diseases, and in some cases this is the only effective treatment.

Read more from the original source:
Cell therapy - Institute of Cell Therapy - ...

To Read More: Cell therapy – Institute of Cell Therapy – …
categoriaUncategorized commentoComments Off on Cell therapy – Institute of Cell Therapy – … | dataOctober 1st, 2014
Read All

Page 462«..1020..461462463464..470480..»


Copyright :: 2024