Page 448«..1020..447448449450..460470..»

Predicting the storm: Can computer models improve stem cell transplantation?

By LizaAVILA

PUBLIC RELEASE DATE:

4-Dec-2014

Contact: John Wallace wallacej@vcu.edu 804-628-1550 Virginia Commonwealth University @vcunews

Is the human immune system similar to the weather, a seemingly random yet dynamical system that can be modeled based on past conditions to predict future states? Scientists at VCU Massey Cancer Center's award-winning Bone Marrow Transplant (BMT) Program believe it is, and they recently published several studies that support the possibility of using next-generation DNA sequencing and mathematical modeling to not only understand the variability observed in clinical outcomes of stem cell transplantation, but also to provide a theoretical framework to make transplantation a possibility for more patients who do not have a related donor.

Despite efforts to match patients with genetically similar donors, it is still nearly impossible to predict whether a stem cell transplant recipient will develop potentially fatal graft-versus-host disease (GVHD), a condition where the donor's immune system attacks the recipient's body. Two studies recently published by the online journal Frontiers in Immunology explored data obtained from the whole exome sequencing of nine donor-recipient pairs (DRPs) and found that it could be possible to predict which patients are at greatest risk for developing GVHD and, therefore, in the future tailor immune suppression therapies to possibly improve clinical outcomes. The data provides evidence that the way a patient's immune system rebuilds itself following stem cell transplantation is representative of a dynamical system, a system in which the current state determines what future state will follow.

"The immune system seems chaotic, but that is because there are so many variables involved," says Amir Toor, M.D., member of the Developmental Therapeutics research program at Massey and associate professor in the Division of Hematology, Oncology and Palliative Care at the VCU School of Medicine. "We have found evidence of an underlying order. Using next-generation DNA sequencing technology, it may be possible to account for many of the molecular variables that eventually determine how well a donor's immune system will graft to a patient."

Toor's first study revealed a large and previously unmeasured potential for developing GVHD for which the conventional approach used for matching DRPs does not account. The conventional approach for donor-recipient compatibility determination uses human leucocyte antigen (HLA) testing. HLA refers to the genes that encode for proteins on the surface of cells that are responsible for regulating the immune system. HLA testing seeks to match DRPs who have similar HLA makeup.

Specifically, Toor and his colleagues used whole exome sequencing to examine variation in minor histocompatibility antigens (mHA) of transplant DRPs. These mHA are protein fragments presented on the HLA molecules, which are the receptors on cells' surface to which these fragments of degraded proteins from within a cell bind in order to promote an immune response. Using advanced computer-based analysis, the researchers examined potential interactions between the mHA and HLA and discovered a high level of mHA variation in HLA-matched DRPs that could potentially contribute to GVHD. These findings may help explain why many HLA-matched recipients experience GVHD, but why some HLA-mismatched recipients experience none remains a mystery. This seeming paradox is explained in a companion paper, also published in the journal Frontiers in Immunology. In this manuscript, the team suggests that by inhibiting peptide generation through immunosuppressive therapies in the earliest weeks following stem cell transplantation, antigen presentation to donor T cells could be diminished, which reduces the risk of GVHD as the recipients reconstitute their T-cell repertoire.

Following stem cell transplantation, a patient begins the process of rebuilding their T-cell repertoire. T cells are a family of immune system cells that keep the body healthy by identifying and launching attacks against pathogens such as bacteria, viruses or cancer. T cells have small receptors that recognize antigens. As they encounter foreign antigens, they create thousands of clones that can later be called upon to guard against the specific pathogen that presented the antigen. Over the course of a person's life, they will develop millions of these clonal families, which make up their T-cell repertoire and protect them against the many threats that exist in the environment.

This critical period where the patient rebuilds their immune system was the focus of the researchers' efforts. In previous research, Toor and his colleagues discovered a fractal pattern in the DNA of recipients' T-cell repertoires. Fractals are self-similar patterns that repeat themselves at every scale. Based on their data, the researchers believe that the presentation of minor histocompatability antigens following transplantation helps shape the development of T-cell clonal families. Thus, inhibiting this antigen presentation through immunosuppressive therapies in patients who have high mHA variation can potentially reduce the risk of GVHD by influencing the development of their T-cell repertoire. This is backed by data from clinical studies that show immune suppression soon after transplantation improves outcomes in unrelated DRPs.

The rest is here:
Predicting the storm: Can computer models improve stem cell transplantation?

To Read More: Predicting the storm: Can computer models improve stem cell transplantation?
categoriaBone Marrow Stem Cells commentoComments Off on Predicting the storm: Can computer models improve stem cell transplantation? | dataDecember 5th, 2014
Read All

The Adult Stem Cell Technology Center, LLCs New Report on Asymmetric Character of Stem Cell Chromosomes Advances …

By Dr. Matthew Watson

Boston, MA (PRWEB) December 04, 2014

In a new report published in the online journal Cell Death and Disease, the Adult Stem Cell Technology Center, LLC (ASCTC) continues to demonstrate its special expertise in uncovering unknown properties that are unique to adult tissue stem cells. In particular, the new study continues to build the companys portfolio of technologies that make previously invisible adult stem cells not only identifiable, but also countable.

The studies were performed with mouse hair follicle stem cells. Because of the universal nature of adult tissue stem cell properties, the new findings are predicted to apply to stem cells in a wide range of human tissues as well.

For the past half century since the experimental demonstration of their existence, it has not been possible to identify adult tissue stem cells exclusive of other related cell types. Consequently, counting them has been impossible, too. Established stem cell therapies like bone marrow transplantation are suboptimal because of this limitation; and the current worldwide flood of thousands of clinical trials of tissue stem cell transplantation therapies has the same problem. Without being able to count potentially curative adult tissue stem cells, there is no way to optimize and standardize successful treatments.

The new report presents a discovery made during studies employing one of the ASCTCs recently defined biomarkers for detecting tissue stem cells. The new biomarker is a member of a family of cell factors called histones that package the cellular DNA into chromosomes. One of the less abundant members of this family is called H2A.Z. In 2011, the ASCTC discovered that H2A.Z is only accessible on the set of chromosomes that segregates to the stem cell sister when a stem divides to produce a non-stem sister cell. The non-stem sister differentiates to replenish lost mature tissue cells. Before a stem cell divides in this manner, the stem cell chromosomes and the non-stem cell chromosomes are distinct because of this difference in their H2A.Z access. This unique feature, called H2A.Z asymmetry, is a highly specific biomarker for identifying adult tissue stem cells.

Because detection of H2A.Z asymmetry does not disrupt other features of stem and non-stem chromosomes, it can be used as a specific landmark to discover other molecular differences between chromosomes destined for the stem cell sister and chromosomes destined for the non-stem sister. The new report describes how two well-known gene regulation modifications of an abundant histone family member, H3, also display asymmetry between stem cell chromosomes and differentiating cell chromosomes.

The newly discovered asymmetric chromosomal patterning of gene regulation modifications in adult tissue stem cells may reveal a long sought mechanism to explain how stem cell fate is maintained in mammalian tissues. This new insight into the function of tissue stem cells addresses a fundamental question in the field of stem cell biology research. ASCTC Director James L. Sherley anticipates that the new report will give stem cell scientists and bioengineers a new lead idea and new research tools for extending knowledge on the molecular workings of adult tissue stem cells. Such advances in knowledge are greatly needed currently to improve the scientific foundation for the increasing number of regenerative medicine clinical trials.

******************************************************************************************** The Adult Stem Cell Technology Center, LLC is a Massachusetts life sciences company. ASCTC Director and founder, James L. Sherley, M.D., Ph.D. is the foremost authority on the unique properties of adult tissue stem cells. The companys patent portfolio contains biotechnologies that solve the three main technical problems production, quantification, and monitoring that have stood in the way of successful commercialization of human adult tissue stem cells for regenerative medicine and drug development. In addition, the portfolio includes novel technologies for isolating cancer stem cells and producing induced pluripotent stem cells. Currently, ASCTC is employing its technological advantages to pursue commercialization of facile methods for monitoring adult tissue stem cell number and function.

Excerpt from:
The Adult Stem Cell Technology Center, LLCs New Report on Asymmetric Character of Stem Cell Chromosomes Advances ...

To Read More: The Adult Stem Cell Technology Center, LLCs New Report on Asymmetric Character of Stem Cell Chromosomes Advances …
categoriaBone Marrow Stem Cells commentoComments Off on The Adult Stem Cell Technology Center, LLCs New Report on Asymmetric Character of Stem Cell Chromosomes Advances … | dataDecember 5th, 2014
Read All

Asymmetrex Stem Cell Medicine – Video

By NEVAGiles23


Asymmetrex Stem Cell Medicine

By: Brad Cooper

Continue reading here:
Asymmetrex Stem Cell Medicine - Video

To Read More: Asymmetrex Stem Cell Medicine – Video
categoriaUncategorized commentoComments Off on Asymmetrex Stem Cell Medicine – Video | dataDecember 5th, 2014
Read All

Uniting the Global Stem Cell Community

By Sykes24Tracey

Posted by Dana Sparks (@danasparks) 2 day(s) ago

Uniting the Global Stem Cell Community

The World Stem Cell Summit, December 3-5 in San Antonio, unites and educates the global stem cell community. With more than 1,200 attendees from more than 40 countries, the annual World Stem Cell Summits interdisciplinary agenda explores disease updates, research directions, cell standardization, regulatory pathways, reimbursements, financing, venture capital and economic development.

Throughout the week, the Mayo Clinic Center for Regenerative Medicine will use social media to connect using the hashtag #WSCS14. At the end of the week, we'll let the tweets, Google+ posts, Flickr photos, Facebook posts and YouTube videos tell the story.

The World Stem Cell Summit includes in-depth programming and more than 200 international speakers, including leaders from theMayo Clinic Center for Regenerative Medicine:

About the World Stem Cell SummitMayo Clinic, The University of Texas Health Science Center at San Antonio, Kyoto University Institute for Integrated Cell-Material Sciences (iCeMS), BioBridge Global, Baylor College of Medicine and the Regenerative Medicine Foundation have joined the Genetics Policy Institute to organize the10th Annual World Stem Cell Summit the largest and most comprehensive multi-track interdisciplinary stem cell conference.

Related LinksMayo Clinic at World Stem Cell Summit 2013Mayo Clinic at World Stem Cell Summit 2012

Regenerative MedicineWorld Stem Cell Summit

See the original post:
Uniting the Global Stem Cell Community

To Read More: Uniting the Global Stem Cell Community
categoriaUncategorized commentoComments Off on Uniting the Global Stem Cell Community | dataDecember 5th, 2014
Read All

Stem Cell Therapy | platelet rich fibrin glue stem cells – Video

By JoanneRUSSELL25


Stem Cell Therapy | platelet rich fibrin glue stem cells
http://www.arthritistreatmentcenter.com Glue as part of stem cell therapy next Platelet-Rich Fibrin Glue in the Treatment of Articular Cartilage Defects Hal...

By: Nathan Wei

Read the original here:
Stem Cell Therapy | platelet rich fibrin glue stem cells - Video

To Read More: Stem Cell Therapy | platelet rich fibrin glue stem cells – Video
categoriaUncategorized commentoComments Off on Stem Cell Therapy | platelet rich fibrin glue stem cells – Video | dataDecember 5th, 2014
Read All

Stem Cell Therapy | stem cells osteoarthritis independent – Video

By daniellenierenberg


Stem Cell Therapy | stem cells osteoarthritis independent
http://www.arthritistreatmentcenter.com On the flip side, another study refutes the study I commented on the other day regarding stem cells from osteoarthritis patients Chondrogenic Potential...

By: Nathan Wei

Originally posted here:
Stem Cell Therapy | stem cells osteoarthritis independent - Video

To Read More: Stem Cell Therapy | stem cells osteoarthritis independent – Video
categoriaUncategorized commentoComments Off on Stem Cell Therapy | stem cells osteoarthritis independent – Video | dataDecember 5th, 2014
Read All

'Unprecedented': Drug May Help Heal Damaged Spines

By raymumme

Researchers say they've developed a drug that may help heal a damaged spine the first time anything like a drug has been shown to help.

The drug works on nerve cells that are cut, sending connections across the break, and it helped injured rats move their back legs again and also gave them back control of their bladders.

"This recovery is unprecedented," said Jerry Silver, a neuroscience professor at Case Western Reserve University in Ohio who led the study.

Right now, there's no good way to heal a broken spine. Sometimes people grow nerve cells back, but usually not. All the cures that are in the works require invasive surgery, whether it's injections of stem cells, nerve tissue transplants or implants of neurostimulators.

But Silver's team came up with a compound that is injected. It doesn't require surgery.

"We're very excited at the possibility that millions of people could, one day, regain movements lost during spinal cord injuries."

"There are currently no drug therapies available that improve the very limited natural recovery from spinal cord injuries that patients experience," said Lyn Jakeman, a program director at the National Institute of Neurological Disorders and Stroke, part of the National Institutes of Health, which helped pay for the study. "This is a great step toward identifying a novel agent for helping people recover."

"We're very excited at the possibility that millions of people could, one day, regain movements lost during spinal cord injuries," Silver added.

One of the problems with repairing a crushed spine is scar tissue. The body grows a lot of it, and even if nerve cells try to send out little growths called axons across the breach, they get bogged down by the scar tissue.

The culprits are molecules called proteoglycans. They are covered with sugars, and like anything sugary, they are sticky and grab the delicate axons that nerve cells grow to connect to other nerves. "What we found is that when nerve fibers are damaged they have a receptor that can see those proteoglycan molecules and stick tightly to it. They stick so tightly they can't move. It's like flypaper," Silver told NBC News.

Original post:
'Unprecedented': Drug May Help Heal Damaged Spines

To Read More: 'Unprecedented': Drug May Help Heal Damaged Spines
categoriaSpinal Cord Stem Cells commentoComments Off on 'Unprecedented': Drug May Help Heal Damaged Spines | dataDecember 4th, 2014
Read All

Global Stem Cells Group Hands-on Training Course in Barcelona Heading to Additional Euro Cities in 2015

By raymumme

MIAMI (PRWEB) December 04, 2014

After a successful first run in Spain last month, Global Stem Cells Group, has announced the decision to take the biotech companys hands-on stem cell training course to additional European cities in 2015. GSCG subsidiary Stem Cell Training, Inc. and Dr. J. Victor Garcia conducted the Adipose Derived Harvesting, Isolation and Re-integration Training Course for medical professionals in Barcelona Nov. 22-23, 2014.

The two-day, hands-on intensive training course was developed for physicians and high-level practitioners to learn techniques in harvesting and reintegrating stem cells derived from adipose tissue and bone marrow. The objective of the training is to bridge the gap between bench science in the laboratory and the doctors office by teaching effective, in-office regenerative medicine techniques.

Global Stem Cells Group will release a schedule of cities and dates for future training classes in upcoming weeks.

For more information, visit the Stem Cell Training, Inc. website, email info(at)stemcelltraining(dot)net, or call 305-224-1858.

About Global Stem Cells Group: Global Stem Cells Group, Inc. is the parent company of six wholly owned operating companies dedicated entirely to stem cell research, training, products and solutions. Founded in 2012, the company combines dedicated researchers, physician and patient educators and solution providers with the shared goal of meeting the growing worldwide need for leading edge stem cell treatments and solutions.

With a singular focus on this exciting new area of medical research, Global Stem Cells Group and its subsidiaries are uniquely positioned to become global leaders in cellular medicine.

Global Stem Cells Groups corporate mission is to make the promise of stem cell medicine a reality for patients around the world. With each of GSCGs six operating companies focused on a separate research-based mission, the result is a global network of state-of-the-art stem cell treatments.

About Stem Cell Training, Inc.:

Stem Cell Training, Inc. is a multi-disciplinary company offering coursework and training in 35 cities worldwide. Coursework offered focuses on minimally invasive techniques for harvesting stem cells from adipose tissue, bone marrow and platelet-rich plasma. By equipping physicians with these techniques, the goal is to enable them to return to their practices, better able to apply these techniques in patient treatments.

Go here to read the rest:
Global Stem Cells Group Hands-on Training Course in Barcelona Heading to Additional Euro Cities in 2015

To Read More: Global Stem Cells Group Hands-on Training Course in Barcelona Heading to Additional Euro Cities in 2015
categoriaBone Marrow Stem Cells commentoComments Off on Global Stem Cells Group Hands-on Training Course in Barcelona Heading to Additional Euro Cities in 2015 | dataDecember 4th, 2014
Read All

'Wound response' of cancer stem cells may explain chemo-resistance in bladder cancer

By JoanneRUSSELL25

PUBLIC RELEASE DATE:

3-Dec-2014

Contact: Glenna Picton picton@bcm.edu 713-798-4710 Baylor College of Medicine @bcmhouston

HOUSTON - (Dec. 3, 2014) - A novel mechanism - similar to how normal tissue stem cells respond to wounding - might explain why bladder cancer stem cells actively contribute to chemo-resistance after multiple cycles of chemotherapy drug treatment. Targeting this "wound response" of cancer stem cells can potentially provide a novel approach for therapeutic invention, said researchers from the National Cancer Institute-designated Dan L. Duncan Cancer Center at Baylor College of Medicine.

The results of their study appear online in the journal Nature today.

"Treatment for advanced bladder cancer is limited to surgery and chemotherapy. There are no targeted treatments available," said Dr. Keith Syson Chan, an assistant professor of molecular and cellular biology and of urology and the corresponding author on the report. "The chemotherapy response is far from ideal so the clinical goal is to advance research into this area and uncover a much more targeted approach."

Together with co-lead authors Antonina Kurtova, a graduate student in the Translational Biology and Molecular Medicine Program at Baylor, and Dr. Jing Xiao, research assistant in urology at Baylor, Chan and his team sought out to identify mechanisms underlying the development of resistance in bladder cancer that has invaded the muscles. They found that regrowth of cancer stem cells actively contributes to therapy resistance between drug treatment cycles.

"This is a paradoxical mechanism leading to resistance, one we didn't expect," said Chan. "The cancer stem cells actively regrow and respond to the induced damage or apoptosis (cell death) caused by chemotherapy in between the different cycles, similar to how normal tissue stem cells respond to wound-induced damages."

The proliferation is stimulated by the release of a metabolite (or factor) called prostaglandin E2 or PGE2 from the dying cells, which causes the cancer stem cells to repopulate tumors that were reduced in size by chemotherapy, they found.

In normal cells, this is a part of the wound repair process when PGE2 induces tissues stem cells to regrow; in cancer PGE2 ironically induces regrowth of more cancer stem cells in between chemotherapy cycles, Kurtova and Xiao said.

Continue reading here:
'Wound response' of cancer stem cells may explain chemo-resistance in bladder cancer

To Read More: 'Wound response' of cancer stem cells may explain chemo-resistance in bladder cancer
categoriaBone Marrow Stem Cells commentoComments Off on 'Wound response' of cancer stem cells may explain chemo-resistance in bladder cancer | dataDecember 4th, 2014
Read All

Skin Care Treatment with RG-Cell Stem Cell Support Serum

By daniellenierenberg

Experience a New Dimension in Skin Care

The RG-Cell is the latest, breakthrough, anti-aging, skin care cosmaceutical to hit the market. It features a unique proprietary blend of stem cell activators programmed to protect your skin and visibly fight aging at the cellular level.

Scientists have shown that reactivating your dormant stem cells is the most effective process for skin rejuvenation and regeneration. This process stimulates fibroblast production of collagen, increasing skin firmness and elasticity, while reducing the appearance of fine lines and wrinkles for a smoother, silkier, vibrant and younger looking skin.

The Mayo Clinic defines Stem cells are the body's raw materials: They are cells from which all other cells with specialized functions are generated. Under the right conditions in the body or in a laboratory, stem cells divide to form more cells, called daughter cells. These daughter cells either become new stem cells (self-renewal) or become specialized cells (differentiation) with a more specific function, such as blood cells, brain cells, skin cells or heart muscle or bone. Stem cells are unique no other cell in the body has the natural ability to generate new cell types.

They can divide (through mitosis where they split into 2 separate but identical sets with 2 separate nuclei) or differentiate into diverse and specific cell types and can self-renew to produce more stem cells. In mammals, there are two broad types of stem cells:

Many specialized cells, such as in the skin, or blood, have a lifespan of only a few days. For these tissues to function, a steady replenishment of specialized cells is indispensable.

First, they are able to differentiate into all the different cell types that make up their respective tissue a property called pluripotency.

Second, they need to renew themselves in order to be able to supply new specialized tissue cells throughout life.

Skin is an essential tissue in our bodies. It is our bodys largest organ. Our skin protects us from infection, irritation and dehydration, and allows us to feel many different things, such as pressure, stress or heat. Our skin has to be constantly renewed throughout our lives and relies on a whole host of different stem cells to keep it in good shape.

Stem cells (SCs) residing in the epidermis and hair follicle ensure the maintenance of adult skin homeostasis and hair regeneration, but they also participate in the repair of the epidermis after injuries.

Continued here:
Skin Care Treatment with RG-Cell Stem Cell Support Serum

To Read More: Skin Care Treatment with RG-Cell Stem Cell Support Serum
categoriaSkin Stem Cells commentoComments Off on Skin Care Treatment with RG-Cell Stem Cell Support Serum | dataDecember 4th, 2014
Read All

Not All Induced Pluripotent Stem Cells Are Made Equal

By raymumme

Released: 1-Dec-2014 1:00 PM EST Embargo expired: 3-Dec-2014 5:00 AM EST Source Newsroom: McMaster University Contact Information

Available for logged-in reporters only

Newswise Hamilton, ON (Dec. 3, 2014) Scientists at McMaster University have discovered that human stem cells made from adult donor cells remember where they came from and thats what they prefer to become again.

This means the type of cell obtained from an individual patient to make pluripotent stem cells, determines what can be best done with them. For example, to repair the lung of a patient with lung disease, it is best to start off with a lung cell to make the therapeutic stem cells to treat the disease, or a breast cell for the regeneration of tissue for breast cancer patients.

Pluripotency is the ability stem cells have to turn into any one of the 226 cell types that make up the human body.The work challenges the previously accepted thought that any pluripotent human stem cell could be used to similarly to generate the same amount of mature tissue cells.

This finding, published today in the prestigious science journal Nature Communications, will be used to further drug development at McMaster, and potentially improve transplants using human stem cell sources.

The study was led by Mick Bhatia, director of the McMaster Stem Cell and Cancer Research Institute. He holds the Canada Research Chair in Human Stem Cell Biology and he is a professor in the Department of Biochemistry and Biomedical Sciences of the Michael G. DeGroote School of Medicine.

Its like the stem cell we make wants to become a doctor like its grandpa or an artist like its great-grandma, said Bhatia.

Weve shown that human induced pluripotent stem cells, called iPSCs, have a memory that is engraved at the molecular/genetic level of the cell type used to make them, which increases their ability to differentiate to the parent tissue type after being put in various stem cell states.

So, not all human iPSCs are made equal, Bhatia added. Moving forward, this means that iPSC generation from a specific tissue requiring regeneration is a better approach for future cellular therapies. Besides being faster and more cost-efficient in the development of stem cell therapy treatments, this provides a new opportunity for use of iPSCs in disease modeling and personalized drug discovery that was not appreciated before.

See the rest here:
Not All Induced Pluripotent Stem Cells Are Made Equal

To Read More: Not All Induced Pluripotent Stem Cells Are Made Equal
categoriaSkin Stem Cells commentoComments Off on Not All Induced Pluripotent Stem Cells Are Made Equal | dataDecember 4th, 2014
Read All

Not all induced pluripotent stem cells are made equal: McMaster researchers

By LizaAVILA

PUBLIC RELEASE DATE:

3-Dec-2014

Contact: Veronica McGuire vmcguir@mcmaster.ca 90-552-591-402-2169 McMaster University @mcmasteru

Hamilton, ON (Dec. 3, 2014) - Scientists at McMaster University have discovered that human stem cells made from adult donor cells "remember" where they came from and that's what they prefer to become again.

This means the type of cell obtained from an individual patient to make pluripotent stem cells, determines what can be best done with them. For example, to repair the lung of a patient with lung disease, it is best to start off with a lung cell to make the therapeutic stem cells to treat the disease, or a breast cell for the regeneration of tissue for breast cancer patients.

Pluripotency is the ability stem cells have to turn into any one of the 226 cell types that make up the human body.The work challenges the previously accepted thought that any pluripotent human stem cell could be used to similarly to generate the same amount of mature tissue cells.

This finding, published today in the prestigious science journal Nature Communications, will be used to further drug development at McMaster, and potentially improve transplants using human stem cell sources.

The study was led by Mick Bhatia, director of the McMaster Stem Cell and Cancer Research Institute. He holds the Canada Research Chair in Human Stem Cell Biology and he is a professor in the Department of Biochemistry and Biomedical Sciences of the Michael G. DeGroote School of Medicine.

"It's like the stem cell we make wants to become a doctor like its grandpa or an artist like its great-grandma," said Bhatia.

"We've shown that human induced pluripotent stem cells, called iPSCs, have a memory that is engraved at the molecular/genetic level of the cell type used to make them, which increases their ability to differentiate to the parent tissue type after being put in various stem cell states.

Continued here:
Not all induced pluripotent stem cells are made equal: McMaster researchers

To Read More: Not all induced pluripotent stem cells are made equal: McMaster researchers
categoriaSkin Stem Cells commentoComments Off on Not all induced pluripotent stem cells are made equal: McMaster researchers | dataDecember 4th, 2014
Read All

World Stem Cell Summit kicks off in SA with Public Education Day

By Dr. Matthew Watson

NEWS

1200+ scientists, patient advocates from 40 countries in town for summit

Posted December 02, 2014, 6:04 PM Updated December 02, 2014, 6:33 PM

SAN ANTONIO - More than a thousand scientists, industry leaders and patient advocates from 40 countries are headed to San Antonio for the World Stem Cell Summit.

Organizers are calling it the center of the universe when it comes to stem cells and regenerative medicine.

On Tuesday the summit kicked off with Public Education Day, where some of the smartest scientists in the field broke the topic down into bite-sized pieces.

"To be able to replenish our cells that die within a tissue on a daily basis, in order for us to be able to heal wounds, we have to have stem cells," said Elaine Fuchs, an investigator for the Howard Hughes Medical Institute.

She started her research in the field in the 1970s with work on skin stem cells, and said she was fascinated with creating skin in a petri dish that could then be used for burn therapy.

Fuchs spoke at Public Education Day about the most basic biology of stem cells and said that knowledge is leading to a new world in medicine.

"The biology of stem cells is gong to be and is being extremely valuable in terms of developing new therapies and coming up with new drugs to treat various different devastating diseases," Fuchs said.

Read this article:
World Stem Cell Summit kicks off in SA with Public Education Day

To Read More: World Stem Cell Summit kicks off in SA with Public Education Day
categoriaSkin Stem Cells commentoComments Off on World Stem Cell Summit kicks off in SA with Public Education Day | dataDecember 4th, 2014
Read All

Global Stem Cell Groups Stem Cell Training to Launch Post-graduate Studies Program in Stem Cell Therapies and …

By raymumme

MIAMI (PRWEB) December 01, 2014

MIAMI, Dec. 1, 2014Stem Cell Training, Inc., a division of Global Stem Cells Group, Inc., has announced plans to launch a post graduate studies program in stem cell therapies and regenerative medicine in 2015.

The program will include five days of intensive, interactive training coursework with classroom instruction and laboratory practice through didactic lectures, hands-on practical experience in laboratory protocols and relevant lessons in regulatory practices. Global Stem Cells Group Advisory Board member Dr. David B. Harrell, PhD will teach the coursework and perform laboratory instruction, accompanied by a series of guest lecturers from the Global Stem Cells Group faculty of scientists.

Attendees will receive hands-on training in techniques for a variety of laboratory processes, and gain insight into the inner workings of a cGMP laboratory and FDA registered tissue bank. Regenerative medicine experts with more 15 years of experience in the field will train attendees and provide the necessary tools to implement regulatory and clinical guidelines in a cGMP laboratory setting

The graduate course is to be held four times in Miami in 2015.

Course details, objectives and instruction include:

Didactic Lectures will include:

For additional information, visit the Stem Cell Training, Inc. website, email info(at)stemcelltraining(dot)net, or call 305-224-1858.

About Global Stem Cells Group:

Global Stem Cells Group, Inc. is the parent company of six wholly owned operating companies dedicated entirely to stem cell research, training, products and solutions. Founded in 2012, the company combines dedicated researchers, physician and patient educators and solution providers with the shared goal of meeting the growing worldwide need for leading edge stem cell treatments and solutions. With a singular focus on this exciting new area of medical research, Global Stem Cells Group and its subsidiaries are uniquely positioned to become global leaders in cellular medicine.

Link:
Global Stem Cell Groups Stem Cell Training to Launch Post-graduate Studies Program in Stem Cell Therapies and ...

To Read More: Global Stem Cell Groups Stem Cell Training to Launch Post-graduate Studies Program in Stem Cell Therapies and …
categoriaUncategorized commentoComments Off on Global Stem Cell Groups Stem Cell Training to Launch Post-graduate Studies Program in Stem Cell Therapies and … | dataDecember 2nd, 2014
Read All

Kidney organ regeneration research leaps forward

By Sykes24Tracey

Okayama City, Japan (PRWEB UK) 2 December 2014

Researchers at Okayama University Graduate School of Medicine and Kyorin University School of Medicine have successfully generated a kidney-like structure from just a single cell.

It has been predicted that the kidney will be among the last organs successfully regenerated in vitro due to its complex structure and multiple functions, states Shinji Kitamura, Hiroyuki Sakurai and Hirofumi Makino at the beginning of their latest report, before continuing to describe results suggesting a far more positive prognosis for the pace of kidney regeneration research. Despite the anatomical challenges posed by the kidney anatomy and the complexities understood from embryonic kidney development processes, the researchers have demonstrated that kidney-like structures can be generated from just a single adult kidney stem cell.

In embryos, kidney development requires two types of primordial cells cells at the earliest stage of development. However by generating kidney-like structures from a single type of kidney stem cell the researchers provide evidence for differences in the organ development in adults and embryos.

Kitamura, Sakurai and Makino researchers from Okayama and Kyorin Universities - took kidney stem cells from the different kidney components of microdissected adult rats and grew them in culture. A method for growing three-dimensional cell clusters showed that kidney-like structures could form so long as the initial cell cluster was large enough.

The minimum cluster size required might suggest that not all the kidney stem cells have stem cell characteristics. Therefore the researchers cloned kidney stem cells and confirmed that kidney-like structures still formed from the clusters of clone cells after a few weeks.

The researchers add, Although the physiological roles of such cells are currently unclear, analogous cells in the adult human kidney would be a valuable resource for the regeneration of kidneys in vitro.

Background Kidney structure There are more than a dozen distinct types of cell in the kidneys. The basic structural unit of the kidney is the nephron, which filters the blood to regulate the concentration of water and soluble substances such as sodium salts. Each nephron comprises several well-defined segments: the glomerulus, the proximal tubule, the loop of Henle, the distal tube and the collecting duct.

In embryo kidney organogenesis two primordial cell types are required to differentiate into all the different cell types in the kidney: metanephric mesenchymal cells and uteric bud cells. Kitamura, Sakurai and Makino produced kidney cells that could differentiate into a kidney-like structure without these primordial cell types, suggesting these are adult kidney stem cells.

Obtaining kidney stem cells The researchers microdissected adult rat kidneys into segments from the glomeruli, proximal convoluted tubule (S1/PCT), proximal straight tubule (S2, S3), medullary thick ascending limb of Henles loop and the collecting duct. They then grew the cells on mouse mesenchymal cells. While there is no known single biomarker for adult kidney stem cells, immunohistochemical anaylysis identified a number of markers in the kidney stem cells- that are found in embryonic or adult kidneys.

Go here to see the original:
Kidney organ regeneration research leaps forward

To Read More: Kidney organ regeneration research leaps forward
categoriaUncategorized commentoComments Off on Kidney organ regeneration research leaps forward | dataDecember 2nd, 2014
Read All

Stem Cells to Revolutionise the Future of Diagnostic and Therapeutic Medicine

By NEVAGiles23

- As improved R&D climate supports development, stem cell therapeutics market expected to boom globally

KUALA LUMPUR, Malaysia, Dec. 2, 2014 /PRNewswire/ -- Stem cells have the potential to transform healthcare by enabling the cost-effective treatment of many conditions that currently have poor treatment options. This will be particularly important for the rapidly growing aged population as well as the rising proportion of patients with neurological and chronic conditions. Stem cells may enable regenerative treatments that avoid traditional drugs, devices and surgery for these patient groups.

New analysis from Frost & Sullivan, Analysis of the Global Stem Cell Market, finds that the market earned revenues of US$40.01 billion in 2013 and estimates this to nearly triple to US$117.66 billion in 2018 at a compound annual growth rate of 24.1 percent. The study covers human adult and embryonic stem cells. While North America is the market leader with more than half of the global stem cell market share, the Asia-Pacific is expected to record the highest compound annual growth rate (CAGR) during the forecast period. In fact, the APAC stem cell market, which was valued at US$5.60 billion in 2013, is projected to increase to US$18.71 billion by 2018.

For complimentary access to more information on this research, please visit: http://corpcom.frost.com/forms/APAC_PR_DJeremiah_P805-52_10Nov14.

"The overall R&D funding for stem cell research has increased significantly in the past 5 to 10 years and will reach desired heights in the years to come," said Frost & Sullivan Healthcare Consultant Sanjeev Kumar. "The number of venture capital firms investing in stem cell research has risen and government funding agencies have begun to acknowledge the future benefits of the stem cell industry."

While the stiff regulations that previously guarded stem cell research have begun to relax, other legal and ethical issues continue to hamper research. For instance, research institutes that adopt policies addressing concerns surrounding the use of human embryonic tissues may hinder the overall research process, which usually involves several collaborative enterprises. Other market challenges include insurers' reluctance to pay for expensive stem cell therapies and the likelihood that patients themselves will be unable to afford these treatments.

"The global stem cell industry is in an early stage of development, with a handful of small and large participants," noted Kumar. "In the near future, mergers, acquisitions and collaborations will accelerate growth, with multinational companies and larger pharmaceutical companies playing a key role in facilitating these activities. As the market evolves, standards and new regulatory frameworks are expected to ease market challenges."

In the meantime, the market's growth potential is being underlined by promising results from clinical trials and the escalating importance of stem cell banking services across the globe. Eventually, the technology is expected to play a crucial function in various areas including neurological disorders, orthopaedics, cancer, haematological disorders, injuries and wound care, cardiovascular diseases, spinal cord injuries, diabetes, incontinence and liver disorders. Therapeutics manufacturers are also likely to explore the relevance of stem cells in other areas and combine them with existing applications to enhance treatment options.

Analysis of the Global Stem Cell Market is part of the Life Sciences (http://www.lifesciences.frost.com) Growth Partnership Service program. Frost & Sullivan's related studies include: Analysis of the Global Infectious Disease Diagnostics Market, Western European Companion Diagnostics Market, Analysis of the Global Biosimilars Market, and Analysis of the US Retinal Therapeutics Market. All studies included in subscriptions provide detailed market opportunities and industry trends evaluated following extensive interviews with market participants.

About Frost & Sullivan

View post:
Stem Cells to Revolutionise the Future of Diagnostic and Therapeutic Medicine

To Read More: Stem Cells to Revolutionise the Future of Diagnostic and Therapeutic Medicine
categoriaUncategorized commentoComments Off on Stem Cells to Revolutionise the Future of Diagnostic and Therapeutic Medicine | dataDecember 2nd, 2014
Read All

Global Stem Cells Group and Portal Medestetica to Launch Latin American Stem Cell Portal

By LizaAVILA

MIAMI (PRWEB) December 01, 2014

GlobalStemCellsGroup.com has announced plans to team with Portal Medestetica, the largest physician portal in Lain America, to launch Portalstemcells.com, a new portal dedicated to providing physicians in Spain and Latin America with relevant information, clinical research news and products relating to stem cells and regenerative medicine.

The new collaboration between Global Stem Cells Group and Portal Medestetica will answer a growing need to expand the reach of high-impact news, studies and breakthroughs, and significantly advance the clinical utilization of stem cell research and clinical trials throughout Latin America. The Portalstemcells.com site is designed to help promote the latest state-of-the-art developments in regenerative medicine as they become available, and to share educational content with physicians throughout the region.

Portalstemcells.com will be the ideal vehicle to promote education and cutting-edge science throughout the region, says Ricardo de Cubas, founder of Global Stem Cells Group. The potential of regenerative medicine and stem cells therapies inspiring the medical community to find real opportunities to repair or replace tissue damaged from disease, relieve pain and provide the potential for curing chronic diseases where no cure existed before.

The Portalstemcells.com site is aimed at fostering growth and ethical development in the fast-moving field of stem cell medicine by filling a gap in the resources available throughout Latin America. The goal is to elevate the delivery of stem cell science in order to impact the lives of many patients worldwide.

For more information visit the Global Stem Cells website, email bnovas(at)regenestem(dot)com, or call 305-224-1858.

About the Global Stem Cells Group:

Global Stem Cells Group, Inc. is the parent company of six wholly owned operating companies dedicated entirely to stem cell research, training, products and solutions. Founded in 2012, the company combines dedicated researchers, physician and patient educators and solution providers with the shared goal of meeting the growing worldwide need for leading edge stem cell treatments and solutions.

With a singular focus on this exciting new area of medical research, Global Stem Cells Group and its subsidiaries are uniquely positioned to become global leaders in cellular medicine.

Global Stem Cells Groups corporate mission is to make the promise of stem cell medicine a reality for patients around the world. With each of GSCGs six operating companies focused on a separate research-based mission, the result is a global network of state-of-the-art stem cell treatments.

Read the rest here:
Global Stem Cells Group and Portal Medestetica to Launch Latin American Stem Cell Portal

To Read More: Global Stem Cells Group and Portal Medestetica to Launch Latin American Stem Cell Portal
categoriaUncategorized commentoComments Off on Global Stem Cells Group and Portal Medestetica to Launch Latin American Stem Cell Portal | dataDecember 2nd, 2014
Read All

Stem Cell Therapy Skin Repair, Anti Aging and Anti Wrinkle Cream – As Seen On Tv – Look Younger – Video

By Dr. Matthew Watson


Stem Cell Therapy Skin Repair, Anti Aging and Anti Wrinkle Cream - As Seen On Tv - Look Younger
http://www.ReadTheReviewsFirst.com Truvisage Anti-Aging Skin Care System Free Trial.

By: Greg Smith

View post:
Stem Cell Therapy Skin Repair, Anti Aging and Anti Wrinkle Cream - As Seen On Tv - Look Younger - Video

To Read More: Stem Cell Therapy Skin Repair, Anti Aging and Anti Wrinkle Cream – As Seen On Tv – Look Younger – Video
categoriaUncategorized commentoComments Off on Stem Cell Therapy Skin Repair, Anti Aging and Anti Wrinkle Cream – As Seen On Tv – Look Younger – Video | dataDecember 2nd, 2014
Read All

Stem Cell Treatment for Spinal Cord Injury

By daniellenierenberg

At Stem Cell Treatment Institute advanced stem cell procedures are performed at some of the most scientifically advanced hospitals in the world. Stem cell therapy is focused on affecting physical changes in the Spinal Cord that can improve a patient's quality of life. Spinal Cord Injury patients can be treated by lumbar puncture (injecting the cells into the cerebrospinal fluid), IV, or other techniques. Typically this is an outpatient procedure. however patients may stay for 4 or 5 nights in our suites during the process.

Treatment using autologous (patient source) or donor cells (placenta) are available

If Autologous Bone Marrow is used bone marrow is collected from the patient's iliac crest (hip bone) using thin-needle puncture under local anesthesia. Once the bone marrow collection is complete, patients may return to their suite or hotel and go about normal activities.

The stem cells are then processed in a state-of-the-art laboratory. In the lab, both the quantity and quality of the stem cells are measured. The stem cells are then implanted back into the patient by lumbar puncture or IV.

Cost: Stem cell treatments begin around $13,500 (adults).

To contact us and learn more Click Here >>>

We offer Stem Cell treatments with enhanced or manipulated stem cells. These expanded and mobilized stem cells have been found to provide better results than non-manipulated stem cell applications. Manipulation or amplification of the stem cells is done in the lab, where care is taken to retain the cell properties. These expanded and mobilized cells provide superior results and cell recovery has been found to occur twice as fast as with non-manipulated stem cell applications.

Studies where both types of cells were used show that results were quicker and were obtained predominantly from the manipulated stem cells.

Stem Cells can come from the patients fat or bone marrow, but stem cells from donor placenta or umbilical cord blood is also available and may have improved benefits. Donor characteristics (i.e., age) play a key role in treatment success. Your individual situation will be considered and suitable options will be discussed.

As we age our stem cells become less effective. For this reason younger cells are often preferred. We do not need to go all the way back to an early stage embryo to get young cells. Young cord blood cells can be used from The Placenta, Umbilical Cord, and other young sources. These cord blood cells are more likely than stem cells found in bone marrow to have proliferative properties. This means that stem cells found in cord blood have a greater ability to regenerate.

See original here:
Stem Cell Treatment for Spinal Cord Injury

To Read More: Stem Cell Treatment for Spinal Cord Injury
categoriaSpinal Cord Stem Cells commentoComments Off on Stem Cell Treatment for Spinal Cord Injury | dataNovember 30th, 2014
Read All

Spinal Cord Injury – Stem Cells Australia

By raymumme

The Safety and Efficacy of Umbilical Cord Mesenchymal Stem Cell Transplantation in Spinal Cord Injury Patients Location: China

Overview: This trial aims to investigate transplantation of umbilical cord stem cells from patients with paraplegia. The study is being conducted at the General Hospital of Chinese People's Armed Police Forces in Haidian. Stem cells derived from donated umbilical cord blood will be given to the trial participants via the femoral artery. The trial expect to enrol 20 patients with traumatic paraplegia [levels T10 through to L2] between April 2012 and December 2013. Participants will be assessed for complications and for improvement in functions such as bladder contracting capacity as well as sensory responsiveness.

Trial Design: Safety and Efficacy Study

Status: Open - Recruiting

Stem Cell: Umbilical Cord Stem Cells

Intrathecal Transplantation Of Autologous Adipose Tissue Derived MSC in the Patients with Spinal Cord Injury Location: South Korea

Overview: This trial is investigating the effects of stem cells from the patient's own fat in the treatment of chronic spinal cord injury. The trial is being conducted at the Korea University Anam Hospital in Seoul and plans to recruit 15 participants. The fat stem cells will be injected into the fluid surrounding the spinal (intrathecal injection) three times over approximately two months. Participants will be monitored for complications and assessed for changes in neurological and sensory function. The trial is expected to complete in December 2013.

Trial Design: Safety and Efficacy Study

Status: Open - Recruiting

Stem Cell: Adult Fatty Tissue Stem Cells

Read the original:
Spinal Cord Injury - Stem Cells Australia

To Read More: Spinal Cord Injury – Stem Cells Australia
categoriaSpinal Cord Stem Cells commentoComments Off on Spinal Cord Injury – Stem Cells Australia | dataNovember 30th, 2014
Read All

Page 448«..1020..447448449450..460470..»


Copyright :: 2024