Page 422«..1020..421422423424..430440..»

Side Effects of Stem Cell/Bone Marrow Transplantation …

By Dr. Matthew Watson

Key Messages:

Although a stem cell transplant (sometimes called a bone marrow transplant) is an effective treatment for several types of cancer, it can cause a number of different side effects. The type and intensity of these side effects vary from person to person and depend on the kind of transplant performed, the person's overall health, and other factors. Your health care team will work with you to prevent side effects or manage any that occur. This is called palliative or supportive care and is an important part of your overall treatment plan. Be sure to talk with your health care team about any side effects you experience, including new symptoms or a change in symptoms.

The two most serious side effects of stem cell transplantation are infection and graft-versus-host disease.

Infection

The chemotherapy and/or radiation therapy given before a stem cell transplant weakens a persons immune system, lowering the bodys defenses against bacteria, viruses, and fungi. That means stem cell recipients are especially vulnerable to infection during this early period of treatment.

Although most people think the greatest risk of infection is from visitors or food, most infections that occur during the first few weeks after a transplant are caused by organisms that are already in the patient's lungs, sinuses, skin, and intestines. Fortunately, most of these infections are relatively easy to treat with antibiotics.

The reduced immunity of the early transplant period lasts about two weeks, after which the immune system is back to near full strength and can keep most common germs at bay without the help of medications. This is true for both autologous (AUTO) transplant recipients (who receive their own stem cells) and allogeneic (ALLO) transplant recipients (who receive stem cells from another person).

However, a risk of serious infection remains for ALLO transplant recipients because they are given anti-rejection drugs. These drugs suppress the immune system to prevent the body from rejecting the donors stem cells. However, this low immunity also leaves the body more at risk for infection. This risk increases when more anti-rejection drugs are needed. Your treatment team will work with you to prevent and manage infections.

Graft-versus-host disease

People who have an ALLO transplant are also at risk of developing a post-transplant illness called graft-versus-host disease (GVHD). It occurs when the transplanted stem cells recognize the patients body as foreign and attack it, causing inflammation. GVHD ranges from mild to life-threatening. AUTO transplant recipients do not face this risk because the transplanted stem cells come from their own bodies.

Read more:
Side Effects of Stem Cell/Bone Marrow Transplantation ...

To Read More: Side Effects of Stem Cell/Bone Marrow Transplantation …
categoriaBone Marrow Stem Cells commentoComments Off on Side Effects of Stem Cell/Bone Marrow Transplantation … | dataMay 13th, 2015
Read All

Stem Cell Therapy in Mexico

By Sykes24Tracey

Stem Cell MX is dedicated to providing COPD and heart disease patients with information about stem cell therapy at Angeles Health International, Mexicos largest private hospital network.

Stem Cell Therapy is a fast growing area of medical research. Research into how stem cells can cure a number of conditions has been extensive over the past 3 decades and here at Stem Cell MX we are proud to be at the forefront of breakthrough discoveries and treatments. We dedicate ourselves to providing you with information about Stem Cells and what they can do for you.

At Stem Cell MX we can use Stem Cell therapy to treat 11 core treatable conditions including chronic obstructive pulmonary disease (COPD), heart conditions and joint conditions, such as osteoarthritis. We use two types of stem cell programs; autologous, meaning that we use your own stem cells, and allogeneic, where we use donated adult stem cells from one of the best labs in the world.

Stem cell research has had bad press over the years due to the misconception that Stem Cells can only come from embryos. This isnt true. Here at Stem Cell MX we only use Adult Stem Cells which have been harvested from either the donor or the patients themselves.

If you want to find out more about stem cell therapy with no obligation then contact us today. Our stem cell clinical trials are based on thirty years of research and clinical experience conducted by leading researchers and clinicians in Europe and the United States.

To find out the basics about stem cells read An Introduction to Stem Cells

More:
Stem Cell Therapy in Mexico

To Read More: Stem Cell Therapy in Mexico
categoriaUncategorized commentoComments Off on Stem Cell Therapy in Mexico | dataMay 7th, 2015
Read All

Stem Cells Symptoms, Causes, Treatment – Why are stem …

By daniellenierenberg

Why are stem cells important?

Stem cells represent an exciting area in medicine because of their potential to regenerate and repair damaged tissue. Some current therapies, such as bone marrow transplantation, already make use of stem cells and their potential for regeneration of damaged tissues. Other therapies are under investigation that involves transplanting stem cells into a damaged body part and directing them to grow and differentiate into healthy tissue.

During the early stages of embryonic development the cells remain relatively undifferentiated (immature) and appear to possess the ability to become, or differentiate, into almost any tissue within the body. For example, cells taken from one section of an embryo that might have become part of the eye can be transferred into another section of the embryo and could develop into blood, muscle, nerve, or liver cells.

Cells in the early embryonic stage are totipotent (see above) and can differentiate to become any type of body cell. After about seven days, the zygote forms a structure known as a blastocyst, which contains a mass of cells that eventually become the fetus, as well as trophoblastic tissue that eventually becomes the placenta. If cells are taken from the blastocyst at this stage, they are known as pluripotent, meaning that they have the capacity to become many different types of human cell. Cells at this stage are often referred to as blastocyst embryonic stem cells. When any type of embryonic stem cells is grown in culture in the laboratory, they can divide and grow indefinitely. These cells are then known as embryonic stem cell lines.

Medically Reviewed by a Doctor on 1/23/2014

Stem Cells - Experience Question: Please describe your experience with stem cells.

Stem Cells - Umbilical Cord Question: Have you had your child's umbilical cord blood banked? Please share your experience.

Stem Cells - Available Therapies Question: Did you or someone you know have stem cell therapy? Please discuss your experience.

Medical Author:

Melissa Conrad Stppler, MD, is a U.S. board-certified Anatomic Pathologist with subspecialty training in the fields of Experimental and Molecular Pathology. Dr. Stppler's educational background includes a BA with Highest Distinction from the University of Virginia and an MD from the University of North Carolina. She completed residency training in Anatomic Pathology at Georgetown University followed by subspecialty fellowship training in molecular diagnostics and experimental pathology.

More here:
Stem Cells Symptoms, Causes, Treatment - Why are stem ...

To Read More: Stem Cells Symptoms, Causes, Treatment – Why are stem …
categoriaUncategorized commentoComments Off on Stem Cells Symptoms, Causes, Treatment – Why are stem … | dataMay 5th, 2015
Read All

Stem Cells Symptoms, Causes, Treatment – MedicineNet

By raymumme

Fetal stem cells

The embryo is referred to as a fetus after the eighth week of development. The fetus contains stem cells that are pluripotent and eventually develop into the different body tissues in the fetus.

Adult stem cells present in all humans in small numbers. The adult stem cell is one of the class of cells that we have been able to manipulate quite effectively in the bone marrow transplant arena over the past 30 years. These are stem cells that are largely tissue-specific in their location. Rather than typically giving rise to all of the cells of the body, these cells are capable of giving rise only to a few types of cells that develop into a specific tissue or organ. They are therefore known as multipotent stem cells. Adult stem cells are sometimes referred to as somatic stem cells.

The best characterized example of an adult stem cell is the blood stem cell (the hematopoietic stem cell). When we refer to a bone marrow transplant, a stem cell transplant, or a blood transplant, the cell being transplanted is the hematopoietic stem cell, or blood stem cell. This cell is a very rare cell that is found primarily within the bone marrow of the adult.

One of the exciting discoveries of the last years has been the overturning of a long-held scientific belief that an adult stem cell was a completely committed stem cell. It was previously believed that a hematopoietic, or blood-forming stem cell, could only create other blood cells and could never become another type of stem cell. There is now evidence that some of these apparently committed adult stem cells are able to change direction to become a stem cell in a different organ. For example, there are some models of bone marrow transplantation in rats with damaged livers in which the liver partially re-grows with cells that are derived from transplanted bone marrow. Similar studies can be done showing that many different cell types can be derived from each other. It appears that heart cells can be grown from bone marrow stem cells, that bone marrow cells can be grown from stem cells derived from muscle, and that brain stem cells can turn into many types of cells.

Medically Reviewed by a Doctor on 1/23/2014

Stem Cells - Experience Question: Please describe your experience with stem cells.

Stem Cells - Umbilical Cord Question: Have you had your child's umbilical cord blood banked? Please share your experience.

Stem Cells - Available Therapies Question: Did you or someone you know have stem cell therapy? Please discuss your experience.

Medical Author:

Read more:
Stem Cells Symptoms, Causes, Treatment - MedicineNet

To Read More: Stem Cells Symptoms, Causes, Treatment – MedicineNet
categoriaUncategorized commentoComments Off on Stem Cells Symptoms, Causes, Treatment – MedicineNet | dataMay 5th, 2015
Read All

Mesenchymal stem cell – Wikipedia, the free encyclopedia

By LizaAVILA

Mesenchymal stem cells, or MSCs, are multipotent stromal cells that can differentiate into a variety of cell types,[1] including: osteoblasts (bone cells),[2]chondrocytes (cartilage cells),[3]myocytes (muscle cells)[4] and adipocytes (fat cells). This phenomenon has been documented in specific cells and tissues in living animals and their counterparts growing in tissue culture.

While the terms mesenchymal stem cell and marrow stromal cell have been used interchangeably, neither term is sufficiently descriptive:

The youngest, most primitive MSCs can be obtained from the umbilical cord tissue, namely Wharton's jelly and the umbilical cord blood. However the MSCs are found in much higher concentration in the Whartons jelly compared to the umbilical cord blood, which is a rich source of hematopoietic stem cells. The umbilical cord is easily obtained after the birth of the newborn, is normally thrown away, and poses no risk for collection. The umbilical cord MSCs have more primitive properties than other adult MSCs obtained later in life, which might make them a useful source of MSCs for clinical applications.

An extremely rich source for mesenchymal stem cells is the developing tooth bud of the mandibular third molar. While considered multipotent, they may prove to be pluripotent. The stem cells eventually form enamel, dentin, blood vessels, dental pulp, and nervous tissues, including a minimum of 29 different unique end organs. Because of extreme ease in collection at 810 years of age before calcification, and minimal to no morbidity, they will probably constitute a major source for personal banking, research, and multiple therapies. These stem cells have been shown capable of producing hepatocytes.

Additionally, amniotic fluid has been shown to be a rich source of stem cells. As many as 1 in 100 cells collected during amniocentesis has been shown to be a pluripotent mesenchymal stem cell.[9]

Adipose tissue is one of the richest sources of MSCs. There are more than 500 times more stem cells in 1 gram of fat than in 1 gram of aspirated bone marrow. Adipose stem cells are actively being researched in clinical trials for treatment of a variety of diseases.

The presence of MSCs in peripheral blood has been controversial. However, a few groups have successfully isolated MSCs from human peripheral blood and been able to expand them in culture.[10] Australian company Cynata also claims the ability to mass-produce MSCs from induced pluripotent stem cells obtained from blood cells using the method of K. Hu et al.[11][12]

Mesenchymal stem cells are characterized morphologically by a small cell body with a few cell processes that are long and thin. The cell body contains a large, round nucleus with a prominent nucleolus, which is surrounded by finely dispersed chromatin particles, giving the nucleus a clear appearance. The remainder of the cell body contains a small amount of Golgi apparatus, rough endoplasmic reticulum, mitochondria, and polyribosomes. The cells, which are long and thin, are widely dispersed and the adjacent extracellular matrix is populated by a few reticular fibrils but is devoid of the other types of collagen fibrils.[13][14]

The International Society for Cellular Therapy (ISCT) has proposed a set of standards to define MSCs. A cell can be classified as an MSC if it shows plastic adherent properties under normal culture conditions and has a fibroblast-like morphology. In fact, some argue that MSCs and fibroblasts are functionally identical.[15] Furthermore, MSCs can undergo osteogenic, adipogenic and chondrogenic differentiation ex-vivo. The cultured MSCs also express on their surface CD73, CD90 and CD105, while lacking the expression of CD11b, CD14, CD19, CD34, CD45, CD79a and HLA-DR surface markers.[16]

MSCs have a great capacity for self-renewal while maintaining their multipotency. Beyond that, there is little that can be definitively said. The standard test to confirm multipotency is differentiation of the cells into osteoblasts, adipocytes, and chondrocytes as well as myocytes and neurons. MSCs have been seen to even differentiate into neuron-like cells,[17][18] but there is lingering doubt whether the MSC-derived neurons are functional.[19] The degree to which the culture will differentiate varies among individuals and how differentiation is induced, e.g., chemical vs. mechanical;[20] and it is not clear whether this variation is due to a different amount of "true" progenitor cells in the culture or variable differentiation capacities of individuals' progenitors. The capacity of cells to proliferate and differentiate is known to decrease with the age of the donor, as well as the time in culture. Likewise, whether this is due to a decrease in the number of MSCs or a change to the existing MSCs is not known.[citation needed]

Follow this link:
Mesenchymal stem cell - Wikipedia, the free encyclopedia

To Read More: Mesenchymal stem cell – Wikipedia, the free encyclopedia
categoriaUncategorized commentoComments Off on Mesenchymal stem cell – Wikipedia, the free encyclopedia | dataMay 5th, 2015
Read All

Stem cell – ADULT STEM CELL THERAPY IS AVAILABLE NOW!

By Dr. Matthew Watson

Australia - New Zealand - Asia & Pacific Rim - China - Italy

The Foundation is a privately funded philanthropic (non profit) organization advising un-well people about how to gain access to Adult Stem Cell Therapy (ASCT). The Foundation is also promoting a plan to its members on how to prevent or limit the progression of degenerative diseases and other conditions. Degenerative disease is an escalating world problem that, if not controlled, could bankrupt our health systems.

A major objective of the Foundation is to highlight that people suffering from degenerative conditions now have the option of considering Adult Stem Cell Therapy. This therapy may improve quality of life for sufferers of Arthritis, MS, Parkinsons, Diabetes, Stroke, Alzheimers, Spinal Cord injuries, Cancer or Chronic Pain to name a few. A stem cell transplant, instead of a joint replacement, is fast becoming the preferred first option for orthopedic surgeons.

The Foundation intends to educate parents/carers of children suffering from a debilitating or degenerative condition like Cerebral Palsy, Muscular Dystrophy, Autism, Spinal injuries, Cystic fibrosis, ADHD etc. Stem cell treatments have progressed in leaps and bounds for these conditions. There are now state of the art clinics that specialize in treating the afore-mentioned conditions. Children can usually benefit substantially from an early intervention by stem cell therapies and other protocols because they are still growing. As an example: spending time in a mild hyperbaric chamber (HBO) can also be beneficial. Just fill out the Application Form for an experimental transplant and we will be only too happy to advise.

The ASCF has become a global Information Centre for stem cell therapy. The centre will only support clinics that have demonstrated they abide by the highest medical standards and have a proven track record of administering these types of therapies, in Australia and overseas. We can now advise locally which gives peace of mind to our members who are contemplating a procedure of this nature.

Creating awareness of the availability of stem cell therapy and that it has become viable for consideration.

To raise money from benefactors, including private and commercial sponsorships.

Visit link:
Stem cell - ADULT STEM CELL THERAPY IS AVAILABLE NOW!

To Read More: Stem cell – ADULT STEM CELL THERAPY IS AVAILABLE NOW!
categoriaUncategorized commentoComments Off on Stem cell – ADULT STEM CELL THERAPY IS AVAILABLE NOW! | dataMay 4th, 2015
Read All

Autologous Adipose Tissue Derived Stromal Vascular Fraction Cells Application In Patients – Video

By raymumme


Autologous Adipose Tissue Derived Stromal Vascular Fraction Cells Application In Patients
The U.S. Stem Cell Clinic is founded on the principle belief that the quality of life for our patients can be improved through stem cell therapy. We are dedicated to providing safe and effective...

By: U.S. Stem Cell Clinic

See the original post here:
Autologous Adipose Tissue Derived Stromal Vascular Fraction Cells Application In Patients - Video

To Read More: Autologous Adipose Tissue Derived Stromal Vascular Fraction Cells Application In Patients – Video
categoriaUncategorized commentoComments Off on Autologous Adipose Tissue Derived Stromal Vascular Fraction Cells Application In Patients – Video | dataApril 30th, 2015
Read All

Platelet Rich Plasma Injections For Chronic Pain Relief May Help You Avoid Sugery – Video

By daniellenierenberg


Platelet Rich Plasma Injections For Chronic Pain Relief May Help You Avoid Sugery
http://ColumbiaPain.org (541) 716-6469 Dr David Russo with Columbia Pain Management talks about the use of platelet rich plasma injections for chronic pain relief. Stem Cell Therapy can...

By: Trey Rigert

Read the rest here:
Platelet Rich Plasma Injections For Chronic Pain Relief May Help You Avoid Sugery - Video

To Read More: Platelet Rich Plasma Injections For Chronic Pain Relief May Help You Avoid Sugery – Video
categoriaUncategorized commentoComments Off on Platelet Rich Plasma Injections For Chronic Pain Relief May Help You Avoid Sugery – Video | dataApril 30th, 2015
Read All

Blood and Bone Marrow Stem Cell Transplantation – The …

By LizaAVILA

Stem cell transplant (also known as bone marrow transplant or BMT) is an established treatment for many cancers and blood diseases once considered incurable. For some types of blood diseases, transplantation is the standard of care. For others, it is only considered if other treatments have not been successful. Ongoing advances in stem cell transplant are expanding its availability and improving outcomes for patients, young and old.

Here at the University of Chicago Medicine, the brightest minds in medicine are ready to meet the needs of all patients considering a stem cell transplant. We offer the latest promising approaches in blood and bone marrow stem cell transplant. Our team is known -- and recognized -- for our experience and expertise in:

We provide outstanding and compassionate care in a patient-centered environment. The Stem Cell Transplant Unit, located on the top floor of the Center for Care and Discovery, offers the newest technology as well as many thoughtful patient and family amenities. The unit integrates both inpatient and outpatient stem cell transplant care services in one convenient location.

As part of the internationally recognized University of Chicago Comprehensive Cancer Center (UCCCC), we participate in national clinical trials testing new and emerging therapies. A primary site for early-phase clinical trials, we offer our patients access to more new treatment protocols than any other hospital in the region.

As a leading center for advanced care, the University of Chicago Medicine attracts patients from throughout the region, the country and around the world. We provide customized services for patients who travel from other countries. For more information, contact the Center for International Patients.

In the late 1940s, University of Chicago researcher Dr. Leon Jacobson discovered that he could save a mouse, whose bone marrow and spleen had been destroyed with radiation, by transplanting healthy spleen tissue from another mouse. The donated tissue repopulated the marrow and restored production of the blood cells. This groundbreaking work influenced many scientists investigating bone marrow transplant for humans, including the winner of the 1990 Nobel Prize in Physiology or Medicine.

For information about stem cell transplant for children and teens, visit the Pediatric Stem Cell Transplant page on the University of Chicago Comer Childrens Hospital website.

UCH_008151 (19)

Read the original here:
Blood and Bone Marrow Stem Cell Transplantation - The ...

To Read More: Blood and Bone Marrow Stem Cell Transplantation – The …
categoriaBone Marrow Stem Cells commentoComments Off on Blood and Bone Marrow Stem Cell Transplantation – The … | dataApril 27th, 2015
Read All

Cellogica Stem Cell Review Gain A Healthy And Vibrant Looking Skin With Cellogica – Video

By JoanneRUSSELL25


Cellogica Stem Cell Review Gain A Healthy And Vibrant Looking Skin With Cellogica
Read Terms And Condition First Before Claiming Your Cellogica Stem Cell Risk Free trial: http://skincarebeautyshop.com/ Read More About Cellogica Stem Cell Here: http://skincareinfo4u.com/cellogic.

By: Mil.Inc

See the rest here:
Cellogica Stem Cell Review Gain A Healthy And Vibrant Looking Skin With Cellogica - Video

To Read More: Cellogica Stem Cell Review Gain A Healthy And Vibrant Looking Skin With Cellogica – Video
categoriaSkin Stem Cells commentoComments Off on Cellogica Stem Cell Review Gain A Healthy And Vibrant Looking Skin With Cellogica – Video | dataApril 26th, 2015
Read All

Fat Stem Cell Therapy

By NEVAGiles23

AUTOLOGOUS Adipose Stem Cells

Stem Cell Therapy is not a new technology. As a matter of fact it has been around for more that 60 years now. The problem is most people know it as a bone marrow transplant. And well when you finish saying that people are already screaming "That's Painful". A bone marrow transplant essentially extracts stem cells from your own bone marrow and then returns them back to you. It has been used to help people suffering from conditions like Leukemia and Lymph Node Cancer.

How does it work? Stem Cells hone in on "chemokine" signals that are secreted by injury. When they arrive they alert regenerative cells to go to work and repair the damage, or grow tissue.

At birth, the human body has around 80 million active stem cells working. At age 40 we have less than 25 million active stem cells working. Therefore it takes longer for the body to heal and in some cases damage is often ignored. This is the aging or degeneration process of the body.

In 1998 a little known about Bio Tech Company discovered that there was an enormous amount of stem cells in abdominal fat, commonly referred to as Adipose fat. In fact there are about 1-2 million stem cells and regenerative cells in 1 cc of abdominal fat. Bone marrow contains less than 10% of that. The stem cells in the abdomen are in a dormant or inactive state. The challenge lay only in how to activate them.

In early 2000 the problem had been solved. A special separation process was used to isolate stem cells from abdominal fat and a perfected heliotherapy process activated the stem cells. These super-charged stem cells were now ready to go to work healing your body.

Fat Stem Cell Therapy has been used for over a decade now as therapy for a variety of medical problems as well as an alternative to painful cosmetic surgery. Fat Stem Cell Therapy can help patients suffering from medical conditions such as, Osteoarthritis, Pulmonary Disease, and Diabetes Type II, as well as some Cosmetic Procedures like Face Lifts, Breast Augmentation, and Anti-Aging.

Infinite Horizons Medical Center and its association with a leading Bio Tech company are able to deliver these high tech therapies with precision, expertise and a level of care which rivals any in the world. These painless medical procedures uses the clients' own adult stem cells to treat clients' medical problems. The procedures themselves take roughly 3.5 - 7 hours to complete.

The procedure involves extracting autologous adipose stem cells, enriching them, activating the enriched stem cells and finally returning these stem cells back into the clients' body. The procedure only requires a local anesthetic, is 100% safe, 100% effective and there is a 0% chance of rejection. For more detailed information see our procedure page.

Infinite Horizons Medical Center has put together an incredible program for clients in search of medical treatment with fat stem cell therapy for, Pulmonary Disorders, like IPF or COPD, Diabetes Type II and Osteoarthritis. It has also put together special programs with fat stem cell therapy for cosmetic procedures like Anti-Aging, Breast Augmentation and Face Lifts.

Visit link:
Fat Stem Cell Therapy

To Read More: Fat Stem Cell Therapy
categoriaUncategorized commentoComments Off on Fat Stem Cell Therapy | dataApril 26th, 2015
Read All

Arthritic knees; 7 months after stem cell therapy by Harry Adelson, N.D. – Video

By LizaAVILA


Arthritic knees; 7 months after stem cell therapy by Harry Adelson, N.D.
Barbara describes her outcome seven months after her stem cell injections for her arthritic knees by Harry Adelson, N.D. http://www.docereclinics.com.

By: Harry Adelson, N.D.

Excerpt from:
Arthritic knees; 7 months after stem cell therapy by Harry Adelson, N.D. - Video

To Read More: Arthritic knees; 7 months after stem cell therapy by Harry Adelson, N.D. – Video
categoriaUncategorized commentoComments Off on Arthritic knees; 7 months after stem cell therapy by Harry Adelson, N.D. – Video | dataApril 25th, 2015
Read All

Stem Cell Treatment for COPD | StemRx Bioscience Solutions – Video

By LizaAVILA


Stem Cell Treatment for COPD | StemRx Bioscience Solutions
Dr.P V Mahajan expertise in Stem Cell Therapy | For More details please visit http://www.stemrx.in.

By: StemRx BioScience

Read more from the original source:
Stem Cell Treatment for COPD | StemRx Bioscience Solutions - Video

To Read More: Stem Cell Treatment for COPD | StemRx Bioscience Solutions – Video
categoriaUncategorized commentoComments Off on Stem Cell Treatment for COPD | StemRx Bioscience Solutions – Video | dataApril 25th, 2015
Read All

Stem Cell Therapy in Switzerland Life Cell Injections …

By Sykes24Tracey

Stem Cell Therapy Plus is also called Live Cell Therapy or Regenerative Medicine.

Anecdotal evidence shows that through the usage of Stem Cell Therapy Plus, improvements can be seen in the following cases of degenerative diseases:

Learn More

Stem cells are cells with the ability to divide for indefinite periods in culture and to give rise to specialized cells. Stem cells have the remarkable potential to develop into many different cell types. In addition, in many tissues they serve as a sort of internal repair system, dividing essentially without limit to replenish other cells.

When a stem cell divides, each new cell has the potential either to remain a stem cell or become another type of cell with a more specialized function, such as a muscle cell, a nerve cell, or a brain cell.

Stem Cell Supplements are developed based on the merits of stem cells and they are applied for degenerative diseases treatments and to stimulate the formation of all the different tissues of the body: muscle, cartilage, tendon, ligament, bone, blood, nerve, organs, etc.

Stem Cell Supplements bring essential anti-ageing, health & beauty benefits by providing necessary elements to the body to improve cellular regeneration, organ rejuvenation and tissue healing.

Learn More

View original post here:
Stem Cell Therapy in Switzerland Life Cell Injections ...

To Read More: Stem Cell Therapy in Switzerland Life Cell Injections …
categoriaSkin Stem Cells commentoComments Off on Stem Cell Therapy in Switzerland Life Cell Injections … | dataApril 24th, 2015
Read All

Repairing Chronic Muscle Tears with Stem Cells – Video

By Dr. Matthew Watson


Repairing Chronic Muscle Tears with Stem Cells
Chronic muscle tears like hamstring pulls and shoulder rotator cuff muscles are tough to heal. Research suggests that injecting bone marrow stem cells into the area may solve that problem.

By: Chris Centeno

See the article here:
Repairing Chronic Muscle Tears with Stem Cells - Video

To Read More: Repairing Chronic Muscle Tears with Stem Cells – Video
categoriaBone Marrow Stem Cells commentoComments Off on Repairing Chronic Muscle Tears with Stem Cells – Video | dataApril 22nd, 2015
Read All

Stem Cell Treatment Stem Cell Therapy Stem Cell Research

By JoanneRUSSELL25

Stem Cell Therapy

Stem cell treatment and stem cell therapy may be considered controversial and are, perhaps, viewed as akin to science fiction by some people. However, stem cell treatments have been used regularly in veterinary practice since 2003 for the repair of bone and tissue damage, and have a wealth of research highlighting their efficacy in both humans and other animals. Stem cells are found in plentiful supply in embryonic tissue, but are also found in adult tissues. These cells have the ability to self-renew, giving rise to countless generations of new cells with varying abilities to differentiate into specific cell types. By introducing stem cells into an area of damage or pathology, the body can be encouraged to repair and renew regardless of how old the trauma is. Stem cells also show application for inhibiting the death of cells (apoptosis) through disease, making them candidates for use in treating degenerative illnesses such as Lou Gehrigs disease, Multiple Sclerosis, Parkinsons disease and Alzheimers.

Stem cells from embryos are considered more flexible in terms of their ability to become either new liver cells, new neurons, new skin cells, and so on, whereas adult stem cells tend to be more restricted to the tissue type from which they were taken. New research is showing that this might not necessarily have to remain the case however, with the plasticity of adult stem cells now under investigation. Stem cell use carries little risk of the resulting tissues being rejected, it appears safe, efficient, and almost endless in its possibilities for application.

Potential Stem Cell Treatments

Conditions such as cardiovascular disease, diabetes, spinal cord injury, and cancer, among others, are considered possible candidates for stem cell treatment. Cures for some of these diseases could be closer than previously thought with clinical trials already showing impressive results where stem cells have been used in cases thought intractable. The rapid rate of progression in research and clinical use means that some of the controversial issues, such as the use of embryos as a source of stem cells, have been overcome, with governments around the globe subtly altering their legal policies in order to accommodate new scientific advances. In the US, Bill Clinton was the first president to have to consider the legal issues surrounding stem cells, and subsequent presidents have been forced to readdress the issues time and again in line with medical discoveries. Worldwide, governments have remained generally cautious over the use of this technology but are gradually improving funding access, whilst keeping an eye on the ethics of stem cell treatment, in order to explore the tremendous benefits that appear possible. The credibility of research remains a concern, with some stem cell studies discredited by ethics committees after initial general acceptance of their veracity.

Stem cells may be garnered from living adult donors and, indeed, already are in the case of bone marrow transplants. More usually they are taken from discarded embryos leftover after IVF treatment, or from the placenta after birth. Previously the removal of stem cells resulted in the destruction of these embryos, but now it is possible for scientists to remove the stem cells without this occurring. This development negates some of the criticism faced by the technology from religious groups and ethical bodies over the sanctity of life and the attribution of sentience and autonomy to embryos, gametes, and the foetus. Clearly, some debate remains about these issues in relation to stem cell research, but recent improvements in methodology may remove the need for these considerations completely. Clinicians have demonstrated the possibility of taking adult stem cells and seemingly teaching them to become cells of a different type to their site of removal, effectively returning them to a similar state to that of the embryonic stem cell. Whilst stem cells from embryos remain more reliable and more economical to work with, the use of adult tissue-derived stem cells could revolutionize the research in this field.

As well as stem cell use in pathology and disease, there are also applications in personal aesthetics such as the regeneration of hair follicles and an end to baldness through stem cell treatment. Stem cells are also considered useful in regenerating the skin after injury, without the scarring usually associated with repair. There are reports of paralyzed patients becoming mobile after years in a wheelchair through the use of stem cells injected into the spinal cord, and the rapid disappearance of tumors in brain tissue after stem cells were injected.

Stem cell treatment provides an exciting possibility to change the face of modern medicine, alleviating pain and suffering, and improving the prognosis for millions withe diseases previously thought incurable.

See the original post here:
Stem Cell Treatment Stem Cell Therapy Stem Cell Research

To Read More: Stem Cell Treatment Stem Cell Therapy Stem Cell Research
categoriaUncategorized commentoComments Off on Stem Cell Treatment Stem Cell Therapy Stem Cell Research | dataApril 22nd, 2015
Read All

Stem Cell Therapy Market in Asia-Pacific to 2018 – Video

By JoanneRUSSELL25


Stem Cell Therapy Market in Asia-Pacific to 2018
GBI Research, the leading business intelligence provider, has released its latest research Stem Cell Therapy Market in Asia-Pacific to 2018 - Commercialization Supported by Favorable Government...

By: Betty Collins

Continue reading here:
Stem Cell Therapy Market in Asia-Pacific to 2018 - Video

To Read More: Stem Cell Therapy Market in Asia-Pacific to 2018 – Video
categoriaUncategorized commentoComments Off on Stem Cell Therapy Market in Asia-Pacific to 2018 – Video | dataApril 21st, 2015
Read All

Stem Cell Therapy for Low Back Pain – Video

By Sykes24Tracey


Stem Cell Therapy for Low Back Pain
Erik is a 70 year old engineer who had stem cell therapy for his chronic low back pain. He is now 2 weeks post therapy and has had an 80% improvement in his symptoms.

By: mark walter

Read the original post:
Stem Cell Therapy for Low Back Pain - Video

To Read More: Stem Cell Therapy for Low Back Pain – Video
categoriaUncategorized commentoComments Off on Stem Cell Therapy for Low Back Pain – Video | dataApril 21st, 2015
Read All

My Life After MS: Ep 2 part 1-How I Got Pregant – Video

By raymumme


My Life After MS: Ep 2 part 1-How I Got Pregant
This is the Video Journal of Kristen Henry King, after recieving stem cell therapy to treat her MS. She #39;s is now a stem cell activist and is working hard to make sure that Stem Cell treatment...

By: Kristen Henry King

Continue reading here:
My Life After MS: Ep 2 part 1-How I Got Pregant - Video

To Read More: My Life After MS: Ep 2 part 1-How I Got Pregant – Video
categoriaUncategorized commentoComments Off on My Life After MS: Ep 2 part 1-How I Got Pregant – Video | dataApril 20th, 2015
Read All

Mesenchymal stem cells: the ‘other’ bone marrow stem cells …

By Sykes24Tracey

What can mesenchymal stem cells do?

Mesenchymal stem cells (MSCs) are an example of tissue or 'adult' stem cells. They are multipotent, meaning they can produce more than one type of specialized cell of the body, but not all types. MSCs make the different specialized cells found in the skeletal tissues. For example, they can differentiate or specialize into cartilage cells (chondrocytes), bone cells (osteoblasts) and fat cells (adipocytes). These specialized cells each have their own characteristic shapes, structures and functions, and each belongs in a particular tissue.

Some early research suggested that MSCs might also differentiate into many different types of cells that do not belong to the skeletal tissues, such as nerve cells, heart muscle cells, liver cells and endothelial cells, which form the inner layer of blood vessels. These results have not been confirmed to date. In some cases, it appears that the MSCs fused together with existing specialized cells, leading to false conclusions about the ability of MSCs to produce certain cell types. In other cases, the results were an artificial effect caused by chemicals used to grow the cells in the lab.

Mesenchymal stem cell differentiation: MSCs can make fat, cartilage and bone cells. They have not been proven to make other types of cells of the body.

MSCs were originally found in the bone marrow. There have since been many claims that they also exist in a wide variety of other tissues, such as umbilical cord blood, adipose (fat) tissue and muscle. It has not yet been established whether the cells taken from these other tissues are really the same as, or similar to, the mesenchymal stem cells of the bone marrow.

The bone marrow contains many different types of cells. Among them are blood stem cells (also called hematopoietic stem cells; HSCs) and a variety of different types of cells belonging to a group called mesenchymal cells. Only about 0.001-0.01% of the cells in the bone marrow are mesenchymal stem cells.

It is fairly easy to obtain a mixture of different mesenchymal cell types from adult bone marrow for research. But isolating the tiny fraction of cells that are mesenchymal stem cells is more complicated. Some of the cells in the mixture may be able to form bone or fat tissues, for example, but still do not have all the properties of mesenchymal stem cells. The challenge is to identify and pick out the cells that can both self-renew (produce more of themselves) and can differentiate into three cell types bone, cartilage and fat. Scientists have not yet reached a consensus about the best way to do this.

No treatments using MSCs are yet available. However, several possibilities for their use in the clinic are currently being explored.

Bone and cartilage repair The ability of MSCs to differentiate into bone cells called osteoblasts has led to their use in early clinical trials investigating the safety of potential bone repair methods. These studies are looking at possible treatments for localized skeletal defects (damage at a particular place in the bone).

Other research is focussed on using MSCs to repair cartilage. Cartilage covers the ends of bones and allows one bone to slide over another at the joints. It can be damaged by a sudden injury like a fall, or over a long period by a condition like osteoarthritis, a very painful disease of the joints. Cartilage does not repair itself well after damage. The best treatment available for severe cartilage damage is surgery to replace the damaged joint with an artificial one. Because MSCs can differentiate into cartilage cells called chondrocytes, scientists hope MSCs could be injected into patients to repair and maintain the cartilage in their joints. Researchers are also investigating the possibility that transplanted MSCs may release substances that will tell the patients own cells to repair the damage.

Follow this link:
Mesenchymal stem cells: the 'other' bone marrow stem cells ...

To Read More: Mesenchymal stem cells: the ‘other’ bone marrow stem cells …
categoriaBone Marrow Stem Cells commentoComments Off on Mesenchymal stem cells: the ‘other’ bone marrow stem cells … | dataApril 17th, 2015
Read All

Page 422«..1020..421422423424..430440..»


Copyright :: 2024