Page 21234..1020..»

Could skin-related stem cells help in treating …

By admin

UMSOM Researchers Discovered that Pigment-Producing Stem Cells Can Help Regenerate Vital Part of Nervous System

Neurodegenerative diseases like multiple sclerosis (MS) affect millions of people worldwide and occur when parts of the nervous system lose function over time. Researchers at the University of Maryland School of Medicine (UMSOM) have discovered that a type of skin-related stem cell could be used to help regenerate myelin sheaths, a vital part of the nervous system linked to neurodegenerative disorders.

The discovery into these types of stem cells is significant because they could offer a simpler and less invasive alternative to using embryonic stem cells. This early stage research showed that by using these skin-related stem cells, researchers were able to restore myelin sheath formation in mice.

This research enhances the possibility of identifying human skin stem cells that can be isolated, expanded, and used therapeutically. In the future, we plan to continue our research in this area by determining whether these cells can enhance functional recovery from neuronal injury, saidThomas J. Hornyak, MD, PhD, Associate Professor and Chairman of theDepartment of Dermatology, and Principal Investigator in this research. In the future, we plan to continue our research in this area by determining whether these cells can enhance functional recovery from neuronal injury.

Using a mouse model, Dr. Hornyaks team of researchers discovered a way to identify a specific version of a cell known as a melanocyte stem cell. These are the precursor cells to the cells in skin and hair follicles that make a pigment know as melanin, which determines the color of skin and hair. These melanocyte stem cells have the ability to continue to divide without limit, which is a trait that is not shared by other cells in the body. Additionally, the researchers discovered that these stem cells can make different types of cells depending on the type of signals they receive. This research was published inPLoS Genetics.

Importantly, unlike the embryonic stem cell, which must be harvested from an embryo, melanocyte stem cells can be harvested in a minimally-invasive manner from skin.

Dr. Hornyaks research team found a new way to not only identify the right kind of melanocyte stem cells, but also the potential applications for those suffering from neurodegenerative disorders. By using a protein marker that is only found on these specialized cells, Dr. Hornyaks research group was able to isolate this rare population of stem cells from the majority of the cells that make up skin. Additionally, they found that there exist two different types of melanocyte stem cells, which helped in determining the type of cells they could create.

Using this knowledge, the UMSOM researchers determined that under the right conditions, these melanocyte stem cells could function as cells that produce myelin, the major component of a structure known as the myelin sheath, which protects neurons and is vital to the function of our nervous system. Some neurodegenerative diseases, like multiple sclerosis, are caused by the loss of these myelin-producing, or glial, cells which ultimately lead to irregular function of the neurons and ultimately a failure of our nervous system to function correctly.

Dr. Hornyak and members of his laboratory grew melanocyte stem cells with neurons isolated from mice that could not make myelin. They discovered that these stem cells behaved like a glial cell under these conditions. These cells ultimately formed a myelin sheath around the neurons that resembled structures of a healthy nerve cell. When they took this experiment to a larger scale, in the actual mouse, the researchers found that mice treated with these melanocyte stem cells had myelin sheath structures in the brain as opposed to untreated mice who lacked these structures.

This research holds promise for treating serious neurodegenerative diseases that impact millions of people each year. Our researchers at the University of Maryland School of Medicine have discovered what could be a critical and non-invasive way to use stem cells as a therapy for these diseases,said UMSOM Dean,E. Albert Reece, MD, PhD, MBA, Executive Vice President for Medical Affairs, UM Baltimore, and the John Z. and Akiko K. Bowers Distinguished Professor.

Learn more: UMSOM Researchers Discover Certain Skin-Related Stem Cells Could Help in Treating Neurogenerative Diseases

viaGoogle News

via Bing News

Like Loading...

Read the rest here:
Could skin-related stem cells help in treating ...

To Read More: Could skin-related stem cells help in treating …
categoriaSkin Stem Cells commentoComments Off on Could skin-related stem cells help in treating … | dataMay 9th, 2019
Read All

Embryo stem cells created from skin cells Scope of …

By admin

These are 4-cell stage mouse embryos.

Researchers have found a way to transform skin cells into the three major stem cell types that comprise early-stage embryos. The work (in mouse cells) has significant implications for modeling embryonic disease and placental dysfunctions, as well as paving the way to create whole embryos from skin cells.

Researchers at the Hebrew University of Jerusalem (HU) have found a way to transform skin cells into the three major stem cell types that comprise early-stage embryos. The work (in mouse cells) has significant implications for modelling embryonic disease and placental dysfunctions, as well as paving the way to create whole embryos from skin cells.

As published in Cell Stem Cell, Dr. Yossi Buganim of HUs Department of Developmental Biology and Cancer Research and his team discovered a set of genes capable of transforming murine skin cells into all three of the cell types that comprise the early embryo: the embryo itself, the placenta and the extra-embryonic tissues, such as the umbilical cord. In the future, it may be possible to create entire human embryos out of human skin cells, without the need for sperm or eggs. This discovery also has vast implications for modelling embryonic defects and shedding light on placental dysfunctions, as well as solving certain infertility problems by creating human embryos in a petri dish.

Back in 2006, Japanese researchers discovered the capacity of skin cells to be reprogrammed into early embryonic cells that can generate an entire fetus, by expressing four central embryonic genes. These reprogrammed skin cells, termed Induced Plutipotent Stem Cells (iPSCs), are similar to cells that develop in the early days after fertilization and are essentially identical to their natural counterparts. These cells can develop into all fetal cell types, but not into extra-embryonic tissues, such as the placenta.

Now, the Hebrew University research team, headed by Dr. Yossi Buganim, Dr. Oren Ram from the HUs Institute of Life Science and Professor Tommy Kaplan from HUs School of Computer Science and Engineering, as well as doctoral students Hani Benchetrit and Mohammad Jaber, found a new combination of five genes that, when inserted into skin cells, reprogram the cells into each of three early embryonic cell types iPS cells which create fetuses, placental stem cells, and stem cells that develop into other extra-embryonic tissues, such as the umbilical cord. These transformations take about one month.

The HU team used new technology to scrutinize the molecular forces that govern cell fate decisions for skin cell reprogramming and the natural process of embryonic development. For example, the researchers discovered that the gene Eomes pushes the cell towards placental stem cell identity and placental development, while the Esrrb gene orchestrates fetus stem cells development through the temporary acquisition of an extrae-mbryonic stem cell identity.

To uncover the molecular mechanisms that are activated during the formation of these various cell types, the researchers analyzed changes to the genome structure and function inside the cells when the five genes are introduced into the cell. They discovered that during the first stage, skin cells lose their cellular identity and then slowly acquire a new identity of one of the three early embryonic cell types, and that this process is governed by the levels of two of the five genes.

Recently, attempts have been made to develop an entire mouse embryo without using sperm or egg cells. These attempts used the three early cell types isolated directly from a live, developing embryo. However, HUs study is the first attempt to create all three main cell lineages at once from skin cells. Further, these findings mean there may be no need to sacrifice a live embryo to create a test tube embryo.

Like Loading...

Related

Excerpt from:
Embryo stem cells created from skin cells Scope of ...

To Read More: Embryo stem cells created from skin cells Scope of …
categoriaSkin Stem Cells commentoComments Off on Embryo stem cells created from skin cells Scope of … | dataMay 9th, 2019
Read All

Hebrew University researchers create embryo stem cells …

By admin

Researchers at the Hebrew University of Jerusalem say they have found a way to transform skin cells into the three major stem cell types that comprise early-stage embryos.

The discovery could pave the way to creating entire human embryos out of human skin cells, without the need for sperm or eggs, the researchers say. And it could also have vast implications for modeling embryonic defects and shedding light on placental dysfunctions, as well as solving certain infertility problems by creating human embryos in a petri dish, a Hebrew University statement said.

You could say we are close to generating a synthetic embryo, which is a really crazy thing, said Dr. Yossi Buganim of the universitys Department of Developmental Biology and Cancer Research, who led the study that was published in Cell Stem Cell.

Get The Start-Up Israel's Daily Start-Up by email and never miss our top storiesFree Sign Up

This discovery could allow researchers in future to generate embryos from sterile men and women, using only their skin cells, and generate a real embryo in a dish and implant the embryo in the mother, Buganim said in a phone interview.

Researchers at the Hebrew Hebrew University of Jerusalem say they have found a way to transform skin cells into the three major stem cell types that comprise early-stage embryos; the image shows 4-cell stage mouse embryos (Kirill Makedonski)

Buganim and his team discovered a set of five genes capable of transforming murine skin cells into all three of the cell types that make up the early embryo: the fetus itself, the placenta and the extra-embryonic tissues, such as the umbilical cord.

In 2006, Japanese researchers Kazutoshi Takahashi and Shinya Yamanaka discovered the capacity of skin cells to be reprogrammed into early embryonic cells that can generate an entire fetus through the use of four central embryonic genes. These genes reprogrammed the skin cells into induced pluripotent stem cells (iPSCs), which are similar to cells that develop in the early days after fertilization and are essentially identical to their natural counterparts. These cells can develop into all fetal cell types, but not into extra-embryonic tissues, such as the placenta.

The Japanese researchers discovered that the four central embryonic genes can be used to rejuvenate the skin cells to function like embryonic stem cells, explained Buganim.

After fertilization of the egg, the cell divides into 64, creating a bowl of cells that make up the three crucial parts of an embryo the epiblast, the inner cell mass which gives rise to the fetus itself; the primitive endoderm that is responsible for the umbilical cord; and a third part, the trophectoderm, that is responsible for creating the placenta.

What the Japanese managed to do, Buganim said, was to transform the skin cells into fetus stem cells. But that is not enough to create an entire embryo, he said, because the other parts are also needed those that develop the umbilical cord and the placenta.

Dr. Yossi Buganim of The Hebrew Universitys Department of Developmental Biology and Cancer Research (Shai Herman)

The breakthrough of the Hebrew University team, Buganim said, was creating with five genes all of the three essential compartments that make up the embryonic and extra-embryonic features necessary for the creation of an in-vitro embryo. The work was done with mice, and the team is now starting to apply the same research to human embryos, he added.

The researchers used five genes that are completely different from those used by the Japanese researchers, Buganim noted. The genes the Israeli researchers used are those that play a role in the early development of the embryo. They specify and direct what each cell will develop into, whether the umbilical cord, the placenta or the fetus itself.

The team used new technology to study the molecular forces that dictate how each of the cells develop. For example, the researchers discovered that the gene Eomes pushes the cell toward placental stem cell identity and placental development, while Esrrb orchestrates the development of fetus stem cells, attaining first, but just temporarily, an extra-embryonic stem cell identity.

It was our idea to use those genes, Buganim said.

The researchers then combined these five genes in such a way that, when inserted into skin cells, they managed to reprogram the cells into each of three early embryonic cell types in the same petri dish.

The discovery will enable researchers to better understand and address embryonic malfunctions and diseases such as placental insufficiencies or miscarriages, he said. This could enable researchers to use a dish to model the embryonic cells and identify early markers for risk.

The challenges ahead, however, are still huge, said Buganim. An embryo is a three dimensional structure. We need to learn how to put this all together to generate a real embryo. We need to identify the ratios of placental stem cells, umbilical cord cells and iPS cells, which create the fetuses, and in what scaffold to place them, he said.

These cells know how to stick together, Buganim said. I need to give them the proper environment and the proper ratio to organize themselves into a real embryo.

The study was done by Buganim together with Dr. Oren Ram from Hebrew Universitys Institute of Life Science and Professor Tommy Kaplan from the universitys School of Computer Science and Engineering, as well as doctoral students Hani Benchetrit and Mohammad Jaber.

Visit link:
Hebrew University researchers create embryo stem cells ...

To Read More: Hebrew University researchers create embryo stem cells …
categoriaSkin Stem Cells commentoComments Off on Hebrew University researchers create embryo stem cells … | dataMay 6th, 2019
Read All

Hebrew U Researchers Created Embryo Stem Cells from Skin …

By admin

Photo Credit: Hebrew U

A new, groundbreaking study by the Hebrew University of Jerusalem (HU) found a way to transform skin cells into the three major stem cell types that comprise early-stage embryos. This work has significant implications for modelling embryonic disease and placental dysfunctions, as well as paving the way to create whole embryos from skin cells.

As published in Cell Stem Cell, Dr. Yossi Buganim of HUs Department of Developmental Biology and Cancer Research and his team discovered a set of genes capable of transforming murine skin cells into all three of the cell types that comprise the early embryo: the embryo itself, the placenta and the extraembryonic tissues, such as the umbilical cord. In the future, it may be possible to create entire human embryos out of human skin cells, without the need for sperm or eggs. This discovery also has vast implications for modelling embryonic defects and shedding light on placental dysfunctions, as well as solving certain infertility problems by creating human embryos in a petri dish.

Back in 2006, Japanese researchers discovered the capacity of skin cells to be reprogrammed into early embryonic cells that can generate an entire fetus, by expressing four central embryonic genes. These reprogrammed skin cells, termed Induced Plutipotent Stem Cells (iPSCs), are similar to cells that develop in the early days after fertilization and are essentially identical to their natural counterparts. These cells can develop into all fetal cell types, but not into extra-embryonic tissues, such as the placenta.

Now, the Hebrew University research team, headed by Dr. Yossi Buganim, Dr. Oren Ram from the HUs Institute of Life Science and Professor Tommy Kaplan from HUs School of Computer Science and Engineering, as well as doctoral students Hani Benchetrit and Mohammad Jaber, found a new combination of five genes that, when inserted into skin cells, reprogram the cells into each of three early embryonic cell typesiPS cells which create fetuses, placental stem cells, and stem cells that develop into other extraembryonic tissues, such as the umbilical cord. These transformations take about one month.

The HU team used new technology to scrutinize the molecular forces that govern cell fate decisions for skin cell reprogramming and the natural process of embryonic development. For example, the researchers discovered that the gene Eomes pushes the cell towards placental stem cell identity and placental development, while the Esrrb gene orchestrates fetus stem cells development through the temporary acquisition of an extraembryonic stem cell identity.

To uncover the molecular mechanisms that are activated during the formation of these various cell types, the researchers analyzed changes to the genome structure and function inside the cells when the five genes are introduced into the cell. They discovered that during the first stage, skin cells lose their cellular identity and then slowly acquire a new identity of one of the three early embryonic cell types, and that this process is governed by the levels of two of the five genes.

Recently, attempts have been made to develop an entire mouse embryo without using sperm or egg cells. These attempts used the three early cell types isolated directly from a live, developing embryo. However, HUs study is the first attempt to create all three main cell lineages at once from skin cells. Further, these findings mean there may be no need to sacrifice a live embryo to create a test tube embryo.

Read the original post:
Hebrew U Researchers Created Embryo Stem Cells from Skin ...

To Read More: Hebrew U Researchers Created Embryo Stem Cells from Skin …
categoriaSkin Stem Cells commentoComments Off on Hebrew U Researchers Created Embryo Stem Cells from Skin … | dataMay 6th, 2019
Read All

Vancouver Stem Cell Treatment Centre | Stem Cells

By admin

How do Stem Cellsfunction?Stem cells have the capacity to migrate to injured tissues, a phenomenon calledhoming. This occurs by injury or disease signals that are released from the distressed cells and tissue. Once stem cells arrive,they dock on adjacent cells to commence performing their job to repair the problem.

Stem cells serve as a cell replacementwhere they change into the required cell type such as a muscle cell, bone orcartilage. This is ideal for traumaticinjuries and many orthopedic indications.

They do not express specific human leukocyte antigens (HLAs) which helpthem avoid the immune system. Stemcells dock on adjacent cells and release proteins called growth factors, cytokines and chemokines. These factors help control many aspects of the healing and repairprocess systemically.

Stem cells control the immune system and regulate inflammation which is a keymediator of disease, aging, and is ahallmark of autoimmune diseases such as rheumatoid arthritis and multiple sclerosis.

They help to increase new blood vesselformation so that tissues receive proper blood flow and the correct nutrients needed to heal as in stroke, peripheral arterydisease and heart disease.

Stem cells provide trophic support forsurrounding tissues and help hostendogenous repair. This works wellwhen used for orthopedics. In case ofdiabetes, it may help the remaining beta cells in the pancreas to reproduce orfunction optimally.

As CSN research evolves, the field ofregenerative medicine and stem cells offers the greatest hope for those suffering from degenerative diseases, conditions for which there is currently no effective treatment or conditions that have failed conventional medical therapy.

Stem cell treatment is a complex process allowing us to harvest the bodys own repair mechanism to fight against degeneration, inflammation and general tissue damage. Stem cells are cells that can differentiate into other types of tissue to restore function and reduce pain.

Adult stem cells are found in abundance in adipose (fat) tissue, where more than 5million stem cells reside in every gram. These stem cells are called adult mesenchymal stem cells.

Our medical doctors extract stromal vascular fraction (SVF) from your own body to provide treatment using your very own cells. This process is calledautologous mesenchymal stem celltherapy. Our multi-specialty team deploys SVF under an institutional review board (IRB). This is an approved protocol that governs investigational work and the focus is to maintain safety of autologous use of SVF for various degenerative conditions.

How do we perform the stem cell treatment?Our procedure is very safe and completed in a single visit to our clinic. On the day of treatment, our physicians inject a localanaesthetic and harvest approximately 60 cc (2 oz.) of stromalvascular fraction (SVF) from under the skin of your flanks or abdomen. The extracted SVF is then refined in a closed system using strictCSN protocols to produce pure stromalvascular fraction (SVF). SVF containsregenerative cells including mesenchymal and hematopoietic stem cells, macrophages, endothelial cells, immune regulatory cells, and important growth factors that facilitate your stem cell activity. CSN technology allows us to isolate high numbers of viable stem cells that we can immediately deploy directly into a joint, trigger point, and/or byintravascular infusion. Specific deployment methods have been developed that are unique for each condition being treated.

During the refinement process, thesubcutaneous harvested cells andtheir connecting collagen matrix willbe separated, leaving purified free stem cells. About half of the SVF will be pure stem cells, while the remainder will be acombination of other regenerative cellsand growth factors. Before the SVF isre-injected into your body during the final part of the process we perform a qualityand quantity test which will examine the cell count and viability.

Perfecting the stem cell treatmentOur team records cell numbers and viability so that we can gain a better understanding of what constitutes a successful treatment. Although it is not yet possible to predict what number of cells that will be recovered in a harvest, it is very important that we know the total cell count and cell viability. It is only with this data that we will beginto understand why treatments are verysuccessful, only slightly successful orunsuccessful.

While vigilant about patient safety, we are also learning and sharing with the CSN data bank about which diseases respond best and which deployment methods are most effective with over 80 other clinics.

This data collection from all over the world makes the Cell Surgical Network the worlds largest regenerative medicineclinical research organization.

Network physicians have the opportunity to share their data, as well as their clinical experiences, thus helping one anotherto achieve higher levels of scientificunderstanding and optimizing medical protocols.

Injecting into thevascular system and/ora jointWe will administer the stem cell treatment with two methods:

The belief is that for many degenerative joint conditions IV and intra-articulardeployment is superior because each of these conditions have a local pathology and a central pathology. The local resident stem cell population has been working very hard to repair the damage and over the course of time these stem cells have become worn out, depleted and slowly die. This essentially causes a state of stem cell depletion. When we inject our mix of stem cells, cytokines and growth factors (known as SVF)inflammation is decreased and theregenerative process improved.

The stem cells that we have injected will then bring the level of stem cells closer to the normal level, thus restoring the natural balance and allow the body to heal itself.

Caplan et al, The MSC: An Injury Drugstore, DOI 10.1016/j .stem.2011.06.008

How long does it last?Many studies have shown the healing and regenerative ability of stem cells. Forexample, a study in World Journal of Plastic Surgery (Volume 5[2]; May 2016) followed a woman with knee arthritis. Before and after analysis of MRI images confirmed new growth of cartilage tissue. Unlike steroids, lubricants, and other injectable treatments, stem cells actually repair damaged tissue.

As published in Experimental andTherapeutic Medicine (Volume 12[2]; August 2016), numerous studies with hundreds of patients showed continuous improvement of arthritis for two years. Patients showed improvement three months after a single treatment and they continued to show improvement for two full years. This is why stem cells are often referred to as regenerative medicine.

No one can guarantee results for this or any other treatment. Outcomes will vary from patient to patient. Each potential patient must be assessed individually to determine the potential for optimum results from this regenerative therapy. To learn more about stem cell therapy, please contact us by clicking here or calling our clinic at 604-708-CELL (604-708-2355).

Like Loading...

Continue reading here:
Vancouver Stem Cell Treatment Centre | Stem Cells

To Read More: Vancouver Stem Cell Treatment Centre | Stem Cells
categoriaCardiac Stem Cells commentoComments Off on Vancouver Stem Cell Treatment Centre | Stem Cells | dataMay 1st, 2019
Read All

What Are Induced Pluripotent Stem Cells? – Stem Cell: The …

By admin

Today, induced pluripotent stem cells are mostly used to understand how certain diseases occur and how they work. By using IPS cells, one can actually study the cells and tissues affected by the disease without causing unnecessary harm to the patient.For example, its extremely difficult to obtain actual brain cells from a living patient with Parkinsons Disease. This process is even more complicated if you want to study the disease in its early stages before symptoms begin presenting themselves.

Fortunately, with genetic reprogramming, researchers can now achieve this. Scientists can do a skin biopsy of a patient with Parkinsons disease and create IPS cells. These IPS cells can then be converted into neurons, which will have the same genetic make-up as the patients own cells.

Because of IPS cells, researchers can now study conditions like Parkinsons disease to determine what went wrong and why. They can also test out new treatment methods in hopes of protecting the patient against the disease or curing it after diagnosis.

In addition, IPS cells have also been looked to as a way to replace cells that are often destroyed by certain diseases. However, there is still research to be done here.

See more here:
What Are Induced Pluripotent Stem Cells? - Stem Cell: The ...

To Read More: What Are Induced Pluripotent Stem Cells? – Stem Cell: The …
categoriaIPS Cell Therapy commentoComments Off on What Are Induced Pluripotent Stem Cells? – Stem Cell: The … | dataApril 28th, 2019
Read All

Stem Cell Key Terms | California’s Stem Cell Agency

By admin

En Espaol

The term stem cell by itself can be misleading. In fact, there are many different types of stem cells, each with very different potential to treat disease.

Stem CellPluripotentEmbryonic Stem CellAdult Stem CelliPS CellCancer Stem Cell

By definition, all stem cells:

Pluripotent means many "potentials". In other words, these cells have the potential of taking on many fates in the body, including all of the more than 200 different cell types. Embryonic stem cells are pluripotent, as are induced pluripotent stem (iPS) cells that are reprogrammed from adult tissues. When scientists talk about pluripotent stem cells, they mostly mean either embryonic or iPS cells.

Embryonic stem cells come from pluripotent cells, which exist only at the earliest stages of embryonic development. In humans, these cells no longer exist after about five days of development.

When isolated from the embryo and grown in a lab dish, pluripotent cells can continue dividing indefinitely. These cells are known as embryonic stem cells.

James Thomson, a professor in the Department of Cell and Regenerative Biology at the University of Wisconsin, derived the first human embryonic stem cell lines in 1998. He now shares a joint appointment at the University of California, Santa Barbara, a CIRM-funded institution.

Adult stem cells are found in the various tissues and organs of the human body. They are thought to exist in most tissues and organs where they are the source of new cells throughout the life of the organism, replacing cells lost to natural turnover or to damage or disease.

Adult stem cells are committed to becoming a cell from their tissue of origin, and cant form other cell types. They are therefore also called tissue-specific stem cells. They have the broad ability to become many of the cell types present in the organ they reside in. For example:

Unlike embryonic stem cells, researchers have not been able to grow adult stem cells indefinitely in the lab, but this is an area of active research.

Scientists have also found stem cells in the placenta and in the umbilical cord of newborn infants, and they can isolate stem cells from different fetal tissues. Although these cells come from an umbilical cord or a fetus, they more closely resemble adult stem cells than embryonic stem cells because they are tissue-specific. The cord blood cells that some people bank after the birth of a child are a form of adult blood-forming stem cells.

CIRM-grantee IrvWeissman of the Stanford University School of Medicine isolated the first blood-forming adult stem cell from bone marrow in 1988 in mice and later in humans.

Irv Weissman explains the difference between an adult stem cell and an embryonic stem cell (video)

An induced pluripotent stem cell, or iPS cell, is a cell taken from any tissue (usually skin or blood) from a child or adult and is genetically modified to behave like an embryonic stem cell. As the name implies, these cells are pluripotent, which means that they have the ability to form all adult cell types.

Shinya Yamanaka, an investigator with joint appointments at Kyoto University in Japan and the Gladstone Institutes in San Francisco, created the first iPS cells from mouse skin cells in 2006. In 2007, several groups of researchers including Yamanaka and James Thomson from the University of Wisconsin and University of California, Santa Barbara generated iPS cells from human skin cells.

Cancer stem cells are a subpopulation of cancer cells that, like stem cells, can self-renew. However, these cellsrather than growing into tissues and organspropagate the cancer, maturing into the many types of cells that are found in a tumor.

Cancer stem cells are a relatively new concept, but they have generated a lot of interest among cancer researchers because they could lead to more effective cancer therapies that can treat tumors resistant to common cancer treatments.

However, there is still debate on which types of cancer are propelled by cancer stem cells. For those that do, cancer stem cells are thought to be the source of all cells that make up the cancer.

Conventional cancer treatments, such as chemotherapy, may only destroy cells that form the bulk of the tumor, leaving the cancer stem cells intact. Once treatment is complete, cancer stem cells that still reside within the patient can give rise to a recurring tumor. Based on this hypothesis, researchers are trying to find therapies that destroy the cancer stem cells in the hopes that it truly eradicates a patients cancer.

John Dick from the University of Toronto first identified cancer stem cells in 1997. Michael Clarke, then at the University of Michigan, later found the first cancer stem cell in a solid tumor, in this case, breast cancer. Now at Stanford University School of Medicine, Clarke and his group have found cancer stem cells in colon cancer and head and neck cancers.

Find out More:

Catriona Jamieson talks about therapies based on cancer stem cells (4:32)

Stanford Publication: The true seeds of cancer

UCSD Publication: From Bench to Bedside in One Year: Stem Cell Research Leads to Potential New Therapy for Rare Blood Disorder

Updated 2/16

Read the original post:
Stem Cell Key Terms | California's Stem Cell Agency

To Read More: Stem Cell Key Terms | California’s Stem Cell Agency
categoriaIPS Cell Therapy commentoComments Off on Stem Cell Key Terms | California’s Stem Cell Agency | dataApril 27th, 2019
Read All

Advance Stem Cell Therapy in India | Stem Cell Treatment …

By admin

Plan your Stem Cell Therapy in India with Tour2India4Health Consultants

Stem cell therapy in India is performed by highly skilled and qualified doctors and surgeons in India. Our hospitals have state-of-art equipment that increase success rate of stem cell treatment in India. Tour2India4Health is a medical value provider that offers access to the stem cell therapy best hospitals in India for patients from any corner of the world. We offer low cost stem cell therapy at the best hospitals in India.

Stem cells have the ability to differentiate into specific cell types. The two defining characteristics of a stem cell are perpetual self-renewal and the ability to differentiate into a specialized adult cell type.

Serving as a sort of repair system, they can theoretically divide without limit to replenish other cells for as long as the person or animal is still alive. When a stem cell divides, each "daughter" cell has the potential to either remain a stem cell or become another type of cell with a more specialized function, such as a muscle cell, a red blood cell, or a brain cell.

There are three classes of stem cells i.e totipotent, pluripotent and multipotent (also known as unipotent).

Many different terms are used to describe various types of stem cells, often based on where in the body or what stage in development they come from. You may have heard the following terms:

Adult Stem Cells or Tissue-specific Stem Cells: Adult stem cells are tissue-specific, meaning they are found in a given tissue in our bodies and generate the mature cell types within that particular tissue or organ. It is not clear whether all organs, such as the heart, contain stem cells. The term adult stem cells is often used very broadly and may include fetal and cord blood stem cells.

Fetal Stem Cells: As their name suggests, fetal stem cells are taken from the fetus. The developing baby is referred to as a fetus from approximately 10 weeks of gestation. Most tissues in a fetus contain stem cells that drive the rapid growth and development of the organs. Like adult stem cells, fetal stem cells are generally tissue-specific, and generate the mature cell types within the particular tissue or organ in which they are found.

Cord Blood Stem Cells: At birth the blood in the umbilical cord is rich in blood-forming stem cells. The applications of cord blood are similar to those of adult bone marrow and are currently used to treat diseases and conditions of the blood or to restore the blood system after treatment for specific cancers. Like the stem cells in adult bone marrow, cord blood stem cells are tissue-specific.

Embryonic Stem Cells: Embryonic stem cells are derived from very early embryos and can in theory give rise to all cell types in the body. While these cells are already helping us better understand diseases and hold enormous promise for future therapies, there are currently no treatments using embryonic stem cells accepted by the medical community.

Induced Pluripotent Stem Cells (IPS cells): In 2006, scientists discovered how to reprogram cells with a specialized function (for example, skin cells) in the laboratory, so that they behave like an embryonic stem cell. These cells, called induced pluripotent cells or IPS cells, are created by inducing the specialized cells to express genes that are normally made in embryonic stem cells and that control how the cell functions.

Embryonic stem cells are derived from the inner cell mass of a blastocyst: the fertilized egg, called the zygote, divides and forms two cells; each of these cells divides again, and so on. Soon there is a hollow ball of about 150 cells called the blastocyst that contains two types of cells, the trophoblast and the inner cell mass. Embryonic stem cells are obtained from the inner cell mass.

Stem cells can also be found in small numbers in various tissues in the fetal and adult body. For example, blood stem cells are found in the bone marrow that give rise to all specialized blood cell types. Such tissue-specific stem cells have not yet been identified in all vital organs, and in some tissues like the brain, although stem cells exist, they are not very active, and thus do not readily respond to cell injury or damage.

Stem cells can also be obtained from other sources, for example, the umbilical cord of a newborn baby is a source of blood stem cells. Recently, scientists have also discovered the existence of cells in baby teeth and in amniotic fluid that may also have the potential to form multiple cell types. Research on these cells is at a very early stage.

Stem cell therapy is the use of stem cells to treat certain diseases. Stem cells are obtained from the patients own blood bone marrow, fat and umbilical cord tissue or blood. They are progenitor cells that lead to creation of new cells and are thus called as generative cells as well.

The biological task of stem cells is to repair and regenerate damaged cells. Stem cell therapy exploits this function by administering these cells systematically and in high concentrations directly into the damaged tissue, where they advance its self-healing. The process that lies behind this mechanism is largely unknown, but it is assumed that stem cells discharge certain substances which activate the diseased tissue. It is also conceivable that single damaged somatic cells, e.g. single neurocytes in the spinal cord or endothelium cells in vessels, are replaced by stem cells. Most scientists agree that stem cell research has great life-saving potential and could revolutionize the study and treatment of diseases and injuries.

Stem cell therapy is useful in certain degenerative diseases like

If stem cell therapy is an option, a detailed treatment plan is prepared depending on the type of treatment necessary. Once the patient has consented to the treatment plan, an appointment is scheduled for bone marrow extraction. Please note that this is a minimally invasive surgical procedure, so it is important that patients do not take any blood-thinning medication in the ten days prior to the appointment. It is necessary for each patient to consult their own doctor before discontinuing this type of medication.

The treatment procedure include:

Bone Marrow Extraction: Bone marrow is extracted from the hip bone by the physicians. This procedure normally takes around 30 minutes. First, local anesthetic is administered to the area of skin where the puncture will be made. Then, a thin needle is used to extract around 150-200 ml of bone marrow. The injection of local anesthetic can be slightly painful, but the patient usually does not feel the extraction of bone marrow.

Isolation, Analysis and Concentration of the Stem Cells in the Laboratory: The quality and quantity of the stem cells contained in the collected bone marrow are tested at the laboratory. First, the stem cells are isolated. Then a chromatographical procedure is used to separate them from the red and white blood corpuscles and plasma. The sample is tested under sterile conditions so that the stem cells, which will be administered to the patient, are not contaminated with viruses, bacteria or fungi. Each sample is also tested for the presence of viral markers such as HIV, hepatitis B and C and cytomegalia. The cleaned stem cells are counted and viability checks are made. If there are enough viable stem cells, i.e. more than two million CD34+ cells with over 80 percent viability, the stem cell concentrate is approved for patient administration.

Stem Cell Implantation: The method of stem cell implantation depends on the patient's condition. There are four different ways of administering stem cells:

Intravenous administration:

It is important to understand that while stem cell therapy can help alleviate symptoms in many patients and slow or even reverse degenerative processes, it does not work in all cases. Based on additional information, patient's current health situation and/or unforeseen health risks, the medical staff can always, in the interest of the individual patient, propose another kind of stem cell transplantation or in exceptional situations cancel the treatment.

Allogeneic Stem Cell Transplantation: Allogeneic stem cell transplantation involves transferring the stem cells from a healthy person (the donor) to your body after high-intensity chemotherapy or radiation. It is helpful in treating patients with high risk of relapse or who didnt respond to the prior treatment. Allogeneic stem cell transplant cost in India is comparatively less when contrasted with alternate nations.

Autologous Stem Cell Transplant: Patients own blood-forming stem cells are collected and then it is treated with high doses of chemotherapy. The high-dose treatment kills the cancer cells. They are used to replace stem cells that have been damaged by high doses of chemotherapy, used to treat the patient's underlying disease.

The side effects of stem cell therapy differ from person to person. Listed below are the side effects of stem cell therapy :

According to the Indian Council of Medical Research, all is considered to be experimental, with the exception of bone marrow transplants. However, the guidelines that were put into place in 2007 are largely non-enforceable. Regardless, stem cell therapy is legalized in India. Umbilical cord and adult stem cell treatment are considered permissible. Embryonic stem cell therapy and research is restricted.

There is about a 60% to 80% overall success rate in the use of stem cell therapy in both India and around the world. However, success rates vary depending on the disease being treated, the institute conducting the procedures, and the condition of the patient. In order to receive complete information you will have to contact the medical institutes and ask specific questions concerning the patient's condition.

Mrs. Selina Naidoo with her Son from Malaysia

Tour2India4Health has proved to be a blessing in disguise for me. A medical tourism company with everything at par with our expectations has given me the most satisfactory and relieving experience of my life. I went to them for my sons surgery who was suffering from a serious illness and stem cell therapy was the only choice I had. Trust it was heart wrenching to leave my son under any hands on the operation table. Nevertheless, courageously I had to because thats what I was here for and thats what could get my son a new and healthy life. Sitting at a corner outside the operation theatre was taking my heartbeats away with every second. Finally, the surgery was over and I was there in front of the doctor with closed eyes. He declared that the surgery was successful and my son is fine but needs some extra care and some cautious post operative measures for recovery. All through our stay in the hospital, everything went on brilliantly and after my son recovered completely, I came back to my home country. Even after that for many months, I received regular calls to verify and virtually monitor the health of my child. Now, its been 5 years and when I see my child today it feels as if no surgery was ever done on him. Thanks to the doctor who treated him and to the entire team of nurses and travel professionals who displayed extra warmth and care. Thanks is just a small word to say as a mother of a child.

India is the most preferable destination for patients who are looking for low cost stem cell therapy. Indian doctors and healthcare professionals are renowned world over for their skills with many of them holding high positions in leading hospitals in US, UK and other countries around the world. There are significant numbers of highly skilled experts in India, including many who have relocated to India after having worked in the top hospitals across the world.

The Cost of stem cell treatment in India are generally about a tenth of the costs in US and are significantly cheaper compared with even other medical travel destinations like Thailand

*The price for the Stem Cell Therapy is an average collected from the 15 best corporate hospitals and 10 Top Stem Cell Experts of India.

*The final prices offered to the patients is based on their medical reports and is dependent on the current medical condition of the patient, type of room, type of therapy, hospital brand and the surgeon's expertise.

We have worked out special packages of the Stem Cell Therapy for our Indian and International patients. You can send us your medical reports to avail the benefits of these special packages.

You would be provided with 3 TOP RECOMMENDED SURGEONS / HOSPITALS FOR YOUR STEM CELL THERAPY in India.

There are many reasons for India becoming a popular medical tourism spot is the low cost stem cell treatment in the area. When in contrast to the first world countries like, US and UK, medical care in India costs as much as 60-90% lesser, that makes it a great option for the citizens of those countries to opt for stem cell treatment in India because of availability of quality healthcare in India, affordable prices strategic connectivity, food, zero language barrier and many other reasons.

The maximum number of patients for stem cell therapy comes from Nigeria, Kenya, Ethiopia, USA, UK, Australia, Saudi Arabia, UAE, Uzbekistan, Bangladesh.

Cities where top and world renowned Stem Cell Therapy hospitals and clinics situated are :

We have PAN-India level tie ups with TOP Hospitals for Stem Cell Therapy across 15+ major cities in India. We can provide you with multiple top hospitals & best surgeons recommendations for Stem Cell Therapy in India.

India has now been recognized as one of the leaders in medical field of research and treatment. Tour2India4Health Group was established with an aim of providing best medical services to its patients and since then has been working hard in maintaining itself as one of the most professional healthcare tourism providers in India. With a number of world-renowned medical facilities affiliated, we have the resources to offer you the finest medical treatment in India, and help your speedy recovery. Tour2India4Health Group has always believed and practiced providing its patients best surgery and treatment procedure giving a second chance to live a more better and normal life. Our team serves the clientele most comfortable and convenient measures of healthcare services thus, making your medical tour to India very fruitful experience.

Our facilitation:

We has been operating patients from all major countries like USA, United Kingdom, Italy, Australia, Canada, Spain, New Zealand, and Kuwait etc. We have network of selected medical centers, surgeons and physicians around various cities in India, who qualify our assessment criteria to ensure that our core values of Safety, Excellence and Trust are maintained in all our services.

Below are the downloadable links that will help you to plan your medical trip to India in a more organized and better way. Attached word and pdf files gives information that will help you to know India more and make your trip to India easy and memorable one.

Best Stem Cell Therapy in India, Cost of Stem Cell Therapy in India, Stem Cell Therapy Best Hospitals in India, Success Rate of Stem Cell Treatment in India, Stem Cell Therapy Treatment Cost in India, Allogeneic Stem cell Transplant Cost in India, autologous Stem Cell Transplant Cost in India, Stem Cell Therapy in India, Low Cost Stem Cell Therapy India, Stem Cell Benefits in India, Top Stem Cell Centers in India, Best Doctors for Stem Cell Therapy in India, List of Best Stem Cell Treatment Clinics in India, Allogeneic stem cell transplantation, Allogeneic Stem Cell Transplant Cost in India, Autologous Stem Cell Transplant, Autologous Stem Cell Transplant Cost in India

See the article here:
Advance Stem Cell Therapy in India | Stem Cell Treatment ...

To Read More: Advance Stem Cell Therapy in India | Stem Cell Treatment …
categoriaIPS Cell Therapy commentoComments Off on Advance Stem Cell Therapy in India | Stem Cell Treatment … | dataApril 26th, 2019
Read All

Human Umbilical Cord Stem Cells for Osteoarthritis …

By admin

Abstract

Osteoarthritis (OA) is a chronic degenerative condition of the articular cartilage, which is the most common cause of disability in patients over age 65. Treatment options are limited towards alleviating symptomology.

Mesenchymal stem cells (MSC) are effective at treating osteoarthritis (OA) in animal models and clinical trials [1-6]. Mechanisms of therapeutic activity appear to be associated with regenerative and anti-inflammatory factors produced by MSC [7, 8]. On the one hand, MSC produce soluble factors that are antioxidant [9], antifibrotic [10], and stimulate endogenous chondrogenic progenitors [11], on the other hand MSC directly can differentiate into cartilage tissue [12].

The proposed study will involve intra-articular injection of umbilical cord tissue mesenchymal stem cells (UC-MSC) into joints of 20 patients with grade 2-4 radiographic OA severity and intravenously in 20 patients with grade 2-4 radiographic OA severity. The primary endpoint will be safety and feasibility as assessed by lack of treatment associated adverse events. The secondary endpoint will be improvements in joint function as assessed by Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC). Patients will be examined at baseline and 3 and 12 months after treatment.

This, study will provide support for double-blind placebo controlled investigations. The potential of using UC-MSC for this debilitating condition will open the door for future investigations in other inflammatory conditions if results demonstrate safety and feasibility of this approach.

The rest is here:
Human Umbilical Cord Stem Cells for Osteoarthritis ...

To Read More: Human Umbilical Cord Stem Cells for Osteoarthritis …
categoriaSpinal Cord Stem Cells commentoComments Off on Human Umbilical Cord Stem Cells for Osteoarthritis … | dataApril 22nd, 2019
Read All

Creating Embryonic Stem Cells Without Embryo Destruction

By admin

By: Ian Murnaghan BSc (hons), MSc - Updated: 12 Sep 2015| *Discuss

One of the biggest hurdles in stem cell research involves the use of embryonic stem cells. While these stem cells have the greatest potential in terms of their ability to differentiate into many different kinds of cells in the human body, they also bring with them enormous ethical controversies. The extraction of embryonic stem cells involves the destruction of an embryo, which upsets and outrages some policy makers and researchers as well as a number of public members. Not only that, but actually obtaining them is a challenge in itself and one that has become more difficult in places such as the United States, where policies have limited the availability of embryonic stem cells for use.

Although researchers have focused on harnessing the power of adult stem cells, there have still been many difficulties in the practical aspects of these potential therapies. In an ideal world, we would be able to use embryonic stem cells without destroying an embyro. Now, however, this ideal hope may actually have some realistic basis. In recent medical news, there has been important progress in the use of embryonic stem cells.

There are still many more tests and research that must be conducted to verify the safety and reliability of the procedure but it is indeed hopeful that funding can now increase for stem cell research. If you are an avid reader of health articles, you will probably be able to stay up-to-date on the latest developments related to this medical news. This newest research into embryonic stem cells holds promise and hope for appeasing the controversy around embryonic stem cell use and allowing for research to finally move forward with fewer challenges and controversies. For those who suffer from one of the many debilitating diseases and conditions that stem cell treatments may help or perhaps cure one day, this is welcome news.

You might also like...

Share Your Story, Join the Discussion or Seek Advice..

Time for Change - 12-Sep-15 @ 12:54 PM

Ellie - 25-Apr-14 @ 6:02 PM

Title:

(never shown)

View post:
Creating Embryonic Stem Cells Without Embryo Destruction

To Read More: Creating Embryonic Stem Cells Without Embryo Destruction
categoriaCardiac Stem Cells commentoComments Off on Creating Embryonic Stem Cells Without Embryo Destruction | dataApril 22nd, 2019
Read All

Stem Cell Basics VII. | stemcells.nih.gov

By admin

There are many ways in which human stem cells can be used in research and the clinic. Studies of human embryonic stem cells will yield information about the complex events that occur during human development. A primary goal of this work is to identify how undifferentiated stem cells become the differentiated cells that form the tissues and organs. Scientists know that turning genes on and off is central to this process. Some of the most serious medical conditions, such as cancer and birth defects, are due to abnormal cell division and differentiation. A more complete understanding of the genetic and molecular controls of these processes may yield information about how such diseases arise and suggest new strategies for therapy. Predictably controlling cell proliferation and differentiation requires additional basic research on the molecular and genetic signals that regulate cell division and specialization. While recent developments with iPS cells suggest some of the specific factors that may be involved, techniques must be devised to introduce these factors safely into the cells and control the processes that are induced by these factors.

Human stem cells are currently being used to test new drugs. New medications are tested for safety on differentiated cells generated from human pluripotent cell lines. Other kinds of cell lines have a long history of being used in this way. Cancer cell lines, for example, are used to screen potential anti-tumor drugs. The availability of pluripotent stem cells would allow drug testing in a wider range of cell types. However, to screen drugs effectively, the conditions must be identical when comparing different drugs. Therefore, scientists must be able to precisely control the differentiation of stem cells into the specific cell type on which drugs will be tested. For some cell types and tissues, current knowledge of the signals controlling differentiation falls short of being able to mimic these conditions precisely to generate pure populations of differentiated cells for each drug being tested.

Perhaps the most important potential application of human stem cells is the generation of cells and tissues that could be used for cell-based therapies. Today, donated organs and tissues are often used to replace ailing or destroyed tissue, but the need for transplantable tissues and organs far outweighs the available supply. Stem cells, directed to differentiate into specific cell types, offer the possibility of a renewable source of replacement cells and tissues to treat diseases including maculardegeneration, spinal cord injury, stroke, burns, heart disease, diabetes, osteoarthritis, and rheumatoid arthritis.

Figure 3. Strategies to repair heart muscle with adult stem cells. Click here for larger image.

2008 Terese Winslow

For example, it may become possible to generate healthy heart muscle cells in the laboratory and then transplant those cells into patients with chronic heart disease. Preliminary research in mice and other animals indicates that bone marrow stromal cells, transplanted into a damaged heart, can have beneficial effects. Whether these cells can generate heart muscle cells or stimulate the growth of new blood vessels that repopulate the heart tissue, or help via some other mechanism is actively under investigation. For example, injected cells may accomplish repair by secreting growth factors, rather than actually incorporating into the heart. Promising results from animal studies have served as the basis for a small number of exploratory studies in humans (for discussion, see call-out box, "Can Stem Cells Mend a Broken Heart?"). Other recent studies in cell culture systems indicate that it may be possible to direct the differentiation of embryonic stem cells or adult bone marrow cells into heart muscle cells (Figure 3).

Cardiovascular disease (CVD), which includes hypertension, coronary heart disease, stroke, and congestive heart failure, has ranked as the number one cause of death in the United States every year since 1900 except 1918, when the nation struggled with an influenza epidemic. Nearly 2,600 Americans die of CVD each day, roughly one person every 34 seconds. Given the aging of the population and the relatively dramatic recent increases in the prevalence of cardiovascular risk factors such as obesity and type 2 diabetes, CVD will be a significant health concern well into the 21st century.

Cardiovascular disease can deprive heart tissue of oxygen, thereby killing cardiac muscle cells (cardiomyocytes). This loss triggers a cascade of detrimental events, including formation of scar tissue, an overload of blood flow and pressure capacity, the overstretching of viable cardiac cells attempting to sustain cardiac output, leading to heart failure, and eventual death. Restoring damaged heart muscle tissue, through repair or regeneration, is therefore a potentially new strategy to treat heart failure.

The use of embryonic and adult-derived stem cells for cardiac repair is an active area of research. A number of stem cell types, including embryonic stem (ES) cells, cardiac stem cells that naturally reside within the heart, myoblasts (muscle stem cells), adult bone marrow-derived cells including mesenchymal cells (bone marrow-derived cells that give rise to tissues such as muscle, bone, tendons, ligaments, and adipose tissue), endothelial progenitor cells (cells that give rise to the endothelium, the interior lining of blood vessels), and umbilical cord blood cells, have been investigated as possible sources for regenerating damaged heart tissue. All have been explored in mouse or rat models, and some have been tested in larger animal models, such as pigs.

A few small studies have also been carried out in humans, usually in patients who are undergoing open-heart surgery. Several of these have demonstrated that stem cells that are injected into the circulation or directly into the injured heart tissue appear to improve cardiac function and/or induce the formation of new capillaries. The mechanism for this repair remains controversial, and the stem cells likely regenerate heart tissue through several pathways. However, the stem cell populations that have been tested in these experiments vary widely, as do the conditions of their purification and application. Although much more research is needed to assess the safety and improve the efficacy of this approach, these preliminary clinical experiments show how stem cells may one day be used to repair damaged heart tissue, thereby reducing the burden of cardiovascular disease.

In people who suffer from type1 diabetes, the cells of the pancreas that normally produce insulin are destroyed by the patient's own immune system. New studies indicate that it may be possible to direct the differentiation of human embryonic stem cells in cell culture to form insulin-producing cells that eventually could be used in transplantation therapy for persons with diabetes.

To realize the promise of novel cell-based therapies for such pervasive and debilitating diseases, scientists must be able to manipulate stem cells so that they possess the necessary characteristics for successful differentiation, transplantation, and engraftment. The following is a list of steps in successful cell-based treatments that scientists will have to learn to control to bring such treatments to the clinic. To be useful for transplant purposes, stem cells must be reproducibly made to:

Also, to avoid the problem of immune rejection, scientists are experimenting with different research strategies to generate tissues that will not be rejected.

To summarize, stem cells offer exciting promise for future therapies, but significant technical hurdles remain that will only be overcome through years of intensive research.

Previous|VII. What are the potential uses of human stem cells and the obstacles that must be overcome before these potential uses will be realized?|Next

Here is the original post:
Stem Cell Basics VII. | stemcells.nih.gov

To Read More: Stem Cell Basics VII. | stemcells.nih.gov
categoriaCardiac Stem Cells commentoComments Off on Stem Cell Basics VII. | stemcells.nih.gov | dataApril 20th, 2019
Read All

Why are Adult Stem Cells Important? Boston Children’s …

By admin

Adult stem cells are the bodys toolbox, called into action by normal wear and tear on the body, and when serious damage or disease attack. Researchers believe that adult stem cells also have the potential, as yet untapped, to be tools in medicine. Scientists and physicians are working towards being able to treat patients with their own stem cells, or with banked donor stem cells that match them genetically.

Grown in large enough numbers in the lab, then transplanted into the patient, these cells could repair an injury or counter a diseaseproviding more insulin-producing cells for people with type 1 diabetes, for example, or cardiac muscle cells to help people recover from a heart attack. This approach is called regenerative medicine.

A number of challenges must be overcome before the full therapeutic potential of adult stem cells can be realized. Scientists are exploring practical ways of harvesting and maintaining most types of adult stem cells. Right now, scientists do not have the ability to grow the cells in the amounts needed for treatment. More work is also needed to find practical ways to direct the different kinds of cells to where theyre needed in the body, preferably without the need for surgery or other invasive methods.

Research in all aspects of adult stem cells and their potential is underway at Childrens Hospital Boston. Realizing that potential will require years of research, but promising strides are being made.

More:
Why are Adult Stem Cells Important? Boston Children's ...

To Read More: Why are Adult Stem Cells Important? Boston Children’s …
categoriaCardiac Stem Cells commentoComments Off on Why are Adult Stem Cells Important? Boston Children’s … | dataApril 20th, 2019
Read All

3D Printing Stem Cells for Treating Spinal Cord Injuries

By admin

Statistics indicate that approximately 17,500 people suffer spinal cord injuries each year. Although these injuries can impact anyone, they are most commonly seen in younger men, primarily because these injuries are often driven by lifestyle choices that people may make. Yet, despite efforts to more effectively treat these spinal cord injuries and restore full quality of life, traditional medical treatments have largely been unsuccessful.

Due to this fact, medical professionals have increasingly turned their attention to stem cells and how these stem cells could be used to treat spinal cord injuries.

In short, there is no way to reverse damage to the spinal cord that doesnt include replacing the old cells, like with stem cells. However, there are some treatment options available as to prevent the injury becoming worse, especially immediately during or after the injury event. With any luck, some patients can return to an active and normal life through these means without having to resort to stem cells, which is still a clinical and expensive treatment.

Most of what can be done for a spinal cord injury is at the scene. These require the patient to remain motionless in order to prevent shock. Immobilizing the neck and spinal cord can help reduce further injury and complications, not to mention maintaining steady breathing. Surgery is often necessary for this type of injury. Some medication, particularly methylprednisolone, can be used, but the side effects of blood clots and illness usually outweigh the benefits.

In the long run, doctors make a priority to prevent problems with other parts of the body as a result of spinal cord injuries. Blood clots, respiratory infections, pressure ulcers and other issues have been known to arise.

Otherwise, rehabilitation is almost always recommended to rebuild muscle strength while in the early stages of recovery. Education on how to prevent further complications in day-to-day life is also given to patients with these types of injuries, along with learning new skills to help through their new situation.

With treatment for spinal cord injuries being severely limited, there is little wonder why doctors and researchers have turned to the idea of using stem cells to rebuild and replace damaged cells. However, these stem cells cant just be injected in any traditional sense. They need to be placed accurately in an environment where they can grow. This is where 3D printing comes in.

Recognizing the fact that traditional treatment methods have not been able to fully improve patients quality of life, medical professionals are shifting their attention to exploring stem cells and how stem cells can improve functioning for individuals with spinal cord injuries. The pioneering study in this sphere came out of the University of California San Diegos School of Medicine and Institute of Engineering.

Read more here:
3D Printing Stem Cells for Treating Spinal Cord Injuries

To Read More: 3D Printing Stem Cells for Treating Spinal Cord Injuries
categoriaSpinal Cord Stem Cells commentoComments Off on 3D Printing Stem Cells for Treating Spinal Cord Injuries | dataApril 18th, 2019
Read All

10 Best Stem Cell Beauty Products On The Market Today

By admin

Fight the signs of premature aging with these stem cell skin care beauty products. A lot of companies claim to incorporate the benefits of plant and human stem cells, as well as components secreted by them, into the best stem cell beauty products on the market. Below, we present what appears (based on company claims) to be ten of the best products available today.

As a publisher of stem cell news, we havent traditionally wandered into the world of claims made by stem cell beauty products suppliers. For obvious reasons, we cannot guarantee the accuracy of the claims made by these companies or the presence of specific active agents within them.

However, we get approached daily with questions about this topic and know that people are seeking information about it from a source that: 1) Doesnt inflate the claims, and 2) Understands the science.

For this reason, we have decided to share with you what appear to be interesting skin care options, coupled with a healthy dose of warnings reminding you that the stated claims may or may not be accurate.

Kimera Labs makes the top of this list for numerous reasons. First, the companys science it is solid. Instead of being a supplier of beauty products, the company is a specialty contract research organization (CRO) focusing on regenerative medicine applications, including exosome purification. Exosomes are small vesicles (~30-100nm) that are secreted by nearly all cell types and act as intracellular mail.

Exosomes transfer DNA, RNA, and proteins to other cells, thereby altering the function of the other cells.

Second, the company has an FDA registered tissue facility in Miami, FL, where it develops pharmaceutical grade, exosome-based regenerative therapies. The company has a 6,000 sq. ft. facility in Miramar, Florida, that includes impressive features such asISO:9001/13485 certification, cleanrooms, and a variety of high-end scientific equipment.

Third, the company is run by Dr. Duncan Ross, a highly regarded scientist with a Ph.D. in Immunology from the University of Miami. Dr. Ross is also a Principal at The Kimera Society, a non-profit organization dedicated to the advancementof stem cells, regenerative medicine,and cancer immunotherapies.

For those seeking stem cell beauty products, the companys core offering is XoGlo, a product which provides growth and healing signals to guide the re-deposition of tissue and avoid the scarring that often accompanies burns or other skin damage. You can see an incredible Case Study from the company in which XoGlo was used to heal second-degree burns in a patient in approximately seven days. The product can also be used for general skin health and enhancement.

More information on the XoGlois available here.

According to the company, this facial cleanser is formulated with stem cytokines that promote the skins ability to heal itself, leaving softer and smoother skin. It also has essential fatty acids, detoxifying actives, antioxidants, and anti-inflammatory botanicals that deeply cleanse your skin of excess oil, impurities, and surface debris. This makes the skin smoother, more balanced, and hydrated.

Lifeline says that it offers a moisture serum with a formula consisting of proteins and peptides from pluripotent stem cells. It works by reversing skin aging signs and actively moisturizing the skin with its cucumber melon extracts. The serum primarily targets the reduction of wrinkles and fine lines.

At $105 for a 1 oz bottle, it is notable that the company does not mention how it sources pluripotent stem cells, leaving key questions about its active ingredients unanswered.

Heres another skin care serum on this list of stem cellbeauty products. This serum is enriched with a tissue nutrient solution (TNS) technology that reduces wrinkles and fine lines and improves skin texture and tone. TNS is formulated with matrix proteins, cytokines, soluble collagen, antioxidants, and growth factors that are essential to keeping skin healthy.

This regenerative eye creamcontains autokine-CM obtained from adult stem cells through mini-liposuction. This unique ingredient is composed of extracted cytokines, matrix proteins, and growth factors from adult stem cells that help improve the skins ability to heal. It also aids in synthesizing elastin and collagen production, thus reducing fine lines and wrinkles, improving skin tone and texture, and increasing epidermal thickness in the eye area.

Venus Skin introduced a stem cell therapy serum packed with bio-signals from bone marrow mesenchymal stem cells for stimulation of skin tissue repair and healing. This reverses aging signs and rejuvenates the feel and look of the skin. It also contains essential vitamins A, C, and E to normalize skin functions, promote collagen synthesis in the skin, and reduce the appearance of scars, respectively.

This hydrating mask possesses a stem cell culture technology that penetrates deep into the skin for intense and long-lasting hydration. This leaves the skin well-moisturized and supple. It also fills fine lines and wrinkles and restores parched skin, bringing skin moisture and smoothness back.

This intensive facial mist restores the skins elasticity and moisture with its fine liquid particles that immediately penetrate the skin. It contains APL stem cell-conditioned medium extracts that help regenerate, whiten, and hydrate the skin and minimize pores and wrinkles. The facial mist also has chamomile extracts that bring a soothing effect to the skin.

Skin Drink Phytoceuticals highlights three potent anti-aging skin care ingredients in this serum.PhytoCellTec is an ingredient that safeguards the skin stem cells longevity, fights off skin aging, and delays biological aging of cells. Derm SRC works on reducing wrinkles and fine lines, while Ellagi-C promotes skin elasticity and suppleness.

This snail serum boasts an epidermal growth factor ingredient that stimulates the skins stem cell growth and cell survival. It also has a snail mucus extract that refreshes and brightens the skin. Aside from that, the serum contains other natural ingredients, such as macadamia seed oil and hydrolyzed placenta extract, for skin hydration and nourishment.

Which of these components actually enhance skin health and complexion? Hard to say, but the ingredient list certainly is exotic.

With this list of the best beauty products, it can be tricky to know which ones will enhance skin health. Stem cells are becoming a common ingredient in skin products, but regulation of this area is sparse, making it important to be vigilant in your selection.

A steep price tag doesnt guarantee results. Claims of active ingredients do not guarantee they are present. Even the confirmed presence of an ingredient by third-party testing does not substantiate its claimed effect.

However, there are hundreds of user reviews for some of these products, so the possibility for these skin care products to improve the appearance of your skin does exist. Importantly, many of these stem cell beauty products contain an impressive range of other ingredients, so you could benefit from them due to effects unrelated to the claimed stem cell components.

When judging the efficacy of these products, the only clear answer is that you need to be your own study of one.

If you found this article valuable, subscribe to BioInformantsstem cell industry updates.We are the industry leaders in stem cell research, with research cited byThe Wall Street Journal, Xconomy, AABB, andVogue Magazine.Bringing you breaking news on an ongoing basis, join more than half a million loyal readers, including physicians, scientists, executives, investors,and philanthropists.

Let this infographic be your guide. Download it now and use it as a reference later.

10 Best Stem Cell Beauty Products On The Market Today

More:
10 Best Stem Cell Beauty Products On The Market Today

To Read More: 10 Best Stem Cell Beauty Products On The Market Today
categoriaSkin Stem Cells commentoComments Off on 10 Best Stem Cell Beauty Products On The Market Today | dataApril 15th, 2019
Read All

Banking Menstrual Stem Cells | What are Menstrual Stem …

By admin

Stem cells in menstrual blood have similar regenerative capabilities as thestem cells in umbilical cord blood and bone marrow. Cryo-Cell's patent-pendingmenstrual stem cell service offers women in their reproductive years the ability to store and preserve these cells for potential use by herself or a family memberfree from ethical or political controversy.

Cryo-Cell is the only stem cell bank in the world that can offer womenthe reassurance and peace of mind that comes with this opportunity.

What are menstrual stem cells?Stem cells in menstrual blood are highly proliferativeandpossess the unique ability to develop into various other types of healthy cells. During a womans menstrual cycle, these valuable stem cells are discarded.

Cryo-Cell'smenstrual stem cell bankingservice captures those self-renewing stem cells, processes and cryopreserves them for emerging cellular therapies that hold the promise of potentially treatinglife-threatening diseases.

How are menstrual stem cells collected, processed and stored?The menstrual blood is collected in a physicians officeusing a medical-grade silicone cup in place of a tampon orsanitary napkin. The sample is shipped to Cryo-Cell via a medical courier and processed in our state-of-the-art ISO Class 7 clean room.

The menstrual stem cells are stored in two cryovials that are overwrapped to safeguard them during storage. The overwrapped vials are cryogenically preserved in a facility that isclosely monitored at all times to ensure that your menstrual stem cells are safe and ready for future use.

What are the benefits of banking menstrual stem cells?Cryo-Cell's innovative menstrual stem cell banking service provides women with the exclusive opportunity to build their own personal healthcare portfolio with stem cells that will be a 100% match for the donor. Menstrual stem cells have demonstrated the capability of differentiating into many other types of stem cells such as cardiac, neural, bone, fat and cartilage.

Bankingmenstrual stem cells now is an investment in your future medical needs. Currently, they are being studied to treat stroke, heart disease, diabetes, neurodegenerative disease, and ischemic wounds in pre-clinical and clinical models.

Cryo-Cells activities for New York State residents are limited to collection, processing, and long-term storage ofmenstrual stem cells. Cryo-Cells possession of a New York State license for such collection, processing, and long-term storage does not indicate approval or endorsement of possible future uses or future suitability of these cells.

More:
Banking Menstrual Stem Cells | What are Menstrual Stem ...

To Read More: Banking Menstrual Stem Cells | What are Menstrual Stem …
categoriaCardiac Stem Cells commentoComments Off on Banking Menstrual Stem Cells | What are Menstrual Stem … | dataApril 14th, 2019
Read All

Autologous iPS cell therapy for Macular Degeneration: From bench-to-bedside

By admin

Presented At:Gibco - 24 Hours of Stem Cells Virtual Event

Presented By:Kapil Bharti - Stadtman Investigator, NIH, Unit on Ocular Stem Cell & Translational Research

Speaker Biography:Dr. Kapil Bharti holds a bachelor's degree in Biophysics from the Panjab University, Chandigarh, India, a master's degree in biotechnology from the M.S. Rao University, Baroda, India, and a diploma in molecular cell biology from Johann Wolfgang Goethe University, Frankfurt, Germany. He obtained his Ph.D. from the same institution, graduating summa cum laude. His Ph.D. work involved research in the areas of heat stress, chaperones, and epigenetics.

Webinar:Autologous iPS cell therapy for Macular Degeneration: From bench-to-bedside

Webinar Abstract:Induced pluripotent stem (iPS) cells are a promising source of personalized therapy. These cells can provide immune-compatible autologous replacement tissue for the treatment of potentially all degenerative diseases. We are preparing a phase I clinical trial using iPS cell derived ocular tissue to treat age-related macular degeneration (AMD), one of the leading blinding diseases in the US. AMD is caused by the progressive degeneration of retinal pigment epithelium (RPE), a monolayer tissue that maintains vision by maintaining photoreceptor function and survival. Combining developmental biology with tissue engineering we have developed clinical-grade iPS cell derived RPE-patch on a biodegradable scaffold. This patch performs key RPE functions like phagocytosis of photoreceptor outer segments, ability to transport water from apical to basal side, and the ability to secrete cytokines in a polarized fashion. We confirmed the safety and efficacy of this replacement patch in animal models as part of a Phase I Investigational New Drug (IND)-application. Approval of this IND application will lead to transplantation of autologous iPS cell derived RPE-patch in patients with the advanced stage of AMD. Success of NEI autologous cell therapy project will help leverage other iPS cell-based trials making personalized cell therapy a common medical practice.

LabRoots on Social:Facebook: https://www.facebook.com/LabRootsIncTwitter: https://twitter.com/LabRoots LinkedIn: https://www.linkedin.com/company/labr... Instagram: https://www.instagram.com/labrootsinc Pinterest: https://www.pinterest.com/labroots/ SnapChat: labroots_inc

See more here:
Autologous iPS cell therapy for Macular Degeneration: From bench-to-bedside

To Read More: Autologous iPS cell therapy for Macular Degeneration: From bench-to-bedside
categoriaIPS Cell Therapy commentoComments Off on Autologous iPS cell therapy for Macular Degeneration: From bench-to-bedside | dataApril 11th, 2019
Read All

Blood and Bone Marrow Transplant | National Heart, Lung …

By admin

When the healthy stem cells come from you, the procedure is called an autologous transplant. When the stem cells come from another person, called a donor, it is an allogeneic transplant. Blood or bone marrow transplants most commonly are used to treat blood cancers or other kinds of blood diseases that decrease the number of healthy blood cells in the body. These transplants also may be used to treat other disorders.

For allogeneic transplants, your doctor will try to find a donor whose blood cells are the best match for you. Your doctor will consider using cells from your close family members, from people who are not related to you and who have registered with the National Marrow Donor Program, or from publicly stored umbilical cord blood. Although it is best to find a donor who is an exact match to you, new transplant procedures are making it possible to use donors who are not an exact match.

Blood or bone marrow transplants are usually performed in a hospital. Often, you must stay in the hospital for one to two weeks before the transplant to prepare. During this time, you will have a narrow tube placed in one of your large veins. You may be given medicine to make you sleepy for this procedure. You also will receive special medicines and possibly radiation to destroy your abnormal stem cells and to weaken your immune system so that it wont reject the donor cells after the transplant.

On the day of the transplant, you will be awake and may get medicine to relax you during the procedure. The stem cells will be given to you through the narrow tube in your vein. The stem cells will travel through your blood to your bone marrow, where they will begin making new healthy blood cells.

After the transplant, your doctor will check your blood counts every day to see if new blood cells have started to grow in your bone marrow. Depending on the type of transplant, you may be able to leave, but stay near the hospital, or you may need to remain in the hospital for weeks or months. The length of time will depend on how your immune system is recovering and whether or not the transplanted cells stay in your body. Before you leave the hospital, the doctors will give you detailed instructions that you must follow to prevent infection and other complications. Your doctor will keep monitoring your recovery, possibly for up to oneyear.

Although blood or bone marrow transplant is an effective treatment for some conditions, the procedure can cause early or late complications. The required medicines and radiation can cause nausea, vomiting, diarrhea, tiredness, mouth sores, skin rashes, hair loss, or liver damage. These treatments also can weaken your immune system and increase your risk for infection. Some people may experience a serious complication called graft-versus-host disease if the donated stem cells attack the body. Other people may reject the donor stem cells after the transplant, which can be an extremely serious complication.

VisitBlood-Forming Stem Cell Transplantsfor more information about this topic.

Here is the original post:
Blood and Bone Marrow Transplant | National Heart, Lung ...

To Read More: Blood and Bone Marrow Transplant | National Heart, Lung …
categoriaBone Marrow Stem Cells commentoComments Off on Blood and Bone Marrow Transplant | National Heart, Lung … | dataApril 11th, 2019
Read All

Human iPS cell-derived dopaminergic neurons function in a …

By admin

Kriks, S. et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinsons disease. Nature 480, 547551 (2011)

Doi, D. et al. Isolation of human induced pluripotent stem cell-derived dopaminergic progenitors by cell sorting for successful transplantation. Stem Cell Reports 2, 337350 (2014)

Perrier, A. L. et al. Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc. Natl Acad. Sci. USA 101, 1254312548 (2004)

Chambers, S. M. et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat. Biotechnol. 27, 275280 (2009)

Kirkeby, A. et al. Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions. Cell Reports 1, 703714 (2012)

Doi, D. et al. Prolonged maturation culture favors a reduction in the tumorigenicity and the dopaminergic function of human ESC-derived neural cells in a primate model of Parkinsons disease. Stem Cells 30, 935945 (2012)

Hargus, G. et al. Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. Proc. Natl Acad. Sci. USA 107, 1592115926 (2010)

Nguyen, H. N. et al. LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell 8, 267280 (2011)

Snchez-Dans, A. et al. Disease-specific phenotypes in dopamine neurons from human iPS-based models of genetic and sporadic Parkinsons disease. EMBO Mol. Med. 4, 380395 (2012)

Kikuchi, T. et al. Idiopathic Parkinsons disease patient-derived induced pluripotent stem cells function as midbrain dopaminergic neurons in rodent brains. J. Neurosci. Res. 95, 18291837 (2017)

Ono, Y. et al. Differences in neurogenic potential in floor plate cells along an anteroposterior location: midbrain dopaminergic neurons originate from mesencephalic floor plate cells. Development 134, 32133225 (2007)

Joksimovic, M. et al. Wnt antagonism of Shh facilitates midbrain floor plate neurogenesis. Nat. Neurosci. 12, 125131 (2009)

Smidt, M. P. et al. A homeodomain gene Ptx3 has highly restricted brain expression in mesencephalic dopaminergic neurons. Proc. Natl Acad. Sci. USA 94, 1330513310 (1997)

Katsukawa, M., Nakajima, Y., Fukumoto, A., Doi, D. & Takahashi, J. Fail-safe therapy by gamma-ray irradiation against tumor formation by human-induced pluripotent stem cell-derived neural progenitors. Stem Cells Dev. 25, 815825 (2016)

Imbert, C., Bezard, E., Guitraud, S., Boraud, T. & Gross, C. E. Comparison of eight clinical rating scales used for the assessment of MPTP-induced parkinsonism in the Macaque monkey. J. Neurosci. Methods 96, 7176 (2000)

Kikuchi, T. et al. Survival of human induced pluripotent stem cell-derived midbrain dopaminergic neurons in the brain of a primate model of Parkinsons disease. J. Parkinsons Dis. 1, 395412 (2011)

Takagi, Y. et al. Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model. J. Clin. Invest. 115, 102109 (2005)

Hallett, P. J. et al. Successful function of autologous iPSC-derived dopamine neurons following transplantation in a non-human primate model of Parkinsons disease. Cell Stem Cell 16, 269274 (2015)

Freed, C. R. et al. Transplantation of embryonic dopamine neurons for severe Parkinsons disease. N. Engl. J. Med. 344, 710719 (2001)

Olanow, C. W. et al. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinsons disease. Ann. Neurol. 54, 403414 (2003)

Kurowska, Z. et al. Signs of degeneration in 1222-year old grafts of mesencephalic dopamine neurons in patients with Parkinsons disease. J. Parkinsons Dis. 1, 8392 (2011)

Li, W. et al. Extensive graft-derived dopaminergic innervation is maintained 24 years after transplantation in the degenerating parkinsonian brain. Proc. Natl Acad. Sci. USA 113, 65446549 (2016)

Yin, D. et al. Striatal volume differences between non-human and human primates. J. Neurosci. Methods 176, 200205 (2009)

Redmond, D. E. Jr, Vinuela, A., Kordower, J. H. & Isacson, O. Influence of cell preparation and target location on the behavioral recovery after striatal transplantation of fetal dopaminergic neurons in a primate model of Parkinsons disease. Neurobiol. Dis. 29, 103116 (2008)

Turkheimer, F. E. et al. Reference and target region modeling of [11C]-(R)-PK11195 brain studies. J. Nucl. Med. 48, 158167 (2007)

Shukuri, M. et al. In vivo expression of cyclooxygenase-1 in activated microglia and macrophages during neuroinflammation visualized by PET with 11C-ketoprofen methyl ester. J. Nucl. Med. 52, 10941101 (2011)

Kirkeby, A. et al. Predictive markers guide differentiation to improve graft outcome in clinical translation of hESC-based therapy for Parkinsons disease. Cell Stem Cell 20, 135148 (2017)

Liechti, R. et al. Characterization of fetal antigen 1/delta-like 1 homologue expressing cells in the rat nigrostriatal system: effects of a unilateral 6-hydroxydopamine lesion. PLoS ONE 10, e0116088 (2015)

Christophersen, N. S. et al. Midbrain expression of Delta-like 1 homologue is regulated by GDNF and is associated with dopaminergic differentiation. Exp. Neurol. 204, 791801 (2007)

Bauer, G. et al. In vivo biosafety model to assess the risk of adverse events from retroviral and lentiviral vectors. Mol. Ther. 16, 13081315 (2008)

Okita, K. et al. An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells 31, 458466 (2013)

Miyazaki, T. et al. Laminin E8 fragments support efficient adhesion and expansion of dissociated human pluripotent stem cells. Nat. Commun. 3, 1236 (2012)

Nakagawa, M. et al. A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells. Sci. Rep. 4, 3594 (2014)

Morizane, A., Doi, D., Kikuchi, T., Nishimura, K. & Takahashi, J. Small-molecule inhibitors of bone morphogenic protein and activin/nodal signals promote highly efficient neural induction from human pluripotent stem cells. J. Neurosci. Res. 89, 117126 (2011)

Smith, S. M. et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23 (Suppl. 1), S208S219 (2004)

Smith, S. M. Fast robust automated brain extraction. Hum. Brain Mapp. 17, 143155 (2002)

Jenkinson, M. & Smith, S. A global optimisation method for robust affine registration of brain images. Med. Image Anal. 5, 143156 (2001)

Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17, 825841 (2002)

Zhang, Y., Brady, M. & Smith, S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20, 4557 (2001)

Frey, S. et al. An MRI based average macaque monkey stereotaxic atlas and space (MNI monkey space). Neuroimage 55, 14351442 (2011)

Warschausky, S., Kay, J. B. & Kewman, D. G. Hierarchical linear modeling of FIM instrument growth curve characteristics after spinal cord injury. Arch. Phys. Med. Rehabil. 82, 329334 (2001)

Jucaite, A., Fernell, E., Halldin, C., Forssberg, H. & Farde, L. Reduced midbrain dopamine transporter binding in male adolescents with attention-deficit/hyperactivity disorder: association between striatal dopamine markers and motor hyperactivity. Biol. Psychiatry 57, 229238 (2005)

Leroy, C. et al. Assessment of 11C-PE2I binding to the neuronal dopamine transporter in humans with the high-spatial-resolution PET scanner HRRT. J. Nucl. Med. 48, 538546 (2007)

Logan, J. et al. Distribution volume ratios without blood sampling from graphical analysis of PET data. J. Cereb. Blood Flow Metab. 16, 834840 (1996)

Patlak, C. S. & Blasberg, R. G. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J. Cereb. Blood Flow Metab. 5, 584590 (1985)

Sossi, V., Holden, J. E., de la Fuente-Fernandez, R., Ruth, T. J. & Stoessl, A. J. Effect of dopamine loss and the metabolite 3-O-methyl-[18F]fluoro-dopa on the relation between the 18F-fluorodopa tissue input uptake rate constant Kocc and the [18F]fluorodopa plasma input uptake rate constantKi. J. Cereb. Blood Flow Metab. 23, 301309 (2003)

Excerpt from:
Human iPS cell-derived dopaminergic neurons function in a ...

To Read More: Human iPS cell-derived dopaminergic neurons function in a …
categoriaIPS Cell Therapy commentoComments Off on Human iPS cell-derived dopaminergic neurons function in a … | dataApril 6th, 2019
Read All

Stem Cells from Fat vs. Bone Marrow Best Sources for …

By admin

Stromal vascular fraction was dramatically better than bone marrow concentrate in its ability to differentiate into cartilage.Two other important features were also well documented in this study. SVF created significantly more colony forming units than BMC, another significant predictor of healing response. Perhaps most importantly, SVF was dramatically better than BMC in its ability to differentiate into cartilage.

Second, a study by Han Chao et al has also demonstrated that fat derived stem cells also have a higher proliferation potential for neural tissue and are a better source for not only cartilage regeneration but also for nervous system regeneration.

The studies gave a very comprehensive look at comparing BMC and SVF in the ability to repair cartilage damage in a same procedure protocol. Every significant measurement comparing bone marrow to adipose tissue for stem cell harvesting demonstrated that adipose derived stem cells provided better cell content and superior ability to differentiate into cartilage than bone marrow. Our extensive clinical experience with the procedure for Colorado patients suffering from pain in the knees, other joints, soft tissue, and a wide range of back problems clearly demonstrates the same.

Using the most effective combination of autologous stem cell sources is one of several criteria to identify a legitimate stem cell clinic. Other important characteristics we recommend paying attention to when choosing a stem cell clinic, include the presence of a physician who owns and operates the clinic, X-ray guided injections administered by a trained injection specialist, and a clinic that takes time to discuss your questions. A review of your imaging and clinical data is needed in order to determine if stem cell therapy is right for you.

*Individual patient results may vary. Contact us today to find out if stem cell therapy may be able to help you.

See the original post here:
Stem Cells from Fat vs. Bone Marrow Best Sources for ...

To Read More: Stem Cells from Fat vs. Bone Marrow Best Sources for …
categoriaBone Marrow Stem Cells commentoComments Off on Stem Cells from Fat vs. Bone Marrow Best Sources for … | dataApril 5th, 2019
Read All

Advanced maturation of human cardiac tissue grown from …

By admin

Bellin, M., Marchetto, M. C., Gage, F. H. & Mummery, C. L. Induced pluripotent stem cells: the new patient? Nat. Rev. Mol. Cell Biol. 13, 713726 (2012).

Matsa, E., Burridge, P. W. & Wu, J. C. Human stem cells for modeling heart disease and for drug discovery. Sci. Transl. Med. 6, 239 (2014).

Wang, G. et al. Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat. Med. 20, 616623 (2014).

Yazawa, M. et al. Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature 471, 230234 (2011).

Yang, X., Pabon, L. & Murry, C. E. Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes. Circ. Res. 114, 511523 (2014).

Feric, N. T. & Radisic, M. Maturing human pluripotent stem cell-derived cardiomyocytes in human engineered cardiac tissues. Adv. Drug Deliv. Rev. 96, 110134 (2016).

Domian, I. J. et al. Generation of functional ventricular heart muscle from mouse ventricular progenitor cells. Science 326, 426429 (2009).

Lundy, S. D., Zhu, W. Z., Regnier, M. & Laflamme, M. A. Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cells Dev. 22, 19912002 (2013).

Nunes, S. S. et al. Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Nat. Methods 10, 781787 (2013).

Mannhardt, I. et al. Human engineered heart tissue: analysis of contractile force. Stem Cell Reports 7, 2942 (2016).

Ribeiro, M. C. et al. Functional maturation of human pluripotent stem cell derived cardiomyocytes in vitrocorrelation between contraction force and electrophysiology. Biomaterials 51, 138150 (2015).

Shadrin, I. Y. et al. Cardiopatch platform enables maturation and scale-up of human pluripotent stem cell-derived engineered heart tissues. Nat. Commun. 8, 1825 (2017).

Brette, F. & Orchard, C. T-tubule function in mammalian cardiac myocytes. Circ. Res. 92, 11821192 (2003).

Wiegerinck, R. F. et al. Force frequency relationship of the human ventricle increases during early postnatal development. Pediatr. Res. 65, 414419 (2009).

Lopaschuk, G. D. & Jaswal, J. S. Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation. J. Cardiovasc. Pharmacol. 56, 130140 (2010).

Jackman, C. P., Carlson, A. L. & Bursac, N. Dynamic culture yields engineered myocardium with near-adult functional output. Biomaterials 111, 6679 (2016).

Radisic, M. et al. Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc. Natl Acad. Sci. USA 101, 1812918134 (2004).

Eng, G. et al. Autonomous beating rate adaptation in human stem cell-derived cardiomyocytes. Nat. Commun. 7, 10312 (2016).

Hasenfuss, G. et al. Energetics of isometric force development in control and volume-overload human myocardium. Comparison with animal species. Circ. Res. 68, 836846 (1991).

Chung, S. et al. Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells. Nat. Clin. Pract. Cardiovasc. Med. 4, S60S67 (2007).

Gong, G. et al. Parkin-mediated mitophagy directs perinatal cardiac metabolic maturation in mice. Science 350, aad2459 (2015).

Porter, G. A. Jr et al. Bioenergetics, mitochondria, and cardiac myocyte differentiation. Prog. Pediatr. Cardiol. 31, 7581 (2011).

Vega, R. B., Horton, J. L. & Kelly, D. P. Maintaining ancient organelles: mitochondrial biogenesis and maturation. Circ. Res. 116, 18201834 (2015).

Gottlieb, R. A. & Bernstein, D. Metabolism. Mitochondria shape cardiac metabolism. Science 350, 11621163 (2015).

Sun, R., Bouchard, M. B. & Hillman, E. M. C. SPLASSH: Open source software for camera-based high-speed, multispectral in-vivo optical image acquisition. Biomed. Opt. Express 1, 385397 (2010).

Hong, T. et al. Cardiac BIN1 folds T-tubule membrane, controlling ion flux and limiting arrhythmia. Nat. Med. 20, 624632 (2014).

Bers, D. M. Cardiac excitationcontraction coupling. Nature 415, 198205 (2002).

Huebsch, N. et al. Miniaturized iPS-cell-derived cardiac muscles for physiologically relevant drug response analyses. Sci. Rep. 6, 24726 (2016).

Tulloch, N. L. et al. Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ. Res. 109, 4759 (2011).

Ma, J. et al. High purity human-induced pluripotent stem cell-derived cardiomyocytes: electrophysiological properties of action potentials and ionic currents. Am. J. Physiol. Heart Circ. Physiol. 301, H2006H2017 (2011).

Morikawa, K., Song, L., Ronaldson-Bouchard, K., Vunjak-Novakovic, G. & Yazawa, M. Electrophysiological recordings of cardiomyocytes isolated from engineered human cardiac tissues derived from pluripotent stem cells.Protoc. Exch. https://doi.org/10.1038/protex.2018.030 (2018).

Read the rest here:
Advanced maturation of human cardiac tissue grown from ...

To Read More: Advanced maturation of human cardiac tissue grown from …
categoriaCardiac Stem Cells commentoComments Off on Advanced maturation of human cardiac tissue grown from … | dataApril 4th, 2019
Read All

Page 21234..1020..»