Page 36«..1020..35363738..»

Anti-Abortion Activists Are Doing Their Own Ice Bucket Challenges

By raymumme

Because the ALS Association supports stem-cell research.

The Ice Bucket Challenge has been the biggest viral-charity sensation of the year, and maybe ever reaching its cold, wet arms all the way to George W. Bush and Anna Wintour, and raising millions of dollars for ALS research along with providing an immaculate blooper reel.

But one group is not pleased by all your Facebook videos: anti-abortion activists, who are mad that the ALS Association gives money to a group that supports stem-cell research.

"Attention pro-lifers: be careful where you send your ALS Ice Bucket Challenge donation," blared a headline on LifeNews.com earlier this week. The article explained that the ALS Association, one of the charities receiving ice-bucket donations, gave $500,000 last year to the Northeast ALS Consortium, which in turn had been affiliated with a clinical trial that used "stem cells ... engineered from the spinal cord of a single fetus electively aborted after eight weeks of gestation. The tissue was obtained with the mothers consent."

"Of course the fetus, from whom the 'tissue' was taken, did not 'give consent,'" LifeNews.com wrote. "So if you give to the ALS Association your money may end up supporting clinical trials that use aborted fetal cells."

Following the report, the Cincinnati Archdiocese warned Catholic school principals not to send donations to the ALS Association, andsome anti-abortion activists have begun making their own "pro-life Ice Bucket Challenge" videos.

CBN News, the Christian TV channel that broadcasts Pat Robertson's 700 Club, put a video of its Ice Bucket Challenge on Facebook, but not without informing its audience that the donations from the challenge would go to "an organization that does not support or use embryonic stem cell research."

Meanwhile, a 2013 FDA-approved study using human stem cells resulted in slowing the progression of ALS to an "extraordinary" degree.

See the original post here:
Anti-Abortion Activists Are Doing Their Own Ice Bucket Challenges

To Read More: Anti-Abortion Activists Are Doing Their Own Ice Bucket Challenges
categoriaSpinal Cord Stem Cells commentoComments Off on Anti-Abortion Activists Are Doing Their Own Ice Bucket Challenges | dataAugust 22nd, 2014
Read All

UCSD Looking For Spinal Cord Injury Patients To Test Stem Cell Treatment

By daniellenierenberg

The UC San Diego Health System put out a call Monday for eight spinal cord injury patients to take part in a five-year test of the safety of a new treatment involving neural stem cells.

The researchers are looking for people who suffered an injury to the middle or lower levels of the spine's thoracic vertebrae between one and two years ago. According to UCSD, the injury must be between the seventh and 12th thoracic vertebrae.

"The goal of this study is to evaluate the safety of transplanting neural stem cells into the spine for what one day could be a treatment for spinal cord injuries," said Dr. Joseph Ciacci, the study's principal investigator and a neurosurgeon at UC San Diego Health System. "The study's immediate goal, however, is to determine whether injecting these neural stem cells into the spine of patients with spinal cord injury is safe."

The doctors also want to know how long the transplanted stem cells will last, and whether drugs designed to prevent rejection by the immune system are effective, according to UCSD Health.

The researchers will also look for possible changes in motor and sensory function, bowel and bladder function, and pain levels.

The stem cells were tested in laboratory rats by Ciacci and Dr. Martin Marsala, of the UC San Diego School of Medicine. They detected signs of improved motor function with minimal side effects. The cells have also been tested for safety in human patients with amyotrophic lateral sclerosis commonly known as ALS or Lou Gehrig's Disease.

UCSD cautioned prospective test subjects that since human tests are just beginning, unforeseen risks, complications or unpredictable outcomes are possible.

The clinical trial at UC San Diego Health System is funded by Neuralstem Inc. and was launched and supported by the UC San Diego Sanford Stem Cell Clinical Center. The center was recently created to "advance leading-edge stem cell medicine and science, protect and counsel patients, and accelerate innovative stem cell research into patient diagnostics and therapy," according to UCSD.

Read this article:
UCSD Looking For Spinal Cord Injury Patients To Test Stem Cell Treatment

To Read More: UCSD Looking For Spinal Cord Injury Patients To Test Stem Cell Treatment
categoriaSpinal Cord Stem Cells commentoComments Off on UCSD Looking For Spinal Cord Injury Patients To Test Stem Cell Treatment | dataAugust 12th, 2014
Read All

UCSD test calls for spinal cord injury patients

By NEVAGiles23

SAN DIEGO (CNS) - The UC San Diego Health System put out a call Monday for eight spinal cord injury patients to take part in a five-year test of the safety of a new treatment involving neural stem cells.

The researchers are looking for people who suffered an injury to the middle or lower levels of the spine's thoracic vertebrae between one and two years ago. According to UCSD, the injury must be between the seventh and 12th thoracic vertebrae.

"The goal of this study is to evaluate the safety of transplanting neural stem cells into the spine for what one day could be a treatment for spinal cord injuries," said Dr. Joseph Ciacci, the study's principal investigator and a neurosurgeon at UC San Diego Health System. "The study's immediate goal, however, is to determine whether injecting these neural stem cells into the spine of patients with spinal cord injury is safe."

The doctors also want to know how long the transplanted stem cells will last, and whether drugs designed to prevent rejection by the immune system are effective, according to UCSD Health.

The researchers will also look for possible changes in motor and sensory function, bowel and bladder function, and pain levels.

The stem cells were tested in laboratory rats by Ciacci and Dr. Martin Marsala, of the UC San Diego School of Medicine. They detected signs of improved motor function with minimal side effects. The cells have also been tested for safety in human patients with amyotrophic lateral sclerosis - commonly known as ALS or Lou Gehrig's Disease.

UCSD cautioned prospective test subjects that since human tests are just beginning, unforeseen risks, complications or unpredictable outcomes are possible.

The clinical trial at UC San Diego Health System is funded by Neuralstem Inc. and was launched and supported by the UC San Diego Sanford Stem Cell Clinical Center. The center was recently created to "advance leading-edge stem cell medicine and science, protect and counsel patients, and accelerate innovative stem cell research into patient diagnostics and therapy," according to UCSD.

The rest is here:
UCSD test calls for spinal cord injury patients

To Read More: UCSD test calls for spinal cord injury patients
categoriaSpinal Cord Stem Cells commentoComments Off on UCSD test calls for spinal cord injury patients | dataAugust 12th, 2014
Read All

Spinal injury patients needed for stem cell treatment study

By LizaAVILA

SAN DIEGO The UC San Diego Health System put out a call Monday for eight spinal cord injury patients to take part in a five-year test of the safety of a new treatment involving neural stem cells.

The researchers are looking for people who suffered an injury to the middle or lower levels of the spines thoracic vertebrae between one and two years ago. According to UCSD, the injury must be between the seventh and 12th thoracic vertebrae.

The goal of this study is to evaluate the safety of transplanting neural stem cells into the spine for what one day could be a treatment for spinal cord injuries, said Dr. Joseph Ciacci, the studys principal investigator and a neurosurgeon at UC San Diego Health System. The studys immediate goal, however, is to determine whetherinjecting these neural stem cells into the spine of patients with spinal cord injury is safe.

The doctors also want to know how long the transplanted stem cells will last, and whether drugs designed to prevent rejection by the immune system are effective, according to UCSD Health.

The researchers will also look for possible changes in motor and sensory function, bowel and bladder function, and pain levels.

The stem cells were tested in laboratory rats by Ciacci and Dr. Martin Marsala, of the UC San Diego School of Medicine. They detected signs of improved motor function with minimal side effects. The cells have also been tested for safety in human patients with amyotrophic lateral sclerosis commonly known as ALS or Lou Gehrigs Disease.

UCSD cautioned prospective test subjects that since human tests are just beginning, unforeseen risks, complications or unpredictable outcomes are possible.

The clinical trial at UC San Diego Health System is funded by Neuralstem Inc. and was launched and supported by the UC San Diego Sanford Stem Cell Clinical Center. The center was recently created to advance leading-edge stem cell medicine and science, protect and counsel patients, and accelerate innovative stem cell research into patient diagnostics and therapy, according to UCSD.

Visit link:
Spinal injury patients needed for stem cell treatment study

To Read More: Spinal injury patients needed for stem cell treatment study
categoriaSpinal Cord Stem Cells commentoComments Off on Spinal injury patients needed for stem cell treatment study | dataAugust 12th, 2014
Read All

Scientists grow links between spinal cord and brain for first time

By NEVAGiles23

U.S. scientists have regrown spinal cord neurons from a patients own cells They implanted the cells in injured rats aiming to reverse paralysis Found neurons caused animals' nervous system to rewire the spinal cord Connections extended into rats' limbs but they couldn't walk again Experiment offers hope to paralysed people as scientists get closer to cure But expert warns it could be months or years before human trials

By Sarah Griffiths

Published: 05:26 EST, 8 August 2014 | Updated: 07:56 EST, 8 August 2014

207 shares

15

View comments

Spinal injury victims left paralysed have been offered new hope of walking again thanks to a breakthrough in stem cell science.

U.S. scientists have regrown spinal cord neurons from a patients own cells for the first time.

Implanting the cells in rats, they found that the neurons caused the animals nervous systems to rewire the spinal cord and brain.

Scroll down for video

Read more here:
Scientists grow links between spinal cord and brain for first time

To Read More: Scientists grow links between spinal cord and brain for first time
categoriaSpinal Cord Stem Cells commentoComments Off on Scientists grow links between spinal cord and brain for first time | dataAugust 9th, 2014
Read All

Dramatic growth of grafted stem cells in rat spinal cord

By Dr. Matthew Watson

Building upon previous research, scientists at the University of California, San Diego School of Medicine and Veteran's Affairs San Diego Healthcare System report that neurons derived from human induced pluripotent stem cells (iPSC) and grafted into rats after a spinal cord injury produced cells with tens of thousands of axons extending virtually the entire length of the animals' central nervous system.

Writing in the August 7 early online edition of Neuron, lead scientist Paul Lu, PhD, of the UC San Diego Department of Neurosciences and colleagues said the human iPSC-derived axons extended through the white matter of the injury sites, frequently penetrating adjacent gray matter to form synapses with rat neurons. Similarly, rat motor axons pierced the human iPSC grafts to form their own synapses.

The iPSCs used were developed from a healthy 86-year-old human male.

"These findings indicate that intrinsic neuronal mechanisms readily overcome the barriers created by a spinal cord injury to extend many axons over very long distances, and that these capabilities persist even in neurons reprogrammed from very aged human cells," said senior author Mark Tuszynski, MD, PhD, professor of Neurosciences and director of the UC San Diego Center for Neural Repair.

For several years, Tuszynski and colleagues have been steadily chipping away at the notion that a spinal cord injury necessarily results in permanent dysfunction and paralysis. Earlier work has shown that grafted stem cells reprogrammed to become neurons can, in fact, form new, functional circuits across an injury site, with the treated animals experiencing some restored ability to move affected limbs. The new findings underscore the potential of iPSC-based therapy and suggest a host of new studies and questions to be asked, such as whether axons can be guided and how will they develop, function and mature over longer periods of time.

While neural stem cell therapies are already advancing to clinical trials, this research raises cautionary notes about moving to human therapy too quickly, said Tuszynski.

"The enormous outgrowth of axons to many regions of the spinal cord and even deeply into the brain raises questions of possible harmful side effects if axons are mistargeted. We also need to learn if the new connections formed by axons are stable over time, and if implanted human neural stem cells are maturing on a human time frame -- months to years -- or more rapidly. If maturity is reached on a human time frame, it could take months to years to observe functional benefits or problems in human clinical trials."

In the latest work, Lu, Tuszynski and colleagues converted skin cells from a healthy 86-year-old man into iPSCs, which possess the ability to become almost any kind of cell. The iPSCs were then reprogrammed to become neurons in collaboration with the laboratory of Larry Goldstein, PhD, director of the UC San Diego Sanford Stem Cell Clinical Center. The new human neurons were subsequently embedded in a matrix containing growth factors and grafted into two-week-old spinal cord injuries in rats.

Three months later, researchers examined the post-transplantation injury sites. They found biomarkers indicating the presence of mature neurons and extensive axonal growth across long distances in the rats' spinal cords, even extending into the brain. The axons traversed wound tissues to penetrate and connect with existing rat neurons. Similarly, rat neurons extended axons into the grafted material and cells. The transplants produced no detectable tumors.

While numerous connections were formed between the implanted human cells and rat cells, functional recovery was not found. However, Lu noted that tests assessed the rats' skilled use of the hand. Simpler assays of leg movement could still show benefit. Also, several iPSC grafts contained scars that may have blocked beneficial effects of new connections. Continuing research seeks to optimize transplantation methods to eliminate scar formation.

Read the original:
Dramatic growth of grafted stem cells in rat spinal cord

To Read More: Dramatic growth of grafted stem cells in rat spinal cord
categoriaSpinal Cord Stem Cells commentoComments Off on Dramatic growth of grafted stem cells in rat spinal cord | dataAugust 8th, 2014
Read All

Dramatic growth of grafted stem cells in rat spinal cord injuries

By NEVAGiles23

PUBLIC RELEASE DATE:

7-Aug-2014

Contact: Jackie Carr jcarr@ucsd.edu 619-543-6163 University of California - San Diego

Building upon previous research, scientists at the University of California, San Diego School of Medicine and Veteran's Affairs San Diego Healthcare System report that neurons derived from human induced pluripotent stem cells (iPSC) and grafted into rats after a spinal cord injury produced cells with tens of thousands of axons extending virtually the entire length of the animals' central nervous system.

Writing in the August 7 early online edition of Neuron, lead scientist Paul Lu, PhD, of the UC San Diego Department of Neurosciences and colleagues said the human iPSC-derived axons extended through the white matter of the injury sites, frequently penetrating adjacent gray matter to form synapses with rat neurons. Similarly, rat motor axons pierced the human iPSC grafts to form their own synapses.

The iPSCs used were developed from a healthy 86-year-old human male.

"These findings indicate that intrinsic neuronal mechanisms readily overcome the barriers created by a spinal cord injury to extend many axons over very long distances, and that these capabilities persist even in neurons reprogrammed from very aged human cells," said senior author Mark Tuszynski, MD, PhD, professor of Neurosciences and director of the UC San Diego Center for Neural Repair.

For several years, Tuszynski and colleagues have been steadily chipping away at the notion that a spinal cord injury necessarily results in permanent dysfunction and paralysis. Earlier work has shown that grafted stem cells reprogrammed to become neurons can, in fact, form new, functional circuits across an injury site, with the treated animals experiencing some restored ability to move affected limbs. The new findings underscore the potential of iPSC-based therapy and suggest a host of new studies and questions to be asked, such as whether axons can be guided and how will they develop, function and mature over longer periods of time.

While neural stem cell therapies are already advancing to clinical trials, this research raises cautionary notes about moving to human therapy too quickly, said Tuszynski.

"The enormous outgrowth of axons to many regions of the spinal cord and even deeply into the brain raises questions of possible harmful side effects if axons are mistargeted. We also need to learn if the new connections formed by axons are stable over time, and if implanted human neural stem cells are maturing on a human time frame months to years or more rapidly. If maturity is reached on a human time frame, it could take months to years to observe functional benefits or problems in human clinical trials."

Go here to read the rest:
Dramatic growth of grafted stem cells in rat spinal cord injuries

To Read More: Dramatic growth of grafted stem cells in rat spinal cord injuries
categoriaSpinal Cord Stem Cells commentoComments Off on Dramatic growth of grafted stem cells in rat spinal cord injuries | dataAugust 7th, 2014
Read All

Transplanting neural progenitors to build a neuronal relay across the injured spinal cord

By raymumme

PUBLIC RELEASE DATE:

5-Aug-2014

Contact: Meng Zhao eic@nrren.org 86-138-049-98773 Neural Regeneration Research

Cellular transplantation for repair of spinal cord injury is a promising therapeutic strategy that includes the use of a variety of neural and non-neural cells isolated or derived from embryonic and adult tissue as well as embryonic stem cells and induced pluripotent stem cells. In particular, transplants of neural progenitor cells (NPCs) have been shown to limit secondary injury and scar formation and create a permissive environment in the injured spinal cord through the provision of neurotrophic molecules and growth supporting matrices that promote growth of injured host axons. Importantly, transplants of NPC are unique in their potential to replace lost neural cells including neurons, astrocytes, and oligodendrocytes critical for reconstruction of the normal microenvironment of the spinal cord and restoration of connectivity and function. The model that Prof. Itzhak Fischer comes from Drexel University in USA has proposed focuses on the formation of a functional relay to reconnect the injured spinal cord and requires the formation of two synaptic connections, one between host axons and graft-derived neurons, and the other between graft axons and target sites within the host (Figure 1). The design of such a relay requires specific steps that assure: 1) graft survival and generation of neurons, 2) axon growth into and out of the graft by host axons and graft-derived neurons, respectively and 3) formation of physiologically active synaptic connections and restoration of function. The relevant study has been published in the Neural Regeneration Research (Vol. 9, No. 12, 2014).

###

Article: " Transplanting neural progenitors to build a neuronal relay across the injured spinal cord." by Christopher Haas, Itzhak Fischer (Drexel University College of Medicine, Department of Neurobiology & Anatomy, Philadelphia, PA, USA)

Haas C, Fischer I. Transplanting neural progenitors to build a neuronal relay across the injured spinal cord. Neural Regen Res. 2014;9(12): 1173-1176.

Contact: Meng Zhao eic@nrren.org 86-138-049-98773 Neural Regeneration Research http://www.nrronline.org/

AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.

Read the original post:
Transplanting neural progenitors to build a neuronal relay across the injured spinal cord

To Read More: Transplanting neural progenitors to build a neuronal relay across the injured spinal cord
categoriaSpinal Cord Stem Cells commentoComments Off on Transplanting neural progenitors to build a neuronal relay across the injured spinal cord | dataAugust 7th, 2014
Read All

Umbilical-cord stem cells valuable, but usually wasted

By LizaAVILA

The decision to donate her baby's cord blood was "a no-brainer," said Michael's mother, Megan Kuttler of West Conshohocken. "If it could help somebody else, of course I wanted to."

Most expectant parents in the Philadelphia region do not have that opportunity.

"Women want to donate, but we can't afford to collect it," said Dennis Todd, CEO at Community Blood Services in Montvale, N.J. The agency - one of only 21 public cord-blood banks in the nation that provide units for transplants - receives an average of five calls or e-mails a week from expectant parents asking how they can contribute their baby's cord blood for the greater good.

The answer is almost always, "Sorry, but you can't."

"It's tough to do a good deed," said Frances Verter, director of the nonprofit Parent's Guide to Cord Blood Foundation.

Unless a woman delivers at one of the relatively few hospitals affiliated with a public cord-blood bank, her options are limited.

The Carolinas Cord Blood Bank, part of Duke University, is one of the few public banks that will send collection kits to qualified donors.

Only the most motivated women donate this way.

To do it, the mother has to fill out forms, request a kit, and ask the person who delivers her baby to take an online certification course and collect six vials of maternal blood as well as the baby's cord blood. Then the mother has to ship the package within 48 hours to the lab.

What is surprising is that so many are willing to do it. Duke can't fill all the requests it receives.

See the rest here:
Umbilical-cord stem cells valuable, but usually wasted

To Read More: Umbilical-cord stem cells valuable, but usually wasted
categoriaSpinal Cord Stem Cells commentoComments Off on Umbilical-cord stem cells valuable, but usually wasted | dataAugust 6th, 2014
Read All

"Stem Cell Therapy for Spinal Cord Injuries" by Priya …

By JoanneRUSSELL25

Working Paper

4-2014

Stem cell-based therapies are an emerging branch of medicine with the purpose of restoring tissue function for patients with serious injuries, such as a spinal cord injury. As a result, scientists and engineers are increasing research efforts in the field of regenerative medicine. Due to the delicate nature of stem cells, producing the large quantity required for a successful therapy has proved challenging. In recent years, research has shown the potential of stem cell-based therapies, and thus there is a need for the commercialization of these treatments. The proposed facility targets the demand for spinal cord injury treatments and can support production for both clinical trials and a commercial release. Bioreactors designed specifically for the culture and growth of stem cells have flexibility in their ability to support different stem cell lines for various therapies. Small reactors in parallel can easily adapt to changes in production size. This process also takes advantage of the best options currently available for purification and preservation to maximize the product yield.

Due to the strict regulations set in place by the FDA and lack of adequate funding, there is an untapped market for stem cell therapies for spinal cord injuries. Approximately 250,000 people in the United States suffer from spinal cord injuries, varying in severity, and this patient base increases at a rate of 12,000 new injuries every year (Spinal Cord Injury Facts and Figures, 2009). Future markets include expansion into Europe and Asia.

There are two steps to this proposal: the upstream process and the downstream process. The upstream process includes the scale-up, differentiation, and purification of human embryonic stem cells; the downstream process consists of the scale-up of neurons for injection. The upstream process will be built initially and yield enough cells for clinical trials, without incurring the capital costs of building the entire plant. Upon success of the clinical trials, the downstream process will be built for maximum production. The profitability of this proposal is based on running 26 batches a year at 1.02x1010 cells per batch or 2.66x1011 cells per year. By targeting 5,000 patients, two percent of the current market, and charging $45,000 per dose, a profitable profile can be created. Assuming 50% production capacity the first year and a ten-year plant life, the ROI, NPV, and IRR of the proposal are 226.09%, $961,892,600, and 242.81% respectively. Using a 50% production capacity allows for higher profit margins upon expansion. The proposed plan will meet the need of this growing market.

Date Posted: 25 July 2014

Read more:
"Stem Cell Therapy for Spinal Cord Injuries" by Priya ...

To Read More: "Stem Cell Therapy for Spinal Cord Injuries" by Priya …
categoriaSpinal Cord Stem Cells commentoComments Off on "Stem Cell Therapy for Spinal Cord Injuries" by Priya … | dataJuly 30th, 2014
Read All

3-D-printed tissues advance stem cell research

By Sykes24Tracey

Tissue engineering and vascular biology expert Guohao Dai, assistant professor in the Department of Biomedical Engineering at Rensselaer Polytechnic Institute, recently won a Faculty Early Career Development Award (CAREER) from the National Science Foundation (NSF).

Dai will use the five-year, $440,000 grant to advance his research into bio-fabricating human tissues with 3-D cell printing technology. Adult neural stem cells are known to hold a great potential for treating disease and damage to the nervous system. However, these cells are both rare and difficult to use in a laboratory setting. The cells lose their potency quickly upon being removed from their native environment, making it difficult to study them.

With his CAREER Award, Dai seeks to design and develop a new way of using 3-D cell printing technology to create a "vascular niche" that replicates the native environment of adult neural stem cells. With the ability to prolong the potency of the cells and precisely control the parameters and components of its vascular niche, researchers would be better positioned to study the cells and their role in treating treat spinal cord injury and neurodegenerative diseases.

"Adult neural stem cells hold so much promise for treating injury and disease, but they are extremely difficult to work with," Dai said. "We believe that we can apply 3-D tissue printing technology to create a vascular niche that will prolong the life of the cells and, in turn, enable new opportunities for studying how they may be used to treat injury and fight disease."

The CAREER Award is given to faculty members at the beginning of their academic careers and is one of NSF's most competitive awards, placing emphasis on high-quality research and novel education initiatives. Dai will collaborate on his CAREER project with two stem cells experts, Rensselaer Associate Professor of Biomedical Engineering Deanna Thompson and Neural Stem Cell Initiative Scientific Director Sally Temple.

Most laboratory cell cultures are 2-D. This is significantly different from the human body, where most cells are in a 3-D environment. A major challenge in creating and studying 3-D tissues is the diffusion limit in the tissues, which quickly lose potency or die without a flow of blood to provide oxygen and nutrients.

To help overcome this challenge, Dai and his collaborators have spent years developing a 3-D tissue printer -- both the hardware and the software. The unique device prints biological tissue by carefully depositing cells, hydrogels, and other materials one layer at a time. Using this platform, Dai developed the technology to create perfused vascular channels, which provide nutrients and oxygen to the printed tissues.

"Blood vessels run throughout almost every part of our bodies, bringing the oxygen and nutrients that allow our cells to survive. The same is true of 3-D cell cultures. They need a vascular system in order to survive," Dai said. "Our device can print 3-D tissues with small channels that function as blood vessels. This enables us to print cells with extracellular matrices that closely replicate those found within the body."

Dai's research team used the 3-D tissue printing technology to help study how the functions of the vascular endothelium -- a thin layer of cells that line entire circulatory system -- are affected by environmental factors such as interactions with blood and smooth muscle cells. A dysfunctional endothelium is known to be a contributor to many vascular diseases including inflammation, thrombosis, and atherosclerosis.

With his CAREER Award, Dai is applying his expertise and unique 3-D tissue printing technology to replicate the native environment of adult neural stem cells. If successful, the project could significantly expand the potency and life span of the cells in laboratory settings, and lead to a better understanding of how this extracellular environment influences the behavior of the cells.

See the original post here:
3-D-printed tissues advance stem cell research

To Read More: 3-D-printed tissues advance stem cell research
categoriaSpinal Cord Stem Cells commentoComments Off on 3-D-printed tissues advance stem cell research | dataJuly 23rd, 2014
Read All

Stem Cells: Promises and Reality

By Sykes24Tracey

Renowned Israeli stem-cell researcher in Fairfield Aug. 6

By Cindy Mindell

Dr. Yaqub Hanna

A leading Israeli scientist who has pioneered groundbreaking stem-cell reprogamming research will discuss his work on Wednesday, Aug. 6 at Jewish Senior Services in Fairfield.

Together with a team of researchers at the Weizmann Institute of Science Department of Molecular Genetics in Rehovot, Israel, Dr. Jacob (Yaqub) Hanna has overcome a major roadblock in the use of human stem cells for medical purposes. Funded by a grant from the Israel Cancer Research Fund, their pioneering breakthrough was recently published in the peer-reviewed international science journal, Nature.

Its not only Hannas work that is note-worthy: the award-winning research scientist is a Palestinian living in Israel, a native of Kafr Rama in the Galilee and the son of two medical doctors.

Hanna earned a BS in medical sciences summa cum laude in 2001, an MS in microbiology and immunology in 2003, and a PhD-MD in immunology summa cum laude in 2007, all from the Hebrew University of Jerusalem, where he was among the top five percent of all Israeli medical-school graduates. After completing his PhD, Hanna decided to abandon clinical medicine and focus on research, and spent four years conducting postdoctoral research in the lab, part of the Whitehead Institute for Biomedical Research at MIT.

During his postdoctoral work, Hanna was the first non-American to receive a prestigious Novartis Fellowship from the Helen Hay Whitney Foundation. He joined the Weizmann Institute Department of Molecular Genetics upon his return to Israel in 2011. That year, he received the Clore Prize for distinguished new faculty at the Weizmann Institute and was accepted as a Yigal Alon Program Scholar for junior faculty in Israel. He is also the recipient of the Wolf Foundations Krill Prize for Excellence in Scientific Research and the 2013 Rappaport Prize in Biomedical Research.

Hanna has had to find a way to navigate between his personal and professional identities.

More:
Stem Cells: Promises and Reality

To Read More: Stem Cells: Promises and Reality
categoriaSpinal Cord Stem Cells commentoComments Off on Stem Cells: Promises and Reality | dataJuly 23rd, 2014
Read All

Using a novel scaffold to repair spinal cord injury

By Dr. Matthew Watson

PUBLIC RELEASE DATE:

18-Jul-2014

Contact: Meng Zhao eic@nrren.org 86-138-049-98773 Neural Regeneration Research

Dr. Ning Yuan, Beijing Jishuitan Hospital, China and his colleagues, developed a novel neural stem cell scaffold that has two layers: the inner loose layer and the outer compact layer. The loose layer was infiltrated with a large amount of neural stem cells before it was transplanted in vivo. Thus a plenty of neural stem cells can be provided at the target spinal cord site. The loose layer was adhered to the injured side and the compact layer was placed against the lateral side. The compact layer has very small holes, so it can prevent ingrowth of adjacent scar tissue. It can also prevent the loss of inner neural stem cells and the neural growth factors secreted by the differentiated neural stem cells. Thus a good microenvironment forms to help spinal cord injury repair. Yuan Ning and colleagues found that transplantation of neural stem cells in a double-layer collagen membrane with unequal pore sizes is an effective therapeutic strategy to repair an injured spinal cord in rats. Related results were published in Neural Regeneration Research (Vol. 9, No. 10, 2014).

###

Article: " Neural stem cell transplantation in a double-layer collagen membrane with unequal pore sizes for spinal cord injury repair," by Ning Yuan1, Wei Tian1, Lei Sun2, Runying Yuan2, Jianfeng Tao2, Dafu Chen2 (1 Department of Spine, Beijing Jishuitan Hospital, Beijing, China; 2 Beijing Institute of Orthopedics and Traumatology, Beijing, China) Yuan N, Tian W, Sun L, Yuan RY, Tao JF, Chen DF. Neural stem cell transplantation in a double-layer collagen membrane with unequal pore sizes for spinal cord injury repair. Neural Regen Res. 2014;9(10):1014-1019.

Contact: Meng Zhao eic@nrren.org 86-138-049-98773 Neural Regeneration Research http://www.nrronline.org/

AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.

Read more from the original source:
Using a novel scaffold to repair spinal cord injury

To Read More: Using a novel scaffold to repair spinal cord injury
categoriaSpinal Cord Stem Cells commentoComments Off on Using a novel scaffold to repair spinal cord injury | dataJuly 22nd, 2014
Read All

ViaCyte asks to start diabetes stem cell therapy

By raymumme

Paul Laikind, CEO of ViaCyte, which is making a treatment for diabetes from human embryonic stem cells.

In an historic announcement for the stem cell field, San Diego's ViaCyte said Thursday it has applied to start human clinical trials of its treatment for Type 1 diabetes.

ViaCyte grows replacement insulin-producing cells from human embryonic stem cells. The cells are packaged while maturing in a semi-permeable device and implanted. In animal trials, the cells produce insulin, relieving diabetes.

Now the company proposes to take what could be a cure for diabetes into people. ViaCyte has asked to begin a Phase 1/2 clinical trial, which would assess both safety and efficacy of its product. ViaCyte is targeting Type 1 diabetes, in which the insulin-producing cells are destroyed. Patients require multiple injections of insulin daily to survive.

The announcement is good news for California's stem cell agency, the California Institute for Regenerative Medicine. The agency has awarded nearly $39 million to ViaCyte to ready its device for human use.

Paul Laikind, ViaCytes chief executive, said if all goes smoothly, the first patients will be treated in August or September. Based on animal studies, it will take a few months to see results, and just a few patients will be treated at first.

CIRM itself, funded with $3 billion in state bond funds, has come under pressure to show results from its work. The money is projected to run out in 2017. Some supporters of the agency have proposed launching a new initiative to continue funding.

"This is a great example of how the investment that the voters made in creating CIRM is beginning to move from labs to patients," said Joe Panetta, a member of CIRM's governing board and chief executive of Biocom, the San Diego-based life science trade group. ""There are at least a dozen other clinical trials in progress. This is good for CIRM and San Diego."

Robert N. Klein, former chairman of CIRM's board, who has a 24-year-old son with Type 1 diabetes, praised the announcement.

"This is an exciting day for the father of any son or daughter who has Type 1 diabetes," Klein said. "This is a very critical trial that we're optimistic about. ViaCyte has a team that is extremely well-qualified to deal with complications and setbacks that often come up. They have extreme quality integration of their clinical and scientific groups, so they can respond well to modifications they may have to make along the way to accomplish all of their goals."

See more here:
ViaCyte asks to start diabetes stem cell therapy

To Read More: ViaCyte asks to start diabetes stem cell therapy
categoriaSpinal Cord Stem Cells commentoComments Off on ViaCyte asks to start diabetes stem cell therapy | dataJuly 17th, 2014
Read All

Large Study of Stem Cells for Autism Draws Criticism

By NEVAGiles23

Experts say a $15 million trial to explore stem cells from cord blood for treating autism is premature.

Cold comfort: Researchers are trying to find out whether stem cells taken from frozen cord blood can improve autism symptoms. Credit:Tbsdy lives via Wikimedia Commons

A team at Duke University in Durham, North Carolina, is set to launch a $40 million clinical trial to explore stem cells from umbilical cord blood as a treatment for autism. But experts caution that the trial is premature.

A $15 million grant from the Marcus Foundation, a philanthropic funding organization based in Atlanta, will bankroll the first two years of the five-year trial, which also plans to test stem cell therapy for stroke and cerebral palsy. The autism arm of the trial aims to enroll 390 children and adults.

Joanne Kurtzberg, the trials lead investigator, has extensive experience studying the effectiveness of cord blood transplants for treating various disorders, such as leukemia and sickle cell anemia. Most recently, she showed that cord blood transplants can improve the odds of survival for babies deprived of oxygen at birth. A randomized trial of the approach for this condition is underway.

To really sort out if [stem] cells can treat these children, we need to do randomized, controlled trials that are well designed and well controlled, and thats what we intend to do, says Kurtzberg, professor of pediatrics and pathology at Duke. We firmly believe we should be moving ahead in the clinic.

Early animal studies have shown that stem cells isolated from umbilical cord blood can stimulate cells in the spinal cord to regrow their myelin layers, and in doing so help restore connections with surrounding cells. Autism is thought to result from impaired connectivity in the brain. Because of this, some groups of children with the disorder may benefit from a stem cell transplant, Kurtzberg says.

But others are skeptical of the approach. Autism is a complex disorder with many possible causes. Also, its unclear how stem cells derived from cord blood can improve connections in the brain. Given these important caveats, its too soon to conduct a test of this scale and investment, some experts say.

Its probably premature to run large trials without evidence that they have a therapeutic effect that [we] understand, cautions Arnold Kriegstein, director of the Broad Center of Regenerative Medicine and Stem Cell Research at the University of California, San Francisco.

Pilot trials In June, Kurtzberg launched the first phase of the trial, with 20 children between 2 and 5 years of age. Her team plans to infuse the children with a single dose of their own cord blood cells, banked at birth and preserved by freezing.

Originally posted here:
Large Study of Stem Cells for Autism Draws Criticism

To Read More: Large Study of Stem Cells for Autism Draws Criticism
categoriaSpinal Cord Stem Cells commentoComments Off on Large Study of Stem Cells for Autism Draws Criticism | dataJuly 16th, 2014
Read All

Does your dog have 'domestication syndrome'? Scientists reveal why pets tend to have baby faces and white patches of fur

By daniellenierenberg

A study led by Humboldt University of Berlin claims that a a group of embryonic stem cells called the neural crest, link traits in tame animals Charles Darwin first noted that domesticated mammals share a strange mixture of characteristics such as floppier ears and white patches of fur The modern scientists' hypothesis hasn't been tested, but is the first to connect several components of the domestication syndrome They think that humans inadvertently selected animals to breed that had mild neural crest deficits, resulting in smaller adrenal glands

By Sarah Griffiths

Published: 10:50 EST, 15 July 2014 | Updated: 11:18 EST, 15 July 2014

85 shares

37

View comments

It is a mystery that has gone unsolved for more than 140 years since Charles Darwin noticed something peculiar about domesticated mammals.

But now scientists think they know why domestic species tend to have certain characteristics that accompany their tameness, such as floppier ears, patches of white fur, and more juvenile faces with smaller jaws.

Geneticists believe that a group of embryonic stem cells called the neural crest, link all these traits, which are seen in many peoples pet cats and dogs.

Domestic science: Scientists think they know why domestic species tend to have certain characteristics that accompany their tameness, such as floppier ears, patches of white fur, and more juvenile faces with smaller jaws (illustrated by this spaniel) - and it's because of a group of embryonic stem cells called the neural crest

See the rest here:
Does your dog have 'domestication syndrome'? Scientists reveal why pets tend to have baby faces and white patches of fur

To Read More: Does your dog have 'domestication syndrome'? Scientists reveal why pets tend to have baby faces and white patches of fur
categoriaSpinal Cord Stem Cells commentoComments Off on Does your dog have 'domestication syndrome'? Scientists reveal why pets tend to have baby faces and white patches of fur | dataJuly 16th, 2014
Read All

Nature retracts STAP stem cell studies after finding more errors

By Dr. Matthew Watson

Following months of controversy, editors at the scientific journal Nature have retracted two high-profile studies that purported to demonstrate a quick and simple way of making flexible stem cells without destroying embryos or tinkering with DNA.

Several critical errors have been found in our Article and Letter, Nature wrote in a retraction statement issued Wednesday. We apologize for the mistakes.

------------

FOR THE RECORD

July 3, 7:53 a.m.: An article in the July 3 A section about two controversial stem cell studies that were retracted had stated that the decision was made by editors at the journal Nature. The retraction decision was made by the authors of the studies. Additionally, the comments in the retraction statement should have been attributed to the authors of the studies, not to the journal editors.

------------

The two reports described a new way of reprogramming blood cells so that they would revert to a developmentally primitive state and be capable of growing into any type of cell. Researchers from Japan and the United States said they accomplished this feat by soaking the cells in an acid bath for 30 minutes and then spinning them in a centrifuge for 5 minutes.

The resulting stem cells dubbed stimulus triggered acquisition of pluripotency, or STAP had the hallmarks of embryonic stem cells. When the researchers injected them into developing mice, the STAP stem cells grew into heart, bone and brain cells, among others, the research team reported in January.

Scientists in the field of regenerative medicine were giddy at the prospect of using the cells to grow new insulin-producing cells for people with Type 1 diabetes or central nervous system cells for people with spinal cord injuries, to name a few examples. Since these replacement tissues would be generated from a patients own cells, researchers believed they would not prompt the immune system to attack, eliminating the need for patients to take immune-suppressing drugs.

But it didnt take long for some researchers to suspect that STAP stem cells were too good to be true. Critiques posted online gained more currency when labs began reporting that they werent able to replicate the experiments. Then one of the senior researchers who worked on both of the studies called for the papers to be withdrawn until the results could be independently verified.

Originally posted here:
Nature retracts STAP stem cell studies after finding more errors

To Read More: Nature retracts STAP stem cell studies after finding more errors
categoriaSpinal Cord Stem Cells commentoComments Off on Nature retracts STAP stem cell studies after finding more errors | dataJuly 3rd, 2014
Read All

Nature STAP stem cell studies retracted after more errors found

By Dr. Matthew Watson

Following months of controversy, editors at the scientific journal Nature have retracted two high-profile studies that purported to demonstrate a quick and simple way of making flexible stem cells without destroying embryos or tinkering with DNA.

Several critical errors have been found in our Article and Letter, Nature wrote in a retraction statement issued Wednesday. We apologize for the mistakes.

------------

FOR THE RECORD

July 3, 7:53 a.m.: An article in the July 3 A section about two controversial stem cell studies that were retracted had stated that the decision was made by editors at the journal Nature. The retraction decision was made by the authors of the studies. Additionally, the comments in the retraction statement should have been attributed to the authors of the studies, not to the journal editors.

------------

The two reports described a new way of reprogramming blood cells so that they would revert to a developmentally primitive state and be capable of growing into any type of cell. Researchers from Japan and the United States said they accomplished this feat by soaking the cells in an acid bath for 30 minutes and then spinning them in a centrifuge for 5 minutes.

The resulting stem cells dubbed stimulus triggered acquisition of pluripotency, or STAP had the hallmarks of embryonic stem cells. When the researchers injected them into developing mice, the STAP stem cells grew into heart, bone and brain cells, among others, the research team reported in January.

Scientists in the field of regenerative medicine were giddy at the prospect of using the cells to grow new insulin-producing cells for people with Type 1 diabetes or central nervous system cells for people with spinal cord injuries, to name a few examples. Since these replacement tissues would be generated from a patients own cells, researchers believed they would not prompt the immune system to attack, eliminating the need for patients to take immune-suppressing drugs.

But it didnt take long for some researchers to suspect that STAP stem cells were too good to be true. Critiques posted online gained more currency when labs began reporting that they werent able to replicate the experiments. Then one of the senior researchers who worked on both of the studies called for the papers to be withdrawn until the results could be independently verified.

Read the original:
Nature STAP stem cell studies retracted after more errors found

To Read More: Nature STAP stem cell studies retracted after more errors found
categoriaSpinal Cord Stem Cells commentoComments Off on Nature STAP stem cell studies retracted after more errors found | dataJuly 3rd, 2014
Read All

Paralyzed veteran raises money for therapy center in Tampa

By JoanneRUSSELL25

TAMPA

Twice a week, Gabriela Camargo and her husband, Romulo, get up before dawn to get him dressed, settled in his wheelchair and ready for the two-hour trip to Longwood, near Orlando, for the kind of intense, long-term physical therapy they hope will one day get him walking again.

After Romulo undergoes three hours of guided workouts on advanced exercise machines at Project Walk a therapy center unlike any in the Tampa Bay area, they say they fight the traffic back.

"I-4 is crazy!'' says Gabriela, adding that the couple usually arrives back home in New Tampa about 3:30 p.m.

After about a year of the routine, Gaby, as she's called, decided that she and "Romy'' should open a nonprofit intensive therapy center in Tampa.

"I thought it was a crazy idea,'' said Romy, an Army Special Forces officer who was shot in the neck and paralyzed from the shoulders down during an ambush in Afghanistan in 2008.

But the more he thought about it, the more he liked the plan.

They seem to be on their way, having collected about $216,000 in corporate and individual donations toward the $750,000 they figure they'll need for two years of operating expenses. They hope to open the StayInStep spinal cord injury therapy center in north Tampa in the fall.

Romy, a chief warrant officer 3, remains on active duty until his retirement next spring after 20 years in the service.

In 2011, Dr. Carlos Lima of Portugal, a pioneer in the use of stem cell surgery to stimulate nerve regeneration in spinal cord injury patients, operated on Romy, taking stem cells from tissue inside Romy's nose and transferring them to site of the injury.

Go here to read the rest:
Paralyzed veteran raises money for therapy center in Tampa

To Read More: Paralyzed veteran raises money for therapy center in Tampa
categoriaSpinal Cord Stem Cells commentoComments Off on Paralyzed veteran raises money for therapy center in Tampa | dataJuly 3rd, 2014
Read All

July 4th Marks 75th Anniversary of Lou Gehrigs Farewell Speech

By raymumme

Started by Duska Anastasijevic (@duska) 2 day(s) ago

July 4th Marks 75th Anniversary of Lou Gehrigs Farewell Speech

ROCHESTER, Minn. Seventy-five years ago, on July 4th 1939, baseball legend Lou Gehrig delivered the famous speech bidding farewell to the ballpark and his fans. Two weeks before Gehrig had been diagnosed with amyotrophic lateral sclerosis (ALS)at Mayo Clinicin Rochester, Minnesota. Accompanied by his wife, Eleanor, Lou left Mayo Clinic with the devastating diagnosis on June 20th 1939, a day after his 36th birthday. He died in June two years later, not quite 38 years old, of the rare neurological disease that would come to bear his name.

MULTIMEDIA ALERT: Journalists, the video package and addition b-roll are available in the downloads. To read the video script click here.

ALS is a type of progressive motor neuron disease that typically strikes at middle to later life and causes nerve cells in spinal cord, brain stem and brain to gradually break down and die. These nerve cells are responsible for muscle function so eventually, ALS can affect the ability to control the muscles needed to move, speak, eat and breathe.

While ALS still evades cure and effective treatment, researchers at Mayo Clinic are conducting Phase I clinical trial in the hope that they can guide newly grown stem cells to become protective of neuromuscular function.

We use fat-derived mesenchymal stem cells from the patient's own body. These cells are modified in the laboratory and delivered through a spinal tap into the fluid around the patient's nervous system to promote neuron survival, explains neurologist Anthony Windebank, M.D, deputy director for discovery in the Center for Regenerative Medicine at Mayo Clinic in Rochester. We hope that the growth factors that they are producing will help protect and promote the survival of nerve cells and therefore slow down or arrest the progression of ALS. If we can halt an ALS patient's loss of cells at 20 to 30 percent, that persons function would be well-preserved," says Dr. Windebank.

In the current phase of the FDA-controlled trial, Dr. Windebank and his team are studying the safety and efficacy of the treatment. If injecting ALS patients with stem cells grown from samples of their own fat tissue is found to be safe, the research would move to a Phase II, randomized, double blind, placebo-controlled trial to allow further study of safety and efficacy on a greater number of patients.

The FDA just approved another clinical trial in which Mayo Clinic will take part. The BrainStorm Phase II trial will look into whether stem cells can be used to actually replace the neurons that have been destroyed by ALS.

###

Read the original post:
July 4th Marks 75th Anniversary of Lou Gehrigs Farewell Speech

To Read More: July 4th Marks 75th Anniversary of Lou Gehrigs Farewell Speech
categoriaSpinal Cord Stem Cells commentoComments Off on July 4th Marks 75th Anniversary of Lou Gehrigs Farewell Speech | dataJuly 3rd, 2014
Read All

Page 36«..1020..35363738..»


Copyright :: 2024