Page 18«..10..17181920..»

Some stem cell methods closer to 'gold standard' than others

By daniellenierenberg

PUBLIC RELEASE DATE:

2-Jul-2014

Contact: Kristina Grifantini press@salk.edu Salk Institute

LA JOLLA-Researchers around the world have turned to stem cells, which have the potential to develop into any cell type in the body, for potential regenerative and disease therapeutics.

Now, for the first time, researchers at the Salk Institute, with collaborators from Oregon Health & Science University and the University of California, San Diego, have shown that stem cells created using two different methods are far from identical. The finding could lead to improved avenues for developing stem cell therapies as well as a better understanding of the basic biology of stem cells.

The researchers discovered that stem cells created by moving genetic material from a skin cell into an empty egg cell-rather than coaxing adult cells back to their embryonic state by artificially turning on a small number of genes-more closely resemble human embryonic stem cells, which are considered the gold standard in the field.

"These cells created using eggs' cytoplasm have fewer reprogramming issues, fewer alterations in gene expression levels and are closer to real embryonic stem cells," says co-senior author Joseph R. Ecker, professor and director of Salk's Genomic Analysis Laboratory and co-director of the Center of Excellence for Stem Cell Genomics. The results of the study were published today in Nature.

Human embryonic stem cells (hESCs) are directly pulled from unused embryos discarded from in-vitro fertilization, but ethical and logistical quandaries have restricted their access. In the United States, federal funds have limited the use of hESCs so researchers have turned to other methods to create stem cells. Most commonly, scientists create induced pluripotent stem (iPS) cells by starting with adult cells (often from the skin) and adding a mixture of genes that, when expressed, regress the cells to a pluripotent stem-cell state. Researchers can then coax the new stem cells to develop into cells that resemble those in the brain or in the heart, giving scientists a valuable model for studying human disease in the lab.

Over the past year, a team at OHSU built upon a technique called somatic cell nuclear transfer (the same that is used for cloning an organism, such as Dolly the sheep) to transplant the DNA-containing nucleus of a skin cell into an empty human egg, which then naturally matures into a group of stem cells.

Ecker, holder of the Salk International Council Chair in Genetics, teamed up with Shoukhrat Mitalipov, developer of the new technique and director of the Center for Embryonic Cell and Gene Therapy at OHSU, and UCSD assistant professor Louise Laurent to carry out the first direct comparison of the two approaches. The scientists created four lines of nuclear transfer stem cells all using eggs from a single donor, along with seven lines of iPS cells and two lines of the gold standard hESCs. All cell lines were shown to be able to develop into multiple cell types and had nearly identical DNA content contained within them.

See the original post:
Some stem cell methods closer to 'gold standard' than others

To Read More: Some stem cell methods closer to 'gold standard' than others
categoriaIPS Cell Therapy commentoComments Off on Some stem cell methods closer to 'gold standard' than others | dataJuly 3rd, 2014
Read All

Artificial embryonic stem cells have quality problems: study

By Dr. Matthew Watson

Salk Institute scientist Joseph Ecker holds a flow cell slide used in a genome sequencing machine. Ecker and colleagues compared the genomes of two kinds of artificial embryonic stem cells for a study comparing their quality.

In a setback for hopes of therapy with a promising kind of artificial embryonic stem cells, a study published in the journal Nature has found that these "induced pluripotent stem cells" have serious quality issues.

However, scientists who performed the study, including researchers from the Salk Institute and UC San Diego, say it should be possible to improve the quality of these IPS cells. They say lessons can be learned from studying a newer technique of making human embryonic stem cells through nuclear transfer, the same technology used to create Dolly the cloned sheep.

In addition, the study does not prove that the quality problems will affect therapy with the cells, said scientists who examined the study. That remains to be tested.

The IPS cells are made from skin cells treated with "reprogramming" factors that turn back the clock, so they very closely resemble embryonic stem cells. The hope is that these IPS cells could be differentiated into cells that can repair injuries or relieve diseases. Because they can be made from a patient's own cells, the cells are genetically matched, reducing worries of immune rejection.

In San Diego, scientists led by Jeanne Loring at The Scripps Research Institute have created IPS cells from the skin cells of Parkinson's disease patients, and turned the IPS cells into neurons that produce dopamine. They hope to get approval next year to implant these cells into the patients, relieving symptoms for many years. The project is online under the name Summit4StemCell.org.

A major concern is that IPS cells display abnormal patterns of gene activation and repression. This is controlled by a process called methylation. This process adds chemicals called methyl groups to DNA, but these "epigenetic" changes do not change the underlying DNA sequence. Methylation represses gene function; removing the methyl groups, or demethylation, activates them.

The Nature study was led by Shoukhrat Mitalipov of Oregon Health & Scence University. Mitalipov made headlines last year for applying nuclear transfer to derive human embryonic stem cells, the first time this has been achieved in human cells. These cells can be made to be a near-perfect genetic match to the patient, and their quality closely resembles those of true embryonic stem cells.

"We know that the embryonic stem cells are the gold standard, and we've been always trying to make patient-matched cells that would match the gold standard," Mitalipov said. "And at this point it looks like the NT (nuclear transfer) cells produce exactly those cells that would be best."

Nuclear transfer involves placing a nucleus from a skin cell into an egg cell that has had its nucleus removed. The cell is then stimulated, and starts dividing in the same way a fertilized egg cell divides to form an embryo.

Continue reading here:
Artificial embryonic stem cells have quality problems: study

To Read More: Artificial embryonic stem cells have quality problems: study
categoriaIPS Cell Therapy commentoComments Off on Artificial embryonic stem cells have quality problems: study | dataJuly 3rd, 2014
Read All

Stem cells: Hope on the line

By NEVAGiles23

On a brilliant day in April, tens of thousands of baseball fans stream past Jonathan Thomas's office towards AT&T Park for the first home game of the San Francisco Giants 2014 season. Thomas's standing desk faces away from the window, but the cheering throngs are never far from his mind.

Thomas chairs the board of the California Institute for Regenerative Medicine (CIRM), the US$3-billion agency hailed by scientists around the world for setting a benchmark for stem-cell research funding. But scientists will not be the ones who decide what becomes of CIRM when the cash runs out in 2017. Instead, it will be the orange-and-black-clad masses walking past Thomas's window. And to win their support, Thomas knows that the agency needs to prove that their collective investment has been worthwhile. We need to drive as many projects to the patient as soon as possible, he says.

Californians voted CIRM into existence in 2004, making it the largest funder of stem-cell work in the world. The money the proceeds of bond sales that must be repaid with $3 billion in interest by taxpayers helped to bring 130 scientists to the state, and created several thousand jobs there. It has funded research that led to the publication of more than 1,700 papers, and it has contributed to five early clinical trials.

The institute has navigated a difficult path, however. CIRM had to revamp its structure and practices in response to complaints about inefficiency and potential conflicts of interest. It has also had to adapt its mission to seismic shifts in stem-cell science.

Now, ten years after taking off, the agency is fighting for its future. It has a new president, businessman Randal Mills, who replaces biologist Alan Trounson. Its backers have begun to chart a course for once again reaching out to voters, this time for $5 billion (with another $5 billion in interest) in 2016. And it is under intense pressure to produce results that truly matter to the public.

Whether or not CIRM succeeds, it will serve as a test bed for innovative approaches to funding. It could be a model for moving technologies to patients when conventional funding sources are not interested.

Much of what is celebrated and lamented about CIRM can be traced back to the Palo Alto real-estate developer who conceived of it: Robert Klein. Although officially retired from CIRM he chaired the board from 2004 to 2011 (see 'State of funding') Klein's office is adorned with mementos of the agency: a commemorative shovel from the groundbreaking of a CIRM-funded stem-cell research centre, and a photo of him with former governor Arnold Schwarzenegger at the ribbon-cutting ceremony.

Liz Hafalia/San Francisco Chronicle/Polaris/eyevine

Patient advocates and parents at a 2012 meeting in which US$100 million in CIRM grants were approved.

It was Klein's idea to ask voters to support stem-cell research in 2004, through a ballot measure called Proposition 71. When he succeeded, CIRM instilled a kind of euphoria in stem-cell scientists, who were at the time still reeling from a 2001 decree by then-President George W. Bush that severely limited federal funding for embryonic-stem-cell research. California's commitment removed this roadblock and revealed that many in the state and the country supported the research.

Original post:
Stem cells: Hope on the line

To Read More: Stem cells: Hope on the line
categoriaIPS Cell Therapy commentoComments Off on Stem cells: Hope on the line | dataJuly 3rd, 2014
Read All

New Stem Cell Production Method Could Clear Way for Anticancer Gene Therapy

By Dr. Matthew Watson

Durham, NC (PRWEB) June 27, 2014

A new study released today in STEM CELLS Translational Medicine suggests a new way to produce endothelial progenitor cells in quantities large enough to be feasible for use in developing new cancer treatments.

Endothelial progenitor cells (EPCs) are rare stem cells that circulate in the blood with the ability to differentiate into the cells that make up the lining of blood vessels. With an intrinsic ability to home to tumors, researchers have focused on them as a way to deliver gene therapy straight to the cancer. However, the challenge has been to collect enough EPCs for this use.

This new study, by researchers at the Institute of Bioengineering and Nanotechnology, National University of Singapore and Zhejiang University led by Shu Wang, Ph.D., explored whether human induced pluripotent stem cells (iPSCs) could provide the answer. iPSCs, generated from adult cells, can propagate indefinitely and give rise to every other cell type in the body, much like human embryonic stem cells, which are considered the gold standard for stem cell therapy.

However, human iPS cells can be generated relatively easily through reprogramming, a procedure that circumvents the bioethical controversies associated with deriving embryonic stem cells from human embryos, Dr. Wang said.

After inducing human iPS cells to differentiate into the EPCs, the research team compared the stability and reliability of the induced EPCs with regular EPCs by injecting them into mice with breast cancer that had metastasized (traveled) to the lungs. The results showed that their induced EPCs retained the intrinsic ability to home to tumors, just as regular EPCs do. They also did not promote tumor growth or metastasis.

We next tested the induced EPCs therapeutic potential by infusing them with an anticancer gene and injecting them into the mice, Dr. Wang said. The results indicated that the tumors were reduced and the animals survival rates increased.

Since this approach may use patient's own cells to prepare cellular therapeutics and is based on non-toxic immunotherapy, it holds potential for translation to clinical application and may be particularly valuable as a new type of anti-metastatic cancer therapy.

With the increasing potential of using EPCs as cancer therapeutics, it is important to have a reliable and stable supply of human EPCs, said Anthony Atala, M.D., editor of STEM CELLS Translational Medicine and director of the Wake Forest Institute for Regenerative Medicine. This study demonstrates the feasibility of generating EPs from early-passage human iPS cells.

###

Read the original post:
New Stem Cell Production Method Could Clear Way for Anticancer Gene Therapy

To Read More: New Stem Cell Production Method Could Clear Way for Anticancer Gene Therapy
categoriaIPS Cell Therapy commentoComments Off on New Stem Cell Production Method Could Clear Way for Anticancer Gene Therapy | dataJune 28th, 2014
Read All

Cell scientists slow degeneration in motor neuron mice

By Dr. Matthew Watson

TOKYO: Japanese stem cell scientists have succeeded in slowing the deterioration of mice with motor neuron disease, possibly paving the way for eventual human treatment, according to a new paper.

A team of researchers from the Kyoto University and Keio University transplanted specially created cells into mice with amyotrophic lateral sclerosis (ALS), also called Lou Gehrig's, or motor neuron disease.

The progress of the creatures' neurological degeneration was slowed by almost eight per cent, according to the paper, which was published on Thursday in the scholarly journal Stem Cell Reports.

ALS is a disorder of motor neurons -- nerves that control movement -- leading to the loss of the ability to control muscles and their eventual atrophy.

While it frequently has no effect on cognitive function, it progresses to affect most of the muscles in the body, including those used to eat and breathe.

British theoretical physicist Stephen Hawking has been almost completely paralysed by the condition.

In their study, the Japanese team used human "iPS" -- induced pluripotent stem cells, building-block cells akin to those found in embryos, which have the potential to turn into any cell in the body.

From the iPS cells they created special progenitor cells and transplanted them into the lumbar spinal cord of ALS mice.

Animals that had been implanted lived 7.8 per cent longer than the control group without the procedure, the paper said.

"The results demonstrated the efficacy of cell therapy for ALS by the use of human iPSCs (human induced pluripotent stem cells) as cell source," the team said in the paper.

View original post here:
Cell scientists slow degeneration in motor neuron mice

To Read More: Cell scientists slow degeneration in motor neuron mice
categoriaIPS Cell Therapy commentoComments Off on Cell scientists slow degeneration in motor neuron mice | dataJune 28th, 2014
Read All

Scientists slow degeneration in motor neurone mice

By daniellenierenberg

Friday 27 June 2014 22.31

Japanese stem cell scientists have succeeded in slowing the deterioration of mice with motor neurone disease, possibly paving the way for eventual human treatment.

A team of researchers from the Kyoto University and Keio University transplanted specially created cells into mice with amyotrophic lateral sclerosis (ALS), also called Lou Gehrig's, or motor neurone disease.

The progress of the creatures' neurological degeneration was slowed by almost eight percent, according to the paper, which was published Thursday in the scholarly journal Stem Cell Reports.

ALS is a disorder of motor neurones -- nerves that control movement -- leading to the loss of the ability to control muscles and their eventual atrophy.

While it frequently has no effect on cognitive function, it progresses to affect most of the muscles in the body, including those used to eat and breathe.

British theoretical physicist Stephen Hawking has been almost completely paralysed by the condition.

In their study, the Japanese team used human "iPS" -- induced pluripotent stem cells, building-block cells akin to those found in embryos, which have the potential to turn into any cell in the body.

From the iPS cells they created special progenitor cells and transplanted them into the lumbar spinal cord of ALS mice.

Animals that had been implanted lived 7.8% longer than the control group without the procedure, the paper said.

See the rest here:
Scientists slow degeneration in motor neurone mice

To Read More: Scientists slow degeneration in motor neurone mice
categoriaIPS Cell Therapy commentoComments Off on Scientists slow degeneration in motor neurone mice | dataJune 28th, 2014
Read All

BioTime Subsidiary Asterias Biotherapeutics Announces Investment by CEO

By JoanneRUSSELL25

The Board of Directors of Asterias is honored that Pedro elected to join Asterias as CEO and is very pleased that he also chose to make a significant financial commitment to the company, said Alfred D. Kingsley, Chairman of the Asterias Board of Directors. With Pedro at the helm, Asterias is focused on its efforts to develop and commercialize therapies that have the potential to treat patients with serious unmet medical needs. In particular, Pedro will lead Asterias through the process of advancing its lead clinical-stage programs, AST-OPC1 for the treatment of spinal cord injury and the AST-VAC2 allogeneic dendritic cell cancer immunotherapy platform.

I believe in Asterias technology, its therapeutic programs, and its talented employees and am committed to making the company a success, remarked Mr. Lichtinger. My efforts as the companys CEO will focus on developing innovative therapies for critically ill and chronically ill patients, and creating significant value over time for Asterias shareholders.

About Asterias

Asterias Biotherapeutics is a biotechnology company focused on the emerging field of regenerative medicine. Our core technologies center on stem cells capable of becoming all of the cell types in the human body, a property called pluripotency. We plan to develop therapies based on pluripotent stem cells to treat diseases or injuries in a variety of medical fields, with an initial focus on the therapeutic applications of oligodendrocyte progenitor cells (AST-OPC1) and antigen-presenting dendritic cells (AST-VAC1 and AST-VAC2) for the fields of neurology and oncology respectively. AST-OPC1 was tested for treatment of spinal cord injury in the worlds first Phase 1 clinical trial using human embryonic stem cell-derived cells. We plan to seek FDA clearance to reinitiate clinical testing of AST-OPC1 in spinal cord injury this year, and are also evaluating its function in nonclinical models of multiple sclerosis and stroke. AST-VAC1 and AST-VAC2 are dendritic cell-based vaccines designed to immunize cancer patients against telomerase, a protein abnormally expressed in over 95% of human cancer types. AST-VAC2 differs from AST-VAC1 in that the dendritic cells presenting telomerase to the immune system are produced from human embryonic stem cells instead of being derived from human blood.

In October of 2013, Asterias acquired the cell therapy assets of Geron Corporation. These assets included INDs for the clinical stage AST-OPC1 and AST-VAC1 programs, banks of cGMP-manufactured AST-OPC1 drug product, cGMP master and working cell banks of human embryonic stem cells, over 400 patents and patent applications filed worldwide including broad issued claims to fundamental platform technologies for the scalable growth of pluripotent stem cells and compositions of matter for several hESC-derived therapeutic cell types, research cell banks, customized reagents and equipment, and various assets relating to the AST-VAC2 program and preclinical programs in cardiology and orthopedics.

Asterias is a member of the BioTime family of companies.

Additional information about Asterias can be found at http://www.asteriasbiotherapeutics.com.

About BioTime

BioTime is a biotechnology company engaged in research and product development in the field of regenerative medicine. Regenerative medicine refers to therapies based on stem cell technology that are designed to rebuild cell and tissue function lost due to degenerative disease or injury. BioTimes focus is on pluripotent stem cell technology based on human embryonic stem (hES) cells and induced pluripotent stem (iPS) cells. hES and iPS cells provide a means of manufacturing every cell type in the human body and therefore show considerable promise for the development of a number of new therapeutic products. BioTimes therapeutic and research products include a wide array of proprietary PureStem progenitors, HyStem hydrogels, culture media, and differentiation kits. BioTime is developing Renevia (a HyStem product) as a biocompatible, implantable hyaluronan and collagen-based matrix for cell delivery in human clinical applications, and is planning to initiate a pivotal clinical trial around Renevia, in 2014. In addition, BioTime has developed Hextend, a blood plasma volume expander for use in surgery, emergency trauma treatment and other applications. Hextend is manufactured and distributed in the U.S. by Hospira, Inc. and in South Korea by CJ HealthCare Corporation, under exclusive licensing agreements.

BioTime is also developing stem cell and other products for research, therapeutic, and diagnostic use through its subsidiaries:

Go here to read the rest:
BioTime Subsidiary Asterias Biotherapeutics Announces Investment by CEO

To Read More: BioTime Subsidiary Asterias Biotherapeutics Announces Investment by CEO
categoriaIPS Cell Therapy commentoComments Off on BioTime Subsidiary Asterias Biotherapeutics Announces Investment by CEO | dataJune 22nd, 2014
Read All

BioTime Subsidiary Asterias Biotherapeutics Appoints Former Pfizer Senior Executive Pedro Lichtinger as President and …

By daniellenierenberg

Asterias was created by BioTime to acquire Geron Corporations clinical-stage stem cell therapeutic assets. The companys work centers on the development of therapeutics derived from stem cells capable of becoming all of the cell types in the human body to fight disease, a process known as pluripotency. Together, Asterias and BioTime have the largest intellectual property portfolio of any company in the pluripotent stem cell field with over 600 patents and patent applications worldwide covering key therapeutic targets derived from each of the three primary germ layers that give rise to all cells in the human body. Asterias lead clinical programs are its AST-OPC1 cell therapeutic for spinal cord injury, which recently received clinical trial funding support through an award of $14.3 million by the California Institute for Regenerative Medicine (CIRM), and its AST-VAC2 allogeneic dendritic cell cancer immunotherapy platform.

"Pedro has the ideal mix of skills to lead Asterias in the next stage of its growth," said Michael D. West, Ph.D., BioTimes CEO. "His experience in shepherding medicines through clinical and regulatory processes to commercialization will be invaluable as Asterias moves forward with its plans to bring two of its product candidates into clinical trials. Pedro is also a seasoned business leader and manager whose long track record in building businesses and business alliances speaks for itself.

I am excited to be working with Asterias talented employees, whose hard work and incredible talent have been responsible for the rapid advancement of a number of promising treatments, said Mr. Lichtinger. The pluripotent stem cell technology platform is rapidly emerging into the clinic with a focus on major unmet medical needs that have limited or no cures available. Asterias two most advanced clinical programs have the potential to significantly improve patient outcomes and I am delighted to be a part of this effort.

Mr. Lichtinger has served as a director of BioTime since August 2009, during which time he has helped to guide its development as a leader in the field of regenerative medicine. Reflecting his new role at Asterias, Mr. Lichtinger has been nominated for election to the Asterias Board of Directors at the companys upcoming annual meeting, and will not stand for reelection to the BioTime Board of Directors at BioTimes upcoming annual meeting.

Since April, Dr. West, BioTimes longtime CEO, has also served as President and CEO of Asterias. With the appointment of Mr. Lichtinger as CEO, Dr. West will continue to be a member of the Board of Asterias and will resume his position as Vice President Technology Integration at Asterias, while continuing as BioTimes CEO.

Mr. Lichtinger has some 35 years of executive leadership experience in the pharmaceutical industry. Previously, he was president and CEO of Optimer Pharmaceuticals, a role that he held from May 2010 to February 2013. There, he led the successful registration and commercialization of DIFICID (fidaxomicin). Before joining Optimer, Mr. Lichtinger held a series of top management positions at Pfizer over a 25-year career, including serving as president of Pfizers Global Primary Care Unit, where he oversaw $23 billion in revenue and was responsible for a development budget in excess of $800 million including a portfolio of 66 projects. He also led Pfizers European operations as president of that group encompassing 27 countries and all Pfizer medicines, and previously headed Pfizers Global Animal Health business. In these roles, Mr. Lichtinger oversaw the successful development, commercialization, and alliances of numerous drugs.

Before joining Pfizer, Mr. Lichtinger was an executive at Smith Kline Beecham, where he was senior vice president of the companys European animal health unit and previously held multiple other executive roles.

Mr. Lichtinger serves on the Board of Directors of Laboratorios Sanfer, SA de CV, the largest Mexican pharmaceutical company, which is partly owned by General Atlantic, a leading global growth equity investment firm. Mr. Lichtinger, an American born in Mexico, speaks four languages. He holds an MBA from the Wharton School of Business and an engineering degree from the National University of Mexico. He and his wife, Iracilda, passionately support the Boys and Girls Clubs of America and the Brazil Foundation.

About Asterias

Asterias Biotherapeutics (Asterias) is a biotechnology company focused on the emerging field of regenerative medicine. Asterias core technologies center on stem cells capable of becoming all of the cell types in the human body, a property called pluripotency. Asterias plans to develop therapies based on pluripotent stem cells to treat diseases or injuries in a variety of medical fields, with an initial focus on the therapeutic applications of oligodendrocyte progenitor cells (AST-OPC1) and antigen-presenting dendritic cells (AST-VAC1 and AST-VAC2) for the fields of neurology and oncology respectively. AST-OPC1 was tested for treatment of spinal cord injury in the worlds first Phase 1 clinical trial using human embryonic stem cell-derived cells. Asterias plans to seek FDA clearance to reinitiate clinical testing of AST-OPC1 in spinal cord injury this year, and is also evaluating its function in nonclinical models of multiple sclerosis and stroke. AST-VAC1 and AST-VAC2 are dendritic cell-based vaccines designed to immunize cancer patients against telomerase, a protein abnormally expressed in over 95% of human cancer types. AST-VAC2 differs from AST-VAC1 in that the dendritic cells presenting telomerase to the immune system are produced from human embryonic stem cells instead of being derived from human blood.

Continue reading here:
BioTime Subsidiary Asterias Biotherapeutics Appoints Former Pfizer Senior Executive Pedro Lichtinger as President and ...

To Read More: BioTime Subsidiary Asterias Biotherapeutics Appoints Former Pfizer Senior Executive Pedro Lichtinger as President and …
categoriaIPS Cell Therapy commentoComments Off on BioTime Subsidiary Asterias Biotherapeutics Appoints Former Pfizer Senior Executive Pedro Lichtinger as President and … | dataJune 20th, 2014
Read All

Stem cells edited to produce an HIV-resistant immune system

By LizaAVILA

A team of haematologists has engineered a particular white blood cell to be HIV resistant after hacking the genome of induced pluripotent stem cells (iPSCs).

The technique has been published in the Proceedings of the National Academy of Sciences and was devised by Yuet Wai Kan of the University of California, former President of the American Society of Haematology, and his peers.

The white blood cell the team had ideally wanted to engineer was CD+4 T, a cell that is responsible for sending signals to other cells in the immune system, and one that is heavily targeted by the HIV virus. When testing for the progress of HIV in a patient, doctors will take a CD4 cell count in a cubic millimetre of blood, with between 500 and 1,500 cells/mm3 being within the normal range. If it drops below around 250, it means HIV has taken hold -- the virus ravages these cells and uses them as an entry point.

HIV gains entry by attaching itself to a receptor protein on the CD+4 Tcell surface known as CCR5.If this protein could be altered, it could potentially stop HIV entering the immune system, however. A very small number of the population have this alteration naturally and are partially resistant to HIV as a result -- they have two copies of a mutation that prevents HIV from hooking on to CCR5 and thus the T cell.

In the past, researchers attempted to replicate the resistance by simply transplanting stem cells from those with the mutation to an individual suffering from HIV. The rarity of this working has been demonstrated by the fact that just one individual,Timothy Ray Brown(AKA the Berlin patient), has been publicly linked to the treatment and known to be HIV free today. The Californian team hoped to go right to the core of the problem instead, and artificially replicate the protective CCR5mutation.

Kan has been working for years on a precise process for cutting and sewing back together genetic information. His focus throughout much of his career has been sickle cell anaemia, and in recent years this has translated to researching mutations and how these can be removed at the iPSC stage, as they are differentiated into hematopoietic cells. He writes on his university web page: "The future goal to treatment is to take skin cells from patients, differentiate them into iPS cells, correct the mutations by homologous recombination, and differentiate into the hematopoietic cells and re-infuse them into the patients. Since the cells originate from the patients, there would not be immuno-rejection." No biggie.

This concept has now effectively been translated to the study of HIV and the CD+4 T cell.

Kan and his team used a system known as CRISPR-Cas9 to edit the genes of the iPSCs. It uses Cas9, a protein derived from bacteria, to introduce a double strand break somewhere at the genome, where part of the virus is then incorporated into the genome to act as a warning signal to other cells. An MIT team has already used the technique to correct a human disease-related mutation in mice.

When Kan and his team used the technique they ended up creating HIV resistant white blood cells, but they were not CD+4 T-cells. They are now speculating that rather than aiming to generate this particular white blood cell with inbuilt resistance, future research instead look at creating HIV resistant stem cells that will become all types of white blood cells in the body.

Of course, with this kind of therapy the risk is different and unexpected mutations could occur. In an ideal world, doctors will not want to be giving constant cell transplants, but generating an entirely new type of HIV resistant cells throughout the body carries its own risks and will need stringent evaluation if it comes at all close to being proven.

Continued here:
Stem cells edited to produce an HIV-resistant immune system

To Read More: Stem cells edited to produce an HIV-resistant immune system
categoriaIPS Cell Therapy commentoComments Off on Stem cells edited to produce an HIV-resistant immune system | dataJune 14th, 2014
Read All

Stem Cells Successfully Transplanted And Grown In Pigs

By LizaAVILA

June 5, 2014

Nathan Hurst, University of Missouri

One of the biggest challenges for medical researchers studying the effectiveness of stem cell therapies is that transplants or grafts of cells are often rejected by the hosts. This rejection can render experiments useless, making research into potentially life-saving treatments a long and difficult process. Now, researchers at the University of Missouri have shown that a new line of genetically modified pigs will host transplanted cells without the risk of rejection.

The rejection of transplants and grafts by host bodies is a huge hurdle for medical researchers, said R. Michael Roberts, Curators Professor of Animal Science and Biochemistry and a researcher in the Bond Life Sciences Center. By establishing that these pigs will support transplants without the fear of rejection, we can move stem cell therapy research forward at a quicker pace.

In a published study, the team of researchers implanted human pluripotent stem cells in a special line of pigs developed by Randall Prather, an MU Curators Professor of reproductive physiology. Prather specifically created the pigs with immune systems that allow the pigs to accept all transplants or grafts without rejection. Once the scientists implanted the cells, the pigs did not reject the stem cells and the cells thrived. Prather says achieving this success with pigs is notable because pigs are much closer to humans than many other test animals.

Many medical researchers prefer conducting studies with pigs because they are more anatomically similar to humans than other animals, such as mice and rats, Prather said. Physically, pigs are much closer to the size and scale of humans than other animals, and they respond to health threats similarly. This means that research in pigs is more likely to have results similar to those in humans for many different tests and treatments.

Now that we know that human stem cells can thrive in these pigs, a door has been opened for new and exciting research by scientists around the world, Roberts said. Hopefully this means that we are one step closer to therapies and treatments for a number of debilitating human diseases.

Roberts and Prather published their study, Engraftment of human iPS cells and allogeneic porcine cells into pigs with inactivated RAG2 and accompanying severe combined immunodeficiency in the Proceedings of the National Academy of Sciences.

Source: Nathan Hurst, University of Missouri

See the rest here:
Stem Cells Successfully Transplanted And Grown In Pigs

To Read More: Stem Cells Successfully Transplanted And Grown In Pigs
categoriaIPS Cell Therapy commentoComments Off on Stem Cells Successfully Transplanted And Grown In Pigs | dataJune 6th, 2014
Read All

Asterias Biotherapeutics, Inc. to Present Phase I Clinical Data at the 17th Annual Meeting of the American Society of …

By LizaAVILA

ALAMEDA, Calif.--(BUSINESS WIRE)--BioTime, Inc. (NYSE MKT: BTX) and its subsidiary Asterias Biotherapeutics, Inc. today announced that Jane S. Lebkowski, PhD, President, Research & Development of Asterias, will present at the 17th Annual Meeting of the American Society of Gene & Cell Therapy taking place May 20-24, 2014 in Washington, DC.

Dr. Lebkowskis presentation will take place in the session titled The Next Generation in Stem Cell Therapies on Thursday May 22, 2014 at 10:15 AM EDT at the Marriot Wardman Park, Washington, DC. Dr. Lebkowskis presentation is titled Phase I Clinical Trial of Human Embryonic Stem Cell-Derived Oligodendrocyte Progenitors in Patients with Neurologically Complete Thoracic Spinal Cord Injury: Results and Next Steps. In her presentation, Dr. Lebkowski will disclose for the first time certain Phase I clinical trial results of OPC1. The presentation will be made available on BioTimes and Asterias websites at http://www.biotimeinc.com and http://www.biotimeinc.com/asterias-biotherapeutics/.

About Asterias

Asterias is a biotechnology company focused on the emerging field of regenerative medicine. Our core technologies center on stem cells capable of becoming all of the cell types in the human body, a property called pluripotency. We plan to develop therapies based on pluripotent stem cells to treat diseases or injuries in a variety of medical fields, with an initial focus on the therapeutic applications of oligodendrocyte progenitor cells (OPC1) and antigen-presenting dendritic cells (VAC1 and VAC2) for the fields of neurology and oncology respectively. OPC1 was tested for treatment of spinal cord injury in the worlds first Phase 1 clinical trial using human embryonic stem cell-derived cells. We plan to reinitiate clinical testing of OPC1 in spinal cord injury this year, and are also evaluating its function in nonclinical models of multiple sclerosis and stroke. VAC1 and VAC2 are dendritic cell-based vaccines designed to immunize cancer patients against the telomerase, a protein abnormally expressed in over 95% of human cancer types. VAC2 differs from VAC1 in that the dendritic cells presenting telomerase to the immune system are produced from human embryonic stem cells instead of being derived from human blood.

In October of 2013, Asterias acquired the cell therapy assets of Geron Corporation. These assets included INDs for the clinical stage OPC1 and VAC1 programs, banks of cGMP-manufactured OPC1 drug product, cGMP master and working cell banks of human embryonic stem cells, over 400 patents and patent applications filed worldwide, research cell banks, customized reagents and equipment, and various assets relating to preclinical programs in cardiology, orthopedics, and diabetes.

Asterias is a member of the BioTime family of companies.

About BioTime

BioTime is a biotechnology company engaged in research and product development in the field of regenerative medicine. Regenerative medicine refers to therapies based on stem cell technology that are designed to rebuild cell and tissue function lost due to degenerative disease or injury. BioTimes focus is on pluripotent stem cell technology based on human embryonic stem (hES) cells and induced pluripotent stem (iPS) cells. hES and iPS cells provide a means of manufacturing every cell type in the human body and therefore show considerable promise for the development of a number of new therapeutic products. BioTimes therapeutic and research products include a wide array of proprietary PureStem progenitors, HyStem hydrogels, culture media, and differentiation kits. BioTime is developing Renevia (a HyStem product) as a biocompatible, implantable hyaluronan and collagen-based matrix for cell delivery in human clinical applications. In addition, BioTime has developed Hextend, a blood plasma volume expander for use in surgery, emergency trauma treatment and other applications. Hextend is manufactured and distributed in the U.S. by Hospira, Inc. and in South Korea by CJ HealthCare Corporation under exclusive licensing agreements.

BioTime is also developing stem cell and other products for research, therapeutic, and diagnostic use through its subsidiaries:

Additional information about BioTime can be found on the web at http://www.biotimeinc.com.

View post:
Asterias Biotherapeutics, Inc. to Present Phase I Clinical Data at the 17th Annual Meeting of the American Society of ...

To Read More: Asterias Biotherapeutics, Inc. to Present Phase I Clinical Data at the 17th Annual Meeting of the American Society of …
categoriaIPS Cell Therapy commentoComments Off on Asterias Biotherapeutics, Inc. to Present Phase I Clinical Data at the 17th Annual Meeting of the American Society of … | dataMay 16th, 2014
Read All

Combination Therapy a Potential Strategy for Treating Niemann Pick Disease

By NEVAGiles23

Contact Information

Available for logged-in reporters only

Newswise CAMBRIDGE, Mass. (May 15, 2014) By studying nerve and liver cells grown from patient-derived induced pluripotent stem cells (iPSCs), Whitehead Institute researchers have identified a potential dual-pronged approach to treating Niemann-Pick type C (NPC) disease, a rare but devastating genetic disorder.

According to the National Institutes of Health (NIH), approximately 1 in 150,000 children born are afflicted with NPC, the most common variant of Niemann-Pick. Children with NPC experience abnormal accumulation of cholesterol in their liver and nerve cells, leading to liver failure, neurodegeneration, andultimatelydeath, often before age 10.

Although there is currently no effective treatment for NPC disease, a clinical trial examining potential cholesterol-lowering effects of the drug cyclodextrin in NPC patients is ongoing. However, research in Whitehead Founding Member Rudolf Jaenischs lab led by Dorothea Matezel along with Sovan Sarkar suggests that the high doses may actually be harmful. This and other findings are reported this week in the journal Stem Cell Reports.

At those levels of cyclodextrin (in the clinical trial), Maetzel and her coauthors show that cells encounter a further block in autophagy that could be detrimental, says Jaenisch, who is also a professor of biology at Massachusetts Institute of Technology. But when they use it at a lower dose in combination with another small molecule, carbamazepine, which stimulates autophagy, then it significantly improves the survival of the cells. Such an approach lowers cholesterol levels and restores the autophagy defects at the same time. This could be a new type of treatment for NPC disease.

To clarify what is amiss in NPC and identify potential therapeutics that could correct these problems, Maetzel generated iPSCs from patients with the most common genetic mutation that causes NPC. She created the iPSCs by pushing skin cells donated by the patients back to an embryonic stem cell-like state. These iPSCs were differentiated into liver and neuronal cells, the cell types most affected in NPC. Along with Haoyi Wang, a postdoctoral researcher in the Jaenisch lab, she then corrected one copy of the causal mutation, in the NPC1 gene, to create control cells whose genomes differ only at the single edited gene copy.

When Maetzel and Sarkar analyzed the cellular functions in the NPC1-mutant and control cell lines, they determined that although cholesterol does build up in the NPC1-mutant cells, a more significant problem is defective autophagya basic cellular function that degrades and recycles unneeded or faulty molecules, components, or organelles in a cell. The impaired autophagy prevents normal elimination of its cargo, such as damaged organelles or other substrates like p62, which then accumulates and damages the cells. The finding confirms previous work from the Jaenisch lab linking the NPC1 mutation to defective autophagy in mouse cells.

Autophagy dysfunction has major implications in several neurodegenerative and certain liver conditions, and therefore autophagy modulators have tremendous biomedical relevance, says Sarkar. We wanted to screen for compounds stimulating autophagy in human disease-relevant cells and show the beneficial effects of such an approach in the context of a lipid/lysosomal storage disorder.

Maetzel and Sarkar used the two types of human disease-affected cells to screen for compounds known to improve autophagy but not impacting on the mammalian target of rapamycin (mTOR) pathway, which has critical cellular functions and also controls autophagy. They found only one capable of jumpstarting autophagy independently of mTOR in both liver and nerve cells. When this drug, carbamazepine, which is a mood stabilizer prescribed for bipolar disorder, was added in combination with low doses of cyclodextrin, both cholesterol accumulation and autophagy defects were rescued in the NPC-mutated cells.

Read more:
Combination Therapy a Potential Strategy for Treating Niemann Pick Disease

To Read More: Combination Therapy a Potential Strategy for Treating Niemann Pick Disease
categoriaIPS Cell Therapy commentoComments Off on Combination Therapy a Potential Strategy for Treating Niemann Pick Disease | dataMay 15th, 2014
Read All

BioTime Announces First Quarter 2014 Results and Recent Developments

By Sykes24Tracey

BioTimes efforts in the first quarter of 2014 were focused on advancing near-term products through clinical trials while also preparing certain novel stem cell-based therapeutics for clinical trials later this year. Enrollment in three diagnostic clinical studies has remained rapid, with completion expected later in 2014. Following the successful safety trial of ReneviaTM, we have made rapid progress in preparing for the pivotal ReneviaTM trial during the second half of the year, said Michael D. West, Ph.D., BioTimes Chief Executive Officer. At our subsidiary Asterias Biotherapeutics, we have been preparing to initiate a new Phase 1/2a clinical trial of OPC1 for the treatment of spinal cord injury in 2014, pending clearance from the FDA, and also preparing our VAC2 cancer vaccine for a potential clinical trial. Also in the quarter, BioTimes subsidiary Cell Cure Neurosciences Ltd. advanced preclinical development of OpRegen for a planned IND filing in 2014 for the treatment of age-related macular degeneration.

We have continued to develop our subsidiaries businesses, commented Dr. West. Shares of the Series A common stock of our subsidiary Asterias Biotherapeutics, Inc. are now scheduled to begin trading publicly this summer following Gerons distribution of those shares to its stockholders, for which a record date of May 28th has been set. We were also pleased to recently announce that LifeMap Solutions, Inc., a newly organized subsidiary of our LifeMap Sciences, Inc., has entered into an agreement with a major medical center to create innovative mobile health (mHealth) products powered by biomedical and other personal big data.

As the industry leader in regenerative medicine with over 600 patents and patent applications worldwide, BioTime and its subsidiaries have assembled a broad array of strategically important regenerative medicine technologies and assets for the development of therapeutic and diagnostic products, Dr. West continued. Our expenditure levels were higher than usual during the fourth quarter and the recently ended first quarter, but our recent progress in streamlining our workforce through shared core resources among our subsidiaries should reduce our cash burn rate and optimize value for our shareholders during this exciting time in the companys history. We would like to thank our long-term investors for their continued support and our collaborators at leading academic medical institutions for their help in advancing our products toward our goal of helping patients who have serious unmet medical needs.

First Quarter and Recent Highlighted Corporate Accomplishments

Financial Results

Revenue

For the quarter ended March 31, 2014, on a consolidated basis, total revenue was $1.1 million, up $0.5 million from $0.6 million for the same period one year ago. The increase in first quarter revenue is primarily attributable to grant income awarded to BioTimes subsidiary Cell Cure Neurosciences Ltd. from Israels Office of the Chief Scientist.

Expenses

Operating expenses for the three months ended March 31, 2014 were $12.1 million, compared to expenses of $8.8 million for the same period of 2013. The increase in operating expenses is primarily attributable to an increase in staffing and the expansion of research and development efforts of Asterias and the amortization expense of intangible assets recorded in connection with the Geron stem cell asset acquisition in October 2013.

Net Loss

See the rest here:
BioTime Announces First Quarter 2014 Results and Recent Developments

To Read More: BioTime Announces First Quarter 2014 Results and Recent Developments
categoriaIPS Cell Therapy commentoComments Off on BioTime Announces First Quarter 2014 Results and Recent Developments | dataMay 15th, 2014
Read All

department IPS Cell Therapy IPS Cell Therapy

By NEVAGiles23

New York, NY (PRWEB) April 29, 2014

The Stem Cell Institute located in Panama City, Panama, welcomes special guest speaker Roberta F. Shapiro, DO, FAAPM&R to its public seminar on umbilical cord stem cell therapy on Saturday, May 17, 2014 in New York City at the New York Hilton Midtown from 1:00 pm to 4:00 pm.

Dr. Shapiro will discuss A New York Doctors Path to Panama.

Dr. Shapiro operates a private practice for physical medicine and rehabilitation in New York City. Her primary professional activities include outpatient practice focused on comprehensive treatment of acute and chronic musculoskeletal and myofascial pain syndromes using manipulation techniques, trigger point injections, tendon injections, bursae injections, nerve and motor point blocks. Secondary work at her practice focuses on the management of pediatric onset disability.

She is the founder and president of the Dayniah Fund, a non-profit charitable foundation formed to support persons with progressive debilitating diseases who are faced with catastrophic events such as surgery or illness. The Dayniah Fund educates the public about the challenges of people with disabilities and supports research on reducing the pain and suffering caused by disabling diseases and conditions.

Dr. Shapiro serves as assistant clinical professor in the Department of Rehabilitation and Regenerative Medicine at Columbia University Medical Center.

Stem Cell Institute Speakers include:

Neil Riordan PhD Clinical Trials: Umbilical Cord Mesenchymal Stem Cell Therapy for Autism and Spinal Cord Injury

Dr. Riordan is the founder of the Stem Cell Institute and Medistem Panama Inc.

Jorge Paz-Rodriguez MD Stem Cell Therapy for Autoimmune Disease: MS, Rheumatoid Arthritis and Lupus

Read the original post:
department IPS Cell Therapy IPS Cell Therapy

To Read More: department IPS Cell Therapy IPS Cell Therapy
categoriaIPS Cell Therapy commentoComments Off on department IPS Cell Therapy IPS Cell Therapy | dataMay 2nd, 2014
Read All

Cloning used to make stem cells from adult humans

By NEVAGiles23

For the first time, cloning technologies have been used to generate stem cells that are genetically matched to adult patients.

Fear not: No legitimate scientist is in the business of cloning humans. But cloned embryos can be used as a source for stem cells that match a patient and can produce any cell type in that person.

Researchers in two studies published this month have created human embryos for this purpose. Usually an embryo forms when sperm fertilizes egg; in this case, scientists put the nucleus of an adult skin cell inside an egg, and that reconstructed egg went through the initial stages of embryonic development.

This is a dream that weve had for 15 years or so in the stem cell field, said John Gearhart, director of the Institute for Regenerative Medicine at the University of Pennsylvania. Gearhart first proposed this approach for patient-specific stem cell generation in the 1990s but was not involved in the recent studies.

Stem cells have the potential to develop into any kind of tissue in the human body. From growing organs to treating diabetes, many future medical advances are hoped to arise from stem cells.

Scientists wrote in the journal Cell Stem Cell this month that they used skin cells from a man, 35, and another man, 75, to create stem cells from cloned embryos.

We reaffirmed that it is possible to produce patient-specific stem cells using a nuclear transfer technology regardless of the patients age, said co-lead author Young Gie Chung at the CHA Stem Cell Institute in Seoul, South Korea.

On Monday, an independent group led by scientists at the New York Stem Cell Foundation Research Institute published results in Nature using a similar approach. They used skin cells from a 32-year-old woman with Type 1 diabetes to generate stem cells matched to her.

Both new reports follow the groundbreaking research published last year by Shoukhrat Mitalipov and colleagues at Oregon Health & Science University in the journal Cell. In that study, researchers produced cloned embryos and stem cells using skin cells from a fetus and an 8-month-old baby.

Its a remarkable process that gives us these master cells, these stems cells that are essentially the seeds for all of the tissues in our bodies, said George Daley, director of the Stem Cell Transplantation Program at Boston Childrens Hospital, who was not involved in the recent studies. Thats why its so important for medical research.

Read more here:
Cloning used to make stem cells from adult humans

To Read More: Cloning used to make stem cells from adult humans
categoriaIPS Cell Therapy commentoComments Off on Cloning used to make stem cells from adult humans | dataApril 30th, 2014
Read All

Cloning used to make stem cells from adults

By LizaAVILA

For the first time, cloning technologies have been used to generate stem cells that are genetically matched to adult patients.

Fear not: No legitimate scientist is in the business of cloning humans. But cloned embryos can be used as a source for stem cells that match a patient and can produce any cell type in that person.

Researchers in two studies published this month have created human embryos for this purpose. Usually an embryo forms when sperm fertilizes egg; in this case, scientists put the nucleus of an adult skin cell inside an egg, and that reconstructed egg went through the initial stages of embryonic development.

"This is a dream that we've had for 15 years or so in the stem cell field," said John Gearhart, director of the Institute for Regenerative Medicine at the University of Pennsylvania. Gearhart first proposed this approach for patient-specific stem cell generation in the 1990s but was not involved in the recent studies.

Stem cells have the potential to develop into any kind of tissue in the human body. From growing organs to treating diabetes, many future medical advances are hoped to arise from stem cells.

Scientists wrote in the journal Cell Stem Cell this month that they used skin cells from a man, 35, and another man, 75, to create stem cells from cloned embryos.

"We reaffirmed that it is possible to produce patient-specific stem cells using a nuclear transfer technology regardless of the patient's age," said co-lead author Young Gie Chung at the CHA Stem Cell Institute in Seoul, South Korea.

On Monday, an independent group led by scientists at the New York Stem Cell Foundation Research Institute published results in Nature using a similar approach. They used skin cells from a 32-year-old woman with Type 1 diabetes to generate stem cells matched to her.

Both new reports follow the groundbreaking research published last year by Shoukhrat Mitalipov and colleagues at Oregon Health & Science University in the journal Cell. In that study, researchers produced cloned embryos and stem cells using skin cells from a fetus and an 8-month-old baby.

"It's a remarkable process that gives us these master cells, these stems cells that are essentially the seeds for all of the tissues in our bodies," said George Daley, director of the Stem Cell Transplantation Program at Boston Children's Hospital, who was not involved in the recent studies. "That's why it's so important for medical research."

More:
Cloning used to make stem cells from adults

To Read More: Cloning used to make stem cells from adults
categoriaIPS Cell Therapy commentoComments Off on Cloning used to make stem cells from adults | dataApril 30th, 2014
Read All

Stem Cells Made from Cloned Human Embryos

By LizaAVILA

Cell lines made by two separate teams could boost the prospects of patient-specific therapies

This colony of embryonic stem cells, created from a type 1 diabetes patient, is one of the first to be cloned from an adult human. Credit:Bjarki Johannesson, NYSCF

Two research groups have independently produced human embryonic stem-cell lines from embryos cloned from adult cells. Their success could reinvigorate efforts to use such cells to make patient-specific replacement tissues for degenerative diseases, for example to replace pancreatic cells in patients with type 1 diabetes. But further studies will be needed before such cells can be tested as therapies.

The first stem-cell lines from cloned human embryos were reported in May last year by a team led by reproductive biology specialist Shoukhrat Mitalipov of the Oregon Health & Science University in Beaverton (see 'Human stem cells created by cloning'). Those cells carried genomes taken from fetal cells or from cells of an eight-month-old baby, and it was unclear whether this would be possible using cells from older individuals. (Errors were found in Mitalipov's paper, but were not deemed to affect the validity of its results.)

Now two teams have independently announced success. On 17 April, researchers led by Young Gie Chung and Dong Ryul Lee at the CHA University in Seoul reported inCell Stem Cellthat they had cloned embryonic stem-cell (ES cell) lines made using nuclei from two healthy men, aged 35 and 75. And in a paper published onNature's website today, a team led by regenerative medicine specialist Dieter Egli at the New York Stem Cell Foundation Research Institute describes ES cells derived from a cloned embryo containing the DNA from a 32-year-old woman with type 1 diabetes. The researchers also succeeded in differentiating these ES cells into insulin-producing cells.

Nuclear transfer To produce the cloned embryos, all three groups used an optimized version of the laboratory technique called somatic-cell nuclear transfer (SCNT), where the nucleus from a patient's cell is placed into an unfertilized human egg which has been stripped of its own nucleus. This reprograms the cell into an embryonic state. SCNT was the technique used to create the first mammal cloned from an adult cell, Dolly the sheep, in 1996.

The studies show that the technique works for adult cells and in multiple labs, marking a major step. It's important for several reasons, says Robin Lovell-Badge, a stem-cell biologist at the MRC National Institute for Medical Research in London.

At present, studies to test potential cell therapies derived from ES cells are more likely to gain regulatory approval than those testing therapies derived from induced pluripotent stem (iPS) cells, which are made by adding genes to adult cells to reprogram them to an embryonic-like state. Compared with iPS cells, ES cells are less variable, says Lovell-Badge. Therapies for spinal-cord injury and eye disease using non-cloned ES cells have already been tested in human trials. But while many ES cell lines have been made using embryos left over from fertility treatments, stem cells made from cloned adult cells are genetically matched to patients and so are at less risk of being rejected when transplanted.

Ethically fraught Lovell-Badge says cloned embryos could also be useful in other ways, in particular to improve techniques for reprogramming adult cells and to study cell types unique to early-stage embryos, such as those that go on to form the placenta.

Few, however, expect a huge influx of researchers making stem cells from cloned human embryos. The technique is expensive, technically difficult and ethically fraught. It creates an embryo only for the purpose of harvesting its cells. Obtaining human eggs also requires regulatory clearance to perform an invasive procedure on healthy young women, who are paid for their time and discomfort.

Read the original here:
Stem Cells Made from Cloned Human Embryos

To Read More: Stem Cells Made from Cloned Human Embryos
categoriaIPS Cell Therapy commentoComments Off on Stem Cells Made from Cloned Human Embryos | dataApril 29th, 2014
Read All

Stem cells made by cloning adult humans

By JoanneRUSSELL25

Bjarki Johannesson, NYSCF

This colony of embryonic stem cells, created from a type 1 diabetes patient, is one of the first to be cloned from an adult human.

Two research groups have independently produced human embryonic stem-cell lines from embryos cloned from adult cells. Their success could reinvigorate efforts to use such cells to make patient-specific replacement tissues for degenerative diseases, for example to replace pancreatic cells in patients with type 1 diabetes. But further studies will be needed before such cells can be tested as therapies.

The first stem-cell lines from cloned human embryos were reported in May last year by a team led by reproductive biology specialist Shoukhrat Mitalipov of the Oregon Health & Science University in Beaverton (see 'Human stem cells created by cloning'). Those cells carried genomes taken from fetal cells or from cells of an eight-month-old baby1, and it was unclear whether this would be possible using cells from older individuals. (Errors were found in Mitalipov's paper, but were not deemed to affect the validity of its results.)

Now two teams have independently announced success. On 17 April, researchers led by Young Gie Chung and Dong Ryul Lee at the CHA University in Seoul reported inCell Stem Cell that they had cloned embryonic stem-cell (ES cell) lines made using nuclei from two healthy men, aged 35 and 752. And in a paper published on Nature's website today, a team led by regenerative medicine specialist Dieter Egli at the New York Stem Cell Foundation Research Institute describes ES cells derived from a cloned embryo containing the DNA from a 32-year-old woman with type 1 diabetes. The researchers also succeeded in differentiating these ES cells into insulin-producing cells3.

To produce the cloned embryos, all three groups used an optimized version of the laboratory technique called somatic-cell nuclear transfer (SCNT), where the nucleus from a patient's cell is placed into an unfertilized human egg which has been stripped of its own nucleus. This reprograms the cell into an embryonic state. SCNT was the technique used to create the first mammal cloned from an adult cell, Dolly the sheep, in 1996.

The studies show that the technique works for adult cells and in multiple labs, marking a major step. It's important for several reasons, says Robin Lovell-Badge, a stem-cell biologist at the MRC National Institute for Medical Research in London.

At present, studies to test potential cell therapies derived from ES cells are more likely to gain regulatory approval than those testing therapies derived from induced pluripotent stem (iPS) cells, which are made by adding genes to adult cells to reprogram them to an embryonic-like state. Compared with iPS cells, ES cells are less variable, says Lovell-Badge. Therapies for spinal-cord injury and eye disease using non-cloned ES cells have already been tested in human trials. But while many ES cell lines have been made using embryos left over from fertility treatments, stem cells made from cloned adult cells are genetically matched to patients and so are at less risk of being rejected when transplanted.

Lovell-Badge says cloned embryos could also be useful in other ways, in particular to improve techniques for reprogramming adult cells and to study cell types unique to early-stage embryos, such as those that go on to form the placenta.

Few, however, expect a huge influx of researchers making stem cells from cloned human embryos. The technique is expensive, technically difficult and ethically fraught. It creates an embryo only for the purpose of harvesting its cells. Obtaining human eggs also requires regulatory clearance to perform an invasive procedure on healthy young women, who are paid for their time and discomfort.

Original post:
Stem cells made by cloning adult humans

To Read More: Stem cells made by cloning adult humans
categoriaIPS Cell Therapy commentoComments Off on Stem cells made by cloning adult humans | dataApril 29th, 2014
Read All

First disease-specific human embryonic stem cell line by nuclear transfer

By Sykes24Tracey

Using somatic cell nuclear transfer, a team of scientists led by Dr. Dieter Egli at the New York Stem Cell Foundation (NYSCF) Research Institute and Dr. Mark Sauer at Columbia University Medical Center has created the first disease-specific embryonic stem cell line with two sets of chromosomes.

As reported today in Nature, the scientists derived embryonic stem cells by adding the nuclei of adult skin cells to unfertilized donor oocytes using a process called somatic cell nuclear transfer (SCNT). Embryonic stem cells were created from one adult donor with type 1 diabetes and a healthy control. In 2011, the team reported creating the first embryonic cell line from human skin using nuclear transfer when they made stem cells and insulin-producing beta cells from patients with type 1 diabetes. However, those stem cells were triploid, meaning they had three sets of chromosomes, and therefore could not be used for new therapies.

The investigators overcame the final hurdle in making personalized stem cells that can be used to develop personalized cell therapies. They demonstrated the ability to make a patient-specific embryonic stem cell line that has two sets of chromosomes (a diploid state), the normal number in human cells. Reports from 2013 showed the ability to reprogram fetal fibroblasts using SCNT; however, this latest work demonstrates the first successful derivation by SCNT of diploid pluripotent stem cells from adult and neonatal somatic cells.

"From the start, the goal of this work has been to make patient-specific stem cells from an adult human subject with type 1 diabetes that can give rise to the cells lost in the disease," said Dr. Egli, the NYSCF scientist who led the research and conducted many of the experiments. "By reprograming cells to a pluripotent state and making beta cells, we are now one step closer to being able to treat diabetic patients with their own insulin-producing cells."

"I am thrilled to say we have accomplished our goal of creating patient-specific stem cells from diabetic patients using somatic cell nuclear transfer," said Susan L. Solomon, CEO and co-founder of NYSCF. "I became involved with medical research when my son was diagnosed with type 1 diabetes, and seeing today's results gives me hope that we will one day have a cure for this debilitating disease. The NYSCF laboratory is one of the few places in the world that pursues all types of stem cell research. Even though many people questioned the necessity of continuing our SCNT work, we felt it was critical to advance all types of stem-cell research in pursuit of cures. We don't have a favorite cell type, and we don't yet know what kind of cell is going to be best for putting back into patients to treat their disease."

The research is the culmination of an effort begun in 2006 to make patient-specific embryonic stem cell lines from patients with type 1 diabetes. Ms. Solomon opened NYSCF's privately funded laboratory on March 1, 2006, to facilitate the creation of type 1 diabetes patient-specific embryonic stem cells using SCNT. Initially, the stem cell experiments were done at Harvard and the skin biopsies from type 1 diabetic patients at Columbia; however, isolation of the cell nuclei from these skin biopsies could not be conducted in the federally funded laboratories at Columbia, necessitating a safe-haven laboratory to complete the research. NYSCF initially established its lab, now the largest independent stem cell laboratory in the nation, to serve as the site for this research.

In 2008, all of the research was moved to the NYSCF laboratory when the Harvard scientists determined they could no longer move forward, as restrictions in Massachusetts prevented their obtaining oocytes. Dr. Egli left Harvard University and joined NYSCF; at the same time, NYSCF forged a collaboration with Dr. Sauer who designed a unique egg-donor program that allowed the scientists to obtain oocytes for the research.

"This project is a great example of how enormous strides can be achieved when investigators in basic science and clinical medicine collaborate. I feel fortunate to have been able to participate in this important project," said Dr. Sauer. Dr. Sauer is vice chair of the Department of Obstetrics and Gynecology, professor of obstetrics and gynecology, and chief of reproductive endocrinology at Columbia University Medical Center and program director of assisted reproduction at the Center for Women's Reproductive Care.

Patients with type 1 diabetes lack insulin-producing beta cells, resulting in insulin deficiency and high blood-sugar levels. Therefore, producing beta cells from stem cells for transplantation holds promise as a treatment and potential cure for type 1 diabetes. Because the stem cells are made using a patient's own skin cells, the beta cells for replacement therapy would be autologous, or from the patient, matching the patient's DNA.

Generating autologous beta cells using SCNT is only the first step in developing a complete cell replacement therapy for type 1 diabetes. In type 1 diabetes, the body's immune system attacks its own beta cells; therefore, further work is underway at NYSCF, Columbia, and other institutions to develop strategies to protect existing and therapeutic beta cells from attack by the immune system, as well as to prevent such attack.

More:
First disease-specific human embryonic stem cell line by nuclear transfer

To Read More: First disease-specific human embryonic stem cell line by nuclear transfer
categoriaIPS Cell Therapy commentoComments Off on First disease-specific human embryonic stem cell line by nuclear transfer | dataApril 29th, 2014
Read All

Scientists Create Personalized Stem Cells, Raising Hopes for Diabetes Cure

By daniellenierenberg

Regenerative medicine took a step forward on Monday with the announcement of the creation of the first disease-specific line of embryonic stem cells made with a patient's own DNA.

These cells, which used DNA from a 32-year-old woman who had developed Type-1 diabetes at the age of ten, might herald the daystill far in the futurewhen scientists replace dysfunctional cells with healthy cells identical to the patient's own but grown in the lab.

The work was led by Dieter Egli of the New York Stem Cell Foundation (NYSCF) and was published Monday in Nature.

"This is a really important step forward in our quest to develop healthy, patient-specific stem cells that can be used to replace cells that are diseased or dead," said Susan Solomon, chief executive officer of NYSCF, which she co-founded in 2005 partly to search for a cure for her son's diabetes.

Stem cells could one day be used to treat not only diabetes but also other diseases, such as Parkinson's and Alzheimer's.

Embryonic Stem Cells Morph Into Beta Cells

In Type 1 diabetes, the body loses its ability to produce insulin when insulin-producing beta cells in the pancreas become damaged. Ideally this problem could be corrected with replacement therapy, using stem cells to create beta cells the body would recognize as its own because they contain the patient's own genome. This is the holy grail of personalized medicine.

To create a patient-specific line of embryonic stem cells, Egli and his colleagues used a technique known as somatic cell nuclear transfer. They took skin cells from the female patient, removed the nucleus from one cell and then inserted it into a donor egg cellan oocytefrom which the nucleus had been removed.

They stimulated the egg to grow until it became a blastocyst, a hundred-cell embryo in which some cells are "pluripotent," or capable of turning into any type of cell in the body. The researchers then directed a few of those embryonic stem cells to become beta cells. To their delight, the beta cells in the lab produced insulin, just as they would have in the body.

This research builds on work done last year in which scientists from the Oregon Health and Science University used the somatic cell nuclear transfer technique with skin cells from a fetus. It also advances previous work done by Egli and his colleagues in 2011, in which they created embryonic stem cell lines with an extra set of chromosomes. (The new stem cells, and the ones from Oregon, have the normal number of chromosomes.)

Originally posted here:
Scientists Create Personalized Stem Cells, Raising Hopes for Diabetes Cure

To Read More: Scientists Create Personalized Stem Cells, Raising Hopes for Diabetes Cure
categoriaIPS Cell Therapy commentoComments Off on Scientists Create Personalized Stem Cells, Raising Hopes for Diabetes Cure | dataApril 29th, 2014
Read All

Page 18«..10..17181920..»


Copyright :: 2024