Page 41«..1020..40414243..5060..»

Cancer-cardiac connection illuminates promising new drug for heart failure – Science Daily

By JoanneRUSSELL25

A team of researchers at the Gladstone Institutes uncovered a new strategy to treat heart failure, a leading contributor to mortality and healthcare costs in the United States. Despite widespread use of currently-approved drugs, approximately 40% of patients with heart failure die within 5 years of their initial diagnosis.

"The current standard of care is clearly not sufficient, which highlights the urgent need for new therapeutic approaches," said Saptarsi Haldar, MD, an associate investigator at Gladstone and senior author of a new study featured on the cover of the scientific journal Science Translational Medicine. "In our previous work, we found that a drug-like small molecule called JQ1 can prevent the development of heart failure in mouse models when administered at the very onset of the disease. However, as the majority of patients requiring treatment already have longstanding cardiac dysfunction, we needed to determine if our strategy could also treat established heart failure."

As part of an emerging treatment strategy, drugs derived from JQ1 are currently under study in early-phase human cancer trials. These drugs act by inhibiting a protein called BRD4, a member of a family of proteins called BET bromodomains, which directly influences heart failure. With this study, the scientists found that JQ1 can effectively treat severe, pre-established heart failure in both small animal and human cell models by blocking inflammation and fibrosis (scarring of the heart tissue).

"It has long been known that inflammation and fibrosis are key conspirators in the development of heart failure, but targeting these processes with drugs has remained a significant challenge," added Haldar, who is also a practicing cardiologist and an associate professor in the Department of Medicine at the University of California, San Francisco. "By inhibiting the function of the protein BRD4, an approach that simultaneously blocks both of these processes, we are using a new and different strategy altogether to tackle the problem."

Currently available drugs used for heart failure work at the surface of heart cells. In contrast, Haldar's approach goes to the root of the problem and blocks destructive processes in the cell's command center, or nucleus.

"We treated mouse models of heart failure with JQ1, similarly to how patients would be treated in a clinic," said Qiming Duan, MD, PhD, postdoctoral scholar in Haldar's lab and co-first author of the study. "We showed that this approach effectively treats pre-established heart failure that occurs both after a massive heart attack or in response to persistent high blood pressure (mechanical overload), suggesting it could be used to treat a wide array of patients."

Using Gladstone's unique expertise, the scientists then used induced pluripotent stem cells (iPSCs), generated from adult human skin cells, to create a type of beating heart cell known as cardiomyocytes.

"After testing the drug in mice, we wanted to check whether JQ1 would have the same effect in humans," explained co-first author Sarah McMahon, a UCSF graduate student in Haldar's lab. "We tested the drug on human cardiomyocytes, as they are cells that not only beat, but can also trigger the processes of inflammation and fibrosis, which in turn make heart failure progressively worse. Similar to our animal studies, we found that JQ1 was also effective in human heart cells, reaffirming the clinical relevance of our results."

The study also showed that, in contrast to several cancer drugs that have been documented to cause cardiac toxicity, BRD4 inhibitors may be a class of anti-cancer therapeutics that has protective effects in the human heart.

"Our study demonstrates a new therapeutic approach to successfully target inflammation and fibrosis, representing a major advance in the field," concluded Haldar. "We also believe our current work has important near-term translational impact in human heart failure. Given that drugs derived from JQ1 are already being tested in cancer clinical trials, their safety and efficacy in humans are already being defined. This key information could accelerate the development of a new heart failure drug and make it available to patients more quickly."

Story Source:

Materials provided by Gladstone Institutes. Note: Content may be edited for style and length.

See the original post:
Cancer-cardiac connection illuminates promising new drug for heart failure - Science Daily

To Read More: Cancer-cardiac connection illuminates promising new drug for heart failure – Science Daily
categoriaCardiac Stem Cells commentoComments Off on Cancer-cardiac connection illuminates promising new drug for heart failure – Science Daily | dataMay 18th, 2017
Read All

Heart disease on Stem Cells – ISSCR

By daniellenierenberg

Cardiovascular disease is the number one cause of death worldwide in men, women and children, claiming more than 17 million lives each year. The effects of congestive heart failure and acute myocardial infarction (heart attack) present great challenges for doctors and researchers alike.

In this section:

Heart attacks cause damage to the heart muscle, making it less efficient at pumping blood throughout the circulatory system.

Your heart is constructed of several types of cells. For mending damaged heart tissue, researchers generally focus on three specific heart cell types:

Gladstone Institutes. Close up of a mouse heart stained to reveal the important structural protein that helps heart muscle cells to contract (red). The cell nuclei are labeled in magenta.

Despite major advances in how heart disease is managed, heart disease is progressive. Once heart cells are damaged, they cannot be replaced efficiently, at least not as we understand the heart today.

There is evidence that the heart has some repair capability, but that ability is limited and not yet well understood.

Heart failure is a general term to describe a condition in which the hearts blood-pumping action is weaker than normal. How much weaker varies widely from person to person, but the weakness typically gets worse over time. Blood circulates more slowly, pressure in the heart increases, and the heart is unable to pump enough oxygen and other nutrients to the rest of the body. To compensate, the chambers of the heart may stretch to hold more blood, or the walls of the chambers may thicken and become stiff. Eventually, the kidneys respond to the weaker blood-pumping action by retaining more water and salt, and fluid can build up in the arms, legs, ankles, feet, and even around the lungs. This general clinical picture is called congestive heart failure.

Many conditions can lead to congestive heart failure. Among the most common are:

The American Heart Association defines normal blood pressure for an adult as 120/80 or lower. What do those numbers mean? The top number is the systolic pressure that is, the pressure in your arteries when your heart beats, or contracts. The bottom number measures diastolic pressure, or the pressure in your arteries between beats, when the heart refills with blood.

In the early stages of congestive heart failure, treatment focuses on lifestyle changes (healthy diet, regular exercise, quitting smoking, etc.) and specific medications; the goals are to slow down any progression of the disease, lessen symptoms and improve quality of life.

Medications called beta blockers are often prescribed after a heart attack or to treat high blood pressure. Other medications called ACE inhibitors prevent heart failure from progressing.

For moderate to severe congestive heart failure, surgery may be necessary to repair or replace heart valves or to bypass coronary arteries with grafts. In severe cases, patients may be put on fluid and salt restriction and/or have pacemakers or defibrillators implanted to control heart rhythms.

Acute myocardial infarction, or a heart attack, occurs when the blood vessels that feed the heart are blocked, often by a blood clot that forms on top of the blockage. The blockage is a build-up of plaque that is composed of fat, cholesterol, calcium and other elements found in the blood. Without oxygen and other nutrients from the blood, heart cells die, and large swaths of heart tissue are damaged.

After a heart attack, scar tissue often forms over the damaged part of the heart muscle, and this scar tissue impairs the hearts ability to keep beating normally and pumping blood efficiently. The heart ends up working harder, which weakens the remaining healthy sections of the heart; over time, the patient experiences more heart-related health issues.

Doctors often use a procedure called angioplasty to disrupt the blood clot and widen clogged arteries. Angioplasty involves inserting and inflating a tiny balloon into the affected artery. Sometimes this temporary measure is enough to restore blood flow. However, angioplasty is often combined with the insertion of a small wire mesh tube called a stent, which helps keep the artery open and reduces the chances that it will get blocked again.

Other post-heart attack treatments include the regular use of blood thinners (for example, low-dose aspirin) to prevent new clots from forming and other medications to help control blood pressure and blood cholesterol levels. Lifestyle changes, such as lowering salt and fat intake, exercising regularly, reducing alcohol consumption and quitting smoking are also recommended to reduce the chances of a subsequent heart attack.

Scientists and clinicians have long suspected and recently confirmed that a persons genetic makeup contributes to the likelihood of their having a heart attack. Learn more here

The goals of heart disease research are to understand in greater detail what happens in heart disease and why, and to find ways to prevent damage or to repair or replace damaged heart tissue. Scientists have learned much about how the heart works and the roles different cells play in both normal function and in disease, and they are learning more about how cardiomyocytes and cardiac pacemaker cells operate, including how they communicate with each other and how they behave when damage occurs.

Researchers grow cardiomyocytes in the lab from the following sources:

These cells will beat in unison in a culture dish, the same way they do in a living heart muscle. This is exciting to consider, as researchers explore whether they might someday grow replacement tissue for transplantation into patients. However, it is not yet known whether lab-grown cardiomyocytes will integrate or beat in unison with surrounding cells if they are transplanted into the human body.

Gordon Keller Lab. Heart cells beating in a culture dish.

Scientists also use various types of stem cells to study the hearts natural repair mechanisms and test ways to enhance those repair functions. The evidence we have so far suggest thats the heart may have a limited number of cardiac stem cells that may conduct some repair and replacement functions throughout an individuals life, but we dont know where they live in the heart or how they become activated.

Human cells made from iPS cells are also incredibly useful for creating human models of heart disease to get a better understanding of exactly what goes wrong and for testing different drugs or other treatments. They can also be used to help predict which patients might have toxic cardiac side effects from drugs for other diseases such as cancer.

The key to treating heart disease is finding a way to undo the damage to the heart. Researchers are trying several tactics with stem cells to repair or replace the damaged heart tissue caused by congestive heart failure and heart attacks.

Areas under investigation include:

The Europe-wide BAMI clinical trial (the effect of intracoronary reinfusion of bone marrow-derived mononuclear cells on all-cause mortality in acute myocardial infarction) that began in 2014, is testing the infusion of cells from the participants bone marrow into one of the coronary arteries (one of two major arteries that supply the heart) to spark repair activity. However, it is not yet clear whether these cells will support heart repair function or in what way.

Researchers are also exploring transplantation of cardiomyocytes generated from both iPS cells and cardiac progenitor cells. They need to determine whether these transplanted cells survive and function in the body and whether they help speed up the hearts innate repair mechanisms.

Some of these approaches are still being evaluated in the lab while others are already being tested in clinical trials around the world. However, these trials are in their early stages and the results will not be clear for many years. Indeed, some published data conflict in critical ways, so carefully designed and well-monitored trials are key to working out what is safe and effective.

Link:
Heart disease on Stem Cells - ISSCR

To Read More: Heart disease on Stem Cells – ISSCR
categoriaCardiac Stem Cells commentoComments Off on Heart disease on Stem Cells – ISSCR | dataMay 15th, 2017
Read All

Govt signs MoU to curb cardiac deaths in state | Goa News – Times … – Times of India

By raymumme

Panaji: To ensure the number of emergency deaths due to cardiac-related problems are brought down, health minister Vishwajit Rane announced the signing of an MoU with ST Elevation Myocardial Infarction (STEMI) India. The organization, he said, has a protocol to handle cardiac emergency cases where such cases will be dealt with at the point of contact through the GVK 108 service.

Doctors will be trained to operate within the protocol he said, adding that it will help increase the window period after a cardiac attack and give treatment to a patient. "The whole idea is to save lives and if the window period is extended it will help saving lives of patients," he said, adding that significant damage happens to a patient's heart if the heart problem is not addressed.

"The problem is all casualty cases are referred to medicine and not directly to cardiology." These, he said, should immediately be looked at by the cardiac team, he said, adding that a proposal has gone to the chief minister to add three more cardiac consultants to the cardiology wing so that 24 x7 services are made available for patients.

New fleet of 108 ambulance with trained personnel including motorcycle ambulances will be pressed into service by the end of June and first week of July, he said.

See the article here:
Govt signs MoU to curb cardiac deaths in state | Goa News - Times ... - Times of India

To Read More: Govt signs MoU to curb cardiac deaths in state | Goa News – Times … – Times of India
categoriaCardiac Stem Cells commentoComments Off on Govt signs MoU to curb cardiac deaths in state | Goa News – Times … – Times of India | dataMay 14th, 2017
Read All

Stem cell therapy holds promise for treating most severe cases of … – Medical Xpress

By JoanneRUSSELL25

May 11, 2017

An analysis of data from the entire development program consisting of three trials assessing the feasibility of using a stem cell therapy (CD34+ cells) to treat patients with the most severe cases of angina, refractory angina (RA), showed a statistically significant improvement in exercise time as well as a reduction in mortality. Results from "CD34+ Stem Cell Therapy Improves Exercise Time and Mortality in Refractory Angina: A Patient Level Meta-Analysis" were presented today as a late-breaking clinical trial at the Society for Cardiovascular Angiography and Interventions (SCAI) 2017 Scientific Sessions in New Orleans.

One of the warning signs of coronary artery disease is angina, or chest pain, which occurs when the heart muscle does not receive enough blood. Unlike angina pectoris or "stable angina," which can often be treated with medication, RA can be incapacitating, impacting quality of life. In the most severe cases, those with class III or IV angina, treatment options are exhausted, and patients remain severely debilitated. Unfortunately, one of the untoward consequences of the improved survival of patients with chronic ischemic heart disease is more patients with refractory angina.

A meta-analysis of three trials that each showed promising results looked at injecting RA patients with autologous CD34+ cellswhich have been shown to increase blood flowand the therapy's effect on mortality and total exercise time (TET), an important predictor of long-term mortality.

Data from 304 patients was extracted and analyzed from phase 1 (24 patients), ACT-34 and ACT-34 extension studies (168 patients), and RENEW (112 patients), which was prematurely terminated by the sponsor due to financial considerations.

"The goal of this meta-analysis was to combine patient level data from three very similar trials to try understand what it would tell us," said lead investigator Tom Povsic, MD, FSCAI, associate professor at the Duke Clinical Research Institute (DCRI) and an interventional cardiologist at Duke University School of Medicine.

Results showed that patients treated with CD34+ cell therapy (n=187) improved TET by 80.5 12.1, 101.8 13.7, and 90.5 14.7 seconds at three months, six months, and 12 months compared with 28.1 15.7, 48.8 18.2, and 39.5 20.3 seconds for the placebo group (n=89), resulting in treatment effects of 52.5 (p=0.002), 52.9 (p=0.009) and 50.9 (p=0.027) seconds.

The relative risk of angina was 0.90 (p=0.40), 0.81 (p=0.14), and 0.79 (p=0.17) at three months, six months, and 12 months in CD34+ treated patients.

CD34+ treatment decreased mortality by 24 months (2.6 percent vs. 11.8 percent, p=0.003). In addition, major adverse cardiac events were less frequent (29.8 percent for CD34+ patients vs. 40.0 percent for the placebo group, p=0.08).

"Therapies for these patients are direly needed," said Povsic, "and results from our meta-analysis are very compelling. Most importantly, the number of patients in our meta-analysis approximates those who were targetedfor enrollment in RENEW, the prematurely terminated phase III study. These results suggest that had RENEW been completed, a regenerative therapy for these patients might meet criteria for approval. I still think this therapy has a lot of promise."

Timothy Henry, MD, chief of cardiology at Cedars-Sinai Medical Center in Los Angeles, agrees "CD34+ cell therapy appears to be an extremely safe and effective therapy for this growing and challenging patient population with limited options."

Explore further: Stem cell therapy shows potential for difficult-to-treat RA patient population

More information: Povsic presented "CD34+ Stem Cell Therapy Improves Exercise Time and Mortality in Refractory Angina: A Patient Level Meta-Analysis" on Thursday, May 11, 2017 11:30 a.m. CDT

A study using a stem cell therapy to treat challenging refractory angina (RA) patients demonstrated promising results, including improved exercise time, reduced angina and reduced mortality. The RENEW results were presented ...

A two-year, multi-center clinical study with 167 patients with class III-IV refractory angina randomized to low and high dose CD34+ cells or placebo has revealed that patients who received either a high or low dose of CD34a ...

The absolute cumulative probability of death at 12 months was 5 percent lower for patients who received routine invasive coronary angiography and revascularization as indicated during an unstable angina admission compared ...

An injection of stem cells into the heart could offer hope to many of the 850,000 Americans whose chest pain doesn't subside even with medicine, angioplasty or surgery, according to a study in Circulation Research: Journal ...

(HealthDay)Reduced baseline levels of circulating CD34+ stem cells predict adverse cardiovascular outcomes for patients with type 2 diabetes, according to a study published online Nov. 4 in Diabetes Care.

A non-surgical treatment that uses a patient's own bone marrow stem cells to treat chest pain or angina improved both symptoms and the length of time treated patients could be physically active, according to preliminary research ...

New research has found that genetic differences in antibody genes alter individuals' susceptibility to rheumatic heart disease, a forgotten inflammatory heart condition known as 'RHD' that is rife in developing countries.

People who use commonly prescribed non-steroidal anti-inflammatory drugs (NSAIDs) to treat pain and inflammation could be raising their risk of having a heart attack, as early as in the first week of use and especially within ...

(HealthDay)When someone goes into cardiac arrest, quick action from bystanders can have a long-lasting impact, researchers say.

Cholesterol-lowering statin drugs may have been wrongly blamed for muscle pain and weakness, said a study Wednesday that pointed the finger at a psychological phenomenon called the "nocebo" effect.

A new pilot study reports that Mexican-American stroke survivors are less likely to receive inpatient rehabilitation than non-Hispanic whites.

Less than half of individuals with peripheral artery disease, which is a narrowing of arteries to the limbs, stomach and head, are treated with appropriate medications and lifestyle counseling. These findings highlight the ...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Read more:
Stem cell therapy holds promise for treating most severe cases of ... - Medical Xpress

To Read More: Stem cell therapy holds promise for treating most severe cases of … – Medical Xpress
categoriaCardiac Stem Cells commentoComments Off on Stem cell therapy holds promise for treating most severe cases of … – Medical Xpress | dataMay 14th, 2017
Read All

Global Human Embryonic Stem Cells Market 2017: Government Initiatives & Medical Tourism are Accelerating this … – MilTech

By Sykes24Tracey

Summary

Orbis Research Presents Global Human Embryonic Stem Cells Market Research Report which Examine into the present trends, highlights the recent market growth, sales volume, Demand Scenarios and Opportunities emerging for business players in the near future.

Description

The Global Human Embryonic Stem Cells Market is estimated to be USD XX billion in 2017 and is expected to reach USD XX billion by 2022, registering a healthy CAGR of XX%, during 2017-2022 (forecast period).

The increase in malignant, cardiac, & neurological disorders, immediate need for effective and novel therapies, the rising human embryonic stem cell awareness and better healthcare infrastructure with government initiatives are expected to accelerate the global human embryonic stem cells market, during the forecast period.

The major companies discussed in this report are

A majority of companies are investing in the human embryonic stem cell research, globally. The high-prevalence of cardiac and malignant diseases, increasing R&D investments & research initiatives, increasing support from government & private institutions and rapid growth in medical tourism are accelerating the market growth. However, the stringent regulatory guidelines and ethical & moral concerns are restraining the market.

Get a PDF Sample of Global Human Embryonic Stem Cells Market Report at: http://www.orbisresearch.com/contacts/request-sample/280434

The global embryonic stem cells market is segmented based on application and geography. The applications segment includes regenerative medicine, stem cell biology research, tissue engineering and toxicology testing. Based on geography, the market is segmented into North America, Europe, Asia-Pacific, the Middle East & Africa and Latin America. The Asia-Pacific human embryonic stem cells market has the potential, owing to increasing initiatives of the governments & private organizations for research in human embryonic stem cells.

Key Deliverables

Market analysis, with region-specific assessments and competition analysis on a global and regional scale.

Market definition along with the identification of key drivers and restraints.

Identification of factors instrumental in changing the market scenario, growing prospective opportunities, and identification of key companies that can influence the market.

Extensively researched competitive landscape section with profiles of major companies, along with their market share.

Identification and analysis of the macro and micro factors that affect the market on both, global and regional scale.

A comprehensive list of key market players along with the analysis of their current strategic interests and key financial information.

A wide-range of knowledge and insights about the major players in the industry and the key strategies adopted by them to sustain and grow in the studied market

Insights on the major countries/regions where the industry is growing, and identify the regions that are still untapped.

See more here:
Global Human Embryonic Stem Cells Market 2017: Government Initiatives & Medical Tourism are Accelerating this ... - MilTech

To Read More: Global Human Embryonic Stem Cells Market 2017: Government Initiatives & Medical Tourism are Accelerating this … – MilTech
categoriaCardiac Stem Cells commentoComments Off on Global Human Embryonic Stem Cells Market 2017: Government Initiatives & Medical Tourism are Accelerating this … – MilTech | dataMay 12th, 2017
Read All

Kidney research leads to heart discovery – Newsplex – The Charlottesville Newsplex

By JoanneRUSSELL25

CHARLOTTESVILLE, Va. (NEWSPLEX) -- Researchers at the University of Virginia School of Medicine were looking into kidneys and learned more about the formation of the heart.

They also identified a gene that is responsible for a deadly cardiac condition.

According to a release, scientists discovered the heart's inner lining forms from the same stem cells, known as precursor cells, that turn into blood.

That means a single type of stem cell created both the blood and part of the organ that pumps it.

A particular gene, called S1P1, is necessary for the proper formation of the heart, and without it, the tissue develops a sponginess that compromises the heart's ability to contract tightly and pump blood efficiently.

That condition is called ventricular non-compaction cardiomyopathy, which often leads to early death.

"Many patients who suffer from untreatable chronic disease, including heart and kidney disease, are in waiting lists for limited organ transplantation. Therefore, there is an urgent need to understand what happens to the cells during disease and how can they be repaired," said researchers Yan Hu, PhD. "Every organ is a complex machine built by many different cell types. Knowing the origin of each cell and which genes control their normal function are the foundations for scientists to decipher the disease process and eventually to find out how to guide the cells to self-repair or even to build up a brand new organ using amended cells from the patients."

The researchers were looking into how the kidneys form when they noted a deletion of the S1P1 gene in research mice led to deadly consequences elsewhere in the bodies of the mice.

"We were studying the role of these genes in the development of the vasculature of the kidney," said Maris Luisa S. Sequeira-Lopez, MD, of UVA's Child Health Research Center. "The heart is the first organ that develops, and so when we deleted this gene in these precursor cells, we found that it resulted in abnormalities of the heart, severe edema, hemorrhage and low heart rate."

In looking closer at the heart, the researchers discovered the gene deletion caused thin heart walls and other cardiac problems in developing mice embryos.

"For a long time, scientists believed that each organ developed independently of other organs, and the heart developed from certain stem cells and blood developed from blood stem cells," said researcher Brian C. Belyea, MD, of the UVA Children's Hospital. "A number of studies done in this lab and others, including this work, shows that there's much more plasticity in these precursor cells. What we found is that cardiac precursor cells that are present in the embryonic heart do indeed give rise to components of the heart in adults but also give rise to the blood cells."

He also said the discovery may one day lead to the development of better treatments for the cardiac condition.

The findings have been published in the journal Scientific Reports.

View post:
Kidney research leads to heart discovery - Newsplex - The Charlottesville Newsplex

To Read More: Kidney research leads to heart discovery – Newsplex – The Charlottesville Newsplex
categoriaCardiac Stem Cells commentoComments Off on Kidney research leads to heart discovery – Newsplex – The Charlottesville Newsplex | dataMay 12th, 2017
Read All

Will Stem Cell Research Change Treatment of Heart Disease? – Health Essentials from Cleveland Clinic (blog)

By LizaAVILA

Q: Ive been reading a lot about stem cells recently. Willstem cell research change the treatment of heart disease?

A: Theres some exciting early data where scientists have been able to use stem cells for regeneration of cardiac tissue, in particular certain parts of the heart or maybe even an entire heart in mice or rats.

Cleveland Clinic is a non-profit academic medical center. Advertising on our site helps support our mission. We do not endorse non-Cleveland Clinic products or services. Policy

However, its not been done yet in humans reliably and that would be the next step. If the research bears out, we may see this as an option for heart patients in perhaps five to 10 years.

The area where stem cells might first be used is in patients who have had damage to their heart because of a heart attack. These patients have scarring on the heart and that area of the heart is not beating anymore. If we can regenerate cardiac tissue to replace this scarred tissue, the hope is to get the heart fully working again.

Growing whole new hearts will likely be later down the line and will depend on the success of the research.

Preventive cardiologistHaitham Ahmed, MD, MPH

View post:
Will Stem Cell Research Change Treatment of Heart Disease? - Health Essentials from Cleveland Clinic (blog)

To Read More: Will Stem Cell Research Change Treatment of Heart Disease? – Health Essentials from Cleveland Clinic (blog)
categoriaCardiac Stem Cells commentoComments Off on Will Stem Cell Research Change Treatment of Heart Disease? – Health Essentials from Cleveland Clinic (blog) | dataMay 10th, 2017
Read All

Fixing broken hearts through tissue engineering – Science Daily

By Sykes24Tracey

Fixing broken hearts through tissue engineering
Science Daily
Menasche has placed engineered heart tissue derived from embryonic stem cell-derived cardiac cells onto the hearts of six heart attack patients in France in an initial safety study for this engineered tissue approach. Wu has used single-cell RNA ...

Read more here:
Fixing broken hearts through tissue engineering - Science Daily

To Read More: Fixing broken hearts through tissue engineering – Science Daily
categoriaCardiac Stem Cells commentoComments Off on Fixing broken hearts through tissue engineering – Science Daily | dataMay 9th, 2017
Read All

Kidney research leads to surprising discovery about how the heart forms – Science Daily

By Dr. Matthew Watson

Kidney research leads to surprising discovery about how the heart forms
Science Daily
"For a long time, scientists believed that each organ developed independently of other organs, and the heart developed from certain stem cells and blood developed from blood stem cells," explained researcher Brian C. Belyea, MD, of the UVA Children's ...

and more »

Go here to read the rest:
Kidney research leads to surprising discovery about how the heart forms - Science Daily

To Read More: Kidney research leads to surprising discovery about how the heart forms – Science Daily
categoriaCardiac Stem Cells commentoComments Off on Kidney research leads to surprising discovery about how the heart forms – Science Daily | dataMay 9th, 2017
Read All

Three Distinct Cardiac Stem Cell Populations Isolated from a Single Human Heart Biopsy – MedicalResearch.com (blog)

By raymumme


MedicalResearch.com (blog)
Three Distinct Cardiac Stem Cell Populations Isolated from a Single Human Heart Biopsy
MedicalResearch.com (blog)
Response: In the field of cardiovascular research there is ongoing debate regarding the optimal cell population(s) to use for the treatment of patients with heart failure. A major reason being, the lack of understanding of the actions and synergism ...

Read the original:
Three Distinct Cardiac Stem Cell Populations Isolated from a Single Human Heart Biopsy - MedicalResearch.com (blog)

To Read More: Three Distinct Cardiac Stem Cell Populations Isolated from a Single Human Heart Biopsy – MedicalResearch.com (blog)
categoriaCardiac Stem Cells commentoComments Off on Three Distinct Cardiac Stem Cell Populations Isolated from a Single Human Heart Biopsy – MedicalResearch.com (blog) | dataMay 6th, 2017
Read All

Fixing Broken Hearts Through Tissue Engineering – Newswise (press release)

By Dr. Matthew Watson

Newswise BIRMINGHAM, Ala. The third annual Cardiovascular Tissue Engineering Symposium met at the University of Alabama at Birmingham last month, a gathering of noted physicians and scientists who share the goal of creating new tissues and new knowledge that can prevent or repair heart disease and heart attacks.

Talks ranged from the cutting-edge translational work of Phillippe Menasche, M.D., Ph.D., professor of thoracic and cardiovascular surgery, Paris Descartes University, to the basic biology research of Sean Wu, M.D., Ph.D., an associate professor of medicine, Stanford University School of Medicine. Menasches work pioneers human treatment with engineered heart tissue. Wus work opens the door to generating heart chamber-specific cardiomyocytes from human induced pluripotent stem cells, which act similarly to embryonic stem cells, having the potential to differentiate into any type of cell.

Menasche has placed engineered heart tissue derived from embryonic stem cell-derived cardiac cells onto the hearts of six heart attack patients in France in an initial safety study for this engineered tissue approach. Wu has used single-cell RNA sequencing to show 18 categories of cardiomyocytes in the heart, differing by cell type and anatomical location, even though they all derived from the same lineage.

We are creating a new community of engineer-scientists, said Jay Zhang, M.D., Ph.D., chair and professor of the UAB Department of Biomedical Engineering. In their welcoming remarks, both Selwyn Vickers, M.D., dean of the UAB School of Medicine, and Victor Dzau, M.D., professor of medicine at Duke University School of Medicine and president of the National Academy of Medicine, spoke of the growing convergence between scientists and physicians that is leading to tremendous possibilities to improve patient care.

The tissue engineering field is moving fast.

Cardiac progenitor cells that can contribute to growth or repair injury in the heart were only discovered in 2003, says symposium presenter Michael Davis, Ph.D., associate professor of Medicine, Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory University School of Medicine. In 2006, the Japanese scientist Shinya Yamanaka first showed how to transform adult cells into induced pluripotent stem cells. This potentially provides feedstock for tissue engineering using either pluripotent cells or specific progenitor cells for certain tissue lineages.

One example of the pace of change was given by Bjorn Knollman, M.D., Ph.D., professor of medicine and pharmacology at Vanderbilt University School of Medicine. Knollman noted an ugly truth that everyone recognized in 2013 that cardiomyocytes derived from induced pluripotent stem cells were nothing like normal adult cardiomyocytes in shape, size and function.

He described the improved steps like culturing the derived cardiomyocytes in a Matrigel mattress and giving them a 14-day hormone treatment that have led to derived cardiomyocytes with greatly improved cell volume, morphology and function. His take-home message: In just four years, from 2013 to 2017, researchers were able to remove the differences between induced pluripotent stem cell-derived cardiomyocytes and normal adult cardiomyocytes.

In other highlights of the symposium, Joo Soares, Ph.D., a research scientist for the Center for Cardiovascular Simulation, University of Texas at Austin, explained how subjecting engineered heart valve tissue to cyclic flexure as it is grown in a bioreactor leads to improved quantity, quality and distribution of collagen, as opposed to tissue that is not mechanically stressed.

Sumanth Prabhu, M.D., professor and chair of the Division of Cardiovascular Disease, UAB School of Medicine, talked about the role of immune cells in cardiac remodeling and heart failure. He noted the distinct phases after a heart attack acute inflammation and dead tissue degradation, zero to four days; the healing phase of resolution and repair, four to 14 days; and the chronic ischemic heart failure that can occur weeks to months later. Prabhu described experiments to show how specialized spleen macrophages specifically marginal-zone metallophilic macrophages migrate to the heart after a heart attack and are required for heart repair to commence.

Nenad Bursac, Ph.D., professor of Biomedical Engineering, Duke University School of Medicine, described his advances in engineering vascularized heart tissue for repair after a heart attack. Bursac said a better understanding of how to grow the tissue from heart tissue progenitor cells has allowed formation of mature giga patches up to 4 centimeters square that have good propagation of heartbeat contractions and spontaneous formation of capillaries from derived-vascular endothelial and smooth muscle cells. These patches are being tested in pigs.

Duke Universitys Victor Dzau gave a perspective of the paracrine hypothesis over the past 15 years. In 2003, researchers had seen that applying mesenchymal stem cells to a heart attack area led to improved heart function, with beneficial effects seen as early as 72 hours. However, there was little engraftment and survival of the stem cells. Thus was born the hypothesis, which has been worked out in detail since then that stem cells do their work by release of biologically active factors that act on other cells, similar to the way that paracrine hormones have their effect only in the vicinity of the gland secreting it.

Joseph Wu, M.D., Ph.D., professor of radiology, Stanford University School of Medicine, showed how heart cells derived from induced pluripotent stem cells could be used to develop personalized medicine approaches for cancer patients. The problem, he explained, is that some cancer patients are susceptible to a deadly cardiotoxicity when treated with the potent drug doxorubicin. Hence, the drug has a black box warning, the strictest warning mandated by the Food and Drug Administration. Wu was able to use a library of induced pluripotent stem cell-derived cardiomyocytes to associate certain genotypes and phenotypes with doxorubicin sensitivity, in what he called a clinical trial in a dish. From this knowledge, it will be possible to look at the transcriptome profile in patient-specific cardiomyocytes derived from induced pluripotent stem cells to predict patient-specific drug safety and efficacy, thus fulfilling the definition of precision medicine the right treatment at the right time to the right person.

In all, UABs Cardiovascular Tissue Engineering Symposium included more than 30 presentations. The entire symposium will be summarized in a paper for the journal Circulation Research, expected to be published shortly, Zhang says.

Presentations of the 2015 Cardiovascular Tissue Engineering Symposium were published in the journal Science Translational Medicine, and the presentations of the 2016 Cardiovascular Tissue Engineering Symposium were published in the journal Circulation Research.

At UAB, Zhang holds the T. Michael and Gillian Goodrich Endowed Chair of Engineering Leadership, Vickers holds the James C. Lee Jr. Endowed Chair for the Dean of the School of Medicine, and Prabhu holds the Mary Gertrude Waters Chair of Cardiovascular Medicine.

See original here:
Fixing Broken Hearts Through Tissue Engineering - Newswise (press release)

To Read More: Fixing Broken Hearts Through Tissue Engineering – Newswise (press release)
categoriaCardiac Stem Cells commentoComments Off on Fixing Broken Hearts Through Tissue Engineering – Newswise (press release) | dataMay 6th, 2017
Read All

BWH settles research fraud allegations – Mission Hill Gazette

By daniellenierenberg

Brigham and Womens Hospital (BWH) will pay $10 million to resolve allegations that one of their stem cell research laboratories fraudulently obtained grant funding from the National Institutes of Health (NIH), according to a press release.

As per federal regulations and institutional policy requirements, BWH conducted an investigation that identified data integrity concerns in federally funded grant applications submitted by the Anversa lab. After learning of and investigating the allegations of misconduct in the Anversa laboratory, BWH disclosed its concerns to the U.S. Department of Health and Human Services, Office of the Inspector General, and Office of Research Integrity.

BWH independently evaluated the issues relative to the federal false claims requirements, said Lori Schroth, media relations manager at BWH. Following that evaluation, BWH self-disclosed this matter to appropriate government entities and ceased drawing implicated funds.

The settlement resolves the allegations against Dr. Piero Anversa, who ran the laboratory, and Drs. Annarossa Leri and Jan Kajstura. Allegedly, the doctors knew or should have known that their laboratory published and relied upon manipulated and falsified information including microscope images and carbon-14 age data for cells, according to the press release. This information was used in applications for NIH research grant awards concerning the purported ability of stem cells to repair damage to the heart.

The settlement also resolves allegations that the laboratory followed improper protocols, inaccurately characterized cardiac stem cells, and kept recklessly or deliberately misleading records, according to the press release.

Drs. Anversa, Leri, and Kajstura are no longer affiliated with BWH, and the lab has since been closed.

BWH is committed to ensuring that research conducted at the institution is done under the most rigorous scientific standards, and has made significant enhancements to research integrity compliance protocols as a result of this event, said Schroth.

Acting U.S. Attorney William D. Weinreb said in the press release that individuals and institutions that receive research funding from NIH have an obligation to conduct their research honestly and not to alter results to conform with unproven hypotheses.

Medical research fraud not only wastes scarce government resources but also undermines the scientific process and the search for better treatments for serious diseases, Weinreb said, according to the press release. We commend Brigham and Womens for self-disclosing the allegations of fraudulent research at the Anversa laboratory, and for taking steps to prevent future recurrences of such conduct.

Original post:
BWH settles research fraud allegations - Mission Hill Gazette

To Read More: BWH settles research fraud allegations – Mission Hill Gazette
categoriaCardiac Stem Cells commentoComments Off on BWH settles research fraud allegations – Mission Hill Gazette | dataMay 6th, 2017
Read All

stem cells – Shirley’s Wellness Cafe

By LizaAVILA

Aqua Botanical Stem Cell Therapy

Ethical concerns have slowed embryonic medical research into applications for stem cells. Also, the embryonic stem cells can unpredictably cause cancer in the treated patient.

New research demonstrate that Stem cell nutrition dereived from aqua botanical source supports the natural role of adult stem cells. These plant stem cell extracts are typically derived from certain edible algae that grows in fresh water.

When there is an injury or a stress to an organ, compounds are released that reach the bone marrow and trigger the release of stem cells. Stem Cells can be thought of as master cells. Stem cells circulate and function to replace dysfunctional cells, thus fulfilling the natural process of maintaining optimal health

Dr. Robert Sampson, MD on stem cell nutrition - "... we have a product that has been shown and demonstrated in the patent to increase the level of adult circulating stem cells by up to 30%. It seems to me we're having a great opportunity here to optimize the body's natural ability to create health."

Stem cell nutrition are typically aquatic botanicals and support wellness by assisting the body in its ability to maintain healthy stem cell physiology, production, and placement. Just as antioxidants are important to protect your cells from free radical damage, stem cell nutrition is equally important to support your stem cells in maintaining proper organ and tissue functioning in your body.

The health benefits of having more stem cells in the blood circulation have been demonstrated by numerous scientific studies. It would be too long here to summarize this vast body of scientific data. I simply suggest you research the work of Dr. Donald Orlic at the National Institute of Health.

The theory that Adult Stem Cells are nothing less than the human body's natural self-renewal system has profound implications for every area of modern medicine. The idea that heart disease, diabetes, liver degeneration, and other conditions could be things of the past is no longer science fiction; because of recent Adult Stem Cell research breakthroughs, these are real possibilities in the short term.

Stem cells are defined as cells with the unique capacity to self-replicate throughout the entire life of an organism and to differentiate into cells of various tissues. Most cells of the body are specialized and play a well-defined role in the body. For example, brain cells respond to electrical signals from other brain cells and release neurotransmitters; cells of the retina are activated by light, and pancreatic -cells produce insulin. These cells, called somatic cells, will never differentiate into other types of cells or even proliferate. By contrast, stem cells are primitive cells that remain undifferentiated until they receive a signal prompting them to become various types of specialized cells.

Dr. Cliff Minter - "Stem cells are the most powerful cells in the body. We know that stem cells, once they're circulating in the bloodstream, will travel to any area of the body that has been compromised or damaged and turn into healthy cells. There have been controversial discussions about the new stem cells found in embryos, but the truth is that everyone has adult stem cells in their own bodies. We are all created from stem cells.

As a child or a young adult, your body automatically releases stem cells whenever you injure yourself. That's why you heal so fast when you are younger. After about age 35, we don't heal as fast anymore, because the stem cells aren't released the same way as when we are younger. Stem cell nutrition helps all of us heal our bodies. If you look at the New England Journal of Medicine, you'll find that the number one indicator of a healthy heart is the number of stem cells circulating in the body. Stem cell nutrition is the organic and all-natural way to stimulate the bone marrow to release adult stem cells into the bloodstream.

By taking stem cell nutrition, you can maintain optimum health and aid your body in healing itself. It's certainly a better way to recuperate from an illness than using prescription drugs, because even when a medication works, it can often be hard on your liver and the rest of your body. Stem cell nutrition has no negative side effects. This makes it a powerful approach to healing and good health in general.

I found out about stem cell nutrition after someone asked for my opinion on it. I did some research and found it to be one of the greatest ways to slow down aging that we have. Aging is nothing more than the breakdown of cells. Stem cell nutrition combats that action. As cells break down, stem cell nutrition replaces them with healthy cells. This is the greatest, most natural anti-aging method I know. I was skeptical at first, but the results I've personally seen in people I've talked with have been wide-ranged. Lots of people have reported an increase in energy and better sleeping patterns.

I've seen people with arthritis in various parts of their bodies reverse the disease, and people with asthma end up with their lungs totally clear. One person that was on oxygen almost 24/7 is now totally off of oxygen. Two ladies who suffered badly from PMS told me they were 100 percent symptom-free within weeks of starting the stem cell nutrition. Two people I know had tennis elbow which usually takes about six to nine months to heal. Within weeks of taking stem cell nutrition, both report their "tennis elbow" is gone. It makes sense, because stem cells go to whatever area is compromised and turn into healthy cells.

I use stem cell nutrition as a preventative. I've noticed an increase in my energy level and an improved sleeping pattern. Stem cell nutrition has zero negative side effects, is very powerful, and we know how it works. It's good for children as well as adults. This is the best, most natural way I know to optimum health. If you just want to use it for prevention, this is the best thing I know for staying healthy. And if you do those and regaining optimum health. I recommend it to everybody."

Dr. Cliff Minter (retired) graduated from Illinois College of Podiatric Medicine. He completed his residency at the Hugar Surgery Center in the Hines Veteran Administration Hospital in Illinois before going into private practice in Ventura, CA. Dr. Minter is a national and international speaker on the subjects of business and nutritional products.

The Stem Cell Theory of Renewal proposes that stem cells are naturally released by the bone marrow and travel via the bloodstream toward tissues to promote the body's natural process of renewal. When an organ is subjected to a process that requires renewal, such as the natural aging process, this organ releases compounds that trigger the release of stem cells from the bone marrow. The organ also releases compounds that attracts stem cells to this organ. The released stem cells then follow the concentration gradient of these compounds and leave the blood circulation to migrate to the organ where they proliferate and differentiate into cells of this organ, supporting the natural process of renewal.

Most of the cells in the human body are specialists assigned to a specific organ or type of tissue, such as the neuronal cells that wire the brain and central nervous system. Stem cells are different. When they divide, they can produce either more stem cells, or they can serve as progenitors that differentiate into specialized cells as they mature. Hence the name, because specialist cells can "stem" from them. The potential to differentiate into specialist cells whose populations in the body have become critically depleted as the result of illness or injury is what makes stem cells so potentially valuable to medical research.

The idea is that if the fate of a batch of stem cells could be directed down specific pathways, they could be grown, harvested, and then transplanted into a problem area. If all went according to plan, these new cells would overcome damaged or diseased cells, leading to healing and recovery. "The life of a stem cell can be viewed as a hierarchical branching process, where the cell is faced with a series of fate switches," Schaffer says. "Our goal is to identify the cell fate switches, and then provide stem cells with the proper signals to guide them down a particular developmental trajectory."

Stem cells have the remarkable potential to develop into many different cell types in the body. Serving as a sort of repair system for the body, they can theoretically divide without limit to replenish other cells as long as the person or animal is still alive. When a stem cell divides, each new cell has the potential to either remain a stem cell or become another type of cell with a more specialized function, such as a muscle cell, a red blood cell, or a brain cell.

When a stem cell divides, each new cell has the potential to either remain a stem cell or become another type of cell with a more specialized function. Scientists believe it should be possible to harness this ability to turn stem cells into a super "repair kit" for the body.

Scientist and author Christian Drapeau explains how the Stem Cell enhancers function to maximize human performance - Supporting the release of stem cells from the bone marrow and increasing the number of circulating stem cells improves various aspects of human health. For very active and sports focused people, Stem Cells are the raw materials to repair micro-tears and micro-injuries created during training. The results, according to Drapeau, are that active people, whether former NBA stars or amateur weekenders, can exercise more intensely at each training session with the ultimate consequence of greater performance.

Theoretically, it should be possible to use stem cells to generate healthy tissue to replace that either damaged by trauma, or compromised by disease. Among the conditions which scientists believe may eventually be treated by stem cell therapy are Parkinson's disease, Alzheimer's disease, heart disease, stroke, arthritis, diabetes, burns and spinal cord damage.

Both of my big dogs have gained their youth back. I am a true believer in Stem Cell Nutrition for pets as it has provided a spectacular change in both Ginger and Rowdy. Sonya, IN

Stem cell nutrition for dogs, horses and other animals are specially formulated to be a delectable treat for your animal. The pet chewables and equine blends make it easy to provide your animals with this valuable nutritional supplement. The most common story is that of old, tired and sluggish dogs turned within a week or so into active, alert dogs running around like puppies. The same was observed in horses. Old horses who used to remain standing in the barn or under a tree, sluggish or stricken by too much discomfort to walk around, suddenly began moving about, and at times running and bucking like young colts. One of the most common reports was obvious improvements in hoof health and coat appearance.

times. When there is an injury or a stress to an organ of your beloved pet or horse, compounds are released that reach the bone marrow and trigger the release of stem cells. Stem Cells can be thought of as master cells. Stem cells circulate and function to replace dysfunctional cells, thus fulfilling the natural process of maintaining optimal health.

As they do in humans, adult stem cells reside in animals bone marrow, where they are released whenever there is a problem somewhere in the body. Looking back on stem cell research, we realize that most studies have been done with animals, mostly mice, but also with dogs, horses, pigs, sheep and cattle. These studies have revealed that animal stem cells conduct themselves the same way human stem cells do. When there is an injury or a stress to an organ of your beloved pet or horse, compounds are released that reach the bone marrow and trigger the release of stem cells. The stem cells then travel to tissues and organs in need of help to regain optimal health.

Eve-Marie Lucerne - Eve-Marie keeps nine horses, all older thoroughbreds, and was eager to participate in the trials of a new stem cell enhancer for horses. She shared her allotment of test products with a few large commercial thoroughbred farms, veterinarians and other horse people she knows, and has been pleased with the consistently excellent results she has seen and others have reported to her. This product will help so many animals, she says, adding, People and animals are more alike than we are different. So it makes sense that a stem cell enhancer for animals with promote their health, too.

Eve-Marie's Equine Stem Cells Nutrition show dramatic results. For several horses facing serious physical challenges, cases where the animals might have to be put down, we saw a return to quality of life. This did not happen before Equine Stem Cell Nutrition. Eve-Marie says that this turnaround was quick, less than two weeks in many cases, and that the subject horses were back to health and enjoying pasture life within a month. One of the unofficial trial subjects for the equine stem cell nutrition was a 30-year old donkey who was in bad shape, Eve-Marie reports. He hadchronic respiratory difficulty and could move about only haltingly. His owner had stem cell enhancer supplements to help with her own serious health challenges and shared it with the donkey. The donkey's owner says this is the first time she wasn't sick, and her donkey is walking all around, feeling great an enjoying life again!

Farrier and National Hoof practitioner Stephen Dick received some of the trial product from Eve-Marie, and had good results with the two horses he selected for trial. For a 12-year-old quarterhorse stallion, the equine product brought dramatic results. This horse used to lie down twenty-two hours of the day, because he suffered discomfort whenever he stood, Steve reports, continuing, after a couple of weeks with Equine Stem Cell Nutrition, he was getting up and moving around, showing no discomfort. For a high-spirited mare with a leg problem, the equine product brought about a whole new lease on life, Steve says. This horse had been in a stall for 8 months. After about 6 weeks taking the equine product with her grain, her condition had improved and she was out of the stall, walking around in the pasture again.

Little Joe, a small 18-year-old quarter horse that Judy Fisher bought when he was nearly 400 pounds underweight. You could count his ribs, Judy says, remembering, and his backbone stuck up like a ridge all along his back. He was very, very thin! Little Joe also suffered from breathing problems that kept him lethargic and inactive. Vet-recommended remedies were unsuccessful in changing Little Joe's physical problems, and the vet told Judy he didn't expect Little Joe to live through the winter. I figured Little Joe was in such bad shape that anything was worth a try, she says.

She began giving the horse stem cell nutrition with his feed and grain twice a day. Within a couple of weeks, Judy was surprised to see Little Joe beginning to gain weight and run, buck, snort and kick. His breathing was no longer labored and his skin and coat were improving. Within six weeks Little Joe's overall appearance had changed dramatically. He had put on almost 300 pounds. When his former owner came to visit, Judy says, he didn't recognize Little Joe. That's how different he looked!

Sara participated in the stem cell nutrition product trials with her two horses and her 80-pound mixed-breed dog. She noted significant improvement in the health and quality of life for all three animals during the time of the trials. For JJ, Sara's 18-year old quarterhorse, the equine product brought about improvements in his overall mood, appearance and alertness quickly. He really liked the product from the beginning, Sara reports, pointing out that Hank, her 16-year-old thoroughbred/quarterhorse, had not taken to the taste of it too readily. I was able to slowly wean him on it though, she says. For Hank, the equine product was a balm for the skin problems resulting from his allergy to fly bites.

His skin condition improved dramatically. Sara reports, noting that before the equine product the horse had scratched and bitten himself into ope wounds; after the equine product, the scratching and biting dropped off to almost nothing. Sara also noticed an increase in Hank's energy and liveliness in the first week on the equine product. The horse's foot and hip discomforts also responded well, leading to a noticeable increase in his mobility and an overall improvement in his quality of life throughout the two-month study.

Sara gave the pet product to her dog, Roxy, who had suffered for two years with ear problems that led to scratching, often until her skin was raw. Vet-recommended remedies had been temporary, quick-fixes, Sara says, but the discomfort always returned with a vengeance. For the pet trials, Sara gave Roxy two tabs of the product a day for two months, noting this is the only supplement she was getting. Sara says Roxy's problem with her ears definitely improved, the hair as grown back on her head and ears, and the ear problem has not recurred, adding that Roxy is happier and engaging, more playful.

The National Health Institute lists seventy-four treatable diseases using ASCs in therapy - an invasive and costly procedure of removing the stem cells from one's bone marrow (or a donor's bone marrow) and re-injecting these same cells into an area undergoing treatment. For example, this procedure is sometimes done before a cancer patient undergoes radiation. Healthy stem cells from the bone marrow are removed and stored, only to be re-inserted after radiation into the area of the body in need of repair. This is a complex and expensive procedure, not accessible to the average person. However, there is now a way that every single person, no matter what their health condition, can have access to the benefits of naturally supporting their body's innate ability to repair every organ and tissue using stem cell nutrition.

David A. Prentice, Ph.D. - "Within just a few years, the possibility that the human body contains cells that can repair and regenerate damaged and diseased tissue has gone from an unlikely proposition to a virtual certainty. Adult stem cells have been isolated from numerous adult tissues, umbilical cord, and other non-embryonic sources, and have demonstrated a surprising ability for transformation into other tissue and cell types and for repair of damaged tissues.

A new U.S. study involving mice suggests the brain's own stem cells may have the ability to restore memory after an injury. These neural stem cells work by protecting existing cells and promoting neuronal connections. In their experiments, a team at the University of California, Irvine,were able to bring the rodents' memory back to healthy levels up to three months after treatment. The finding could open new doors for treatment of brain injury, stroke and dementia, experts say.

"This is one of the first reports that you can take a stem cell transplantation approach and restore memory," said lead researcher Mathew Blurton-Jones, a postdoctorate fellow at the university. "There is a lot of awareness that stem cells might be useful in treating diseases that cause loss of motor function, but this study shows that they might benefit memory in stroke or traumatic brain injury, and potentially Alzheimer's disease."

In the study, published in the Oct. 31 issue of the Journal of Neuroscience, Blurton-Jones and his colleagues used genetically engineered mice that naturally develop brain lesions. The researchers destroyed cells in a brain area called the hippocampus. These cells are known to be vital to memory formation and it is in this region that neurons often die after injury, the researchers explained. To test the mice's memory, Blurton-Jones's group conducted place and object recognition tests with both healthy mice and brain-injured mice.

Healthy mice remembered their surroundings about 70 percent of the time, while brain-injured mice remembered it only 40 percent of the time. For objects, healthy mice recalled objects about 80 percent of the time, but injured mice remembered them only 65 percent of the time. The researchers then injected each mouse with about 200,000 neural stem cells. They found that mice with brain injuries that received the stem cells now remembered their surroundings about 70 percent of the time -- the same as healthy mice. However, mice that didn't receive stem cells still had memory deficits.

The researchers also found that in healthy mice injected with stem cells, the stem cells traveled throughout the brain. In contrast, stem cells given to injured mice lingered in the hippocampus. Only about 4 percent of those stem cells became neurons, indicating that the stem cells were repairing existing cells to improve memory, rather than replacing the dead brain cells, Blurton-Jones's team noted. The researchers are presently doing another study with mice stricken with Alzheimer's. "The initial results are promising," Blurton-Jones said. "This has a huge potential, but we have to be cautious about not rushing into the clinic too early."

One expert is optimistic about the findings. "Putting in these stem cells could eventually help in age-related memory decline," said Dr. Paul R. Sanberg, director of the Center of Excellence for Aging and Brain Repair at the University of South Florida College of Medicine. "There is clearly a therapeutic potential to this." Sanberg noted that for the process to work with Alzheimer's it has to work with older brains. "There is clearly therapeutic potential in humans, but there are a lot of hurdles to overcome," he said. "This is another demonstration of the potential for neural stem cells in brain disorders.".

Dr. Nancy White Ph.D.- " I've always been interested in health generally and in particular the brain, focusing on the balance of neurotransmitters. I often do quantitative EEG's for assessment of my patients. I'm impressed with the concept of a natural product like stem cell nutrition that could help release adult stem cells from the bone mass where the body would have no objection and no rejection. I've tried stem cell nutrition for general health anti-aging. After taking it for a time, I fell more agile and my joints are far more flexible. I was astounded while doing yoga that I was suddenly able to bend over and touch my forehead to my knees. I haven't been able to do that comfortably in probably twenty years. I noticed how much better my balance has become. I believe stem cell nutrition is responsible for these effects, because I certainly haven't been trained extensively in yoga. Also since taking stem cell nutrition, I feel better and my skin is more moist and has a finer texture.

A bald friend of mine, who is also taking the stem cell nutrition, had several small cancers on top of his head. His doctor had removed one from his arm already, and his dermatologist set a date to remove those from his scalp. Before the appointment, my friend was shaving one morning and, looking in the mirror, saw that the cancers were all gone. They had disappeared within a few weeks of starting the stem cell nutrition and his skin is better overall. Also, his knee, which he'd strained playing tennis, was like new. Stem cell nutrition seems to go where the body's priority is. You never know what the affect is going to be, but you notice something is changing. Another friend of mine seems to be dropping years. Her skin looks smoother and her face younger. After about six weeks on the stem cell nutrition, she looks like she's ten years younger. A woman who gives her regular facials asked what she was doing, because her skin looked so much different. Stem cell nutrition is remarkable and could help anybody. Everybody should try it, because it's natural and there are no risks. As we grow older in years, we still can have good health. That's the ideal. Even if you don't currently have a problem, stem cell nutrition is a preventative." Dr. White holds a Ph. D. in Clinical Psychology, an MA in Behavioral Science, and a B.F.A. in Fine Arts, Magna Cum Laude. In addition, she is licensed in the State of Texas as a Psychologist , a Marriage and Family Therapist and as a Chemical Dependency Counselor.

Fernando Aguila, M.D. - "Due to a heavy patient load, I have recently found that I tire more easily, my legs are cramping, and by the time I get home, even my shoulders and rib cage hurt. I knew I had to find a way to increase my stamina, energy and vitality. A friend gave me information about stem cell nutrition and how it promotes the release of stem cells in the body. One of the components apparently promotes the migration of the stem cells to tissues or organs where regeneration and repair is needed most. My attention was drawn to the fact that it can increase energy, vitality, wellness, concentration, and much more. It sounded just like what I needed. Since then, I've heard reports of people experiencing excellent results in a number of different areas in their health. The improvements sounded dramatic. Because of all of their testimonies, I was willing to believe it could promote wellness in the human body.

I tried stem cell nutrition myself. After a day, of hard work, I realized I wasn't tired at all, my legs were not aching, and I didn't have any shoulder pain. I decided the stem cell nutrition must be working. I continued to take it, and was able to work so efficiently and steadily that one surgeon commented that I was moving like a ball of fire. Stem cell nutrition gives me support physically and mentally. I look forward to seeing what the major medical journals have to say about the studies being done with this new approach to wellness." Fernando Aguila, M.D., graduated from the University of Santa Thomas in Manila , Philippines. He finished his internship at Cambridge City Hospital, Cambridge, MA and completed his residency at the New England Medical Center in Boston, MA. He obtained a fellowship in OB-GYN anesthesia at the Brigham and Women's Hospital in Boston and a fellowship in cardio-thoracic anesthesia at the Cleveland Clinic Foundation in Cleveland, OH.

Christian Drapeau is America's best known advocate for Adult Stem Cell science health applications and the founder of the field of Stem Cell Nutrition. He holds a BS in Neurophysiology from McGill University and a Master of Science in Neurology and Neurosurgery from the Montreal Neurological Institute.

One particular stem cell enhancers that was studied was found to contain a polysaccharide fraction that was shown to stimulate the migration of Natural Killer (NK) cells out of the blood into tissues. The same polysaccharide fraction was also shown to strongly stimulate the activation of NK cells. NK cells play the very important role in the body of identifying aberrant or defective cells and eliminating them. NK cells are especially known for their ability to detect and destroy virally infected cells and cells undergoing uncontrolled cellular division. The same polysaccharide fraction was also shown to stimulate macrophage activity. Macrophages constitute the front line of the immune system. They first detect an infection or the presence of bacteria or virally infected cells, and they then call for a full immune response. Adult Stem Cell Nutritional Enhancer also contains a significant concentration of chlorophyll and phycocyanin, the blue pigment in AFA. Phycocyanin has strong anti-inflammatory properties and therefore can assist the immune system.

The release of stem cells from the bone marrow and their migration to tissues is a natural process that happens everyday. Stem cell enhancers simply support that natural process and tips the balance toward health everyday. It does not do anything that the body does not already do everyday. So far, no instances of cancer or any similar problem have ever been observed when using in vivo natural release of stem cells from the bone marrow.

Each day, stem cells in the bone marrow evolve to produce red blood cells, white blood cells, and platelets. These mature cells are then released into the bloodstream where they perform their vital life-supporting functions. When bone marrow stem cell activity is interfered with, diseases such as anemia (red blood cell deficit), neutropenia (specialized white blood cell deficit), or thrombocytopenia (platelet deficit) are often diagnosed. Any one of these conditions can cause death if not corrected.

Scientists have long known that folic acid, vitamin B12, and iron are required for bone marrow stem cells to differentiate into mature red blood cells.3-7 Vitamin D has been shown to be crucial in the formation of immune cells,8-11 whereas carnosine has demonstrated a remarkable ability to rejuvenate cells approaching senescence and extend cellular life span.12-28

Other studies of foods such as blueberries show this fruit can prevent and even reverse cell functions that decline as a result of normal aging.29-36 Blueberry extract has been shown to increase neurogenesis in the aged rat brain.37,38 Green tea compounds have been shown to inhibit the growth of tumor cells, while possibly providing protection against normal cellular aging.39,40

Based on these findings, scientists are now speculating that certain nutrients could play important roles in maintaining the healthy renewal of replacement stem cells in the brain, blood, and other tissues. It may be possible, according to these scientists, to use certain nutrient combinations in the treatment of conditions that warrant stem cell replacement

These studies demonstrate for the first time that various natural compounds can promote the proliferation of human bone marrow cells and human stem cells. While these studies were done in vitro, they provide evidence that readily available nutrients may confer a protective effect against today's epidemic of age-related bone marrow degeneration.

Dr. Robert Sampson, MD on stem cell nutrition - "... we have a product that has been shown and demonstrated in the patent to increase the level of adult circulating stem cells by up to 30%. It seems to me we're having a great opportunity here to optimize the body's natural ability to create health." Recent scientific developments have revealed that stem cells derived from the bone marrow, travel throughout the body, and act to support optimal organ and tissue function. Stem cell enhancers supports the natural role of adult stem cells. Stem cell enhancer are typically derived from certain edible algae that grows in fresh water.

The possibility that a decline in the numbers or plasticity of stem cell populations contributes to aging and age-related disease is suggested by recent findings. The remarkable plasticity of stem cells suggests that endogenous or transplanted stem cells can be tweaked' in ways that will allow them to replace lost or dysfunctional cell populations in diseases ranging from neurodegenerative and hematopoietic disorders to diabetes and cardiovascular disease.

As you age, the number and quality of stem cells that circulate in your body gradually decrease, leaving your body more susceptible to injury and other age-related health challenges. Just as antioxidants are important to protect your cells from free radical damage, stem cell nutrition is equally important to support your stem cells in maintaining proper organ and tissue functioning in your body.

A fundamental breakthrough in our understanding of nervous system development was the identification of multipotent neural stem cells (neurospheres) about ten years ago. Dr. Weiss and colleagues showed that EGF (epidermal growth factor) dependent stem cells could be harvested from different brain regions at different developmental stages and that these could be maintained over multiple passages in vitro. This initial finding has lead to an explosion of research on stem cells, their role in normal development and their potential therapeutic uses. Many investigators have entered this field and the progress made has been astounding.

How does an increase in the number of circulating stem cells lead to optimal health? Circulating stem cells can reach various organs and become cells of that organ, helping such organ regain and maintain optimal health. Recent studies have suggested that the number of circulating stem cells is a key factor; the higher the number of circulating stem cells the greater is the ability of the body at healing itself. Scientific interest in adult stem cells has centered on their ability to divide or self-renew indefinitely, and generate all the cell types of the organ from which they originate, potentially regenerating the entire organ from a few cells. Adult stem cells are already being used clinically to treat many diseases. These include as reparative treatments with various cancers, autoimmune disease such as multiple sclerosis, lupus and arthritis, anemias including sickle cells anemia and immunodeficiencies. Adult stem cells are also being used to treat patients by formation of cartilage, growing new corneas to restore sight to blind patients, treatments for stroke, and several groups are using adult stem cells to repair damage after heart attacks. Early clinical trials have shown initial success in patient treatments for Parkinsons disease and spinal cord injury. The first FDA approved trial to treat juvenile diabetes in human patients is ready to begin at Harvard Medical School, using adult stem cells. An advantage of using adult stem cells is that in most cases, the patients own stem cells can be used for the treatment, circumventing the problems of immune rejection, and without tumor formation.

Why do we hear much in the news about embryonic stem cells and very little about adult stem cells? The first human embryonic stem cells were grown in vitro, in a petri dish, in the mid 1990s. Rapidly, scientists were successful at growing them for many generations and to trigger their differentiation into virtually any kind of cells, i.e. brain cells, heart cells, liver cells, bone cells, pancreatic cells, etc. When scientists tried growing adult stem cells, the endeavor was met with less success, as adult stem cells were difficult to grow in vitro for more than a few generations. This led to the idea that embryonic stem cells have more potential than adult stem cells. In addition, the ethical concerns linked to the use of embryonic stem cells have led to a disproportionate representation of embryonic stem cells in the media. But recent developments over the past 2-3 years have established that adult stem cells have capabilities comparable to embryonic stem cells in the human body, not in the test tube. Many studies have indicated that simply releasing stem cells from the bone marrow can help support the body's natural process for renewal of tissues and organs.

The bone marrow constantly produces stem cells for the entire life of an individual. Stem cells released by the bone marrow are responsible for the constant renewal of red blood cells and lymphocytes (immune cells). A 25-30% increase in the number of circulating stem cells is well within physiological range and does not constitute stress on the bone marrow environment. The amount of active bone marrow amounts to about 2,600 g (5.7 lbs), with about 1.5 trillion marrow cells. Stem cells that do not reach any tissue or become blood cells return to the bone marrow.

Effectiveness of stem cell "enhancers" was demonstrated in a triple-blind study. Volunteers rested for one hour before establishing baseline levels. After the first blood samples, volunteers were given stem cell "enhancers"or placebo. Thereafter, blood samples were taken at 30, 60 and 120 minutes after taking the consumables. The number of circulating stem cells was quantified by analyzing the blood samples using Fluorescence-Activated Cell Sorting (FACS). Consumption of stem cell "enhancers" triggered a significant 25-30% increase in the number of circulating stem cells.

See original here:
stem cells - Shirley's Wellness Cafe

To Read More: stem cells – Shirley’s Wellness Cafe
categoriaCardiac Stem Cells commentoComments Off on stem cells – Shirley’s Wellness Cafe | dataMay 4th, 2017
Read All

Arctic drilling, controversial reforms and new views of Saturn – Nature.com

By raymumme

Space | Publishing | Funding | Conservation | Politics | Policy | People | Trend watch | Coming up

Cassini catches new views of Saturn NASAs Cassini spacecraft plunged between Saturn and its rings on 26 April, beginning the final stages of its 20-year mission. At its closest, Cassini whizzed just 300 kilometres from the innermost visible edge of Saturns rings and 3,000kilometres above the top of the planets clouds. The images sent back include this close-up shot of Saturns surface. The spacecraft is exploring this never-before-visited region of the Solar System on its way to a final plunge into Saturns atmosphere in September.

NASA/JPL-Caltech/Space Science Inst.

Physics for all Particle physicists will soon be able to publish open-access papers in three journals of the American Physical Society (APS), including Physical Review Letters, free of charge. The deal, announced on 27April, was struck between the APS and CERN, the European particle-physics laboratory in Switzerland. From January 2018, high-energy physics research done anywhere in the world will be able to be published open-access in the journals, and at no direct cost. Publication fees will be covered by the Sponsoring Consortium for Open Access Publishing in Particle Physics (SCOAP3), an international partnership set up in 2012 that is funded in large part by libraries. CERNs Large Hadron Collider already had an open-access agreement with the APS.

Cash boost BioRxiv, a free online archive for draft versions of biology research papers, is to receive a windfall from the philanthropic Chan Zuckerberg Initiative (CZI), founded by Facebook co-founder Mark Zuckerberg and his physician wife Priscilla Chan. On 26April, the initiative announced a multi-year funding package the terms of which have not been disclosed for expanding the popular preprint server, which posted its 10,000th manuscript last month. The new money will pay for staff and technology development at bioRxiv, says John Inglis, the executive director of Cold Spring Harbor Laboratory Press and co-founder of the 3-year-old site.

Poor protection A cross-party group of UK politicians has rebuked the countrys government over its ocean-protection record. In a report released on 25April, the Environmental Audit Committee says marine protected areas around the coasts of the British Isles are not managed properly and that vulnerable sites and species are not suitably protected. The committee says it is also shocked and disappointed that the government will not be creating reference sites to help gauge the success of the network of protected areas. Only 50marine conservation zones have been created in British waters, whereas 127 were recommended in 2011.

Legal concerns Hungarys revised higher-education law is incompatible with internal market freedoms and the right of academic freedom in the European Union (EU), the European Commission said on 26 April. The contentious law, which was passed by the Hungarian parliament on 4 April, bars international universities from operating in Hungary unless they have a campus in their home country. The commission sent Budapest a letter of formal notice, outlining legal concerns, to which the Hungarian government has one month to respond. Speaking in the European Parliament on 26 April, Hungarys Prime Minister Viktor Orbn rejected accusations that the law would specifically target the Central European University in Budapest.

Eric Vidal/Reuters

Hungarys Prime Minister Viktor Orbn.

UK research reform On 27April, the British parliament approved a controversial package of reforms to the organization of UK research and universities. Nine research-funding agencies, including Britains seven research councils, will now be merged into a new body, called UK Research and Innovation. The organization will oversee annual spending of more than 6billion (US$7.8 billion). Parliaments unelected upper chamber, the House of Lords, had forced the government into a number of compromises in the reform, including safeguards for institutional autonomy and the independence of research funding from political interference.

Stem-cell payout Allegations of fraud at a US stem-cell laboratory have led to an order for Partners HealthCare System and Brigham and Womens Hospital (BWH) of Boston, Massachusetts, to pay US$10million to the government. The settlement, announced by the US Department of Justice on 27April, came in response to charges that the laboratory of former BWH researcher Piero Anversa used manipulated and falsified data about his research involving cardiac stem cells in applications for federal research funds. Anversa and a colleague sued the hospital in 2014, charging that its investigation of the allegations had damaged their careers. That lawsuit was dismissed.

Offshore drilling President Donald Trump has asked the US Department of the Interior to reopen Arctic federal waters for oil and gas drilling. On 28April, Trump signed an executive order to lift restrictions on offshore mineral exploration in the Beaufort and Chukchi seas. The controls had been imposed by Barack Obamas administration in response to environmental concerns. The order also asks for a review of the five-year plan to sell oil and gas leases in parts of the Gulf of Mexico and Atlantic Ocean areas that the previous administration had closed to offshore exploration and development.

Fishy results Swedens Central Ethical Review Board has ruled that two researchers at Uppsala University have been guilty of scientific dishonesty in relation to a study published last year in Science (O. M. Lnnstedt and P. Eklv Science 352, 12131216; 2016). The board says that the paper by Oona Lnnstedt and Peter Eklv on the claimed harmful impact of microplastics on certain fish larvae should be withdrawn. Uppsala University says it will consider this report alongside an earlier report conducted by the university itself, which found no misconduct.

Leadership row Cell biologist Mary Beckerle has been invited to return to her position as head of the Huntsman Cancer Institute, housed at the University of Utah in Salt Lake City but mainly funded by billionaire Jon Huntsman. Last month, Vivian Lee, dean of the universitys school of medicine and senior vice-president for health sciences, fired Beckerle for undisclosed reasons. In response, institute staff raised protests and Huntsman threatened to revoke a planned donation. Following Beckerles reinstatement on 25 April, Huntsman released a statement pledging US$120million to the institute. On 28 April, Vivian Lee resigned from her leadership positions.

Preventive arrest Stem-cell maverick Davide Vannoni was arrested in Turin, Italy, on 26April after police phone taps indicated that he was seeking new foreign locations to continue his outlawed therapy, according to news reports. Vannoni had been sentenced to jail for conspiracy and fraud for administering unproven stem-cell therapy in Italy to people with incurable diseases through his Stamina Foundation. The sentence was suspended in March last year in a plea bargainon the condition that he cease offering the treatment. Vannoni continued treating people in the Republic of Georgia until the government there banned him in December.

Physicist fired Physicist Etienne Klein has been sacked as president of the Institute for Advanced Studies for Science and Technology (IHEST) in Paris following a series of allegations of plagiarism in his articles and books for the general public. Kleins dismissal was announced in the French governments official journal on 28April. He is replaced by Antoine Petit, head of INRIA, Frances national computer-science agency.

The Arctic is warming more than twice as fast as the rest of the planet. A report by the Arctic Monitoring and Assessment Programme finds that the region was warmer between 2011 and 2014 than at any time since records began around 1900. The rapid warming is hastening the melting of glaciers and sea ice, and boosting sea-level rise. The extent of snow cover across the Arctic regions of North America and Eurasia each June has halved compared with observations before 2000, the report finds.

Source: Snow, Water, Ice, and Permafrost in the Arctic

818 May Details of the Paris climate agreement are negotiated at a United Nations climate-change conference in Bonn, Germany.

89 May Scientists discuss trends in genome editing at a CRISPR congress in London.

913 May The annual Biology of Genomes meeting takes place in Cold Spring Harbor, New York.

See the original post:
Arctic drilling, controversial reforms and new views of Saturn - Nature.com

To Read More: Arctic drilling, controversial reforms and new views of Saturn – Nature.com
categoriaCardiac Stem Cells commentoComments Off on Arctic drilling, controversial reforms and new views of Saturn – Nature.com | dataMay 4th, 2017
Read All

VistaGen Therapeutics’ Largest Stockholder Signs 6-Month Lock-Up Agreement – Yahoo Finance

By LizaAVILA

SOUTH SAN FRANCISCO, CA--(Marketwired - May 01, 2017) - VistaGen Therapeutics Inc. (VTGN), a clinical-stage biopharmaceutical company focused on developing new generation medicines for depression and other central nervous system (CNS) disorders, announced today that its largest institutional stockholder, holding both common stock and substantially all (99.3%) of the Company's outstanding preferred stock, entered into a 6-month lock-up agreement. Under the agreement, the stockholder and its affiliates agreed to not enter into any transaction involving the Company's securities during the term of the agreement, which runs through late-October 2017 and covers approximately 36% of the Company's issued and outstanding equity securities on an as converted basis.

About VistaGen

VistaGen Therapeutics, Inc. (VTGN), is a clinical-stage biopharmaceutical company focused on developing new generation medicines for depression and other central nervous system (CNS) disorders. VistaGen's lead CNS product candidate, AV-101, is in Phase 2 development as a new generation oral antidepressant drug candidate for major depressive disorder (MDD). AV-101's mechanism of action is fundamentally differentiated from all FDA-approved antidepressants and atypical antipsychotics used adjunctively to treat MDD, with potential to drive a paradigm shift towards a new generation of safer and faster-acting antidepressants. AV-101 is currently being evaluated by the U.S. National Institute of Mental Health (NIMH) in a Phase 2 monotherapy study in MDD being fully funded by the NIMH and conducted by Dr. Carlos Zarate Jr., Chief, Section on the Neurobiology and Treatment of Mood Disorders and Chief of Experimental Therapeutics and Pathophysiology Branch at the NIMH. VistaGen is preparing to launch a 180-patient Phase 2 study of AV-101 as an adjunctive treatment for MDD patients with inadequate response to standard, FDA-approved antidepressants. Dr. Maurizio Fava of Harvard University will be the Principal Investigator of the Company's Phase 2 adjunctive treatment study. AV-101 may also have the potential to treat multiple CNS disorders and neurodegenerative diseases in addition to MDD, including chronic neuropathic pain, epilepsy, and symptoms of Parkinson's disease and Huntington's disease, where modulation of the NMDAR, AMPA pathway and/or key active metabolites of AV-101 may achieve therapeutic benefit.

VistaStem Therapeutics is VistaGen's wholly owned subsidiary focused on applying human pluripotent stem cell technology, internally and with collaborators, to discover, rescue, develop and commercialize proprietary new chemical entities (NCEs), including small molecule NCEs with regenerative potential, for CNS and other diseases, and cellular therapies involving stem cell-derived blood, cartilage, heart and liver cells. In December 2016, VistaGen exclusively sublicensed to BlueRock Therapeutics LP, a next generation regenerative medicine company established by Bayer AG and Versant Ventures, rights to certain proprietary technologies relating to the production of cardiac stem cells for the treatment of heart disease.

For more information, please visit http://www.vistagen.com and connect with VistaGen on Twitter, LinkedIn and Facebook.

Forward-Looking Statements

The statements in this press release that are not historical facts may constitute forward-looking statements that are based on current expectations and are subject to risks and uncertainties that could cause actual future results to differ materially from those expressed or implied by such statements. Those risks and uncertainties include, but are not limited to, risks related to the successful launch, continuation and results of the NIMH's Phase 2 (monotherapy) and/or the Company's planned Phase 2 (adjunctive therapy) clinical studies of AV-101 in MDD, and other CNS diseases and disorders, protection of its intellectual property, and the availability of substantial additional capital to support its operations, including the Phase 2 clinical development activities described above. These and other risks and uncertainties are identified and described in more detail in VistaGen's filings with the Securities and Exchange Commission (SEC). These filings are available on the SEC's website at http://www.sec.gov. VistaGen undertakes no obligation to publicly update or revise any forward-looking statements.

Go here to read the rest:
VistaGen Therapeutics' Largest Stockholder Signs 6-Month Lock-Up Agreement - Yahoo Finance

To Read More: VistaGen Therapeutics’ Largest Stockholder Signs 6-Month Lock-Up Agreement – Yahoo Finance
categoriaCardiac Stem Cells commentoComments Off on VistaGen Therapeutics’ Largest Stockholder Signs 6-Month Lock-Up Agreement – Yahoo Finance | dataMay 2nd, 2017
Read All

US Stem Cell Inc (OTCMKTS:USRM) Receives Institutional Fund … – StockNewsUnion

By Sykes24Tracey

US Stem Cell Inc (OTCMKTS:USRM) is a biotechnology company that was formerly known as Bioheart, Inc. US Stem Cell, headquartered in Sunrise, FL, seeks to discover, develop, and commercialize autologous cell therapies for the treatment of chronic and acute heart damage. The companys current drug candidates include MyoCell, MyoCell SDF-1, and AdipoCell. On April 13, 2017 US Stem Cell Inc (OTCMKTS:USRM) announced that it had received a commitment to invest up to $5,000,000 from private equity firm General American Capital Partners LLC (GACP) in exchange for up to 63,873,275 shares of common stock.

MyoCell is being developed by US Stem Cell Inc (OTCMKTS:USRM) as a treatment to improve cardiac function months or years after a patient has experienced heart damage due to a heart attack. The treatment involves the removal of a small amount of muscle from the patients thigh. Muscle stem cells, called myoblasts, are isolated and expanded utilizing a proprietary cell-culturing process. These cells are then injected directly into the hearts scar tissue through an endoventricular needle-injection catheter by a surgeon. The stem cells then populate the area of scar tissue to, hopefully, improve cardiac function. The peer-reviewed American Heart Journal published the results of clinical trial Marvel-1. According to the article, when compared with a placebo, myoblast therapy was associated with sustained (six months) improvements in six-minute walk distance of >90 meters, a clinically meaningful improvement.

US Stem Cell Inc (OTCMKTS:USRM) is also developing MyoCell SDF-1. This treatment has recently received approval from the U.S Food and Drug Administration (FDA) to begin human clinical trials. MyoCell SDF-1 is being developed as an improvement to the MyoCell treatment. In preclinical studies, MyoCell SDF-1 provided a 54% improvement of heart function compared to 27% for the original MyoCell composition, while the placebo control treated animals declined by 10%. The preclinical studies also demonstrated that this product candidate can enhance blood vessel formation in damaged hearts.

Lastly, US Stem Cell Inc (OTCMKTS:USRM) is also developing its AdipoCell treatment. Adipose (fat) tissue is readily available and has been shown to be rich in microvascular, myogenic and angiogenic cells. In collaboration with the Regenerative Medicine Institute in Tijuana, Mexico, congestive heart failure patients are being treated in a Phase I/II trial at Hospital Angeles Tijuana. Reportedly, these patients have demonstrated, on average, an absolute improvement of 13% in ejection fraction and an increase of 100 meters in their six-minute walk distance. US Stem Cell Inc (OTCMKTS:USRM) has recently applied to the FDA to begin trials using adipose derived stem cells or AdipoCell in patients with chronic ischemic cardiomyopathy. The therapy involves the use of stem cells derived from the patients own fat (adipose tissue) obtained using liposuction. Transplantation of AdipoCell is accomplished through endocardial implantations with an injection catheter.

I have no positions in any stocks mentioned, and no plans to initiate any positions within the next 96 hours. All information, or data, is provided with no guarantees of accuracy.

About the author: Steve Clark is a 23-year Wall St professional with stints in M&A, risk management, and algorithm trading.

Original post:
US Stem Cell Inc (OTCMKTS:USRM) Receives Institutional Fund ... - StockNewsUnion

To Read More: US Stem Cell Inc (OTCMKTS:USRM) Receives Institutional Fund … – StockNewsUnion
categoriaCardiac Stem Cells commentoComments Off on US Stem Cell Inc (OTCMKTS:USRM) Receives Institutional Fund … – StockNewsUnion | dataMay 2nd, 2017
Read All

VistaGen Therapeutics’ Largest Stockholder Signs 6-Month Lock-Up Agreement – Marketwired (press release)

By Sykes24Tracey

SOUTH SAN FRANCISCO, CA--(Marketwired - May 01, 2017) - VistaGen Therapeutics Inc. (NASDAQ: VTGN), a clinical-stage biopharmaceutical company focused on developing new generation medicines for depression and other central nervous system (CNS) disorders, announced today that its largest institutional stockholder, holding both common stock and substantially all (99.3%) of the Company's outstanding preferred stock, entered into a 6-month lock-up agreement. Under the agreement, the stockholder and its affiliates agreed to not enter into any transaction involving the Company's securities during the term of the agreement, which runs through late-October 2017 and covers approximately 36% of the Company's issued and outstanding equity securities on an as converted basis.

About VistaGen

VistaGen Therapeutics, Inc. (NASDAQ: VTGN), is a clinical-stage biopharmaceutical company focused on developing new generation medicines for depression and other central nervous system (CNS) disorders. VistaGen's lead CNS product candidate, AV-101, is in Phase 2 development as a new generation oral antidepressant drug candidate for major depressive disorder (MDD). AV-101's mechanism of action is fundamentally differentiated from all FDA-approved antidepressants and atypical antipsychotics used adjunctively to treat MDD, with potential to drive a paradigm shift towards a new generation of safer and faster-acting antidepressants. AV-101 is currently being evaluated by the U.S. National Institute of Mental Health (NIMH) in a Phase 2 monotherapy study in MDD being fully funded by the NIMH and conducted by Dr. Carlos Zarate Jr., Chief, Section on the Neurobiology and Treatment of Mood Disorders and Chief of Experimental Therapeutics and Pathophysiology Branch at the NIMH. VistaGen is preparing to launch a 180-patient Phase 2 study of AV-101 as an adjunctive treatment for MDD patients with inadequate response to standard, FDA-approved antidepressants. Dr. Maurizio Fava of Harvard University will be the Principal Investigator of the Company's Phase 2 adjunctive treatment study. AV-101 may also have the potential to treat multiple CNS disorders and neurodegenerative diseases in addition to MDD, including chronic neuropathic pain, epilepsy, and symptoms of Parkinson's disease and Huntington's disease, where modulation of the NMDAR, AMPA pathway and/or key active metabolites of AV-101 may achieve therapeutic benefit.

VistaStem Therapeutics is VistaGen's wholly owned subsidiary focused on applying human pluripotent stem cell technology, internally and with collaborators, to discover, rescue, develop and commercialize proprietary new chemical entities (NCEs), including small molecule NCEs with regenerative potential, for CNS and other diseases, and cellular therapies involving stem cell-derived blood, cartilage, heart and liver cells. In December 2016, VistaGen exclusively sublicensed to BlueRock Therapeutics LP, a next generation regenerative medicine company established by Bayer AG and Versant Ventures, rights to certain proprietary technologies relating to the production of cardiac stem cells for the treatment of heart disease.

For more information, please visit http://www.vistagen.com and connect with VistaGen on Twitter, LinkedIn and Facebook.

Forward-Looking Statements

The statements in this press release that are not historical facts may constitute forward-looking statements that are based on current expectations and are subject to risks and uncertainties that could cause actual future results to differ materially from those expressed or implied by such statements. Those risks and uncertainties include, but are not limited to, risks related to the successful launch, continuation and results of the NIMH's Phase 2 (monotherapy) and/or the Company's planned Phase 2 (adjunctive therapy) clinical studies of AV-101 in MDD, and other CNS diseases and disorders, protection of its intellectual property, and the availability of substantial additional capital to support its operations, including the Phase 2 clinical development activities described above. These and other risks and uncertainties are identified and described in more detail in VistaGen's filings with the Securities and Exchange Commission (SEC). These filings are available on the SEC's website at http://www.sec.gov. VistaGen undertakes no obligation to publicly update or revise any forward-looking statements.

Excerpt from:
VistaGen Therapeutics' Largest Stockholder Signs 6-Month Lock-Up Agreement - Marketwired (press release)

To Read More: VistaGen Therapeutics’ Largest Stockholder Signs 6-Month Lock-Up Agreement – Marketwired (press release)
categoriaCardiac Stem Cells commentoComments Off on VistaGen Therapeutics’ Largest Stockholder Signs 6-Month Lock-Up Agreement – Marketwired (press release) | dataMay 1st, 2017
Read All

Irish researchers ‘cut risk of heart failure with one injection’ – Irish Times

By Sykes24Tracey

Sat, Apr 29, 2017, 01:00 Updated: Sat, Apr 29, 2017, 10:12

Irish cardiologists have found a way to repair damaged cardiac muscle and reduce the risk of future heart failure by injecting a growth promoter into the hearts of heart attack sufferers. Photograph: Getty Images

A team of Irish cardiologists have shown that injecting an insulin-like growth promoter into the hearts of patients who have suffered a severe heart attack can repair damaged cardiac muscle and reduce the risk of future heart failure.

Prof Noel Caplice, Chair of Cardiovascular Sciences at University College Cork, and his cardiologist colleagues at Cork University Hospital successfully tested the growth factor in a clinical trial involving 47 patients who presented at the Cork hospital after experiencing heart attacks.

Prof Caplice said 20 per cent of people who suffer heart attacks have severe ongoing difficulties because of lasting damage to heart muscle even after the best current therapies.

After you have a heart attack, regardless whether you treat it with a stent or whatever, about 20 per cent of patients go on to have poor remodelling heart muscle cells die, you get scar tissue forming and the heart tends to expand and dilates, a bit like a balloon, and you get thinned-out heart muscle.

With that poor remodelling of the heart, the heart as a structure performs much worse, it doesnt work very well in terms of its function that leads to a substantial number of those patients going on to suffer heart failure with an increased risk of death, he said.

However, 10 years ago, Prof Caplice and his team began looking at using stem cells as a means of repairing damaged tissue and they found a protein within the stem cells, IGF 1, previously used to treat congenital dwarfism and growth problems, was leading to the repair of damaged heart muscle.

IGF 1 acts differently to insulin in that it acts on a different receptor in the body and when we inject it, it gets into the heart tissue and it basically stimulates receptors on the surface of the cardiac cells and in about 30 minutes, it sends a survival signal to the heart muscles cells, he said.

What we discovered from the stem cell study was that the concentration of the factor was extremely low so what we did was that we took the purified factor and in studies with pigs we injected them in the context of a heart attack and we found these major remodelling benefits.

Those animal tests were funded by Science Foundation Ireland but four years ago the Health Research Board came on board and the two bodies provided a 1 million grant to allow the treatment be trialled on humans.

Working with a 25-strong team incorporating cardiologists, radiologists, MRI specialists and nurses, Prof Caplice was able to incorporate the IGF 1 trials into the treatment of patients attending CUH with severe cardiac events and over the past three years have trialled it on 47 patients.

Patients received two different low-dose preparations of insulin-like growth factor or placebo in a randomised double-blinded clinical trial, with results showing those who received the higher dose had improved remodelling of their heart muscle in the two-month follow-up after their heart attack.

Prof Caplice said the CUH trials, the results of which he will present at a European Society of Cardiology conference in Paris on Saturday, were the first use of IGF 1 in human hearts and part of its attractiveness was its low dosage ensuring minimal side effects while improving cardiac structure.

Among the beneficiaries was John Nolan from New Ross who suffered a heart attack in December 2014. I feel I was blessed to be asked to be involved; I had confidence that good would come from it, in terms of how they explained it to me. Looking back on it now, I feel it was the right choice.

For Prof Caplice, the challenge now is to expand the trials to several hundred patients possibly across different countries and different healthcare systems to see if the IGF 1 treatment is globally applicable which, if proven to be the case, could lead to regulatory approval within five years.

See the rest here:
Irish researchers 'cut risk of heart failure with one injection' - Irish Times

To Read More: Irish researchers ‘cut risk of heart failure with one injection’ – Irish Times
categoriaCardiac Stem Cells commentoComments Off on Irish researchers ‘cut risk of heart failure with one injection’ – Irish Times | dataApril 30th, 2017
Read All

$10 million settlement over alleged misconduct in Boston heart stem cell lab – Science Magazine

By Sykes24Tracey

Brigham and Women's Hospital in Boston.

BRIAN SNYDER/REUTERS/Newscom

By Kelly ServickApr. 27, 2017 , 5:00 PM

A research misconduct investigation of a prominent stem cell lab by the Harvard Universityaffiliated Brigham and Womens Hospital (BWH) in Boston has led to a massive settlement with the U.S. government over allegations of fraudulently obtained federal grants. As Retraction Watch reports, BWH and its parent health care system have agreed to pay $10 million to resolve allegations that former BWH cardiac stem cell scientist Piero Anversa and former lab members Annarosa Leri and Jan Kajstura relied on manipulated and fabricated data in grant applications submitted to the U.S. National Institutes of Health (NIH).

A statement from the U.S. Attorneys Office for the District of Massachusetts released today notes that it was BWH itself that shared the allegations against Anversas lab with the government. The hospital had been conducting its own probe into the Anversa lab since at least 2014, when a retraction published in the journal Circulation revealed the ongoing investigation. The hospital has not yet released any findings.

In 2014, Anversa and Leri sued Harvard and BWHalong with BWH President Elizabeth Nabel and Gretchen Brodnicki, Harvards dean for faculty and research integrityfor launching and publicizing the investigation that they claimed wrongfully damaged their careers. In their complaint, they acknowledged fabricated data in the Circulation paper and altered figures in a 2011 paper for whichThe Lancethas published an expression of concern. But they claimed that Kajstura had altered data without their knowledge. (Anversa and Leris recent papers list their institution as Swiss Institute for Regenerative Medicine, Retraction Watch notes.)

In July 2015, a federal district court judge dismissed the lawsuit, ruling that the plaintiffs had to first air their grievances with the federal Office of Research Integrity, which handles misconduct investigations at NIH-funded labs.

Grant fraud cases against universities rarely involve research misconduct, and most are brought by whistleblowers who stand to claim a share of any returned funds. Despite the high penalty, BWH gets praise from the Department of Justice in todays announcement for self-disclosing the allegations and for taking steps to prevent future recurrences of such conduct.

But the result is confusing and potentially discouraging, says Ferric Fang, a microbiologist at the University of Washington in Seattle, who has published several analyses of retractions, misconduct, and the scientific enterprise. It sounds as if the researchers themselves were found to have engaged in improper practices, but the institution is on the hook for the settlement. The decision deserves greater clarification, he says, or it could discourage other institutions from being as forthcoming in the future.

The rest is here:
$10 million settlement over alleged misconduct in Boston heart stem cell lab - Science Magazine

To Read More: $10 million settlement over alleged misconduct in Boston heart stem cell lab – Science Magazine
categoriaCardiac Stem Cells commentoComments Off on $10 million settlement over alleged misconduct in Boston heart stem cell lab – Science Magazine | dataApril 28th, 2017
Read All

Harvard teaching hospital to pay $10 million to settle research misconduct allegations – Retraction Watch (blog)

By raymumme

Piero Anversa

Brigham and Womens Hospital and its parent healthcare network have agreed to pay $10 million to the U.S. government to resolve allegations it fraudulently obtained federal funding.

The case, which involves three former Harvard stem cell researchers, dates back several years. In 2014, Circulation retracted a paper by Piero Anversa, Annarosa Leri, and Jan Kajstura, among others, amidst a university investigation into misconduct allegations. Anversa and Leri whose lab was described as filled with fear by one former research fellow later sued the hospital for notifying journals of that investigation. They lost.

In the agreement announced today by the Department of Justice (DOJ), Partners Healthcare and Brigham and Womens Hospital have agreed to pay the government $10 million to settle allegations that the researchers fraudulently obtained funding from the National Institutes of Health:

The settlement resolves allegations that Dr. Anversa, along with Dr. Annarosa Leri and Dr. Jan Kajstura, knew or should have known that their laboratory promulgated and relied upon manipulated and falsified information, including confocal microscope images and carbon-14 age data for cells, in applications submitted for NIH research grant awards concerning the purported ability of stem cells to repair damage to the heart. The government alleges that problems with the work of the laboratory included improper protocols, invalid and inaccurately characterized cardiac stem cells, reckless or deliberately misleading record-keeping, and discrepancies and/or fabrication of data and images included in applications and publications. The government contends that, at the direction of these BWH scientists, the Anversa laboratory included false scientific information in claims to NIH in order to obtain and use funds from NIH grants.

John Thomas, a partner with Gentry Locke who represents whistleblowers who raise allegations of misconduct, told us that other cases have settled for large amounts such as a recent settlement with Columbia University for $9.5 million. But there are other elements that make this latest announcement noteworthy, he said.

Specifically, most settlements involve some black and white failure in research administration, such as misrepresenting a researchers qualifications on a grant, misreporting effort, or conducting the research at a different facility (such as the Columbia case), said Thomas. The latest decision, in contrast, goes to the science itself.

As a result, he said:

This demonstrates the government is still willing to step in even when its not an administrative issue, even when it goes to the merits of the actual misconduct allegations. I think it shows that when the government awards grants, one of the things its intending to get is good and honest science. The science matters.

We reached out to Anversa and Levi; in response, we received a statement from their attorney:

It is outrageous that BWH has sought to unfairly tarnish the reputations of Drs Anversa and Leri, scientists who have pioneered groundbreaking work in cardiac stem cell reproduction and who have litigation pending against BWH and its president, Betsy Nabel.

Neither Dr. Anversa nor Dr. Leri was involved in the settlement process. BWH self-reported allegations in its own way for its own purposes. It has long been known that Drs. Anversa and Leri relied on the work of a senior scientist in the lab in presenting data for grants and in publications. No one has ever shown that either Dr. Anversa or Dr. Leri participated in the fraud or was aware of it at the time.

BWHs allegations and settlement cannot take away from Drs. Anversa and Leris contributions to the science of stem cell replication. There are Phase II trials being conducted by NIH currently on stem cell treatments based on their work. Taxpayer money was rightly used to further the fight against heart disease, a leading cause of death in this country.

According to the U.S. Attorneys Office, Brigham and Womens Hospital brought the allegations to the governments attention:

After learning of the allegations of research misconduct in the Anversa laboratory, BWH investigated the allegations, disclosed its concerns to the U.S. Department of Health and Human Services, Office of the Inspector General (OIG) and Office of Research Integrity, and then worked cooperatively with OIG and the Department of Justice to explain the bases for the allegations.

The three researchers Anversa, Leri, and Kajstura are no longer based at Brigham and Womens Hospital. Earlier this year, Anversa and Leri published a paper about cardiac progenitor cells that lists an affiliation at the Swiss Institute for Regenerative Medicine.

In todays statement, Acting U.S. Attorney William D. Weinreb said:

Individuals and institutions that receive research funding from NIH have an obligation to conduct their research honestly and not to alter results to conform with unproven hypotheses.

Like Retraction Watch? Consider making atax-deductible contribution to support our growth. You can also follow uson Twitter, like uson Facebook, add us to yourRSS reader, sign up on ourhomepagefor an email every time theres a new post, or subscribe to ourdaily digest. Clickhere to review our Comments Policy. For a sneak peek at what were working on,click here.

Originally posted here:
Harvard teaching hospital to pay $10 million to settle research misconduct allegations - Retraction Watch (blog)

To Read More: Harvard teaching hospital to pay $10 million to settle research misconduct allegations – Retraction Watch (blog)
categoriaCardiac Stem Cells commentoComments Off on Harvard teaching hospital to pay $10 million to settle research misconduct allegations – Retraction Watch (blog) | dataApril 27th, 2017
Read All

Page 41«..1020..40414243..5060..»


Copyright :: 2024