Page 88«..1020..87888990..100110..»

Benefit event planned for Palmer man – Grand Island Independent

By raymumme

WORMS A benefit event to assist a Palmer man who is battling MDS (Myelodysplastic Syndrome) is planned for Friday, Aug. 18, at Nitecrawler Bar in Worms.

Army veteran Paul Spencer Curry was diagnosed with MDS in January. MDS is a bone marrow/blood cancer that effects the blood cells and immune system. He has been undergoing chemotherapy treatments since February and had a bone marrow/stem cell transplant in July at the Nebraska Medical Center in Omaha.

He is required to spend 100 days after the transplant in Omaha. Proceeds from the benefit will be used to help cover medical, lodging and travel expenses for Curry and his wife, Pam.

The benefit event will include a Texas Hold Em poker tournament at 6 p.m., with the top prize being two Husker football tickets.

The event will also include raffle drawings, live and silent auctions and a pulled pork dinner served from 5 to 9 p.m.. Registration for the poker tournament is $20; freewill donations for the meal. Menu includes pulled pork sandwiches, beans, chips, salads and desserts.

The benefit is sponsored by Dannebrog Michelson-Larkowski American Legion and Auxiliary Post 241.

Donations can be dropped off at any Five Points Bank location, payable to Paul Curry cancer benefit, or mailed to 2015 N. Broadwell Ave., Grand Island, NE 68803.

For tickets, auction donations or more information, contact Randy Hansen at (308) 750-0691 or Leanna Obermiller at (308) 380-1515.

Read more:
Benefit event planned for Palmer man - Grand Island Independent

To Read More: Benefit event planned for Palmer man – Grand Island Independent
categoriaBone Marrow Stem Cells commentoComments Off on Benefit event planned for Palmer man – Grand Island Independent | dataAugust 11th, 2017
Read All

Kerala: He bunked class to save her life – Times of India

By Dr. Matthew Watson

KOCHI: Shabas T S, a 23-year-old electrical engineer from Kochi, did not know that a stem cell donor registration camp he attended two years ago just to bunk class would become a turning point in his life. A year after registering with DATRI, India's largest adult unrelated blood stem cell donor's registry, Shabas was informed by the organization that his stem cells are perfect match to 9-year-old Manasvi Karamchedu from Hyderabad who was diagnosed with Thalassemia Major when she was five months old.

On Thursday, when Shabas met a fully-recovered Manasvi at Cochin Palace Hotel here at a meet arranged by DATRI, he was an elated lot. "I have no words to express my feeling. I feel so proud that a simple gesture from my part saved a life," said Shabas.

Manasvi's father Kiran could not control his tears when he hugged the youth who gave his daughter a new lease of life. "My wife and I were shattered when Manasvi was diagnosed with Thalassemia Major. She needed blood transfusions every week and the permanent solution was a blood stem cell transplant," he said.

"We came to know about DATRI when we lost all the hopes. Last year, we got the transplant done at Apollo Hospital, Chennai. Shabas and DATRI have gifted Manasvi a new life. Now, she has two birthdays and two birthplaces," said Kiran. "Ever since the transplant last year, we were looking forward to meeting Shabas. I am happy that DATRI has arranged it now," he added.

Blood stem cell transplant is the solution to those diagnosed with blood cancer and other blood-related disorders. But many are reluctant to come forward to donate blood stem cells. Donation can be done through two methods peripheral blood stem cell (PBSC) donation and bone marrow donation.

Shabas, who went for PBSC, said, "My family was very supportive and I was able to get back to my daily activities immediately after the procedure".

Read this article:
Kerala: He bunked class to save her life - Times of India

To Read More: Kerala: He bunked class to save her life – Times of India
categoriaBone Marrow Stem Cells commentoComments Off on Kerala: He bunked class to save her life – Times of India | dataAugust 11th, 2017
Read All

Bone Marrow Drive To Benefit Paula Fitzgerald Silvia On Sunday, September 17th – Newport Buzz

By Dr. Matthew Watson

Bone Marrow Donors Needed

Paula (Fitzgerald) Silvia of Middletown has been diagnosed with myeloid dysplasia syndrome (MDS), a form of blood cancer where the bone marrow cells do not mature into healthy blood cells. Paula received this devastating news at the end of June. Nothing seemed particularly out of sorts; she was travelling with her family, working, going to the beach and doing all her volunteer activities. Only indications were catching more colds and a little tired but Paulas life was always busy and she does so much for everyone, she should be tired.

Paula has started her first round of chemotherapy. Every four weeks, she has five consecutive days of chemotherapy infusion. However, it is only a temporary treatment. A bone marrow transplant is needed to cure the disease.

A bone marrow registration drive is being held on Sunday, September 17 from 4:00pm to 7:00pm at Fenner Hall, 15 Fenner Ave, Newport, for this purpose. It is being organized by her family and friends and is in conjunction with Dana-Farber Cancer Institute and http://www.BeTheMatch.org, a national bone marrow donor registry.

The first source for bone marrow matches is a sibling or child, if they fall in the age range, but Paulas family members were not a match. More than 35,000 people in the United States are diagnosed each year with leukemia, anemias, myelodysplastic disorders and other life-threatening diseases requiring treatment with a blood stem cell or bone marrow transplant. About 70 percent of bone marrow transplant recipients must rely on an unrelated donor. Finding a compatible donor is a challenge. The opportunity to register and/or donate will help many patients in need..

Donors must be 18 to 44, and be willing to donate to any patient in need.To join the registry, potential donors must complete paperwork at the drive and have a cheek swab taken. If unable to attend, donors are asked to go towww.bethematch.orgto sign up, or visit any RI Blood Center.

Paula (Fitzgerald) grew up in Newport in the Fifth Ward, attending Newport schools, graduating from Rogers in 1968. Her father, Jim Fitzgerald, was the Dean of Boys at Thompson and football coach and her mother Meg also worked in the school system. She has an older sister, Maureen, and younger siblings, Nancy and Bill. Paula is an outstanding athlete, tennis and golf being her games of recent years. After graduating from college, Paula continued working at Salas until it closed and now works for private catering companies. TR McGrath and Kitchen Companion.

Paula is married to Manny P Silvia, a retired lieutenant in Middletown police department and retired supervisor in DCYF Protective Services. They have two children, Corrine and Greg.

Paula does an amazing amount of volunteering although never wanting any recognition for her efforts. She volunteers for many organizations such as the MLK Community Center, Relay for Life, the Ladies Ancient Order of Hibernians, Mosaic Club, AARP school programs, and Vasco deGama Society. Shes a communicant of St. Augustins Church.

The news of her diagnosis is a shock, but Paula continues with her active, involved life, giving it her best. She wants to send the message that everyone should be proactive about their health and always follow up on lab work. Paula is now awaiting a bone marrow transplant!

Any questions, please contact Nancy Fitzgerald, nancyfitz53@gmail.com, 401-855-1985. To learn more please contact Dana-Farbers Bone Marrow Donor Program at866-875-3324, email nmdpdonor@dfci.harvard.edu or visit online http://www.bethematch.org

Read more here:
Bone Marrow Drive To Benefit Paula Fitzgerald Silvia On Sunday, September 17th - Newport Buzz

To Read More: Bone Marrow Drive To Benefit Paula Fitzgerald Silvia On Sunday, September 17th – Newport Buzz
categoriaBone Marrow Stem Cells commentoComments Off on Bone Marrow Drive To Benefit Paula Fitzgerald Silvia On Sunday, September 17th – Newport Buzz | dataAugust 10th, 2017
Read All

Bone marrow drive to help and honor Bond Clinic physician – The Ledger

By Dr. Matthew Watson

Bone marrow transplants are used in serious blood disorders, especially cancers, when the needed doses of chemotherapy or radiation would be so high it would damage or destroy the stem cells in the marrow.

WINTER HAVEN For 14 years, Dr. Christopher Miller has been treating patients at Bond Clinic where he specializes in endocrinology, diabetes and metabolism. Many local people have met him at Bonds diabetes clinic or in nearby Eloise where he volunteers at Angel Cares free clinic.

Organizers of a Be The Match drive are hoping that those who have benefited from his care, including families and friends of patients, will turn out to honor him Saturday by volunteering to be a bone marrow donor.

He received a shocking, out-of-the-blue diagnosis and is in need of a bone marrow match, said Ashley Scanlan, marketing director for Bond Clinic.

Bone marrow is the soft tissue inside bones where blood cells are produced. Transplants are used in serious blood disorders, especially cancers, when the needed doses of chemotherapy or radiation would be so high it would damage or destroy the stem cells in the marrow.

Be The Match, a national nonprofit organization that is part of the National Marrow Donor Program, is the largest registry matching donors with those in need of a marrow transplant, said Marc Silver, community engagement representative for Be The Match. It also provides support for patients and donors, information for health care professionals and conducts research.

Nearly 70 percent of people needing a marrow transplant do not have a match within their families so the registry was set up to provide a resource for matches.

The event is from 8to 11 a.m. Saturday at the Bond Clinic Main Campus, 500 E. Central Ave., Winter Haven.

Registering to be a donor is a simple process, filling out some paperwork and taking a mouth swab, Scanlan said.

Volunteers should be between 18 and 44 years old, generally in good health and be willing to donate to any patient in the future, Scanlan said.

People are asking why the cutoff is 44, but they have found that age group has the best success in transplants, Scanlan said.

People of other ages are invited to come Saturday and write a note toMiller or make a financial donation, which would go either to the American Cancer Society or to the local Angel Care clinic, she said.

Bobbie Skukowski, an advanced registered nurse practitioner who leads Bonds diabetes clinic, said, Dr. Miller is an excellent physician and an excellent teacher. He was a fellow at Emory University and has taught us all so much; he has brought up the level of diabetes care at Bond Clinic and in the Winter Haven area in general.

"He is very good with his patients and right-on in his care, she said.

If a person is later selected as a potential match, there is no cost to the donor, Scanlan said. And the potential donor can later decide to withdraw from the registry.

The paperwork will ask several questions, including whether the potential donor is willing to donate to any patient in need, willing to donate to a stranger, and willing to donate 20 to 30 hours if found to be a perfect match.

If the potential donor meets the criteria, a mouth swab is taken and later analyzed for a match.

While years ago, being a bone marrow donor was a complicated procedure, now it typically is simple, handled much like a blood donation, Scanlan said.

Over 80 percent of the donations are non-invasive, said Be The Matchs spokesman Silver.

Be The Match literature explains that the donor is given injections of a drug, filgrastim, for five days leading up to the donation to increase the number of stem cells in the blood.

Then, on the day of the donation, the donor goes through a procedure similar to donating blood platelets at a blood center. Blood is taken out of one arm, passed through a machine that collects the blood-forming stem cells, and then the red and white blood cells are returned to the donors other arm through a needle. Typically it takes eight hours.

Donors often have a headache or muscle aches for a few days 22 percent recover within two days, 53 percent within a week, 93 percent within a month, 99 percent within three months and a very few people can take as long as a year to recover, according to Be The Match.

Less than 20 percent of the time, we do a hip aspiration, which is a more complicated procedure and involves having anesthesia in an operating room, Silver said.

Be The Match literature explains that, in those cases, needles are used to withdraw liquid marrow from both sides of the back of the pelvic bone. Typically, the donor stays at the hospital from early morning to late afternoon, or occasionally overnight for observation.

Be The Match helped match 6,200 patients for marrow and cord blood transplants last year and added 472,000 new potential donors to the registry, according to the organization.

Marilyn Meyer can be reached at marilyn.meyer@theledger.com or 863-802-7558. Follow her on Twitter @marilyn_ledger.

Follow this link:
Bone marrow drive to help and honor Bond Clinic physician - The Ledger

To Read More: Bone marrow drive to help and honor Bond Clinic physician – The Ledger
categoriaBone Marrow Stem Cells commentoComments Off on Bone marrow drive to help and honor Bond Clinic physician – The Ledger | dataAugust 10th, 2017
Read All

India’s Advancells Reports Successful Reversal of MS in Single Patient Using Stem Cell Therapy – Multiple Sclerosis News Today

By LizaAVILA

Advancellssays its stem cell-based therapy completely reversed multiple sclerosis (MS) in an Indian pilot trial with only one MS patient.

The patient, Rahul Gupta, was diagnosed with MS seven years ago and has since suffered multiple relapses. His disease was progressing fast and he was quickly losing his ability to walk. Gupta, who lives in New Zealand, approached Advancells a company based in the Indian state of Uttar Pradesh that specializes in the use of stem cells for therapeutic purposes.

After my last relapse, I became determined to look for alternative treatments for multiple sclerosis,Gupta said in a press release. I started looking on the net and found that stem-cell therapy [offers] hope for people suffering with MS [and] that it is safe and would not harm me in any way. I was determined to undergo stem-cell treatment, as my illness was progressing very quickly.

Gupta enrolled inAdvancells adult stem-cell therapy program as the trials single patient. In the procedure carried outin June at a New Delhi clinic doctors isolated stem cells from his bone marrow and re-infused them back into the patientat specific points. Apart from this procedure, Gupta underwent only physiotherapy and a dietary routine.

Straight after the treatment I saw major improvements, he said. I could walk a lot better, could climb stairs which I was unable to do after 2012 and even go on the treadmill.

Dr. Lipi Singh, head of technology at Advancells, said the company is frequently approached by MS patients from around the world who want to participate in its program.

Patient selection is a key criterion for us and Rahul suited the criteria perfectly, Singh said. He is young and still at a moderate level of the disease and in a very positive frame of mind. Patients at this stage are best suited for this kind of treatment and thus we decided to accept him as a pilot case.

Singh now expects to review Guptas response sometime this fall.

It will take approximately three months for us to review changes in the magnetic resonance imaging of the patient, but the drastic changes in symptoms clearly are an indication of the fact that the treatment is working and could become a hope for millions of patients across the world who are suffering from this disease. Singh said.

He added: This is a good start to a lengthy research phase, but it seems that we are on the right track and hopefully we will be able to make a significant contribution in eradicating not only MS but a host of untreatable diseases existing today.

See the rest here:
India's Advancells Reports Successful Reversal of MS in Single Patient Using Stem Cell Therapy - Multiple Sclerosis News Today

To Read More: India’s Advancells Reports Successful Reversal of MS in Single Patient Using Stem Cell Therapy – Multiple Sclerosis News Today
categoriaBone Marrow Stem Cells commentoComments Off on India’s Advancells Reports Successful Reversal of MS in Single Patient Using Stem Cell Therapy – Multiple Sclerosis News Today | dataAugust 10th, 2017
Read All

VistaGen Therapeutics (VTGN) Receives Notice of Allowance For Methods for Producing Blood Cells, Platelets and … – StreetInsider.com

By Sykes24Tracey

News and research before you hear about it on CNBC and others. Claim your 2-week free trial to StreetInsider Premium here.

VistaGen Therapeutics Inc. (NASDAQ: VTGN), a clinical-stage biopharmaceutical company focused on developing new generation medicines for depression and other central nervous system (CNS) disorders, announced today that the Company has received a Notice of Allowance from the U.S. Patent and Trademark Office (USPTO) for U.S. Patent Application No. 14/359,517 regarding proprietary methods for producing hematopoietic precursor stem cells, which are stem cells that give rise to all of the blood cells and most of the bone marrow cells in the body, with potential to impact both direct and supportive therapy for autoimmune disorders and cancer.

The breakthrough technology covered by the allowed U.S. patent was discovered and developed by distinguished stem cell researcher, Dr. Gordon Keller, Director of the UHN's McEwen Centre for Regenerative Medicine in Toronto, one of the world's leading centers for stem cell and regenerative medicine research and part of the University Health Network (UHN), Canada's largest research hospital. Dr. Keller is a co-founder of VistaGen and a member of the Company's Scientific Advisory Board. VistaGen holds an exclusive worldwide license from UHN to the stem cell technology covered by the allowed U.S. patent.

"We are pleased to report that the USPTO has allowed another important U.S. patent relating to our stem cell technology platform, stated Shawn Singh, Chief Executive Officer of VistaGen. "Because the technology under this allowed patent involves the stem cells from which all blood cells are derived, it has the potential to reach the lives of millions battling a broad range of life-threatening medical conditions, including cancer, with CAR-T cell applications and foundational technology we believe ultimately will provide approaches for producing bone marrow stem cells for bone marrow transfusions. As we continue to expand the patent portfolio of VistaStem Therapeutics, our stem cell technology-focused subsidiary, we enhance our potential opportunities for additional regenerative medicine transactions similar to our December 2016 sublicense of cardiac stem cell technology to BlueRock Therapeutics, while focusing VistaStem's internal efforts on using stem cell technology for cost-efficient small molecule drug rescue to expand our drug development pipeline."

See the rest here:
VistaGen Therapeutics (VTGN) Receives Notice of Allowance For Methods for Producing Blood Cells, Platelets and ... - StreetInsider.com

To Read More: VistaGen Therapeutics (VTGN) Receives Notice of Allowance For Methods for Producing Blood Cells, Platelets and … – StreetInsider.com
categoriaBone Marrow Stem Cells commentoComments Off on VistaGen Therapeutics (VTGN) Receives Notice of Allowance For Methods for Producing Blood Cells, Platelets and … – StreetInsider.com | dataAugust 9th, 2017
Read All

Help my only child survive! – The Indian Express

By LizaAVILA

Updated: August 9, 2017 12:44 pm

Every evening when Aadya watches children in the neighborhood play, my heart breaks. My daughter too was once an energetic presence rushing about. I know that Aadya longs to join them.

It started after Aadyas second birthday. She got high fever and rashes all over. The local doctor called it skin allergy and prescribed medicines. The fever persisted, and we sought another medical opinion.

The diagnosis was devastating. B Cell Acute Lymphoblastic Leukaemia a cancer that affects the immune system. Our only hope now lies in the contributions of caring strangers through ketto.org.

B Cell Acute Lymphoblastic Leukaemia. Big sounding medical terms that we knew nothing about, but by the look on the doctors face, clearly it was serious.

Acute lymphoblastic leukemia affects, breaks down the bodys ability to fight diseases. The cancer starts in the bone marrow, where new blood cells grow. These cells grow very fast and the bone marrows capacity to make normal cells is reduced.

The doctor said Aadya needed treatment immediately, or else the cancer would spread. From March to December 2016, she was under the care of Dr. Shweta Bansal at the Sir H.N.Reliance Foundation Hospital and Research Centre in Mumbai. Ten months is a long time for a grown person. To watch our only child suffer through so many blood tests and chemotherapy treatments was very painful and difficult.

After ten months, the treatment ended and we were full of hope that Aadya would begin to recover. Then just four months later, in April 2017, we got the terrible news that the leukemia had relapsed. Since then, Aadya has been visiting the hospital for chemotherapy and tests, every 15-30 days.

Today Aadya is three years old and it hurts us to see her childhood being taken away. She barely eats, feels tired and weak all the time, and gets bruised easily. Even the slightest exposure to infection can be dangerous so we mostly keep her at home. She has missed many days of school and plays indoors. Any exposure to dust is dangerous so we have to make sure that her clothes, food, and toys are kept dust-free at all times.

Aadyas hope is a Bone Marrow Transplant, which costs a staggering Rs 25 lakh. We have started a fundraising page with ketto.org, counting on peoples sense of humanity to help us with this life-saving surgery.

So far we have spent Rs 15 lakh on Aadyas chemotherapy treatments, medications, and hospital visits. I am a housewife and my husband earns Rs 25,000 working as a back office employee. We are completely dependent on his salary and had to raise the money for the treatment by taking loans, borrowing from family members and friends and through insurance. All that we have managed to raise until now has been used up in the treatment.

A Bone Marrow Transplant surgery will replace Aadyas damaged bone marrow with healthy bone marrow stem cells, enabling her to lead a normal, healthy life. Her father is a matching and willing donor but we need to put together Rs 25 lakh in the next one month. We have no means of raising that kind of money.

For Aadya to survive, that operation has to be done in one months time. For over a year now, Aadya has been fighting a tough, long battle. Now there is hope that this operation will finally end her nightmare and lead to that one final miracle when we can take our baby home.

We have started a fundraising page with Ketto.org in Aadyas name, in the hope that people will come forward and help us raise the funds for this surgery.

Please help us pay for her BMT by logging on to Ketto.org.

Help us to bring Aadya home.

For all the latest Lifestyle News, download Indian Express App

Follow this link:
Help my only child survive! - The Indian Express

To Read More: Help my only child survive! – The Indian Express
categoriaBone Marrow Stem Cells commentoComments Off on Help my only child survive! – The Indian Express | dataAugust 9th, 2017
Read All

Compensating Bone Marrow Donors Will Close the Supply Gap and Save Lives. – Niskanen Center (press release) (blog)

By Dr. Matthew Watson

August 8, 2017 by Samuel Hammond

The Wall Street Journal editorial board reported yesterday that the Health Resources and Service Administration (HRSA) regulation which sought to ban compensation for blood-forming stem cell donors has been defeated. This represents a small but significant victory for advocates of compensating organ donors a practice that remains outlawed by the National Organ Transplant Act (NOTA).

The crux of HRSAs rulemaking was a move to redefine blood-forming stem cells drawn from the bloodstream as an organ, no different from the bone marrow found within the bone, and thus under NOTAs purview. Our friends at the Institute for Justice (IJ) rightly argued for years that such a move was nonsensical and illegal. Blood and plasma are explicitly exempt from NOTAs ban on donor compensation, and as such donations of some subpart of the blood, including stem cells, should also be exempt.

The battle to kill the then-pending regulation heated up late last year, as HRSA neared its deadline to finalize the rule. The Niskanen Center formally joined IJs efforts in November, when we released a report called Bone Marrow Mismatch: How compensating bone marrow donors can end the transplant shortage and save lives. The report highlighted the enormous gap between bone marrow demand and supply under the current regime of voluntary donation, and argued against the applicability of the core ethical concerns advanced by HRSA. Our research and Hill event on the issue culminated in a listening session with HRSA officials, in which we argued that the social cost of enacting the rule was well in excess of $100 million, and thus worthy of delay for a deeper cost-benefit appraisal.

Its unclear what happened next. HRSAs hard December 18 deadline came and went, with a final rule that appeared to have been written but not formally submitted to the Federal Register. Perhaps it was the incoming administration, or the threat of litigation should the rule go through, or our research which provided a clear rationale for postponement. Regardless, the rule entered a strange purgatory, which is where it stayed until HHS formally withdrew the rule last week.

The Niskanen Center has received communications from a federal employee who believes our research was to some degree responsible for the rules ultimate repeal. That said, my research was simply part of a multi-pronged and multi-year effort to oppose the rule, led early on byIJ, the entrepreneur Doug Grant, the economist Mario Macis, and Peter Jaworski, the business ethicist and creator of DonationEthics.com.

The view of the Niskanen Center is that economic rights include the right to receive compensation for organ donations. NOTA therefore deserves a much deeper legal challenge. But in the meantime, lets celebrate the defeat of this regulation as a clear example of what it means to make small steps toward a better world.

Link:
Compensating Bone Marrow Donors Will Close the Supply Gap and Save Lives. - Niskanen Center (press release) (blog)

To Read More: Compensating Bone Marrow Donors Will Close the Supply Gap and Save Lives. – Niskanen Center (press release) (blog)
categoriaBone Marrow Stem Cells commentoComments Off on Compensating Bone Marrow Donors Will Close the Supply Gap and Save Lives. – Niskanen Center (press release) (blog) | dataAugust 9th, 2017
Read All

Trump Administration Withdraws Proposed Obama Ban on Compensation for Bone Marrow – Reason (blog)

By NEVAGiles23

Marrow Drives

The Office of Management and Budget has withdrawn a proposed rule banning compensation for hematopoietic stem cells. In other words, you can get paid when someone harvests stem cells from your bone marrow.

Bone marrow transplantation is used to treat a variety of ailments, including aplastic anemia, sickle cell anemia, bone marrow damage during chemotherapy, and blood cancers such as leukemia, lymphoma, and multiple myeloma. In 1984, Congress passed the National Organ and Transplant Act, which outlawed compensation to the donors of solid organs like kidneys and livers. Oddly, the act also defined renewable bone marrow as a solid organ.

Originally, hematopoietic stem cells were obtained from bone marrow obtained by inserting a needle into donors' hip bones. Researchers later developed a technique in which donors are treated with substance that overstimulates the production of hematopoietic stem cells, which then circulate in their bloodstreams. In a process similar to blood donation, the hematopoietic stem cells are then filtered from the donors' blood. The red blood cells and plasma are returned to the donors.

More Marrow Donors, a California-based nonprofit, wanted to set up a system to encourage hematopoietic stem cell donations with $3,000 awards, in the form of scholarships, housing allowances, or gifts to charity. The Institute for Justice, a libertarian law firm, brought suit on their behalf, and in 2012 a federal appeals court sensibly ruled that the law's ban on compensation for solid organ donations did not apply to stem cells obtained from donors' bloodstreams. The Obama administration reacted by proposing a regulation defining stem cells obtained from blood as the equivalent of a solid organ.

Now the new administration has withdrawn the proposal.

"Banning compensation for donors would have eliminated the best incentive we havemoneyfor persuading strangers to work for each other," Jeff Rowes, a senior attorney with the Institute for Justice, says in a press release. "Predictably, the ban on compensation for blood stem cell donors created chronic shortages and waiting lists. During the past four years, thousands of Americans needlessly died because compensation for bone marrow donors was unavailable."

The system of uncompensated donation is falling far short of meeting patient needs. As the Institute for Justice notes:

At any given time, more than 11,000 Americans are actively searching for a bone marrow donor. According to the New England Journal of Medicine, Caucasian potential donors are available and willing to donate about 51 percent of the time; Hispanic and Asian about 29 percent; and African-American about 23 percent. Caucasian patients can find a matching, available and willing donor about 75 percent of the time; Hispanic about 37 percent; Asian-American about 35 percent; and African-American patients only about 19 percent of the time. This demonstrates the huge gap between the need for compatible donors and the supply.

This is even more true in the case of solid organs from live and brain-dead donors. Right now there are more than 116,000 Americans waiting for a life-saving transplant organ. My colleagues and I at Reason have been arguing for decades in favor of compensating live donors for kidneys and pieces of their livers and the next-of-kin of brain-dead donors for other solid organs. If researchers and entrepreneurs succeed in boosting bone marrow donations by implementing various compensation schemes, perhaps that will prompt Congress to repeal its ill-conceived ban on compensation for organs donated for transplant.

Continue reading here:
Trump Administration Withdraws Proposed Obama Ban on Compensation for Bone Marrow - Reason (blog)

To Read More: Trump Administration Withdraws Proposed Obama Ban on Compensation for Bone Marrow – Reason (blog)
categoriaBone Marrow Stem Cells commentoComments Off on Trump Administration Withdraws Proposed Obama Ban on Compensation for Bone Marrow – Reason (blog) | dataAugust 8th, 2017
Read All

Is stem cell injection the cure-all miracle? – Health24

By LizaAVILA

Stem cell therapy has been claimed to cure cancer, improve chronic conditions such as headaches, and even make your skin look younger. How can that not be a good thing?

Youve probably heard about stem cell research before, but what exactly are stem cells, and how can stem cells injected into the body treat various diseases and conditions?

There has been enormous progress in this field over the last few decades, so let's take a look at how stem cell injections work.

What exactly are stem cells?

Stem cells are the bodys building blocks the reserve cells that the body is made up of. These cells are able to produce multiple different cells, each performing a specific function. Stem cells can be divided into two main categories:

What is stem cell therapy?

Stem cell therapy can be categorised as regenerative medicine. Stem cells used in medical treatments are currently harvested from three sources: umbilical cord blood, bone marrow and blood. These are treatments that restore damaged tissue and regenerate new cells in the case of illness or injury.

While there are other forms of stem cell therapy, these are still in the early stages and regarded as research.

How is stem cell therapy performed?

Adult stem cells are derived from a blood sample and injected back into the patient's blood. The surrounding cells are then activated, stimulating rejuvenation in the area.

Why the controversy?

In 2004 South Africa became the first African nation to open a stem cell bank. This involved embryonic stem cells for cloning research and not the "adult" stem cells used in treatment.

Embryonic stem cells are often viewed as problematic, as they are derived from very young foetuses. It is thus viewed as a form of "abortion" to use embryonic stem cells for treatment. But in most cases of stem cell therapy adult stem cells are used, which causes few ethical problems. Stem cells derived from the umbilical cord are not the same as from the embryo.

What does science say?

Prof Jacqui Greenberg from the University of Cape Town stated that although stem cells can potentially treat various diseases, they should be treated with extreme care.

She has no doubt that in time (in medical science particularly, progress is slow and measured in blocks of 10 years), stem cells will be the solution for many things. "But right now we have to strike a balance of not creating too much hype and raising hope too soon. Stem cells are the future, but the future is not now," Greenberg states.

The reason for this is that stem cells derived from an adult are too volatile at times. Researchers are not clear on how many of these stem cells will actually "survive" and "activate" to treat the condition at hand. Therefore it can't be predicted how many cells will survive and become functional.

There is as yet little proof that stem cells can actually fight disease when injected back into the host.Despite the success of IPS cell technology up to date, there are stillchallenges with regard to the purity of stem cells before their use in therapy.

Availability and cost in South Africa

Stem cell therapy is available at various treatment centres in South Africa. One of the most prominent is the South African Stem Cell Institute in the Free State. Here, various treatments, such as regenerative skin treatments and prolotherapy (regeneration of the joints), are offered.

Therapy starts with an initial consultation. During the second consultation vitals are checked, followed by either the fat harvest procedure under tumescent anaesthesia or bone marrow aspiration under local anaesthesia.

The stem cells are then cryopreserved and injected into the patient as needed. Prices of the treatment vary from R500 (for a once-off treatment in a small area, such as the hand) to R22 500 (a comprehensive process), depending on the condition being treated and length of treatment needed. This excludes the initial consultation fee and after-care.

There are also stem cell banks in South Africa, such as Cryo-Save, where stem cells can be stored at an annual fee (excluding initial consultation, testing and harvesting) and used for treatment.

Do your own research

If you do want to go the stem cell route, make sure that the medical programme being offered is legitimate and that the projected outcome is based on real evidence.

There are a number of private institutions banking on the promise of curing any number of diseases with stem cells from a patient's own blood. The truth, however, is that there is no conclusive proof that the majority of these diseases can be cured with the person's own stem cells annihilating the claim that stem cell therapy is the solution to all diseases.

Excerpt from:
Is stem cell injection the cure-all miracle? - Health24

To Read More: Is stem cell injection the cure-all miracle? – Health24
categoriaBone Marrow Stem Cells commentoComments Off on Is stem cell injection the cure-all miracle? – Health24 | dataAugust 8th, 2017
Read All

Scientists Are Making Actual Origami Out of Body Organ Tissue – ScienceAlert

By JoanneRUSSELL25

Everybody likes playing with origami and making little paper animals, but researchers in the US have taken their hobby to a freaky new level.

Scientists have developed a way of making a kind of bioactive "tissue paper" from real body organs, which is thin and flexible enough to fold into origami animals like the charming crane you see above which was probably once a kidney, liver, or perhaps a heart.

While it definitely sounds a bit (okay, a lot) on the gross side, this organ origami isn't quite as gruesome as it sounds. For starters, the team from Northwestern University aren't sourcing their tissue paper from human organs at least, not that we know of.

Instead, the researchers are picking up unwanted pig and cow offal from a local butcher, and putting those discarded off-cuts to good use because this flexible paper-like material could one day be used to heal wounds, or to help supplement hormone production in cancer patients.

Northwestern University

"This new class of biomaterials has potential for tissue engineering and regenerative medicine as well as drug discovery and therapeutics," says one of the team, materials scientist Ramille Shah.

"It's versatile and surgically friendly."

The team stumbled upon the idea for making organ-based paper after a lucky accident during their research on 3D-printed mice ovaries.

A chance spill of the hydrogel-based gelatin ink used to make the ovaries ended up pooling into a dry sheet in the bench lab, and from one strange innovation, another was born.

"When I tried to pick it up, it felt strong," says one of the researchers, Adam Jakus.

"I knew right then I could make large amounts of bioactive materials from other organs. The light bulb went on in my head. I could do this with other organs."

Turning to pig and cow organs, the researchers extracted structural proteins called the extracellular matrix from animal ovaries, uteruses, kidneys, livers, muscles, and hearts.

These proteins, which help to give organs their form, were dried and then combined with a polymer to process them into their new paper-like structure.

In other words, it's a bit like papier-mch with a touch of H. P. Lovecraft thrown in, but what's important is that the paper retains residual biochemicals from its protein-based origins, holding on to cellular properties from the specific organ it comes from.

During tests in the lab, the team was able to grow functional, hormone-secreting ovarian follicles in culture using tissue paper sourced from a cow ovary.

It might only be a lab test using animal organs, but if the same idea could be replicated with human hormone-producing tissue paper implanted under patients' skin, it could be a big step towards treating cancer patients and hormone deficiency generally.

"This could provide another option to restore normal hormone function to young cancer patients who often lose their hormone function as a result of chemotherapy and radiation," explains one of the researchers, Teresa Woodruff.

What could make the tissue paper so easy to apply for medical purposes is its malleability. It feels and folds much like ordinary paper, and can even be frozen for later use.

"Even when wet, the tissue papers maintain their mechanical properties and can be rolled, folded, cut and sutured to tissue," says Jakus.

In addition to hormone treatment applications, the team says the pliable material could augment tissue when wounds are healing, which might be able to speed up recoveries, or prevent scarring from injuries.

Of course, before we even get close to sticking origami organs inside human patients, the next step will be looking into how the paper works in animal models.

But initial signs look promising. When the team put human bone marrow stem cells on the tissue paper, all the stem cells attached and multiplied.

"That's a good sign that the paper supports human stem cell growth," says Jakus.

"It's an indicator that once we start using tissue paper in animal models it will be biocompatible."

To be clear, there's still a lot more research to be done here before we know how viable organ paper really is, but we'll never know unless we try.

And in the meantime, at least one thing's for sure.

"It is really amazing that meat and animal by-products like a kidney, liver, heart and uterus can be transformed into paper-like biomaterials that can potentially regenerate and restore function to tissues and organs," says Jakus.

"I'll never look at a steak or pork tenderloin the same way again."

The findings are reported in Advanced Functional Materials.

Read the rest here:
Scientists Are Making Actual Origami Out of Body Organ Tissue - ScienceAlert

To Read More: Scientists Are Making Actual Origami Out of Body Organ Tissue – ScienceAlert
categoriaBone Marrow Stem Cells commentoComments Off on Scientists Are Making Actual Origami Out of Body Organ Tissue – ScienceAlert | dataAugust 8th, 2017
Read All

Bone marrow transplant tot Ava Stark goes back to nursery for first time since live-saving op – Scottish Daily Record

By Sykes24Tracey

Brave Ava Stark has gone back to nursery for the first time since undergoing a life-saving bone marrow transplant.

The four-year-old was all smiles when she arrived at Noahs Ark Nursery in Lochgelly, Fife, yesterday morning.

She said she was looking forward to laughing at the nursery teacher and happily ran around the toy-filled garden before starting at 8am.

But her return was cut short after another child was ill and she had to go home due to her lowered immune system.

Mum Marie said that the half an hour she spent at the nursery was a great start and theyre now looking forward to her returning for longer.

The 34-year-old said: Its absolutely amazing that shes managed to get back to nursery for the first time. We honestly didnt think this day would ever happen.

My mum has been teaching her at home and I think shes going to miss her wee side-kick. It really is a big day.

She may only have been able to stay for half hour but thats a great start and were aiming for more next week. She was too excited to sleep last night.

If it wasnt for all those amazing people who heard about Ava and registered to become donors, then we may never have got here.

We just cant thank everyone who supported us enough.

Nursery manager Karen Robertson added: Its absolutely fantastic, we couldnt have wished for a better outcome.

We always said that when she took ill that we couldnt wait until she was well enough to come back and Im just delighted to see her.

Ava underwent her stem cell transplant in December after a Daily Record appeal which saw more than 83,000 people across the UK sign up to try help her.

She was first diagnosed with inherited bone marrow failure in April 2016 and relied on blood and platelet transfusions to keep her alive.

A matching donor was initially found but pulled out weeks before the procedure went ahead prompting her brave mum to launch the worldwide appeal for help.

A second match was then found but they pulled out just 24 hours before the youngster was due to go to hospital leaving her entire family devastated.

The campaign continued and two more matching donors were eventually found meaning she could undergo the operation in December.

She has recently celebrated her 100 day post-transplant milestone and will become the face of a donor recruitment drive by the Anthony Nolan charity.

She was also named one of the Daily Records Little Heroes at an award ceremony in May.

See the original post here:
Bone marrow transplant tot Ava Stark goes back to nursery for first time since live-saving op - Scottish Daily Record

To Read More: Bone marrow transplant tot Ava Stark goes back to nursery for first time since live-saving op – Scottish Daily Record
categoriaBone Marrow Stem Cells commentoComments Off on Bone marrow transplant tot Ava Stark goes back to nursery for first time since live-saving op – Scottish Daily Record | dataAugust 8th, 2017
Read All

Fun weekend activities will help send Lochaber man for ground-breaking MS treatment – Press and Journal

By JoanneRUSSELL25

Gary Campbell's partner, Leanne Crawford, with helpers Lauryn MacKenna (9) and Kye Crawford (12) at the home baking stall at Sunday's fun day.PICTURE IAIN FERGUSON, THE WRITE IMAGE

Two fundraising events have been held in Lochaber at the weekend to help send a local man halfway round the world for ground-breaking treatment.

Gary Campbell, from Caol, who is just 29, was diagnosed with progressive MS in April.

But family, friends and supporters are pulling out all the stops to raise 45,000 in order to send him to Mexico for stem-cell treatment.

Hematopoietic stem cell transplantation, HSCT, involves the intravenous infusion of stem cells collected from bone marrow or peripheral blood.

On Saturday, youngsters and their parents took park in a teddy bear toddle to raise cash for Mr Campbells cause, while yesterday, a large crowd attended a fun afternoon at An Aird in Fort William.

Leanne Crawford, Garys partner, said: The fun day went really well and there was a good turnout.

There were lots of fund-raising activities including a charity shinty match, bouncy castle, beat the goalie, a nail bar, home baking and raffles with loads of prizes.

Gary used to play shinty and two of his old teams from Caol and Banavie took part. Some people had obviously not played in a wee while and were falling about, but it was great fun.

Unfortunately, Gary wasnt well enough to come along which was a pity as he would have really enjoyed it.

He had a fall in the garden on Saturday night and I couldnt get him up. Fortunately his mum was there and between us we managed to get him back into the wheelchair.

His right leg was shaking constantly it was really stressful for him.

Ms Crawford said she has known Mr Campbell for nine years, and for the past five has noticed different symptoms.

He wasnt very good on his feet and sometimes his legs would give way. It was as though he was drunk when he hadnt been drinking.

Gary actually thought he had a brain tumour and, in a way, it was a relief when he was diagnosed with MS.

Ms Crawford said she is hoping by the time enough cash is raised, HSCT might be available closer to home.

I believe hospitals in Galway and Sheffield are looking into the treatment, but if he has to go to Mexico, Ill get him on the plane even though he is petrified of flying.

I dont know how much has been raised yet from these events, but we collected 663 from a recent baking sale and have 2,500 already on the just giving page. We also have 1,500 in a bank account collected from fund-raising events.

Gary is over the moon with the support he is receiving.

Another Lochaber resident with MS, Frances OConnell, received HSCT in Mexico last year.

Excerpt from:
Fun weekend activities will help send Lochaber man for ground-breaking MS treatment - Press and Journal

To Read More: Fun weekend activities will help send Lochaber man for ground-breaking MS treatment – Press and Journal
categoriaBone Marrow Stem Cells commentoComments Off on Fun weekend activities will help send Lochaber man for ground-breaking MS treatment – Press and Journal | dataAugust 7th, 2017
Read All

Woodrow Wilson baseball field to be renamed for Tom Parham – Beckley Register-Herald

By raymumme

Tom Parham remembers the time his Woodrow Wilson baseball team was playing Class AAA power Huntington East.

It was 1980, and the Flying Eagles were hosting the Pony Express at Harry Lewin Field. Not known to be a cavernous venue, the field lent itself to an offensive barrage and Huntington East was the last team standing.

A few weeks later, Parham led Woodrow to the state championship game and a rematch with the Express. Woodrow fell short again, but this time it was by the more purist-friendly score of 2-1.

It was then that Parham knew the Eagles needed a new field.

In stepped Doug Epling, Beckley businessman and community leader. He would later be known for refurbishing the old East Bank High School field for WVU Tech to use, as well as the construction of Linda K. Epling Stadium in Beckley, the home of the West Virginia Miners.

The latter, of course, bears the name of Epling's wife. The Tech field is named for Epling himself.The field he helped build on the Woodrow Wilson campus doesn't have an official name.

That will change Saturday.A ceremony will be held at 2 p.m. in the school cafeteria to officially rename the field for Thomas Parham.

The effort to honor the longtime coach was started by Sheila Brown.

"Words cannot describe how it feels," Parham said. "When Mrs. Brown started talking about it, I always told her, nah (modestly). I just thought, 'Let it go.' And finally she told me in April, 'Well, I'm going to the board. I'm going to ask them.' So she did and they told her what to do (at the next meeting)."

The Raleigh County School Board laid out a plan for Brown, and at the next meeting former coaches, colleagues and friends voiced their support.

Legendary boys basketball coach Dave Barksdale. State championship-winning football coach Pete Culicerto. Fellow New Hope Baptist Church member C.W. Claytor. Even Epling himself. They all showed up to see that Parham got the respect they feel he deserves.

"It was just touching to hear former coaches Coach Barksdale, Coach Culicerto, and I even heard from one of my coaching buddies from out of town, Ron Rose," Parham said. "He told Pete what (he wanted) to say. It was just touching, and a humbling experience."

Parham is being recognized for a career that spanned nearly three decades. He was hired as a biology teacher by Ross Hutchens before the start of the 1974-75 academic year.

"He said, 'I need a good biology teacher. I can get a coach anywhere,'" Parham said, laughing.

His first season as head baseball coach was 1975, and he remained there until his retirement in 2000. Along the way, his teams rolled up over 200 wins and appeared in the state tournament five times. Two of those trips resulted in runner-up finishes the 1980 meeting with Huntington East, and in 1983 against Martinsburg.

And the list of star players Parham coached seems endless Chuck Tate, Andy "Bam Bam" Wakefield, Larry Maiolo, Mason Basham, Larry Hickman, Joe Joe Maiolo, Larry Pat Farley, Phil Culicerto, Tim Epling, Phil Lane, Ronnie Fama, John O'Dell.

There were many others, and many of themare members of the Woodrow Wilson Baseball Hall of Fame.

"I was fortunate I came across some good ball players," Parham said. "You don't like to toot your own horn, but like a fella said, we put Woodrow Wilson baseball on the map."

Another was Ronnie Scott, who went on to work for NASA in Florida before returning to Beckley in 2010. Sadly, he passed away in May at age 59.

"He wanted to see baseball dominant again like it was when he played," Parham said.

When Parham retired from baseball in 2000 he stayed on as a biology teacher for one more year it was the emphatic end of an era at the school. Not only did Parham retire, but Culicerto retired after the 1999 football season, and Barksdale left the bench just months before Parham to take a coaching job in Aiken, S.C.

"Indeed it was," said Parham, now 74. "I enjoyed working with Coach Culicerto (as an assistant football coach). He was a great football coach, and he was a baseball supporter. He had seven sons play baseball for me. Three of them played in the state tournament."

After his retirement, Parham's was a familiar face in the stands at Woodrow baseball games. But in 2009, his ability to be a spectator slowed down when it was discovered that he had cancer.

Parham was diagnosed with multiple myeloma, a blood cancer that develops in the plasma cells located in bone marrow. The cancer did eventually go into remission, but Parham was still getting checkups when something told him he needed to go to Johns Hopkins in Baltimore.

It was there that he was introduced to autologous stem cell transplant. It's a procedure that involves collecting the patient's stem cells and following it up with high doses of chemotherapy or a combination of chemo and radiation. The process kills cancer cells while also killing blood-producing cells left in the bone marrow.

The collected stem cells are later transplanted back into the patient, allowing the marrow to produce new blood cells.

"I met a very interesting and a caring doctor up there, Dr. (Ivan) Borrello. He told me (about the transplant)," Parham said. "As a matter of fact, they have been doing this since 1980. He asked, 'What do you think about a stem cell transplant?' And I said yeah. Anything to get rid of this cancer.

"At that time my cancer was in remission, so he couldn't do anything. He said we would have to wait until it comes back. He hoped it didn't come back, but if it does ..."

It did, and in February he had the procedure performed.

"It came back in 2016, and when you're over 70 they don't usually do these things," Parham said. "But he felt like I was in good shape, which I think well, I know I am. I went through it, successful, no problems whatsoever.

"After teaching biology, I thought I knew some things. Now I know I know some things."

Just like baseball.

Email: gfauber@register-herald.com and follow on Twitter @GaryFauber

Excerpt from:
Woodrow Wilson baseball field to be renamed for Tom Parham - Beckley Register-Herald

To Read More: Woodrow Wilson baseball field to be renamed for Tom Parham – Beckley Register-Herald
categoriaBone Marrow Stem Cells commentoComments Off on Woodrow Wilson baseball field to be renamed for Tom Parham – Beckley Register-Herald | dataAugust 6th, 2017
Read All

Trust those cells to help cure cancer – The Hindu

By raymumme

Nalini Ambady, the first Indian-American woman to teach psychology at three major universities in the U.S., died in 2013 due to leukaemia when she was just 54.

For the medical fraternity in Kerala, her native place, it turned the spotlight on the lack of awareness of stem cell transplant, which could have saved her life.

Four years down the lane, doctors say the situation has changed only marginally, as many patients who require the treatment have not been able to do it because of high expenses, lack of matching donors, and lack of facilities at hospitals.

Doctors note that stem cell transplant is being proposed as an effective treatment for cancers such as leukaemia and lymphoma, and primary immune deficiency disorders. Stem cells do not develop normally in such patients and it affects the blood cells that they make. By a transplant, the patient gets new stem cells that can make new and healthy blood cells. Earlier, stem cells were collected from the bone-marrow. Now, it is being collected from blood cells.

Neeraj Sidharthan, bone marrow transplant physician at Amrita Institute of Medical Sciences, Kochi, told The Hindu that in Prof. Ambadys case, though matching donors were found, they had all dropped out.

Lack of awareness is still a major issue though there are some positive signs. In some cases, because of lack of infrastructure, cancer cases are not being diagnosed early and treatment is delayed too, he said.

Ajith Kumar V.T., professor, department of paediatrics, Government Medical College, Manjeri, said donors could not be found often from the same families because of the nuclear family system.

There are not many places where you can match the human leukocyte antigen (HLA) typing with donors. Another problem is the lack of stem cell registries in the State from where matching unrelated donors could be found.

Even if doctors suggest a stem cell transplant, many families dont opt for it because of the high cost involved. If the donor is from the same family, the cost is relatively low. But for unrelated donors, it is very high, Dr. Sidharthan said. The solution, Dr. Ajith Kumar said, was government intervention to set up HLA registries and bone marrow transplant centres. nestCare Foundation, a not-for-profit organisation based in the U.S., had recently approached us expressing interest to set up these facilities in the State. Talks are on, he said.

A.S. Jayanth

View original post here:
Trust those cells to help cure cancer - The Hindu

To Read More: Trust those cells to help cure cancer – The Hindu
categoriaBone Marrow Stem Cells commentoComments Off on Trust those cells to help cure cancer – The Hindu | dataAugust 6th, 2017
Read All

The best way to fix broken bones might be with glass – BBC News

By NEVAGiles23

In 2002, Ian Thompson, a specialist in facial reconstruction at Kings College, London, received an urgent phone call. A patient in his late 20s had been struck by an out-of-control car mounting the pavement. The impact had sent him catapulting over the bonnet of the car, smashing his face and shattering the fragile orbital floor the tiny bone, no more than 1mm thick, which holds the eyeball in place in the skull.

Without the orbital floor, your eye moves backwards into the skull, almost as a defensive mechanism, Thompson explains. But this results in blurred vision and lack of focus. This patient had also lost the ability to perceive colour. His job involved rewiring aircraft and as he could no longer detect a red wire from a blue one, hed barely been able to work in three years.

The accident had happened three years earlier. Since then, surgeons had desperately tried to reconstruct the bony floor and push the eye back into position, first using material implants and then bone from the patients own rib. Both attempts had failed. Each time, infection set in after a few months, causing extreme pain. And now the doctors were out of ideas.

You might also like: How ancient skeletons are helping modern medicine The viruses that may save your life I was blind now I have bionic eyes

Thompsons answer was to build the worlds first glass implant, moulded as a plate which slotted in under the patients eye into the collapsed orbital floor. The idea of using glass a naturally brittle material to repair something so delicate may seem counterintuitive.

But this was no ordinary glass.

If you placed a piece of window glass in the human body, it would be sealed off by scar tissue, basically wobble around in the body for a while and then get pushed out, says Julian Jones, an expert in bioglass at Imperial College London. When you put bioglass in the body, it starts to dissolve and releases ions which kind of talk to the immune system and tell the cells what to do. This means the body doesnt recognise it as foreign, and so it bonds to bone and soft tissue, creating a good feel and stimulating the production of new bone.

Bioglass actually works even better than the patients own bone Ian Thompson

For Thompson, the results were immediate. Almost instantaneously, the patient regained full vision, colour and depth perception. Fifteen years on, he remains in full health.

Thompson has gone on to use bioglass plates to successfully treat more than 100 patients involved in car or motorcycle accidents. Bioglass actually works even better than the patients own bone, Thompson says. This is because weve found that it slowly leaches sodium ions as it dissolves, killing off bacteria in the local environment. So, quite by chance, you have this mild antibiotic effect which eliminates infections.

Cutting edge

Bioglass was invented by US scientist Larry Hench in 1969. Hench was inspired by a chance conversation on a bus with an army colonel who recently had returned from the Vietnam War. The colonel told Hench that while modern medical technology could save lives on the battlefield, it could not save limbs. Hench decided to shelve his research into intercontinental ballistic missiles and instead work on designing a bionic material which would not be rejected by the human body.

Hench ultimately took his research to London, and it has been in Britain where some of the most revolutionary bioglass innovations are being made in fields from orthopaedic surgery to dentistry.

Over the last 10 years, surgeons have used bioglass in a powdered form, which looks and feels like a gritty putty, to repair bone defects arising from small fractures. Since 2010, this same bioglass putty has hit the high street as the key component in Sensodynes Repair and Protect toothpaste, the biggest global use of any bioactive material. During the brushing process, the bioglass dissolves and releases calcium phosphate ions which bond to tooth mineral. Over time, they slowly stimulate regrowth.

But many scientists feel that the current applications of bioglass are barely scratching the surface of what could be possible. New clinical products are being developed which could revolutionise bone and joint surgery like never before.

Sitting in his office in Imperial Colleges Department of Materials, Jones is holding a small, cube-shaped object hes dubbed bouncy bioglass. Its similar to the current bioglass but with a slight twist: subtle alterations in the chemical composition mean its no longer brittle. Instead it bounces,like a kids power ball as Jones describes it, and its incredibly flexible.

The point of this is that it can be inserted into a badly broken leg and can support both the patients weight and allow them to walk on it without crutches, without requiring any additional metal pins or implants for support. At the same time, the bouncy bioglass also will stimulate and guide bone regrowth while slowly, naturally assimilating into the body.

To regenerate large pieces of bone, for example in a really big fracture, its very important to be able to put weight on your leg, Jones says. And its really important that the bio-implant in your leg is able to transmit the force from your weight to the bone cells, like a signal. Our body makes its own bone in the architecture that its in, because the cells feel the mechanical environment. So to grow back a big piece of bone you need to be able to transmit the right signals to them. The reason why astronauts in space lose bone mass is because without gravity, the cells arent receiving the same information as they do on Earth.

Further alterations to the chemical makeup of bioglass produce a different form which is much softer and has an almost rubbery feel. It feels almost like a piece of squid at a seafood restaurant. This bioglass is designed for possibly the holy grail of orthopaedic surgery: cartilage repair.

Right now, surgeons attempt to repair damaged cartilage in arthritic hips or damaged knee joints with a fiddly procedure called microfracture. This involves smoothing over the damaged area to expose the bone underneath, then pricking it to release stem cells from the bone marrow which stimulate repair. But this results in scar cartilage and within a few years, as many athletes have found, the original problem returns.

As a solution, Jones is looking to produce bioglass which can be 3D-printed and then slotted into any hole in the cartilage. For the cells to accept it, the material must retain all the natural properties of cartilage. To test its effectiveness, Jones uses a simulator that has human knee joints from cadavers donated for medical research.

We simulate the walking action, bending, all the things a knee would do, and make sure that the bioglass actually preserves the rest of the joint and behaves as it should do, he says. If that works then well proceed to animal and then clinical trials.

This same bioglass could find an additional use in aiding people with chronic back pain due to herniated discs. At the moment surgeons treat this by replacing the dysfunctional disc with a bone graft which fuses the vertebrae in the back together. But while this takes away the pain, it results in a considerable loss in mobility. Instead, a bioglass implant could be printed and simply inserted to replace the faulty disc.

It seems the obvious thing to do, Jones says. So far nobody has been able to replicate the mechanical properties of cartilage synthetically. But with bioglass, we think we can do it.

Weve just got to prove that we can. If all goes well and we pass all the necessary safety tests, it could reach the clinic in 10 years.

Using man-made materials which can fuse to the body may seem far-fetched but it is appearing to be a more and more likely component of future medicine. Already, millions of people brush their teeth with it. And that may just be the start.

This story is a part of BBC Britain a series focused on exploring this extraordinary island, one story at a time. Readers outside of the UK can see every BBC Britain story by heading to theBritain homepage; you also can see our latest stories by following us onFacebookandTwitter.

Join 800,000+ Future fans by liking us on Facebook, or follow us on Twitter.

If you liked this story,sign up for the weekly bbc.com features newsletter, called If You Only Read 6 Things This Week. A handpicked selection of stories from BBC Future, Earth, Culture, Capital and Travel, delivered to your inbox every Friday.

Read the original:
The best way to fix broken bones might be with glass - BBC News

To Read More: The best way to fix broken bones might be with glass – BBC News
categoriaBone Marrow Stem Cells commentoComments Off on The best way to fix broken bones might be with glass – BBC News | dataAugust 5th, 2017
Read All

Cancer survivor meets bone marrow donor days before wedding – WBNG-TV

By NEVAGiles23

BINGHAMTON (WBNG) -- Thursday, a cancer survivor met her bone marrow donor for the first time, just days before her wedding.

"They told me that without a transplant I really only had about six months to a year," said Vivian Nolan, a bone marrow transplant recipient.

In 2008, Vivian Nolan was diagnosed with a rare form of cancer called multiple myeloma. Later on, she was diagnosed with leukemia.

Doctors tried a bone marrow transplant with her own stem cells. When that didn't work, they said she needed a donor.

"The only cure or chance of holding it off at all is a bone marrow transplant," Nolan said.

Lucky for Nolan, doctors found a match.

A stranger volunteered to save her life. Scott Durbin is Nolan's donor. He lives in Kentucky, over 850 miles away.

Thursday, Durbin and Nolan met for the first time.

Nolan is getting married on Saturday.Durbin and his family flew in to support her in her next phase of life, a life that she wouldn't have without him.

"This is the man who gave me my life back. So I'm really happy," Nolan said.

For Durbin, the decision to help someone in need was second nature.

"I signed up. 7 months later I got that phone call saying they was gonna fly me to Atlanta," bone marrow donor Scott Durbinsaid.

Nolan was still in shock that someone would do something so kind for a person he had never met.

"I just couldn't believe that there was someone out there that I never knew that would go through that for me," she said.

After the transplant, Nolan wanted to meet the man who now is a part of her.

Today, she was able to introduce her family to its newest member.

"Now I've got this whole new life and he's got this whole big new family."

For Durbin, it's a choice he'd make over and over.

"I would do it again to give you a second chance," Durbin said.

Nolan remains forever grateful for that second chance.

Since her bone marrow transplant, Nolan's leukemia is virtually gone. She says she feels great, and can't wait for her new lease on life.

Read the original here:
Cancer survivor meets bone marrow donor days before wedding - WBNG-TV

To Read More: Cancer survivor meets bone marrow donor days before wedding – WBNG-TV
categoriaBone Marrow Stem Cells commentoComments Off on Cancer survivor meets bone marrow donor days before wedding – WBNG-TV | dataAugust 5th, 2017
Read All

Cell therapy firm in flurry of activity as hope nears for bone marrow patients – The Times of Israel

By NEVAGiles23

The excitement at Jerusalem-based Gamida Cell, a maker of cell and immune therapy technologies, is palpable.

The biotechnology company has started enrolling patients for a last-stage clinical trial for a drug it believes will help increase the success of bone marrow transplants in blood cancer patients, and help them better withstand the ordeal of the lifesaving procedure.

The patients are being enrolled in the US, Spain, The Netherlands and Singapore. Should the results of the trial, as hoped, be positive, that would lead to the launch of a commercially available product in 2020, Gamida Cells CEO Yael Margolin said in an interview with The Times of Israel.

We are at an exciting transition point, and moving from being a research and development firm, based in Israel, to an international commercial firm, said Margolin who has headed the company for the past 12 years in her sun-drenched office at the biotech firms headquarters in Jerusalem. We need to prepare to commercialize the product. We are now looking at various sites in Israel for a new manufacturing facility and looking to employ some 100 people. These workers will be added to the 40 already employed in Jerusalem.

Gamida Cells CEO, Dr. Yael Margolin (Courtesy)

Preliminary clinical data has already revealed that the risk of their leading product for blood cancers, NiCord, not meeting its targets in the Phase 3 trial, is low, added Margolin.

The drug has already received a breakthrough therapy designation by the US Food and Drug Administration (FDA). The designation is given to a drug that is meant to treat a serious or life-threatening condition, and where preliminary clinical evidence indicates that it may demonstrate a substantial improvement on at least one clinically significant target (endpoint) over other available therapies. The designation also entitles the company to get more and closer FDA guidance to help bring the treatment faster to patients.

The combination of the low clinical risk based on the previous trial results and the lower regulatory risk, because the drug is being developed in close collaboration with the FDA, has spurred the company into a flurry of activity that is aimed at scaling up its production facilities to get ready for the day NiCord hits the markets.

The company said last month it raised $40 million from investors including Novartis, which is already a major shareholder in the firm. The funds will support the ongoing Phase 3 stage for NiCord. The company also announced, on July 20, that it received a $3.5-million grant from the Israeli government that will support the further development of NiCord and other drugs that the company is developing, including therapies for sickle cell disease and for blood and solid cancers. Gamida has also appointed a new chief medical officer, Ronit Simantov, who will be based in the US.

The first market for our drug will be the US, Margolin said.

The Gamida Cell lab in Jerusalem where umbilical cord blood is stored in tanks, July 16, 2017. (Shoshanna Solomon/Times of Israel)

NiCord, which would be the first drug developed by Gamida to hit the market if the trial goes well is believed to increase the chances of a successful bone marrow transplantation process for patients who do not have a rapidly available, fully matched, bone marrow donor.

Today some high-risk blood cancers cannot be cured unless patients undergo a bone marrow graft. For that purpose, a perfect 100-percent match needs to be found, a process that in the US takes an average of three to four months, if the patient is lucky. Sometimes, no match is found.

There are 70,000 patients a year globally with blood cancers who need a bone marrow transplant, Margolin said. It is a rare condition. But for that transplant, you need a donor with full tissue matching. As many as 50% dont get to the transplant phase, because they havent found a matching donor in time.

Umbilical cord blood collected from newborn babies contains stem cells, which can be used to treat diseases. Today cord-blood banks around the world store the cord blood. It great advantage is that because it is so young, there is no need for a full tissue matching.

The big advantage with umbilical blood is that you dont need full tissue matching; a partial match is enough, Margolin continued. Most patients generally find at least one unit of cord blood that partially matches them.

Stem cells in a bag in Gamida Cells Jerusalem lab, July 16, 2017 (Shoshanna Solomon/Times of Israel)

The problem is that the quantity of cells in each unit is not huge, and it is the number of stem cells in the cord blood that is critical to the success of transplantation.

Our idea is to leverage the advantages of the cord blood and overcome the limitations of the cell number by applying our own platform technology, called NAM Technology, added Margolin. This technology allows us to take one unit of umbilical cord blood and expand the number of stem cells within it and enhance their performance.

Gamida Cell selects the stem cells from the unit and puts them in a culture together with a molecule called Nicotinamide (NAM) a form of Vitamin B3 and adds other ingredients. This culture, to which the firm holds intellectual property rights, increases the number of stem cells, and enhances their functionality, Margolin said.

The cells are then harvested from the culture, frozen in a small blood-bag in a final formulation that is ready for infusion, and then shipped to hospitals via couriers. Doctors thaw the product by the bedside of the patients and infuse the fluid into them.

From start to finish, our process takes three weeks, Margolin said. The average search for a bone marrow match takes three to four months.

The clinical trial underway is enrolling patients aged 16 years and older.

An earlier trial of the drug showed that patients transplanted with NiCord showed a more rapid engraftment the amount of time needed for the development of a minimal amount of white blood cells, or neutrophils, in the blood. That minimum amount indicates the patient is now less vulnerable to infections and bleeding following the transplant, and is an indication of success.

In the pilot phase clinical trials, the median time to neutrophil engraftment with NiCord was 11 days, compared to three to four weeks in patients who received standard umbilical cord blood. The results in a study conducted at Duke University also showed a lower rate of infection 22% vs 54%; and a lower duration of hospitalization compared to standard umbilical cord engraftment, Margolin said.

Now the company is enrolling patients for its larger, Phase 3 multi-national, randomized controlled registration study. And in February it said it had already transplanted its first patient, as part of the trial.

We hope to publish positive topline data from the Phase3 study in the first half of 2019 and launch the product on the market in 2020, she said.

Metal barrel with a frozen bag of umbilical cord stem cells ready for delivery from Gamida Cells Jerusalem lab, July 16, 2017. (Shoshanna Solomon/Times of Israel)

A metal barrel within which was a frozen bag of umbilical cord stem cells was waiting to be picked by a courier in the lobby of the Gamida Cell offices, ready to be thawed and injected into a patient somewhere around the world.

We have a sophisticated infrastructure that coordinates everything between the cord bank blood and our manufacturing site and the hospital where the patient is to be treated, Margolin continued. This infrastructure is 100% robust, but we plan to scale this up toward commercialization.

The $40 million in funds the company raised last month is expected to last until late 2019. After that, she added, all options are on the table: an IPO, or teaming up with a strategic partner, are both possibilities for the future.

Read more:
Cell therapy firm in flurry of activity as hope nears for bone marrow patients - The Times of Israel

To Read More: Cell therapy firm in flurry of activity as hope nears for bone marrow patients – The Times of Israel
categoriaBone Marrow Stem Cells commentoComments Off on Cell therapy firm in flurry of activity as hope nears for bone marrow patients – The Times of Israel | dataAugust 1st, 2017
Read All

Drive for stem cell donors in Langley – Surrey Now-Leader

By daniellenierenberg

Marie Grim of Langley is looking for 100 people between the ages of 17 and 35 who are willing to take a few moments to have their cheeks swabbed.

Theres no pain, no fuss, she said.

And you could save someones life, anywhere in the world.

You could match with someone in Japan.

The campaign to sign up more potential stem cell donors, people who are willing to allow DNA samples to taken using cotton swabs, was inspired by the experience of her sister-in-law.

Cloverdale resident Tania Grim, a mother of four was diagnosed with leukemia in January.

She had to wait several months before a compatible donor was found whose stem cells will be used to replace bone marrow and abnormal white blood cells eradicated by a combination of chemotherapy and radiation.

We have been on quite the journey, Marie said.

I have sat with her at appointments and heard others get news of their donor while she had not.

Now that Tania has her donor, Marie would like to improve the odds for other families.

She already has a location and tentative date to collect the swabs September 8 at Immanuel Christian Reformed Church in Langley if she can round up enough donors.

Tania, who is preparing for her stem cell procedure in September, urged prospective stem cell contributors to sign up.

I am so grateful that the word is being spread about the huge need for donors, Tania said.

It is a very simple thing to do that can save a life.

If you are the right age to be a donor, you can contact Marie at 604-530-1326 or by email at mariegrim@hotmail.com.

Interested donors can also contact Canadian Blood Services directly at https://blood.ca/en.

More than 390,000 Canadians have joined the OneMatch Stem Cell and Marrow Network registry maintained by Canadian Blood Services, volunteering to be stem cell donors for any patient in need of a transplant, anywhere in the world.

Right now, the agency says about 70 per cent of eligible donors on the registry are Caucasian, which means the odds of finding match for other ethnicities, such as Canadians with indigenous, Asian or African heritage, are not good.

The Canadian registry connects to an international network established by the World Marrow Donor Association (WMDA) that has access to over 28 million donors in over 53 countries.

Not everyone who registers will be matched to a patient and asked to donate, but each registrant provides hope for those waiting, a message posted to the agency website states.

A person could be a match within a few months of registering, a year later or even seven years later.

If a volunteer donor is found to be a match, they face a relatively minor surgical procedure and can expect to make a quick recovery.

The agency says over 80 diseases and disorders can be treated with a stem cell transplant.

There are hundreds of patients in Canada waiting for a match, but only half of them find a match.

Patients are more likely to find a matching donor from within their own ethnic group.

The odds of family members matching is extremely slight, the agency said, which is why it does not support donor drives targeting relatives.

RELATED STORY: Surrey teen rallies stem cell donors to help with desperate need for South Asians

dan.ferguson@langleytimes.com

Read the original:
Drive for stem cell donors in Langley - Surrey Now-Leader

To Read More: Drive for stem cell donors in Langley – Surrey Now-Leader
categoriaBone Marrow Stem Cells commentoComments Off on Drive for stem cell donors in Langley – Surrey Now-Leader | dataAugust 1st, 2017
Read All

Gut viruses tied to potentially deadly complication of bone marrow transplant – Medical Xpress

By LizaAVILA

Credit: University of California, San Francisco

A virus hiding quietly in the gut may trigger the onset of a severe complication known as graft-versus-host disease (GvHD) in patients who receive bone marrow transplants, according to a new study led by scientists at UC San Francisco and Saint-Louis Hospital in Paris, France.

GvHD affects up to 60 percent of patients who undergo bone marrow stem-cell transplants, and kills about half of those affected. After transplants, to prevent a recipient's immune cells from laying siege to unfamiliar donor cells and rejecting them, clinicians often use drugs to suppress the immune response. GvHD is a mirror image of organ rejection, in which immune cells in the transplant attack its new host, the patient.

Despite the pervasiveness of this disease, there isn't yet a clear way of foretelling patients' risk of developing it before they go into surgery. The new study, published online July 31, 2017, in Nature Medicine, unveils a viral biomarker that could allow clinicians to assess patients' risk of an acute form of the disease known as enteric GvHD, which affects the gastrointenstinal system.

The team used a technique known as metagenomic next-generation sequencing (mNGS) which can rapidly and concurrently sequence genetic material of all organisms present in any biological sample to catalog microbes in patients' digestive tracts, monitoring the evolving bacterial and viral population throughout the transplantation process.

Although mNGS analyses of bacterial populations, called microbiomes, have been much in the news, fewer studies have focused on "viromes," the term for viral populations.

"Viromes can play an important part in health and disease," said Charles Chiu, MD, PhD, an associate professor of laboratory medicine at UCSF and principal investigator of the study. "Our goal was to understand what impact transplantation has on the gut virome."

In the new work, the researchers scanned stool samples taken from 44 patients before they received a transplant and up to six weeks after, and sequenced all the DNA and RNA in the samples in order to assemble a roster of their microbial passengers.

Using this technique, the researchers identified a number of viruses that flared up in the guts of patients who developed the deadly condition. Of particular note were members of the picobirnavirus (PBV) family: the presence of these viruses before transplantation, even in very small populations, was a reliable sign that a patient would likely develop the disease after a transplant.

"I would've expected herpesviruses or adenoviruses to be the more likely cause of infection," said Chiu. "We wouldn't have picked up picobirnaviruses were it not for the metagenomics approach."

PBVs are a very diverse family of viruses more diverse than HIV, said Jrme Le Goff, PhD, associate professor at the University of Paris Diderot and lead author of the new study. "It's very difficult to design a single test to detect all viruses simultaneously," said Le Goff. "So for many years, labs did not have the means to look for PBV." Indeed, each of the 18 patients who tested positive for PBV was carrying a different strain, a diversity that makes it challenging to detect PBVs using a simple lab test.

The team also observed a previously unreported "bloom" of other resident viruses in patients that occurred three to five weeks after they had received transplants. Intriguingly, the onset of GvHD appeared to trigger the late awakening of these covert viruses, laying to rest a longstanding chicken-and-egg debate: which comes first, viral infection or GvHD? The researchers conclude that much of the viral flare they saw is due to reactivation of latent gut infections following transplantation.

Given the potential utility of PBV as a predictive biomarker, Chiu and his team now hope to develop a metagenomics-based test to screen patients before transplantation. "We also saw shifts in the microbiome but those in the virome were more pronounced," said Chiu. "Loss of bacteria colonizing the gut has been thought to predispose patients to GvHD; here we show that shifts in the virome may also play a role in the occurrence of this disease."

Although the new study strongly implicates PBVs in the onset of GvHD, it is too early to tell whether or how these viruses trigger the disease. The team is now enrolling more adult and pediatric patients both in Paris and at UCSF to expand their analyses and uncover the mechanism by which the virus modulates the risk of disease. A systematic understanding of the virus's role could ultimately inform whether using antiviral drugs or tweaking the body's immune response would be the best strategy to temper the disease.

"It would be great to have a tool that can be used to assess GvHD risk in these patients before they undergo a transplant," Chiu said, a step that Le Goff said could lead to new therapies. "We hope that in the next few years we will find a way to prevent virus-associated GvHD," said Le Goff.

Explore further: Researchers develop new strategy to limit side effects of stem cell transplants

More information: Jrme Legoff et al. The eukaryotic gut virome in hematopoietic stem cell transplantation: new clues in enteric graft-versus-host disease, Nature Medicine (2017). DOI: 10.1038/nm.4380

Go here to read the rest:
Gut viruses tied to potentially deadly complication of bone marrow transplant - Medical Xpress

To Read More: Gut viruses tied to potentially deadly complication of bone marrow transplant – Medical Xpress
categoriaBone Marrow Stem Cells commentoComments Off on Gut viruses tied to potentially deadly complication of bone marrow transplant – Medical Xpress | dataAugust 1st, 2017
Read All

Page 88«..1020..87888990..100110..»


Copyright :: 2024