Activin A promotes the development of acquired heterotopic ossification and is an effective target for disease attenuation in mice – Science

By daniellenierenberg

Endogenous activin A in ectopic bone formation

Heterotopic ossification (HO) is the formation of ectopic bone in soft tissues at sites of injury-induced inflammation. Similar to the development of normal endochondral bone, HO is initiated by a local mass of chondrocytes that progress through chondrogenesis, osteogenesis, and mineralization to form bone tissue. Using mouse models of both subcutaneous and intramuscular HO formation and single-cell RNA sequencing, Mundy et al. found that inflammatory cells and skeletal progenitor cells initially recruited to sites of HO formation expressed Inhba, which encodes the TGF- superfamily member activin A. Treating mice with an activin Aneutralizing antibody reduced the number of chondrogenic cells at HO sites and inhibited HO formation. These results demonstrate that this ligand plays an important role in the physiological progression in these mouse models of HO and suggest that interfering with activin A signaling may be effective in patients.

Heterotopic ossification (HO) is a common, potentially debilitating pathology that is instigated by inflammation caused by tissue damage or other insults, which is followed by chondrogenesis, osteogenesis, and extraskeletal bone accumulation. Current remedies are not very effective and have side effects, including the risk of triggering additional HO. The TGF- family member activin A is produced by activated macrophages and other inflammatory cells and stimulates the intracellular effectors SMAD2 and SMAD3 (SMAD2/3). Because HO starts with inflammation and because SMAD2/3 activation is chondrogenic, we tested whether activin A stimulated HO development. Using mouse models of acquired intramuscular and subdermal HO, we found that blockage of endogenous activin A by a systemically administered neutralizing antibody reduced HO development and bone accumulation. Single-cell RNA-seq analysis and developmental trajectories showed that the antibody treatment reduced the recruitment of Sox9+ skeletal progenitors, many of which also expressed the gene encoding activin A (Inhba), to HO sites. Gain-of-function assays showed that activin A enhanced the chondrogenic differentiation of progenitor cells through SMAD2/3 signaling, and inclusion of activin A in HO-inducing implants enhanced HO development in vivo. Together, our data reveal that activin A is a critical upstream signaling stimulator of acquired HO in mice and could represent an effective therapeutic target against forms of this pathology in patients.

Read more:
Activin A promotes the development of acquired heterotopic ossification and is an effective target for disease attenuation in mice - Science

Related Post


categoriaSpinal Cord Stem Cells commentoComments Off on Activin A promotes the development of acquired heterotopic ossification and is an effective target for disease attenuation in mice – Science | dataFebruary 10th, 2021

About...

This author published 4773 posts in this site.

Share

FacebookTwitterEmailWindows LiveTechnoratiDeliciousDiggStumbleponMyspaceLikedin

Comments are closed.





Personalized Gene Medicine | Mesenchymal Stem Cells | Stem Cell Treatment for Multiple Sclerosis | Stem Cell Treatments | Board Certified Stem Cell Doctors | Stem Cell Medicine | Personalized Stem Cells Therapy | Stem Cell Therapy TV | Individual Stem Cell Therapy | Stem Cell Therapy Updates | MD Supervised Stem Cell Therapy | IPS Stem Cell Org | IPS Stem Cell Net | Genetic Medicine | Gene Medicine | Longevity Medicine | Immortality Medicine | Nano Medicine | Gene Therapy MD | Individual Gene Therapy | Affordable Stem Cell Therapy | Affordable Stem Cells | Stem Cells Research | Stem Cell Breaking Research

Copyright :: 2024