Testing For Cardiotoxicity In 3D – Asian Scientist Magazine

By Sykes24Tracey

Researchers from Singapore have developed a 3D tissue model than can be used to test drugs for their effects on the heart in a more realistic manner.

Asian Scientist Newsroom | June 22, 2017 | In the Lab

AsianScientist (Jun. 22, 2017) - Researchers at the Institute of Bioengineering and Nanotechnology (IBN) of the Agency for Science, Technology and Research (A*STAR) have engineered a three-dimensional heart tissue from human stem cells to test the safety and efficacy of new drugs on the heart. Their research has been published in Biofabrication.

Cardiotoxicity, which can lead to heart failure and even death, is a major cause of drug withdrawal from the market. So it is important to test as early as possible whether a newly developed drug is safe for human use. However, cardiotoxicity is difficult to predict in the early stages of drug development, said Professor Jackie Y. Ying, Executive Director at IBN.

A big part of the problem is the use of animals or animal-derived cells in preclinical cardiotoxicity studies due to the limited availability of human heart muscle cells. Substantial genetic and cardiac differences exist between animals and humans. There have been a large number of cases whereby the tests failed to detect cardiovascular toxicity when moving from animal studies to human clinical trials.

Existing screening methods based on 2D cardiac structure cannot accurately predict drug toxicity, while the currently available 3D structures for screening are difficult to fabricate in the quantities needed for commercial application.

To solve this problem, the IBN research team fabricated their 3D heart tissue from cellular self-assembly of heart muscle cells grown from human induced pluripotent stem cells. They also developed a fluorescence labelling technology to monitor changes in beating rate using a real-time video recording system.

The new heart tissue exhibited more cardiac-specific genes, stronger contraction and higher beating rate compared to cells in a 2D structure.

Using the 3D heart tissue, we were able to correctly predict cardiotoxic effects based on changes in the beating rate, even when these were not detected by conventional tests. The method is simple and suitable for large-scale assessment of drug side effects. It could also be used to design personalized therapy using a patients own cells, said lead researcher Dr. Andrew Wan, who is Team Leader and Principal Research Scientist at IBN.

The researchers have filed a patent on their human heart tissue model, and hope to work with clinicians and pharmaceutical companies to bring this technology to market.

The article can be found at: Lu et al. (2017) Engineering a Functional Three-Dimensional Human Cardiac Tissue Model for Drug Toxicity Screening.

Source: A*STAR; Photo: Shutterstock. Disclaimer: This article does not necessarily reflect the views of AsianScientist or its staff.

Read more:
Testing For Cardiotoxicity In 3D - Asian Scientist Magazine

Related Post


categoriaCardiac Stem Cells commentoComments Off on Testing For Cardiotoxicity In 3D – Asian Scientist Magazine | dataJune 22nd, 2017

About...

This author published 794 posts in this site.
Just for fun

Share

FacebookTwitterEmailWindows LiveTechnoratiDeliciousDiggStumbleponMyspaceLikedin

Comments are closed.





Personalized Gene Medicine | Mesenchymal Stem Cells | Stem Cell Treatment for Multiple Sclerosis | Stem Cell Treatments | Board Certified Stem Cell Doctors | Stem Cell Medicine | Personalized Stem Cells Therapy | Stem Cell Therapy TV | Individual Stem Cell Therapy | Stem Cell Therapy Updates | MD Supervised Stem Cell Therapy | IPS Stem Cell Org | IPS Stem Cell Net | Genetic Medicine | Gene Medicine | Longevity Medicine | Immortality Medicine | Nano Medicine | Gene Therapy MD | Individual Gene Therapy | Affordable Stem Cell Therapy | Affordable Stem Cells | Stem Cells Research | Stem Cell Breaking Research

Copyright :: 2024