Search Results

Studies: Stem cells reverse heart damage – CNN

By LizaAVILA

Story highlights

On a June day in 2009, a 39-year-old man named Ken Milles lay on an exam table at Cedars-Sinai Medical Center in Los Angeles. A month earlier, he’d suffered a massive heart attack that destroyed nearly a third of his heart.

“The most difficult part was the uncertainty,” he recalls. “Your heart is 30% damaged, and they tell you this could affect you the rest of your life.” He was about to receive an infusion of stem cells, grown from cells taken from his own heart a few weeks earlier. No one had ever tried this before.

About three weeks later, in Kentucky, a patient named Mike Jones underwent a similar procedure at the University of Louisville’s Jewish Hospital. Jones suffered from advanced heart failure, the result of a heart attack years earlier. Like Milles, he received an infusion of stem cells, grown from his own heart tissue.

“Once you reach this stage of heart disease, you don’t get better,” says Dr. Robert Bolli, who oversaw Jones’ procedure, explaining what doctors have always believed and taught. “You can go down slowly, or go down quickly, but you’re going to go down.”

Conventional wisdom took a hit Monday, as Bolli’s group and a team from Cedars-Sinai each reported that stem cell therapies were able to reverse heart damage, without dangerous side effects, at least in a small group of patients.

In Bolli’s study, published in The Lancet, 16 patients with severe heart failure received a purified batch of cardiac stem cells. Within a year, their heart function markedly improved. The heart’s pumping ability can be quantified through the “Left Ventricle Ejection Fraction,” a measure of how much blood the heart pumps with each contraction. A patient with an LVEF of less than 40% is considered to suffer severe heart failure. When the study began, Bolli’s patients had an average LVEF of 30.3%. Four months after receiving stem cells, it was 38.5%. Among seven patients who were followed for a full year, it improved to an astounding 42.5%. A control group of seven patients, given nothing but standard maintenance medications, showed no improvement at all.

“We were surprised by the magnitude of improvement,” says Bolli, who says traditional therapies, such as placing a stent to physically widen the patient’s artery, typically make a smaller difference. Prior to treatment, Mike Jones couldn’t walk to the restroom without stopping for breath, says Bolli. “Now he can drive a tractor on his farm, even play basketball with his grandchildren. His life was transformed.”

At Cedars-Sinai, 17 patients, including Milles, were given stem cells approximately six weeks after suffering a moderate to major heart attack. All had lost enough tissue to put them “at big risk” of future heart failure, according to Dr. Eduardo Marban, the director of the Cedars-Sinai Heart Institute, who developed the stem cell procedure used there.

The results were striking. Not only did scar tissue retreat — shrinking 40% in Ken Milles, and between 30% and 47% in other test subjects — but the patients actually generated new heart tissue. On average, the stem cell recipients grew the equivalent of 600 million new heart cells, according to Marban, who used MRI imaging to measure changes. By way of perspective, a major heart attack might kill off a billion cells.

“This is unprecedented, the first time anyone has grown living heart muscle,” says Marban. “No one else has demonstrated that. It’s very gratifying, especially when the conventional teaching has been that the damage is irreversible.”

Perhaps even more important, no treated patient in either study suffered a significant health setback.

The twin findings are a boost to the notion that the heart contains the seeds of its own rebirth. For years, doctors believed that heart cells, once destroyed, were gone forever. But in a series of experiments, researchers including Bolli’s collaborator, Dr. Piero Anversa, found that the heart contains a type of stem cell that can develop into either heart muscle or blood vessel components — in essence, whatever the heart requires at a particular point in time. The problem for patients like Mike Jones or Ken Milles is that there simply aren’t enough of these repair cells waiting around. The experimental treatments involve removing stem cells through a biopsy, and making millions of copies in a laboratory.

The Bolli/Anversa group and Marban’s team both used cardiac stem cells, but Bolli and Anversa “purified” the CSCs, so that more than 90% of the infusion was actual stem cells. Marban, on the other hand, used a mixture of stem cells and other types of cells extracted from the patient’s heart. “We’ve found that the mixture is more potent than any subtype we’ve been able to isolate,” he says. He says the additional cells may help by providing a supportive environment for the stem cells to multiply.

Other scientists, including Dr. Douglas Losordo, have produced improvements in cardiac patients using stem cells derived from bone marrow. “The body contains cells that seem to be pre-programmed for repair,” explains Losordo. “The consistent thing about all these approaches is that they’re leveraging what seems to be the body’s own repair mechanism.”

Losordo praised the Lancet paper, and recalls the skepticism that met Anversa’s initial claims, a decade ago, that there were stem cells in the adult heart. “Some scientists are always resistant to that type of novelty. You know the saying: First they ignore you, then they attack you and finally they imitate you.”

Denis Buxton, who oversees stem cell research at the National Heart, Lung and Blood Institute at the National Institutes of Health, calls the new studies “a paradigm shift, harnessing the heart’s own regenerative processes.” But he says he would like to see more head-to-head comparisons to determine which type of cells are most beneficial.

Questions also remain about timing. Patients who suffer large heart attacks are prone to future damage, in part because the weakened heart tries to compensate by dilating — swelling — and by changing shape. In a vicious circle, the changes make the heart a less efficient pump, which leads to more overcompensation, and so on, until the end result is heart failure. Marban’s study aimed to treat patients before they could develop heart failure in the first place.

In a third study released Monday, researchers treated patients with severe heart failure with stem cells derived from bone marrow. In a group of 60 patients, those receiving the treatment had fewer heart problems over the course of a year, as well as improved heart function.

A fourth study also used cells derived from bone marrow, but injected them into patients two to three weeks after a heart attack. Previous studies, with the cells given just days afterward, found a modest improvement in heart function. But Monday, the lead researcher, Dr. Dan Simon of UH Case Medical Center, reported that with the three-week delay, patients did not see the same benefit.

With other methods, there may be a larger window of opportunity. At least in initial studies, Losordo’s bone marrow treatments helped some patients with long-standing heart problems. Bolli’s Lancet paper suggests that CSCs, too, might help patients with advanced disease. “These patients had had heart failure for several years. They were a wreck!” says Bolli. “But we found their stem cells were still very competent.” By that, he means the cells were still capable of multiplying and of turning into useful muscle and blood vessel walls.

Marban has an open mind on the timing issue. In fact, one patient from his control group e-mailed after the study was complete, saying he felt terrible and pleading for an infusion of stem cells. At Marban’s request, the FDA granted special approval to treat him. “He had a very nice response. That was 14 months after his heart attack. Of course that’s just one person, and we need bigger studies,” says Marban.

For Ken Milles, the procedure itself wasn’t painful, but it was unsettling. The biopsy to harvest the stem cells felt “weird,” he recalls, as he felt the doctor poking around inside his heart. The infusion, a few weeks later, was harder. The procedure — basically the same as an angioplasty — involved stopping blood flow through the damaged artery for three minutes, while the stem cells were infused. “It felt exacfly like I was having a heart attack again,” Milles remembers.

Milles had spent the first weeks after his heart attack just lying in bed re-watching his “Sopranos” DVDs, but within a week of the stem cell infusion, he says, “I was reinvigorated.” Today he’s back at work full time, as an accounting manager at a construction company. He’s cut out fast food and shed 50 pounds. His wife and two teenage sons are thrilled.

Denis Buxton says the new papers could prove a milestone. “We don’t have anything else to actually regenerate the heart. These stem cell therapies have the possibility of actually reversing damage.”

Bolli says he’ll have to temper his enthusiasm until he can duplicate the results in larger studies, definitive enough to get stem cell therapy approved as a standard treatment. “If a phase 3 study confirmed this, it would be the biggest advance in cardiology in my lifetime. We would possibly be curing heart failure. It would be a revolution.”

Read this article:
Studies: Stem cells reverse heart damage – CNN

categoriaCardiac Stem Cells commentoComments Off on Studies: Stem cells reverse heart damage – CNN dataApril 2nd, 2018
Read all

Lung Institute | Stem Cell Research Study for Lung Disease

By admin

The Problem with Chronic Pulmonary Diseases

Chronic Obstructive Pulmonary Disease (COPD) is a progressive lung disorder that often occurs as a result of prolonged cigarette smoking, second-hand smoke, and polluted air or working conditions. COPD is the most prevalent form of chronic lung disease. The physiological symptoms of COPD include shortness of breath (dyspnea), cough, and sputum production, exercise intolerance and reduced Quality of Life (QOL). These signs and symptoms are brought about by chronic inflammation of the airways, which restricts breathing. When fibrotic tissues contract, the lumen is narrowed, compromising lung function. As histological studies confirm, airway fibrosis and luminal narrowing are major features that lead to airflow limitation in COPD1-3.

Today, COPD is a serious global health issue, with a prevalence of 9-10% of adults aged 40 and older4. And the prevalence of the disease is only expected to rise. Currently COPD accounts for 27% of tobacco related deaths and is anticipated to become the fourth leading cause of death worldwide by 2030 5. Today, COPD affects approximately 600 million individualsroughly 5% of the worlds population 6. Despite modern medicine and technological advancements, there is no known cure for COPD.

The difficulty in treating COPD and other lung diseases rests in the trouble of stimulating alveolar wall formation15. Until recently, treatment has been limited by two things: a lack of understanding of the pathophysiology of these disease processes on a molecular level and a lack of pharmaceutical development that would affect these molecular mechanisms. This results in treatment focused primarily in addressing the symptoms of the disease rather than healing or slowing the progression of the disease itself.

The result is that there are few options available outside of bronchodilators and corticosteroids7. Although lung transplants are performed as an alternative option, there is currently a severe shortage of donor lungs, leaving many patients to die on waiting lists prior to transplantation. Lung transplantation is also a very invasive form of treatment, commonly offering poor results, a poor quality of life with a 5-year mortality rate of approximately 50%, and a litany of health problems associated with lifelong immunosuppression13.

However, it has been shown that undifferentiated multipotent endogenous tissue stem cells (cells that have been identified in nearly all tissues) may contribute to tissue maintenance and repair due to their inherent anti-inflammatory properties. Human mesenchymal stromal cells have been shown to produce large quantities of bioactive factors including cytokines and various growth factors which provide molecular cueing for regenerative pathways. This affects the status of responding cells intrinsic in the tissue 18. These bioactive factors have the ability to influence multiple immune effector functions including cell development, maturation, and allo-reactive T-cell responses 19. Although research on the use of autologous stem cells (both hematopoietic and mesenchymal) in regenerative stem cell therapy is still in the early stages of implementation, it has shown substantive progress in treating patients with few if any adverse effects.

The Lung Institute (LI) provided treatment by harvesting autologous stem cells (hematopoietic stem cells and mesenchymal stromal cells) by withdrawing adipose tissue (fat), bone marrow or peripheral blood. These harvested cells are isolated and concentrated, and along with platelet-rich plasma, are then reintroduced into the body and enter the pulmonary vasculature (vessels of the lungs) where cells are trapped in the microcirculation (the pulmonary trap). Alternatively, nebulized stem cells are reintroduced through the airways in patients who have undergone an adipose (fat tissue) treatment.

Individuals diagnosed with COPD were tracked by the Lung Institute to measure the effects of treatment via either the venous protocol or adipose protocol on both their pulmonary function as well as their Quality of Life.

All PFTs were performed according to national practice guideline standards for repeatability and acceptability8-10. On PFTs, pre-treatment data was collected through on-site testing or through previous medical examinations by the patients primary physician (if done within two weeks). The test was then repeated by their primary physician 6 months after treatment.*

* Due to the examination information required from primary physicians, only 25 out of 100 patients are reflected in the PFT data.

Patients with progressive COPD will typically experience a steady decrease in their Quality of Life. Given this development, a patients Quality of Life score is frequently used to define additional therapeutic effects, with regulatory authorities frequently encouraging their use as primary or secondary outcomes17.

On quality of life testing, data was collected through the implementation of the Clinical COPD Questionnaire (CCQ) based survey17. The survey measured the patients self-assessed quality of life on a 0-6 scale, with adverse Quality of Life correlated in ascending numerical order. It was implemented in three stages: pre-treatment, 3-months post-treatment, and 6-months post-treatment. The survey measured two distinct outcomes: the QLS score, which measured the patients self-assessed quality of life score, and the QIS, a percentage-based measurement determining the proportion of patients within the sample that experienced QLS score improvements.

Over the duration of six months, the results of 100 patients treated for COPD through venous and adipose based therapies were tracked by the Lung Institute in order to measure changes in pulmonary function and any improvement in Quality of Life.

Of the 100 patients treated by the Lung Institute, 64 were male (64%) and 36 were female (36%). Ages of those treated range from 55-88 years old with an average age of 71. Throughout the study, 82 (82%) were treated with venous derived stem cells, while 18 (18%) were treated from stem cells derived from adipose tissue.

* The survey measured the patients self-assessed quality of life on a 0-6 scale, with adverse Quality of Life correlated in ascending numerical order.

Over the course of the study, the patient group averaged an increase of 35.5% to their Quality of Life (QLS) score within three months of treatment. While in the QIS, 84% of all patients found that their Quality of Life score had improved within three months of treatment (figure 1.3).

Within the PFT results, 48% of patients tested saw an increase of over 10% to their original pulmonary function with an average increase of 16%. During the three to six month period after treatment, patients saw a small decline in their progress, with QLS scores dropping from 35.5% to 32%, and the QIS from 84% to 77%.Fletcher and Petos work shows that patient survival rate can be improved through appropriate or positive intervention14 (figure 1.4). It remains to be seen if better quality of life will translate to longevity, but if one examines what factors allow for improved quality of life such as improvement in oxygen use, exercise tolerance, medication use, visits to the hospital and reduction in disease flare ups then one can see that quality of life improves in association with clinical improvement.

Currently the most utilized options for treating COPD are bronchodilator inhalers with or without corticosteroids and lung transplant each has downsides. Inhalers are often used incorrectly11, are expensive over time, and can only provide temporary relief of symptoms. Corticosteroids, though useful, have risk of serious adverse side effects such as infections, blood sugar imbalance, and weight gain to name a few 16. Lung transplants are expensive, have an adverse impact on quality of life and have a high probability of rejection by the body the treatment of which creates a new set of problems for patients. In contrast, initial studies of stem cells treatments show efficacy, lack of adverse side effects and may be used safely in conjunction with other treatments.

Through the data collected by the Lung Institute, developing methodologies for this form of treatment are quickly taking place as other entities of the medical community follow suit. In a recent study of regenerative stem cell therapy done by the University of Utah, patients exhibited improvement in PFTs and oxygen requirement compared to the control group with no acute adverse events12. Through the infusion of stem cells derived from the patients own body, stem cell therapy minimizes the chance of rejection to the highest degree, promotes healing and can improve the patients pulmonary function and quality of life with no adverse side effects.

Although more studies using a greater number of patients is needed to further examine objective parameters such as PFTs, exercise tests, oxygen, medication use and hospital visits, larger sample sizes will also help determine if one protocol is more beneficial than others. With deeper research, utilizing economic analysis along with longer-term follow up will answer questions on patient selection, the benefits of repeated treatments, and a possible reduction in healthcare costs for COPD treatment.

The field of Cellular Therapy and Regenerative Medicine is rapidly advancing and providing effective treatments for diseases in many areas of medicine.The Lung Institutes strives to provide the latest in safe, effective therapy for chronic lung disease and maintain a leadership role in the clinical application of these technologies.

In a landscape of scarce options and rising costs, the Lung Institute believes that stem cell therapy is the future of treatment for those suffering from COPD and other lung diseases. Although data is limited at this stage, we are proud to champion this form of treatment while sharing our findings.

See the rest here:
Lung Institute | Stem Cell Research Study for Lung Disease

categoriaIPS Cell Therapy commentoComments Off on Lung Institute | Stem Cell Research Study for Lung Disease dataMarch 9th, 2018
Read all

Paraplegic breakthrough using adult stem cells – WND

By raymumme

In an apparent major breakthrough, scientists in Korea report using umbilical cord blood stem cells to restore feeling and mobility to a spinal-cord injury patient.

The research, published in the peer-reviewed journal Cythotherapy, centered on a woman had been a paraplegic 19 years due to an accident.

After an infusion of umbilical cord blood stem cells, stunning results were recorded:

The patient could move her hips and feel her hip skin on day 15 after transplantation. On day 25 after transplantation her feet responded to stimulation.

Umbilical cord cells are considered adult stem cells, in contrast to embryonic stem cells, which have raised ethical concerns because a human embryo must be destroyed in order to harvest them.

The report said motor activity was noticed on day 7, and she was able to maintain an upright position on day 13. Fifteen days after surgery, she began to elevate both lower legs about one centimeter.

The studys abstract says not only did the patient regain feeling, but 41 days after stem cell transplantation, testing also showed regeneration of the spinal cord at the injured cite and below it.

The scientists conclude the transplantation could be a good treatment method for paraplegic patients.

Bioethics specialist Wesley J. Smith, writing in Lifesite.com, expressed enthusiasm about the apparent breakthrough, but also urged caution.

We have to be cautious, said Smith, a senior fellow at the Seattle-based Discovery Institute and a special consultant to the Center for Bioethics and Culture. One patient does not a treatment make.

The authors of the study note, writes Smith, that the lamenectomy the patient received might have offered some benefit.

But still, this is a wonderful story that offers tremendous hope for paralyzed patients, he said.

The fact that the patient has a very old injury, Smith added, makes the results even more dramatic.

Smith said he has known about the study for some time, but because I didnt want to be guilty of the same hyping that is so often engaged in by some therapeutic cloning proponents, I waited until it was published in a peer reviewed journal.

Like most breakthroughs using adult stem cells, this one has been completely ignored by the U.S. mainstream media, Smith pointed out.

Can you imagine the headlines if the cells used had been embryonic? he asked.

Read the original post:
Paraplegic breakthrough using adult stem cells – WND

categoriaSpinal Cord Stem Cells commentoComments Off on Paraplegic breakthrough using adult stem cells – WND dataMarch 4th, 2018
Read all

Adult Stem Cell Success Story | Spinal Cord Injury | SCRF

By raymumme

(May, 2010) If there was ever a woman on a mission, its Laura Dominguez. Doctors once told her shed never walk again. And while shes not ready to run a marathon, shes already proving them wrong, with the best yet to come.

An oil spill on a San Antonio freeway is blamed for the car crash that sent Laura and her brother directly into a retaining wall one summer afternoon in 2001. Laura was just 16 years old at the time and the crash left her completely paralyzed from the neck down. Surgeons say she suffered whats known as a C6 vertebrae fracture that severely damaged her spinal cord.

I refused to accept their prognosis that I never would walk again and began searching for other options, says Laura. After stays in several hospitals for nearly a year, Laura and her mother relocated to San Diego, CA so that she could undergo extensive physical therapy. While in California, they met a family whose daughter was suffering from a similar spinal cord injury. They were also looking for other alternatives to deal with spinal cord injuries.

After extensive research and consultations with medical experts in the field of spinal cord injuries, they decided to explore a groundbreaking new surgical procedure using adult stem cells pioneered by Dr. Carlos Lima of Portugal.

The surgery involved the removal of tissue from the olfactory sinus area at the back of the nose–and transplanting it into the spinal cord at the injury site. Both procedures, the harvesting of the tissue and the transplant, were done at the same time. Laura was the tenth person in the world and the second American to have this procedure done and was featured in a special report by PBS called Miracle Cell.(Link to Miracle Cell (PBS) Episode)

Following the surgery she returned to California where she continued with the physical therapy regimen, then eventually returned home to San Antonio. Upon her return home, an MRI revealed her spinal cord was beginning to heal. Approximately 70% of the lesion now looked like normal spinal cord tissue. More importantly to Laura, she began to regain feeling in parts of her upper body and within six months of the surgery regained feeling down to her abdomen.

Improvements in sensory feelings have continued until the present time. She can feel down to her hips, and has regained feeling and some movement in her legs. Lauras upper body has gained more strength and balance and one of the most evident improvements has been her ability to stand and remain standing, using a walker, and with minimal assistance. When she stands she can contract her quadriceps and hamstring muscles.

Every week it seems Im able to do something new, something different that I hadnt done the week before, says Laura.

Now Lauras story is poised to take a new, potentially groundbreaking turn. In the Fall of 2009, she traveled again to Portugal where adult stem cells were extracted from her nose for culturing. As this story is written, she is preparing to fly back to Portugal where scar tissue at her injury site will be removed and her own adult stem cells injected in the area of her original wound.

The Laura Dominguez story is not complete. The next chapter may or may not yield the results she seeksbut no one can deny the determination and courage of Laura. For her part, she has one goal in mind: I will walk again.

We shall update this site and keep you informed on her progress.

Read more:
Adult Stem Cell Success Story | Spinal Cord Injury | SCRF

categoriaSpinal Cord Stem Cells commentoComments Off on Adult Stem Cell Success Story | Spinal Cord Injury | SCRF dataMarch 1st, 2018
Read all

Home – STEM CELL SCIENCE

By LizaAVILA

Stem cell can be isolated from the the bone marrow and adipose tissue in the abdomen that are capable of forming new blood vessels and heart muscle cells. The cell number is so small in the tissues that the cells should be grown for several weeks before there is enough for the treatment of patients.

We have conducted three clinical stem cell therapy studies in which patients with coronary artery disease havebeen treated with their own mesenchymal stem cells from either the bone marrow or adipose tissue. Encouraging results are available from two studies and there is ongoing follow-up in the third study. Treatments with stem cells have in all previous studies been without any side effects.

During the course of the SCIENCE study a total of 138 patients with heart failure will be included and treated in a so-called blinded placebo-controlled design. This means that 92 patients will receive stem cells and 46 patients placebo (inactive medication, saline). Choice of treatment will be done by drawing lots. The study is carried out by an international collaboration between cardiac centers in Denmark, Poland, Germany, Netherlands, Austria and Sloveniaand the industrial partners Terumo BCT and COOK Tegentec.

See original here:
Home – STEM CELL SCIENCE

categoriaCardiac Stem Cells commentoComments Off on Home – STEM CELL SCIENCE dataFebruary 13th, 2018
Read all

Levels of Spinal Cord Injury – Brain and Spinal Cord

By NEVAGiles23

Basic Spinal Cord Anatomy

To understand this confusion and what you are actually being told when your injury is described as being at a certain level, it is necessary to understand basic spinal anatomy. The spine and the spinal cord are two different structures. The spinal cord is a long series of nerve cells and fibers running from the base of the brain to shortly above the tailbone. It is encased in the bony vertebrae of the spine, which offers it some protection.

The spinal cord relays nerve signals from the brain to all parts of the body and from all points of the body back to the brain. Part of the confusion regarding spinal cord injury levels comes from the fact that the spine and the spinal cord each are divided into named segments which do not always correspond to each other. The spine itself is divided into vertebral segments corresponding to each of the vertebrae.

The spinal cord is divided into neurological segmental levels, meaning that the focus is on what part of the body the nerves from each section control. The spine is divided into seven neck (cervical) vertebrae, twelve chest (thoracic) vertebra, five back (lumbar) vertebrae, and five tail (sacral) vertebrae. The segments of the spine and spinal cord are designated by letters and numbers; the letters used in the designation correspond to the location on the spine or the spinal cord. For example:

The spinal cord segments are named in the same fashion, but their location does not necessarily correspond to the spinal segments location. For example:

The spinal cord is responsible for relaying the nerve messages that control voluntary and involuntary movement of the muscles, including those of the diaphragm, bowels, and bladder. It relays these messages to the rest of the body via spinal roots which branch out from the cord.

The spinal roots are nerves that go through the spines bone canal and come out at the vertebral segments of the spinal cord. Bodily functions can be disrupted by injury to the spinal cord. The amount of the impairment depends on the degree of damage and the location of the injury.

The head is held by the first and second cervical segments. The cervical cord supplies the nerves for the deltoids, biceps, triceps, wrist extensors, and hands. The phrenic nucleus (a group of cell bodies with nerve links to the diaphragm) is located in the C3 cord.

The thoracic vertebral segments compose the rear wall of the ribs and pulmonary cavity. In this area, the spinal roots compose the between the ribs nerves (intercostal nerves) which control the intercostal muscles.

The spinal cord does not travel the entire length of the spine. It ends at the second lumbar segment (L2). Spinal roots exit below the spinal cords tip (conus) in a spray; this is called the cauda equine (horses tail). Damage below the L2 generally does not interfere with leg movement, although it can contribute to weakness.

In addition to motor function, the spinal cord segments each innervate different sections of skin called dermatomes. This provides the sense of touch and pain. The area of a dermatome may expand or contract after a spinal cord injury.

The differences between some of the spinal vertebral and spinal cord levels have added to the confusion in developing a standardized rating scale for spinal cord injuries. In the 1990s, the American Spinal Cord Association devised a new scale to help eliminate ambiguities in rating scales. The ASIA scale is more accurate than previous rating systems, but there are still differences in the ways various medical specialists evaluate an SCI injury.

Dr. Wise Young, founding director of Rutgers W. M. Keck Center for Collaborative Neuroscience explains that usually neurologists (nerve specialists) will rate the level of injury at the first spinal segment level which exhibits loss of normal function; however, rehabilitation doctors (physiatrists) usually rate the level of injury at the lowest spinal segment level which remains normal.

For example, a neurologist might say that an individual with normal sensations in the C3 spinal segment who lacks sensation at the C4 spinal segment should be classified as a sensory level C4, but a physiatrist might call it a C3 injury level. Obviously, these differences are confusing to the patient and to the patients family. People with a spinal cord injury simply want to know what level of disability they will have and how much function they are likely to regain. Adding to the confusion is the debate over how to define complete versus incomplete injuries.

For many years, a complete spinal cord injury was thought of as meaning no conscious sensations or voluntary muscle use below the site of the injury; however, this does not take in to account that partial preservation of function below the injury site is rather common. This definition of a complete injury also failed to take into account the fact that may people have lateral preservation (function on one side).

In addition, a person may later recover a degree of function, after being labeled in the first few days after the injury as having a complete injury. In 1992, the American Spinal Cord Association sought to remedy this dilemma by coming up with a simple definition of complete injury.

According to the ASIA scale, a person has a complete injury if they have no sensory or motor function in the perineal and anal region; this area corresponds to the lowest part of the sacral cord (S4-S5). A rectal examination is used to help determine function in this area. The ASIA Scale is classified as follows:

At this point, if you are a patient with a spinal cord injury or the family member of a spinal cord injury patient you may be more confused than ever. How do these ratings apply to the daily life of someone with a spinal cord injury? A brief overview of the basic definitions may help.

This is the greatest level of paralysis. Complete C1-C4 tetraplegia means that the person has no motor function of the arms or legs. He or she generally can move the neck and possibly shrug the shoulders. When the injury is at the C1-C3 level, the person will usually need to be on a ventilator for the long-term; fortunately, new techniques may be able to reduce the need for a ventilator.

A person whose injury is at the C4 level usually will not need to use the ventilator for the long-term, but will likely need ventilation in the first days after the injury. People with complete C1-C4 quadriplegia may be able to use a power wheelchair that can be controlled with the chin or the breath. They may be able control a computer with adaptive devices in a similar fashion and some can work in this way. They can also control light switches, bed controls, televisions and so with the help of adaptive devices. They will require a caregivers assistance for most or all of their daily needs.

People with C5 tetraplegia can flex their elbows and with the help of assistive devices to help them hold objects, they can learn to feed and groom themselves. With some help they can dress their upper body and change positions in bed. They can use a power wheelchair equipped with hand controls and some may be able use a manual wheelchair with grip attachments for a short distance on level ground.

People with C5 will need to rely on caregivers for transfers from bed to chair and so forth, and for assistance with bladder and bowel management, as well as with bathing and dressing the lower body. Adaptive technology can help these people be independent in many areas, including driving. People with C5 tetraplegia can drive a vehicle equipped with hand controls.

People with C6 tetraplegia have the use both of the elbow and the wrist and with assistive support can grasp objects. Some people with C6 learn to transfer independently with the help of a slide board. Some can also handle bladder and bowel management with assistive devices, although this can be difficult.

People with C6 can learn to feed, groom, and bath themselves with the help of assistance devices. They can operate a manual wheelchair with grip attachments and they can drive specially adapted vehicles. Most people with C6 will need some assistance from a caregiver at times.

People with C7 tetraplegia can extend the elbow, which allows them greater freedom of movement. People with C7 can live independently. They can learn to feed and bath themselves and to dress the upper body. They can move in bed by themselves and transfer by themselves. They can operate a manual wheelchair, but will need help negotiating curbs. They can drive specially-equipped vehicles. They can write, type, answer phones, and use computers; some may need assistive devices to do so, while others will not.

People with C8 tetraplegia can flex their fingers, allowing them a better grip on objects. They can learn to feed, groom, dress, and bath themselves without help. They can manage bladder and bowel care and transfer by themselves. They can use a manual wheelchair and type, write, answer the phone and use the computer. They can drive vehicles adapted with hand controls.

People with T1-T12 paraplegia have nerve sensation and function of all their upper extremities. They can become functionally independent, feeding and grooming themselves and cooking and doing light housework. They can transfer independently and manage bladder and bowel function. They can handle a wheelchair quite well and can learn to negotiate over uneven surfaces and handle curbs. They can drive specially adaptive vehicles.

People with a T2-T9 injury may have enough torso control to be able to stand with the help of braces and a walker or crutches. People with a T10-T12 injury have better torso control than those with a T2-T9 injury, and they may be able to walk short distances with the aid of a walker or crutches.

Some can even go up and down stairs; however, walking with such an injury requires a great deal of effort and can quickly exhaust the patient. Many people with thoracic paraplegia prefer to use a wheelchair so that they will not tire so quickly.

People with sacral or lumbar paraplegia can be functionally independent in all of their self-care and mobility needs. They can learn to skillfully handle a manual wheelchair and can drive specially equipped vehicles. People with a lumbar injury can usually learn to walk for distances of 150 feet or longer, using assistive devices. Some can walk this distance without assistance devices. Most rely on a manual wheelchair when longer distances must be covered.

There are many other functional scales besides the ASIA scale, but it is the most frequently used. Neurologists find the NLOI (the Neurological level of injury) scale helpful; it is a simply administered test of motor function and range of motion. The Function Independence Measure (FIM) evaluates function in mobility, locomotion, self-care, continence, communication, and social cognition on a 7-point scale.

The Quadriplegic Index of Function (QIF) detects small, clinically significant changes in people with tetraplegia. Other scales include the Modified Barthel Index, the Spinal Cord Independence Measure (SCIM), the Capabilities of Upper Extremity Instrument (CUE), the Walking Index for SCI (WISCI), and the Canadian Occupational Performance Measure (COPM).

View post:
Levels of Spinal Cord Injury – Brain and Spinal Cord

categoriaSpinal Cord Stem Cells commentoComments Off on Levels of Spinal Cord Injury – Brain and Spinal Cord dataFebruary 12th, 2018
Read all

Bone Marrow and Stem Cell Transplant | Cook Children’s

By admin

Certain diseases and treatments can deplete a child’s healthy stem cells. Sometimes the body needs help to replenish those cells. When this happens, your child may require a very complex process called a stem cell or bone marrow transplant.

Since 1986, Cook Children’s Bone Marrow and Stem Cell Transplant program has performed more than 1,000 transplants in children with cancer, blood disorders or inherited conditions. That’s what makes this program one of the more diverse and experienced pediatric transplant programs in the Southwest.

Cook Children’s is a member of:

Over the last three years, 30 to 40 transplants were performed every year for a variety of diseases, with leukemia being the most common primary diagnosis.

The goal of the program is to provide a stem cell or marrow transplant to any child who needs one and to improve the outcomes for these patients who do not have better therapy options. We work to achieve this goal through excellent clinical care from several services within Cook Children’s, quality initiatives and ongoing comparison of our processes and performance against large academic transplant centers and international data.

Common referral diagnoses:

Stem cells are cells in the body that have the potential to turn into anything, such as a skin cell, a liver cell, a brain cell, or a blood cell. Stem cells that turn into blood cells are called hematopoietic stem cells. These cells are capable of developing into the three types of blood cells:

Stem cells may come from the patient or from a donor. Stem cells that come from a patient may come from their own cord blood cells if they were harvested from the mother’s placenta immediately after the child was born and frozen for later use. Stem cells may also be harvested and frozen before the child or teen undergoes treatment. These stem cells are thawed and put back into the patient’s body after treatment is complete.

Donor stem cells come from a compatible family member or through a match from a national registry of donors. Depending on the particular needs of your child, one or all three types of a donor’s stem cells will be harvested:

While all three types can replenish a patient’s blood and bone marrow cells, there are advantages and disadvantages to each. The doctor will discuss these issues and suggest the best type of stem cell for your child’s illness.

If your child has been diagnosed, you probably have lots of questions. We can help. If you would like to schedule an appointment, refer a patient or speak to our staff, please call our offices at 682-885-4007.

More here:
Bone Marrow and Stem Cell Transplant | Cook Children’s

categoriaBone Marrow Stem Cells commentoComments Off on Bone Marrow and Stem Cell Transplant | Cook Children’s dataJanuary 8th, 2018
Read all

Embryonic Stem Cells | Stem Cells Freak

By LizaAVILA

As their name suggests, embryonic stem cells (ESCs) are stem cells that are derived from embryos. If we wanted to be more scientific, we would say that ESCs are pluripotent stem cells derived from a blastocyst, an embryo in a very early stage (4-5 days of age).A blastocyst is consisted of 50-150 cells. ESCs measure approximately 14m in diameter.

The use of human embryonic stem cells is highly controversial, as their extraction requires the destruction of a human embryo, raising a great number of ethical issues. The main one is whether a blastocyst can be considered a living person or not. Check our article, Stem Cell Controversy for more info on this topic

Embryonic Stem cell propertiesThere are two important attributes that distinguish stem cells from any other typical cell:

Embryonic stem cells are pluripotent, having the capacity to differentiate and develop into almost all kinds of cells belonging to thethree primary germ layers:

As for self-renewal, ES cells have the capacity to replicate indefinitely. In other words they have the ability, under the proper conditions, to produce infinite numbers of daughter cells just from one or a few father cells.

Human Embryonic Stem Cell Extraction And CultureFirst the inner cell mass (ICM) of the blastocyst is separated from the trophectoderm. Then the cells of the ICM are placed on aplastic laboratory culture dish that contains a nutrient broth called the “culture medium”.Typically the inner surface of the dish is coated with what is called a “feeder layer”, consisting of reprogrammed embryonic mouse skin cells that don’t divide. These mouse cells lay in the bottom of the dish and act as a support for the hESCs. The feeder layer not only provides support, but it also releases all the needed nutrients for thehESCs to grow and replicate. Recently, scientists have devised new ways for culturing hESCs without the need of a mouse feeder cell, a really important advance as there is always the danger of viruses being transmitted from the mouse cells to the human embryonic stem cells.

It should be noted that the process described above isn’t always successful, and many times the cells fail to replicate and/or survive. If on the other hand, the hESCs do manage to survive and multiply enough so that the dish is “full”, they have to be removed and plated into several dishes. This replating and subculturing process can be done again and again for many months. This way we can get millions and millions of hESCs from the handful ones we had at the beginning.

At any stage of the process, a batch of hESCs can be frozen for future use or to be sent somewhere else for further culturing and experimentation.

How are human embryonic stem cells induced to differentiate ?There are various options for researchers to choose from, if they decide to differentiate the cultured cells.

The easiest one, is to simply allow the cells to replicate until the disc is “full”. Once the disc is full, they start to clump together forming embryoid bodies(rounded collections of cells ). These embryoid bodies contain all kinds of cells including muscle, nerve, blood and heart cells. As said before, although this is easiest method to induce differentiation, it is the most inefficient and unpredictable as well.

In order to induce differentiation to a specific type of cell, researchers have to change the environment of the dish by employingone of the ways below:

Human Embryonic Stem Cells, potential usesMany researchers believe that studying hESCs is crucial for fully understanding the complex events happening during the fetal development. This knowledge would also include all the complex mechanisms that trigger undifferentiated stem cells to develop into tissues and organs. A deeper understanding of all these mechanisms would in return give scientists a deeper understanding of what sometimes goes wrong and as a result tumours,birth defects and other genetic conditions occur, thus helping them to come up with effective treatments.

Several new studies also address the fact that human embryonicstem cells can be used as models for human genetic disorders that currently have no reliable model system. Two examples are the Fragile-X syndromeandCystic fibrosis.

As of now, there has been only one human clinical trial ,involving embryonic stem cells, with the officialapproval of the U.S. Food and Drug Administration (FDA).The trial started on January 23, 2009, and involved the transplantation ofoligodendrocytes (a cell type of the brain and spinal cord) derived from human embryonic stem cells. During phase I of the trial, 8 to 10paraplegics with fresh spinal cord injuries (two weeks or less) were supposed to participate.

In August 2009,the trial wasput on hold, due to concerns made by the FDA, regarding a small number of microscopic cysts found in several treated rat models. InJuly 30, 2010 the hold was lifted and researchers enrolled the first patient and administered him with the stem cell therapy.

Read the original post:
Embryonic Stem Cells | Stem Cells Freak

categoriaCardiac Stem Cells commentoComments Off on Embryonic Stem Cells | Stem Cells Freak dataJanuary 8th, 2018
Read all

Spinal cord injury – Symptoms and causes – Mayo Clinic

By LizaAVILA

Overview

A spinal cord injury damage to any part of the spinal cord or nerves at the end of the spinal canal (cauda equina) often causes permanent changes in strength, sensation and other body functions below the site of the injury.

If you’ve recently experienced a spinal cord injury, it might seem like every aspect of your life has been affected. You might feel the effects of your injury mentally, emotionally and socially.

Many scientists are optimistic that advances in research will someday make the repair of spinal cord injuries possible. Research studies are ongoing around the world. In the meantime, treatments and rehabilitation allow many people with spinal cord injuries to lead productive, independent lives.

Your ability to control your limbs after a spinal cord injury depends on two factors: the place of the injury along your spinal cord and the severity of injury to the spinal cord.

The lowest normal part of your spinal cord is referred to as the neurological level of your injury. The severity of the injury is often called “the completeness” and is classified as either of the following:

Additionally, paralysis from a spinal cord injury may be referred to as:

Your health care team will perform a series of tests to determine the neurological level and completeness of your injury.

Spinal cord injuries of any kind may result in one or more of the following signs and symptoms:

Emergency signs and symptoms of a spinal cord injury after an accident may include:

Anyone who experiences significant trauma to his or her head or neck needs immediate medical evaluation for the possibility of a spinal injury. In fact, it’s safest to assume that trauma victims have a spinal injury until proved otherwise because:

Spinal cord injuries may result from damage to the vertebrae, ligaments or disks of the spinal column or to the spinal cord itself.

A traumatic spinal cord injury may stem from a sudden, traumatic blow to your spine that fractures, dislocates, crushes or compresses one or more of your vertebrae. It also may result from a gunshot or knife wound that penetrates and cuts your spinal cord.

Additional damage usually occurs over days or weeks because of bleeding, swelling, inflammation and fluid accumulation in and around your spinal cord.

A nontraumatic spinal cord injury may be caused by arthritis, cancer, inflammation, infections or disk degeneration of the spine.

The central nervous system comprises the brain and spinal cord. The spinal cord, made of soft tissue and surrounded by bones (vertebrae), extends downward from the base of your brain and is made up of nerve cells and groups of nerves called tracts, which go to different parts of your body.

The lower end of your spinal cord stops a little above your waist in the region called the conus medullaris. Below this region is a group of nerve roots called the cauda equina.

Tracts in your spinal cord carry messages between the brain and the rest of the body. Motor tracts carry signals from the brain to control muscle movement. Sensory tracts carry signals from body parts to the brain relating to heat, cold, pressure, pain and the position of your limbs.

Whether the cause is traumatic or nontraumatic, the damage affects the nerve fibers passing through the injured area and may impair part or all of your corresponding muscles and nerves below the injury site.

A chest (thoracic) or lower back (lumbar) injury can affect your torso, legs, bowel and bladder control, and sexual function. A neck (cervical) injury affects the same areas in addition to affecting movements of your arms and, possibly, your ability to breathe.

The most common causes of spinal cord injuries in the United States are:

Although a spinal cord injury is usually the result of an accident and can happen to anyone, certain factors may predispose you to a higher risk of sustaining a spinal cord injury, including:

At first, changes in the way your body functions may be overwhelming. However, your rehabilitation team will help you develop the tools you need to address the changes caused by the spinal cord injury, in addition to recommending equipment and resources to promote quality of life and independence. Areas often affected include:

Bladder control. Your bladder will continue to store urine from your kidneys. However, your brain may not be able to control your bladder as well because the message carrier (the spinal cord) has been injured.

The changes in bladder control increase your risk of urinary tract infections. The changes also may cause kidney infections and kidney or bladder stones. During rehabilitation, you’ll learn new techniques to help empty your bladder.

Skin sensation. Below the neurological level of your injury, you may have lost part of or all skin sensations. Therefore, your skin can’t send a message to your brain when it’s injured by certain things such as prolonged pressure, heat or cold.

This can make you more susceptible to pressure sores, but changing positions frequently with help, if needed can help prevent these sores. You’ll learn proper skin care during rehabilitation, which can help you avoid these problems.

Circulatory control. A spinal cord injury may cause circulatory problems ranging from low blood pressure when you rise (orthostatic hypotension) to swelling of your extremities. These circulation changes may also increase your risk of developing blood clots, such as deep vein thrombosis or a pulmonary embolus.

Another problem with circulatory control is a potentially life-threatening rise in blood pressure (autonomic hyperreflexia). Your rehabilitation team will teach you how to address these problems if they affect you.

Respiratory system. Your injury may make it more difficult to breathe and cough if your abdominal and chest muscles are affected. These include the diaphragm and the muscles in your chest wall and abdomen.

Your neurological level of injury will determine what kind of breathing problems you may have. If you have a cervical and thoracic spinal cord injury, you may have an increased risk of pneumonia or other lung problems. Medications and therapy can help prevent and treat these problems.

Fitness and wellness. Weight loss and muscle atrophy are common soon after a spinal cord injury. Limited mobility may lead to a more sedentary lifestyle, placing you at risk of obesity, cardiovascular disease and diabetes.

A dietitian can help you eat a nutritious diet to sustain an adequate weight. Physical and occupational therapists can help you develop a fitness and exercise program.

Following this advice may reduce your risk of a spinal cord injury:

Drive safely. Car crashes are one of the most common causes of spinal cord injuries. Wear a seat belt every time you drive or ride in a car.

Make sure that your children wear a seat belt or use an age- and weight-appropriate child safety seat. To protect them from air bag injuries, children under age 12 should always ride in the back seat.

Dec. 19, 2017

Continued here:
Spinal cord injury – Symptoms and causes – Mayo Clinic

categoriaSpinal Cord Stem Cells commentoComments Off on Spinal cord injury – Symptoms and causes – Mayo Clinic dataDecember 21st, 2017
Read all

Fully Functional Skin Grown From Stem Cells Could Double …

By Sykes24Tracey

If theres one thing skin can do well, its grow. Each month our body replaces its skin,nearly 19 million skin cells per inch a feat thats been far less successful in the lab. However, the days of lab-grown skin may not be too far off:Recently, a team of Japanese scientists not only grew fully functional skin tissue, but also transplanted it successfully onto living organisms.

Though the technique has only been tested on mice so far, the team predicts it could one day revolutionize treatments for burn victims, or other patients that have suffered catastrophic skin damage. On a less gruesome note, the team says it may also be useful in treating a more common condition: baldness.

The study, published online in Science Advances, involved researchers from the Riken Center for Developmental Biology and Tokyo University of Science, among other Japanese institutions. The researchers first step was to transform cells from the gums of mice into induced pluripotent stem cells, or adult cells that have been genetically reprogrammed back into an embryonic stem cell state. This is done by forcing the cells to express genes associated with embryonic stem cells. Once transformed into stem cells, they can then be manipulated to become any type of cell in the body.

Next, the team placed the stem cells into a petri dish, where they added the molecule Wnt10b, which coaxed the stem cells to form into clusters that resembled a developing embryo. These clusters were then transplanted into mice bred without a fully functional immune system, which ensured that their bodies did not reject the transplant. Here, they underwent cell differentiation, the process by which unspecialized cells become specialized. In this case, they were becoming skin cells, and once the process had begun, the cells were transplanted again onto the skin of new mice, where they made normal connections with surrounding nerve and muscle tissue to become fully functional skin.

Skin is one of the largest and most important organs in the human body, yet its also one of the most difficult to treat when its damaged. Current treatment options involve painful skin grafts or barely functional artificial skin. According to the new study, however, being able to grow skin in the lab will account for more than just skin’s use in protecting our inner bodies. The lab-grown skin also showed the ability to develop hair follicles and sweat glands, which play a role in controlling body temperature and keeping the skin moisturized it’s in these areas that skin repair has often fallen short.

“Up until now, artificial skin development has been hampered by the fact that the skin lacked the important organs, such as hair follicles and exocrine glands, lead researcher, Takashi Tsuji of the RIKEN Center for Developmental Biology,said in a recent statement. With this new technique, we have successfully grown skin that replicates the function of normal tissue.

In addition to revolutionizing skin repair, the technique may also help those with certain types of hair loss. The study noted that using Wnet10b on the stem cells resulted in the production of a higher number of hair follicles than previous attempts at growing skin. Within two weeks of receiving the transplanted skin, the mice began to grow hair. Dr. Seth Orlow, chair of dermatology at NYU School of Medicine in New York City, told U.S. News Health that this feature of the lab-grown skin could be manipulated to help patients with both alopecia and pattern baldness.

In theory, we may eventually be able to create structures like hair follicles and other skin glands that could be transplanted back to people who need them, Orlow told U.S. Health News.

According to The Washington Post, the technique is still about five to 10 years away from being safe and effective enough to be used on humans. But with about 95 percent of men and 50 percent of women experiencing some degree of baldness over the course of their lives, its a safe bet that there will be no shortage of eager customers ready to get their hair back when the treatment is approved for use in doctors offices.

Source: Takagi R, Ishimaru J, Sugawara A, et al. Bioengineering a 3D integumentary organ system from iPS cells using an in vivo transplantation model. Science Advances . 2016

Link:
Fully Functional Skin Grown From Stem Cells Could Double …

categoriaSkin Stem Cells commentoComments Off on Fully Functional Skin Grown From Stem Cells Could Double … dataDecember 13th, 2017
Read all

Regeneration of the entire human skin using transgenic …

By Sykes24Tracey

Epidermolysis bullosais is rare, but the charity DEBRA, which campaigns for EB patients, estimates half a million people are affected around the world.

There are different forms of epidermolysis bullosa, including simplex, dystrophic and, as in this case, junctional.

Each is caused by different genetic faults leading to different building blocks of skin being missing.

Prof Michele De Luca, from the University of Modena and Reggio Emilia, told the BBC: The gene is different, the protein is different and the outcome may be different [for each form of EB] so we need formal clinical trials.

But if they can make it work, it could be a therapy that lasts a lifetime.

An analysis of the structure of the skin of the first patient to get 80% of his replaced has discovered a group of long-lived stem cells are that constantly renewing his genetically modified skin.

Genetically modified skin cells were grown to make skin grafts totalling 0.85 sq m (9 sq ft). It took three operations over that winter to cover 80% of the childs body in the new skin. But 21 months later, the skin is functioning normally with no sign of blistering.

Nature Regeneration of the entire human epidermis using transgenic stem cells

Junctional epidermolysis bullosa (JEB) is a severe and often lethal genetic disease caused by mutations in genes encoding the basement membrane component laminin-332. Surviving patients with JEB develop chronic wounds to the skin and mucosa, which impair their quality of life and lead to skin cancer. Here we show that autologous transgenic keratinocyte cultures regenerated an entire, fully functional epidermis on a seven-year-old child suffering from a devastating, life-threatening form of JEB. The proviral integration pattern was maintained in vivo and epidermal renewal did not cause any clonal selection. Clonal tracing showed that the human epidermis is sustained not by equipotent progenitors, but by a limited number of long-lived stem cells, detected as holoclones, that can extensively self-renew in vitro and in vivo and produce progenitors that replenish terminally differentiated keratinocytes. This study provides a blueprint that can be applied to other stem cell-mediated combined ex vivo cell and gene therapies

SOURCES BBC News, Nature

Follow this link:
Regeneration of the entire human skin using transgenic …

categoriaSkin Stem Cells commentoComments Off on Regeneration of the entire human skin using transgenic … dataDecember 13th, 2017
Read all

What are stem cells and how will they be used to treat the …

By Sykes24Tracey

Stem cell research is often controversial but it has also led to incredible medical progress in recent years.

Stem cell research is at defining moment. Although it can be controversial and does raise a lot of important ethical issues, this area of medical science has been characterised by a number of important advances, ever since the first embryonic stem cells were isolated from mice in the 1980s. In the near future, it could reshape the way we treat some of the worlds most debilitating diseases.

Stem cells have already been used as treatment for a number of years think bone marrow transplant and they have the potential to help with many other medical conditions. They could also prove crucial for scientists wishing to understand more about human biology and development.

Studies using stem cells have benefited from important media coverage in recent years and many of them hailed as breakthroughs. However, the reality is often more complex, and a number of scientific and ethical challenges often stand in the way of successes in animal models being replicated in humans.

IBTimes UK takes a look at what stem cell research is, what it is used for and what the future looks like.

Stem cells could be defined as building block cells that have not yet differentiated into one cell type and could develop into many different cell types. Stem cells can continue to divide almost indenitely.

There are two main types of stem cells: embryonic stem cells and adult stem cells.

Embryonic stem cells were first isolated in mice in the early 1980s at the University of Cambridge. All developing embryos contains a number of stem cells that can go on to develop into different cell types. In humans, these cells can be isolated from around five days after the egg has been fertilised around 50 to 100 stem cells are present at that stage.

These cells are isolated from embryos that have been donated by couples who have been through IVF and have extra embryos left which were not used during the treatment.

Stem cells are also found in adults, particularly in the bone marrow, the blood, the eyes, the brain and the muscles. They are also known as somatic stem cells.

They can also differentiate into other cells, but into a much more limited number than embryonic stem cells. They range from cells that are able to form different kinds of tissues to more specialised cells that form just some of the cells of a particular tissue or organ. They also have the ability to divide and reproduce indefinitely.

19th Place: Dr Gist F Croft, Lauren Pietilla, Stephanie Tse, Dr. Szilvia Galgoczi, Maria Fenner, Dr Ali H. Brivanlou, Rockefeller University, Brivanlou Laboratory New York, New York, USA: Human neural rosette primordial brain cells, differentiated from embryonic stem cells Confocal, 10x (Dr Gist F Croft, Lauren Pietilla, Stephanie Tse, Dr. Szilvia Galgoczi, Maria Fenner, Dr Ali H. Brivanlou)

Scientists have also found a way to make induced pluripotent stem cells cells taken from any adult tissue and genetically modified to behave like an embryonic stem cell (and thus able to differentiate into any cell type). The term pluripotant refers to the fact that the stem cells can produce almost all of the cells in the body.

To create these induced pluripotent stem cells, researchershave learnt to reprogramme the genes of human adult cells. A major 2007 US study, found that introducing 14 genes could reprogramme the cells to become stem cells, and the researchers then narrowed this down to four genes. Subsequent studies have built on this knowledge to find new, safer ways to turn adult cells into pluripotant stem cells.

Stem cells are already used to help a number of patients around the world. For nearly 50 years, they have been used in the form of bone marrow transplants.

Indeed, bone marrow contains stem cells that can produce many different blood cells. A bone marrow transplant can be used to treat people with blood cancers or genetic blood disorders, such as sickle cell anaemia. The stem cell turn into healthy blood cells that can help the patient. Some hospitals also use stem cells to grow skin grafts for patients with life-threatening burns. It is also possible to receive a stem cell therapy based on limbal stem cells (in the eye) to repair damaged corneas.

Stem cells are also very useful for scientists conducting basic research on diseases, as they can be used to model a large number of conditions. Recent studies have used stem cells to model the nerve cells that are lost in Alzheimers disease or to model deafness or Autism Spectrum disorder.

Scientists have gained a better understanding of blood stem cells (Alden Chadwick/Flickr)

A number of treatment using stem cells has been tested by researchers around the world. A type of patients that could be helped by stems cells are those suffering from spinal cord injuries. Stem cell therapy for spinal cord repair could be used to promote the growth of nerve cells directly or to transplant cells that protect the nerves and help them function.

One of most important studies in this area was published in October 2010. tested the used embryonic stem cells on patients in the US who had sustained a spinal cord injury in the previous 14 days. Preliminary findings were encouraging.

Studies have also been conducted to assess the safety and efficacy of stem cells in helping patients who suffered a stroke. The idea is that stem cells could help in rehabilitation after a persons brain has been damaged by the stroke. Stem cells have also been investigated to treat diseases such as MS, diabetes and to reverse ageing.

Beyond clinical trials, which still remain limited in number, many of the preliminary research opens up a number of very interesting perspectives. One of the main area of interest is growing organs in the lab from tissues created from stem cells. These organs may one day be used for transplantation in humans.

Recently, stem cells have been shown to present an interest to improve fertility treatments with the creation of a new technique in mice in-vitro gametogenesis. The idea is to create eggs and sperm using pluripotant stem cells.

By La Surugue

Read more here:
What are stem cells and how will they be used to treat the …

categoriaSpinal Cord Stem Cells commentoComments Off on What are stem cells and how will they be used to treat the … dataNovember 25th, 2017
Read all

Scientists replace skin using genetically modified stem cells

By LizaAVILA

Related content

(CNN) – For the first time, doctors were able to treat a child who had a life-threatening rare genetic skin disease through a transplant of skin grown using genetically modified stem cells.

The grafts replaced 80% of the boy’s skin.

The skin of his arms, legs, back and flanks, and some of the skin on his stomach, neck and face was missing or severely affected due to epidermolysis bullosa.

The compassionate-use experimental treatment is detailed in a case study published in the journal Nature on Wednesday.

Skin as fragile as a butterfly’s wings — that’s how children with epidermolysis bullosa are described and why they’re often called butterfly children.

The disease, of which there are five major types and at least 31 subtypes, is incurable. People with the condition have a defect in the protein-forming genes necessary for skin regeneration.

About 500,000 people worldwide are affected by forms of the disease. More than 40% of patients die before reaching adolescence.

Their skin can blister and erode due to something as simple as bumping into something or even the light friction of clothing, according to an email from Dr. Jouni Uitto, a professor and chairman of the Department of Dermatology and Cutaneous Biology at the Sidney Kimmel Medical College in Philadelphia. Uitto was not involved with this study.

Epidermolysis bullosa makes the skin incredibly susceptible to infections, and in the case of 7-year-old Hassan, whose treatment was detailed in Nature, those infections can be life-threatening.

A week after he was born in Syria, Hassan had a blister on his back, his father said through an interpreter in an interview provided by the hospital in Germany where the boy was treated.

Hassan’s last name, as well as the first names of his family members, are not being disclosed to protect the privacy of the family.

In his first few weeks of life, Hassan was immediately diagnosed with epidermolysis bullosa, and their doctor in Syria told Hassan’s family that there was no cure or therapy.

Over the years, their efforts to find help for their son’s disease led the family to the Muenster University hospital in Germany in 2015, when Hassan was 7. His condition worsened, and he struggled with severe sepsis and a high fever. He weighed just over 37 pounds.

They didn’t think he would make it, and doctors at Muenster decided in summer 2015 to transfer Hassan to the Ruhr-Universitt Bochum’s University Hospitals, including the burn center — one of the oldest in the country.

By the time Hassan arrived at Bochum, he had lost two-thirds of his surface skin.

“We had a lot of problems in first days just keeping him alive,” said Dr. Tobias Rothoeft, consultant at the University Children’s Hospital at Katholisches Klinikum Bochum.

Doctors tried to promote healing by changing his dressings and treating him with antibiotics, as well as putting him on an aggressive nutrition schedule, but nothing helped. They even tried transplanting skin from Hassan’s father.

“By that time, he had lost 60% of his epidermis, the upper skin layer, and had 60% open wounds all over his body,” said Dr. Maximilian Kueckelhaus of the Department of Plastic Surgery at Bochum’s Burn Center.

Every approach failed, so the doctors prepared Hassan’s family for what end-of-life care would entail. But the parents pleaded, asking the doctors to consult studies and research for experimental treatments that might help.

They found Dr. Michele De Luca at the University of Modena’s Center for Regenerative Medicine in Italy. His publications described an experimental treatment transplanting genetically modified epidermal stem cells that healed small, non-life-threatening wounds in adults.

The medical team reached out to De Luca, asking whether he could help them replicate the procedure on a larger scale to help Hassan, and he agreed. De Luca told Hassan’s parents that he believed there was a 50% chance of the treatment being successful.

They were more than willing to accept the risk, to do anything to help their son have a chance at a normal life.

Hassan “was in severe pain and was asking a lot of questions: ‘Why do I suffer from this disease? Why do I have to live this life? All children can run around and play. Why am I not allowed to play soccer?’ I couldn’t answer these questions,” his father said. “It was a tough decision for us, but we wanted to try for Hassan.”

To obtain the skin’s stem cells, the doctors took a small biopsy — only accounting for 1 square inches — from an unaffected part of Hassan’s skin. The stem cells were processed by De Luca in Italy. A healthy version of the gene that is normally defective in epidermolysis bullosa patients was added to the cells, along with retroviral vectors: virus particles that assist the gene transfer.

This genetic transfer would essentially “correct” the cells.

The single cells were grown and cultivated on plastic and fibrin substrate, which is used to treat large skin burns, to form a large piece of epidermis. This method enabled the researchers to grow as much skin as they needed. The whole process took three to four weeks, Kueckelhaus said.

Once the sheets were ready, they were transferred from Italy to Germany and transplanted onto the well-cleaned wounds right away during two surgeries. The first procedure in October 2015 applied the sheets to Hassan’s arms and legs. The second surgery, in November, grafted the sheets to Hassan’s entire back and the other affected areas.

Hassan began to improve immediately. The researchers noticed that the grafts were not rejected; they bound to all of the areas they were transplanted.

“For everyone that was involved, taking off the bandages and seeing for the first time that this is working out, that the transplants are actually attached to the patient and growing skin, that’s an incredible moment,” Kueckelhaus said.

Hassan was discharged from the hospital in February 2016.

After steady followups over 21 months, the researchers found that Hassan’s new skin healed normally, didn’t blister anymore, and was resistant to stress. It was even growing hair. Unlike some skin graft patients, he doesn’t require any ointment to keep his skin smooth and hydrated. And like any growing kid, he bruises and recovers normally.

They also learned that only a few stem cells contribute to the long-term maintenance of the epidermis, shedding light on cellular hierarchy in this regard.

“The investigators removed of small piece of patient’s skin, isolated cells with stem cell potential for growth, introduced a normal copy of the mutated gene to the cells, propagated a large number of these cells in culture and then grafted them back to the skin,” Uitto said. “This concept is not new, but what is remarkable here is that they were able to change essentially the entire skin of the patient with normal cells.”

Hassan’s family is currently living in Germany. Hassan, now 9, is able to go to school and play sports, but he maintains a schedule of frequent monitoring at the hospital to ensure that the initial success of the treatment continues. The area of his skin that was not treated sometimes shows small blisters, and if it worsens, he may receive transplants there as well.

“Seeing him 18 months after the initial surgery with an intact skin is incredible because he has been in the ICU for so long,” Kueckelhaus said. “He had bandages all over his body except his hands, feet and face. He was on extremely strong pain medication. So the quality of life was really, really bad for him. Seeing him play soccer, play sports, play with other kids, that is just amazing because that’s something he couldn’t do before.”

“It felt like a dream for us,” the boy’s father said. “Hassan feels like a normal person now. He plays. He’s being active. He loves life.”

Everything points to a good long-term outcome for Hassan.

The researchers will continue to monitor him for complications. Sometimes, genetic modifications can cause malignancies in cells.

“That is of course one thing we really have to be aware of,” Kueckelhaus said. “However, analyzing the integration profile of that gene into the boy’s DNA, which we did, we saw that it’s mostly in areas that don’t cause too much concern about developing malignancies.”

Epidermolysis bullosa patients can be at a very high risk of developing skin cancer simply because of the disease. Because Hassan now has intact skin and intact DNA, this risk might even decrease, but that will have to be proved through follow-up, Kueckelhaus said.

Given that this was one successful outcome for one patient, the experimental treatment can’t be applied for other patients just yet. De Luca is conducting clinical trials using the treatment.

“This is one case with a distinct type of EB, and further studies will show whether this approach is applicable to other forms of EB as well,” Uitto said. “It should be noted that in some severe forms of EB, the patients also suffer from fragility of the gastrointestinal and vesico-urinary tract, and some forms are associated with the development of muscular dystrophy. Obviously, gene therapy of the skin cannot correct them, and these issues have to be addressed in further studies.”

Hassan’s treatment also cost hundreds of thousands of dollars. Although the process could be optimized, doctors would still have to individually grow transplants for each patient, which could get very expensive.

But for patients’ families, epidermolysis bullosa is already expensive.

“Standard maintenance treatment of patients with EB, including daily bandaging, antibiotics and special moisturizer, as well as frequent hospitalizations, can be extremely costly, and gene correction as described in this paper may well be cost-effective over the lifetime of these patients,” Uitto noted.

Brett Kopelan, executive director of the Dystrophic Epidermolysis Bullosa Research Association of America, has a 10-year-old daughter, Rafi, with recessive dystrophic EB. Between January and August, $751,1778 for wound/burn dressings was charged to Kopelan’s insurance company, he says. That doesn’t account for drugs or hospital visits and surgeries.

Kopelan’s nonprofit sends free supplies and bandages to families. The nonprofit can provide its employees with insurance that covers the medical equipment, but that isn’t the case for everyone impacted by the condition, he said.

Kopelan is hopeful about the results of the study. The baths and bandage changes that are necessary for epidermolysis bullosa patients to stave off life-threatening infections can last hours and feel torturous.

“Do you remember the last time you got a paper cut and put Purell on it? It burned, right? Now think of 60% of body being an open wound, and opioids don’t really work for this kind of pain,” Kopelan wrote in an email. “This is what make EB kids and adults the strongest people on Earth.”

The study “confirms our hopes that gene therapy is potentially the most efficacious path forward to providing a significant treatment option for those with epidermolysis bullosa,” Kopelan said. “While it’s important to remember that this is only one patient and more work needs to be done to demonstrate how effective this gene therapy platform may prove to be, I am very enthused.”

“I wish that all children with the same disease could be treated in this way,” Hassan’s father said.

Here is the original post:
Scientists replace skin using genetically modified stem cells

categoriaSkin Stem Cells commentoComments Off on Scientists replace skin using genetically modified stem cells dataNovember 14th, 2017
Read all

bone marrow/stem cell transplant – verywell.com

By JoanneRUSSELL25

If you or a loved one will be having a bone marrow transplant or donating stem cells, what does it entail? What are the different types of bone marrow transplants and what is the experience like for both the donor and recipient?

A bone marrow transplant is a procedure in which when special cells (called stem cells) are removed from the bone marrow or peripheral blood, filtered and given back either to the same person or to another person.

Since we now derive most stem cells needed from the blood rather than the bone marrow, a bone marrow transplant is now more commonly referred to as stem cell transplant.

Bone marrow is found in larger bones in the body such as the pelvic bones. This bone marrow is the manufacturing site for stem cells. Stem cells are “pluripotential” meaning that the cells are the precursor cells which can evolve into the different types of blood cells, such as white blood cells, red blood cells, and platelets.

If something is wrong with the bone marrow or the production of blood cells is decreased, a person can become very ill or die. In conditions such as aplastic anemia, the bone marrow stops producing blood cells needed for the body. In diseases such as leukemia, the bone marrow produces abnormal blood cells.

The purpose of a bone marrow transplant is thus to replace cells not being produced or replace unhealthy stem cells with healthy ones.

This can be used to treat or even cure the disease.

In addition for leukemias, lymphomas, and aplastic anemia, stem cell transplants are being evaluated for many disorders, ranging from solid tumors to other non-malignant disorders of the bone marrow, to multiple sclerosis.

There are two primary types of bone marrow transplants, autologous and allogeneic transplants.

The Greek prefix “auto” means “self.” In an autologous transplant, the donor is the person who will also receive the transplant. This procedure, also known as a “rescue transplant” involves removing your stem cells and freezing them. You then receive high dose chemotherapy followed by infusion of the thawed out frozen stem cells. It may be used to treat leukemias, lymphomas, or multiple myeloma.

The Greek prefix “allo” means “different” or “other.” In an allogeneic bone marrow transplant, the donor is another person who has a genetic tissue type similar to the person needing the transplant. Because tissue types are inherited, similar to hair color or eye color, it is more likely that you will find a suitable donor in a family member, especially a sibling. Unfortunately, this occurs only 25 to 30 percent of the time.

If a family member does not match the recipient, the National Marrow Donor Program Registry database can be searched for an unrelated individual whose tissue type is a close match. It is more likely that a donor who comes from the same racial or ethnic group as the recipient will have the same tissue traits.

Learn more about finding a donor for a stem cell transplant.

Bone marrow cells can be obtained in three primary ways. These include:

The majority of stem cell transplants are done using PBSC collected by apheresis (peripheral blood stem cell transplants.) This method appears to provide better results for both the donor and recipient. There still may be situations in which a traditional bone marrow harvest is done.

Donating stem cells or bone marrow is fairly easy. In most cases, a donation is made using circulating stem cells (PBSC) collected by apheresis. First, the donor receives injections of a medication for several days that causes stem cells to move out of the bone marrow and into the blood. For the stem cell collection, the donor is connected to a machine by a needle inserted in the vein (like for donating blood.) Blood is taken from the vein, filtered by the machine to collect the stem cells, then returned back to the donor through a needle in the other arm. There is almost no need for a recovery time with this procedure.

If stem cells are collected by bone marrow harvest (much less likely,) the donor will go to the operating room and while asleep under anesthesia, a needle will be inserted into either the hip or the breastbone to take out some bone marrow. After awakening, there may be some pain where the needle was inserted.

A bone marrow transplant can be a very challenging procedure for the recipient.

The first step is usually receiving high doses of chemotherapy and/or radiation to eliminate whatever bone marrow is present. For example, with leukemia, it is first important to remove all of the abnormal bone marrow cells.

Once a person’s original bone marrow is destroyed, the new stem cells are injected intravenously, similar to a blood transfusion. The stem cells then find their way to the bone and start to grow and produce more cells (called engraftment.)

There are many potential complications. The most critical time is usually when the bone marrow is destroyed so that few blood cells remain. Destruction of the bone marrow results in greatly reduced numbers of all of the types of blood cells (pancytopenia.) Without white blood cells there is a serious risk of infection, and infection precautions are used in the hospital (isolation.) Low levels of red blood cells (anemia) often require blood transfusions while waiting for the new stem cells to begin growing. Low levels of platelets (thrombocytopenia) in the blood can lead to internal bleeding.

A common complication affecting 40 to 80 percent of recipients is graft versus host disease. This occurs when white blood cells (T cells) in the donated cells (graft) attack tissues in the recipient (the host,) and can be life-threatening.

An alternative approach referred to as a non-myeloablative bone marrow transplant or “mini-bone marrow transplant” is somewhat different. In this procedure, lower doses of chemotherapy are given that do not completely wipe out or “ablate” the bone marrow as in a typical bone marrow transplant. This approach may be used for someone who is older or otherwise might not tolerate the traditional procedure. In this case, the transplant works differently to treat the disease as well. Instead of replacing the bone marrow, the donated marrow can attack cancerous cells left in the body in a process referred to as “graft versus malignancy.”

If you’d like to become a volunteer donor, the process is straightforward and simple. Anyone between the ages of 18 and 60 and in good health can become a donor. There is a form to fill out and a blood sample to give; you can find all the information you need at the National Marrow Donor Program Web site. You can join a donor drive in your area or go to a local Donor Center to have the blood test done.

When a person volunteers to be a donor, his or her particular blood tissue traits, as determined by a special blood test (histocompatibility antigen test,) are recorded in the Registry. This “tissue typing” is different from a person’s A, B, or O blood type. The Registry record also contains contact information for the donor, should a tissue type match be made.

Bone marrow transplants can be either autologous (from yourself) or allogeneic (from another person.) Stem cells are obtained either from peripheral blood, a bone marrow harvest or from cord blood that is saved at birth.

For a donor, the process is relatively easy. For the recipient, it can be a long and difficult process, especially when high doses of chemotherapy are needed to eliminate bone marrow. Complications are common and can include infections, bleeding, and graft versus host disease among others.

That said, bone marrow transplants can treat and even cure some diseases which had previously been almost uniformly fatal. While finding a donor was more challenging in the past, the National Marrow Donor Program has expanded such that many people without a compatible family member are now able to have a bone marrow/stem cell transplant.

Sources:

American Society of Clinical Oncology. Cancer.Net. What is a Stem Cell Transplant (Bone Marrow Transplant)? Updated 01/16. http://www.cancer.net/navigating-cancer-care/how-cancer-treated/bone-marrowstem-cell-transplantation/what-stem-cell-transplant-bone-marrow-transplant

U.S. National Library of Medicine. MedlinePlus. Bone Marrow Transplant. Updated 10/03/17. https://medlineplus.gov/ency/article/003009.htm

See the original post here:
bone marrow/stem cell transplant – verywell.com

categoriaBone Marrow Stem Cells commentoComments Off on bone marrow/stem cell transplant – verywell.com dataNovember 8th, 2017
Read all

Cell Replacement Therapy For Parkinsons Disease And The …

By LizaAVILA

The following was written withProf. Gerold Riempp, a professor of information systems who was diagnosed with Parkinsons disease 16 years ago at age 36. He is co-founder of a charitable organization in Germany that supports the development of therapies that aim to cure PD.

The idea behind cell replacement therapy(CRT) for PD is pretty simple: lack of mobility in PD is the result of the dysfunction and death of a specific kind of cell in the midbrain. While there are a few other things that go wrong in PD, the progressive loss of motor skills is the biggest problem most diagnosed face. Since we are reasonably sure that this lack of mobility results from the impairment and death of dopamine producing cells in an area of the midbrain called the substantia nigra,why not try to replace those cells?

A group of iPS cells grown from human skin tissue at Osaka University

Replacing those cells is one of three core problems that each person diagnosed with PD needs to address. They are:

1. Keeping remaining cells healthyOnce diagnosed, most people have already lost production of 50-80% of dopamine in their midbrain. The problem then is to stop further disease progression by figuring out how to get rid of everything that might be harming the remaining 20-50% of cells while giving their body everything it needs to keep those cells alive and active.

2. Clearing clogged cellsOf those 50-80% of non-dopamine producing cells, a portion are still alive, they are just not doing their job, producing dopamine. This impairment is a result of a range of interrelated factors that harm the cells and eventually lead to their death. Most researchers believe the problem can be boiled down to the clumping of a misfolded protein called alpha-synuclein. Many different methods are being tried in labs around the world to clear these clumps and stop more from accumulating. But this might only be part of the story since a wide variety of other factors also lead to cell death.

3. Replacing dead cellsThen we come to what to do about all of those dead cells. A couple of different options are being considered to get the brain tostimulate the production of new neurons orreplace the function of dead ones. However, the most promising therapy being developed is stem cell therapy, now commonly referred to as cell replacement therapy. It works by placing new dopamine producing neurons into the part of the brain where the dead neurons used to release dopamine.

If a patient manages to address problems one and two they might have no need for CRT. The reason for this is that he or she can likely rescue a considerable portion of the damaged but still living cells and thereby bring dopamine production back to a level that allows for normal movement. CRT will generally be for people who have had PD for a longer time and whose remaining healthy cells plus the rescued ones together are not capable of providing enough dopamine.

The late 80s and 90s saw a number of CRT trials for Parkinsons disease with mixed results. But we nowhave a much better understanding of what kind of cells to use, how to culture and store those cells, how to implant them, and who this therapy would be best for.

We also now have iPS cells (induced pluripotent stem cells). Discovered in 2006, these are cells that have been chemically reprogrammed, usually from adult skin tissue, back into pluripotent stem cells. (Pluripotent means they are capable of becoming almost any cell in the body). Using these cells for transplantation has two major advantages. One, it eliminates the need for potentially harmful immuno-suppressors. Two, it has none of the ethical issues that come with using fetal stem cells. But iPS cells are much more expensive and technically difficult to produce.

Despite all the progress made, cell replacement therapy is still very controversial and fraught with all sorts of technical issues. Luckily, CRT for PD is one of the only fields of medical science where the top labs around the world are cooperating with each other. An international consortium of labs has come together under a name that sounds like it was ripped out of a Marvel comic, the GForce-PD. Each lab in the GForce-PD aims to bring CRT for PD to clinical trial within the next few years.

Infographic made by PhD neuroscientist Kayleen Schreiber at kayleenschreiber.com

The GForce-PD

New York City Run by Dr. Lorenz Studer out of the Rockefeller research labs in New York City. Dr. Studer pioneered many of the reprogramming techniques being used around the world to convert pluripotent stem cells into dopamine producing neurons. His lab wasrecently announced to be part of a huge funding initiative from Bayer Pharmaceuticals to help speed up development of CRT. Studers lab is aiming to start transplantation of embryonic stem cells in human trials in early 2018.

Kyoto, Japan Dr. Jun Takahashis lab in Kyoto is working on producing several iPS lines for the Japanese population. One advantage they have is the relative homogeneity of Japanese people allows them to use a dozen or so iPS lines for almost everyone in the country. The lab recently made headlines with results from monkey trials that showed human iPS cells graft safely, with no signs of malignant growth, two years after transplantation.

Cambridge, England Dr. Roger Barkers lab has been working on cell replacement therapy for Parkinsons disease for a number of years through the Transeuro project. His lab is pushing forward with more embryonic stem cell transplantations expected to begin in 2020. They also work very closely with the team in Sweden.

Lund, Sweden The lab in Lund has been working on CRT for PD since the 80s and has been part of a number of human trials. The lab is now run by Dr. Malin Parmar whose team has also pioneered many of the techniques used in direct programming that will one day allow researchers to skip the stem cell phase all together and produce dopamine cells directly in the brain.

San Diego, California The team is moving rapidly towards iPS cell transplantation under Dr. Jeanne Loring at the Scripps research center. They are the only lab that uses patients own cells for transplantation. Another unique feature of this lab is that it has been a community funded initiative under theSummit For Stem Cellsfoundation.

(Dr. Roger Barker talking about CRT for PD)

Though there is a lot of excitement building around cell replacement therapy, we need to proceed carefully. The field has potential for setbacks from some of the less rigorous trials being conducted in places like Australia and China where regulatory standards are more lax. Researchers in these areas are already going ahead with trials that do not meet the standards set by the GForce-PD. These have the potential to put a black-eye on all cell replacement therapies.

Also, producing pure batches of dopamine neurons is still a highly technical process that only a few labs in the world are capable of doing safely and effectively. Thankfully a few other labs around the world are joining the efforts of the GForce-PD, such as Dr. Tilo Kunaths lab in Edinburgh, which is working on techniques to better differentiate and characterize the cell lines used for transplantation.

(The pictures above show human embryonic stem cells being differentiated into dopamine cells at days 2, 4 and 7. Courtesy of Dr. Tilo Kunaths lab at the University of Edinburgh)

The Future of Cell Replacement Therapy

These therapies being developed for Parkinsons disease will, in essence, be version 1.0 of CRT. Clinical trials are set to begin next year and the therapy is expected to be widely available to people diagnosed with Parkinsons disease within the next 5-10 years.

Version 2.0 will be CRISPR-modified, disease resistant grafts, with genetic switches to modulate dopamine production and graft size.

Version 3.0 will make use of an emerging field called in vivo direct programming where viruses are inserted into the brain and transform other existing cells into dopamine producing cells.

(Edit: Credit to Dr. Tilo Kunath for correcting versions 2.0 and 3.0)

Dopamine neurons grown from iPS cells at 40 times magnification, from the Gladstone Institute

CRT for PD is one of the most exciting areas of research on the planet. It is a powerful demonstration of the progress we as a species have made in our attempt to gain mastery over the forces of biology.It has the potential to improve the lives of the millions living with PD, and the millions yet to be diagnosed. Once the transplanted cells have connected with their surroundings and start delivering dopamine to the right places, it should allow patients to gradually reduce their medication. Being able to move normally and not deal with the side effects of all the drugs and other therapies is what PD patients around the world are dreaming of.

Click here for more information on the future of cell replacement therapy for Parkinsons disease and the work of the GForce-PD.

And if you want to be part of bringing CRT to the clinic you can do so by supporting organizations like Summit For Stem Cells.

Like Loading…

Related

Originally posted here:
Cell Replacement Therapy For Parkinsons Disease And The …

categoriaIPS Cell Therapy commentoComments Off on Cell Replacement Therapy For Parkinsons Disease And The … dataNovember 8th, 2017
Read all

Skin Stem Cells – Methods and Protocols | Kursad Turksen …

By Sykes24Tracey

During the last decade, an increased interest in somatic stem cells has led to a flurry of research on one of the most accessible tissues of the body: skin. Much effort has focused on such topics as understanding the heterogeneity of stem cell pools within the epidermis and dermis, and their comparative utility in regenerative medicine applications. In Skin Stem Cells: Methods and Protocols, expert researchers in the field detail many of the methods which are now commonly used to study skin stem cells. These include methods and techniques for the isolation, maintenance and characterization of stem cell populations from skin. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls.

Authoritative and practical, Skin Stem Cells: Methods and Protocols seeks to aid scientists in the further understanding of these diverse cell types and the translation of their biological potential to the in vivo setting.

Originally posted here:
Skin Stem Cells – Methods and Protocols | Kursad Turksen …

categoriaSkin Stem Cells commentoComments Off on Skin Stem Cells – Methods and Protocols | Kursad Turksen … dataOctober 15th, 2017
Read all

Stem Cell Basics I. | stemcells.nih.gov

By JoanneRUSSELL25

Stem cells have the remarkable potential to develop into many different cell types in the body during early life and growth. In addition, in many tissues they serve as a sort of internal repair system, dividing essentially without limit to replenish other cells as long as the person or animal is still alive. When a stem cell divides, each new cell has the potential either to remain a stem cell or become another type of cell with a more specialized function, such as a muscle cell, a red blood cell, or a brain cell.

Stem cells are distinguished from other cell types by two important characteristics. First, they are unspecialized cells capable of renewing themselves through cell division, sometimes after long periods of inactivity. Second, under certain physiologic or experimental conditions, they can be induced to become tissue- or organ-specific cells with special functions. In some organs, such as the gut and bone marrow, stem cells regularly divide to repair and replace worn out or damaged tissues. In other organs, however, such as the pancreas and the heart, stem cells only divide under special conditions.

Until recently, scientists primarily worked with two kinds of stem cells from animals and humans: embryonic stem cells and non-embryonic “somatic” or “adult” stem cells. The functions and characteristics of these cells will be explained in this document. Scientists discovered ways to derive embryonic stem cells from early mouse embryos more than 30 years ago, in 1981. The detailed study of the biology of mouse stem cells led to the discovery, in 1998, of a method to derive stem cells from human embryos and grow the cells in the laboratory. These cells are called human embryonic stem cells. The embryos used in these studies were created for reproductive purposes through in vitro fertilization procedures. When they were no longer needed for that purpose, they were donated for research with the informed consent of the donor. In 2006, researchers made another breakthrough by identifying conditions that would allow some specialized adult cells to be “reprogrammed” genetically to assume a stem cell-like state. This new type of stem cell, called induced pluripotent stem cells (iPSCs), will be discussed in a later section of this document.

Stem cells are important for living organisms for many reasons. In the 3- to 5-day-old embryo, called a blastocyst, the inner cells give rise to the entire body of the organism, including all of the many specialized cell types and organs such as the heart, lungs, skin, sperm, eggs and other tissues. In some adult tissues, such as bone marrow, muscle, and brain, discrete populations of adult stem cells generate replacements for cells that are lost through normal wear and tear, injury, or disease.

Given their unique regenerative abilities, stem cells offer new potentials for treating diseases such as diabetes, and heart disease. However, much work remains to be done in the laboratory and the clinic to understand how to use these cells for cell-based therapies to treat disease, which is also referred to as regenerative or reparative medicine.

Laboratory studies of stem cells enable scientists to learn about the cells essential properties and what makes them different from specialized cell types. Scientists are already using stem cells in the laboratory to screen new drugs and to develop model systems to study normal growth and identify the causes of birth defects.

Research on stem cells continues to advance knowledge about how an organism develops from a single cell and how healthy cells replace damaged cells in adult organisms. Stem cell research is one of the most fascinating areas of contemporary biology, but, as with many expanding fields of scientific inquiry, research on stem cells raises scientific questions as rapidly as it generates new discoveries.

I.Introduction|Next

Follow this link:
Stem Cell Basics I. | stemcells.nih.gov

categoriaSkin Stem Cells commentoComments Off on Stem Cell Basics I. | stemcells.nih.gov dataSeptember 20th, 2017
Read all

Stem Cell Therapy: A Lethal Cure – Medical News Bulletin

By raymumme

Stem cell therapy is a two-step process. First, the patients blood cells are destroyed by chemotherapy, radiation therapy or immunosuppression. This conditioning process also eradicates any cancer cells that survived first-line treatment. Second, the patient receives stem cells harvested from a donors bone marrow or peripheral blood (circulating blood). While this can be an effective cure, it can cause graft-versus-host disease (GVHD) in up to 50% of patients. GVHD is more likely to develop in patients who have received a peripheral blood transplant and can kill 15%-20% of patients.

Two types of GVHD can develop, acute and chronic, and patients may develop either one, both or neither type. GVHD is less likely to occur and symptoms are milder if the donor cells closely match those of the patient. Acute GVHD can develop within 100 days of a transplant. The first step of stem cell therapy can cause tissue damage, and bacteria from the gut can escape into the bloodstream. This primes the patients antigen-presenting cells (cells that activate the immune response), which subsequently encourage donor T cells to proliferate and attack the patients tissues. Symptoms include vomiting, diarrhea, skin rashes, nausea, vomiting and liver problems. This can be resolved relatively quickly in one third of patients using immunosuppressive treatments, but some patients can progress to chronic GVHD.

The biological mechanisms responsible for chronic GVHD are not completely understood, but scientists believe that other immune system cells from the donor (B cells and macrophages) are stimulated and damage the patients tissues. Symptoms include dry eyes, mouth sores, muscle weakness, fatigue and joint problems.

Unfortunately, development of effective treatments for GVHD is not keeping up with the increasing number of GVHD patients or with advances in understanding this disease. At present, standard treatments include corticosteroids and drugs that reduce IL-2, an immune system chemical that helps T-cells multiply and diversify. These treatments have various side effects including suppressing the patients immune system, thereby increasing risk of infection.

One challenge stalling drug research is that a small degree of graft-versus-host response must occur for successful stem cell therapy: donor cells will destroy any cancer cells that remain after the first stage of therapy. This challenge is discussed in a recent article in Science Health.Although several treatments have been trialed, success is variable and often targets only acute GVHD or chronic GVHD. Biomarkers have also been detected that may help identify individuals at risk of developing severe GVHD, information that may aid the development of personalized treatment strategies. Drugs that have been approved for other diseases, but not for GVHD, show promise and include ibrutinib for chronic GVHD (approved for specific blood cancers) and ruxolitinib for acute GVHD (approved for bone marrow disorders).

The impact of stem cell therapy must not be underestimated: up to 50% of recipients will develop GVHD. Unfortunately, some individuals will develop chronic GVHD, a condition that is just as difficult to survive as cancer. This highlights the importance of developing continued care strategies for individuals receiving stem cell therapy as a final defence against cancer.

Written byNatasha Tetlow, PhD

Reference: Cohen J. A stem cell transplant helped beat back a young doctors cancer. Now, its assaulting his body. Science Health. 2017. Available at: DOI: 10.1126/science.aan7079

Read this article:
Stem Cell Therapy: A Lethal Cure – Medical News Bulletin

categoriaBone Marrow Stem Cells commentoComments Off on Stem Cell Therapy: A Lethal Cure – Medical News Bulletin dataSeptember 8th, 2017
Read all

Convoy from Children’s Hospital to La Caada carries precious cargo a 2-year-old bone marrow recipient – Los Angeles Times

By Sykes24Tracey

On Saturday morning, a convoy of vintage Ford Broncos carrying some very precious cargo made a stop at La Caadas Descanso Gardens.

En route from Childrens Hospital Los Angeles, the motorcade was led by a golden 1971 Bronco with Thousand Oaks resident Tyler Kelly at the helm. Tucked safely into a car seat in the back was 2-year-old Pierce Kelly, known by family and friends as Fierce Pierce, still recovering from a July 21 bone marrow transplant.

At the La Caada home of relatives Donna and Dave McLaughlin, Pierce will recuperate under the watchful eye of mom Aubrey. For 100 days following the procedure, he must reside within a 30-minute drive of Childrens Hospital for monitoring.

Saturdays 13-mile drive was just one portion of a tumultuous journey the Kellys have been on since April 7, when Pierce was diagnosed with acute myeloid leukemia. His chance of surviving the devastating illness with treatment alone was only 50%, according to mom Aubrey. But there was one hope if the Kellys could find a bone marrow donor, Pierces odds would improve by at least another 15%.

We were at the mercy of whoever had registered, Aubrey Kelly recalled.

Among the nearly 13.5 million Americans already listed as donors on the Be the Match Marrow Registry, there were no donors close enough to be a match with Pierce.

Raquel Edpao, a community outreach specialist for Be the Match, said on any given day there are 14,000 people like the Kellys, searching registries for a bone marrow match. Its her job to help educate people how simple it is to join the registry and to donate if called.

Potential donors register online at bethematch.org, then receive and turn in a cheek swab. After that, theyre contacted if they are a potential match for someone. Edpao estimates about one out of every 430 registrants will be asked to donate.

There are so many misconceptions about donating, she said, invoking myths about spinal drilling, painful extractions and missed days at work. Its usually as simple as donating blood.

In about 20% of cases donors are asked to undergo a marrow extraction, a 45-minute outpatient procedure involving a general anesthetic.

Luckily for the Kellys, a search of donors worldwide returned a single donor in France whose human leukocyte antigen (HLA) protein was a 10-out-of-10 match with Pierces. While the marrow was shipped, the 2-year-old underwent chemotherapy to destroy most of his damaged stem cells in preparation for the donation.

Its a fine balance of leaving him with enough cells to receive the new ones, but not so many that the new cells dont have enough room to grow, Aubrey Kelly said, explaining how her sons blood type switched from A positive, his own type, to the donors O negative.

Pierces recovery from the transplant requires a sterile environment that means he cannot stay with siblings Sierra, 4, and 6-month-old Harper. Donna McLaughlin, a cousin of Aubrey Kellys dad, said she and husband Dave were happy to offer their home in La Caadas Paradise Valley neighborhood for his recovery.

Ive worked for the past week cleaning my house its never been so clean, she said of her preparation for Pierce and Aubreys 57-day visit. Im being paranoid, I know, but he is going to be OK on my watch.

Knowing he would have to return to Thousand Oaks to take care of Pierces sisters, Tyler Kelly wanted to ensure his sons trip from the hospital would be a special one. The Bronco the same vehicle his mother drove to the hospital in 1981 so he could be delivered, and the same one he and Aubrey have used to get to the delivery room in time for the birth of their own three children seemed a fitting conveyance.

We wanted to continue the tradition, he said.

Hoping to assemble a retinue for the drive, Tyler Kelly reached out to enthusiast club SoCal Broncos and classicbroncos.com. Several people responded, including Agoura Hills Bronco owner Dan Bennett, for whom the cause was personal. About 10 years ago he saved a life by donating his own bone marrow.

To be able to go in and help play an intrinsic role in saving someones life is a really special thing, Bennett said. I think everybody should do it.

sara.cardine@latimes.com

Twitter: @SaraCardine

Read more here:
Convoy from Children’s Hospital to La Caada carries precious cargo a 2-year-old bone marrow recipient – Los Angeles Times

categoriaBone Marrow Stem Cells commentoComments Off on Convoy from Children’s Hospital to La Caada carries precious cargo a 2-year-old bone marrow recipient – Los Angeles Times dataSeptember 8th, 2017
Read all

Dr. Yaser Homsi Joins The Oncology Institute of Hope and Innovation – Benzinga

By LizaAVILA

The Oncology Institute of Hope Innovation welcomes Dr. Homsi to its team of specialists.

Downey, CA (PRWEB) September 08, 2017

The Oncology Institute of Hope Innovation welcomes Dr. Homsi to its team of specialists.

Dr. Yaser Homsi is a passionate and knowledgeable Hematologist that received his Medical education from the University of Aleppo in Aleppo, Syria. After graduation, Homsi moved to Indianapolis, Indiana where he completed his internship, residency and fellowship at the Indiana School of Medicine. Homsi’s fellowship training included: Blood and Bone Marrow Stem Cell Transplant, Hematology and Oncology.

Dr. Homsi has completed multiple medical researches including Cellular Therapy and Hematopoietic Stem Cell Transplantation for Cancer and has published papers in various disciplines of Oncology including the Role of Angiogesis in Cancer and The Outcome of the combination of Tacrolimus, Sirolimus and ATF.

Dr. Homsi is Fluent in Arabic.

Professional Memberships:

American Society of Clinical OncologyAmerican Society of HematologyPatient Philosophy:

Dr. Homsi believes in treating each of his patients as individuals as he aids his patients and their families through their treatment plan. He believes strongly in communication and strives to clearly educate all of his patients. He and his staff make every effort to give the best treatment and care possible.

For the original version on PRWeb visit: http://www.prweb.com/releases/2017/09/prweb14669766.htm

Continue reading here:
Dr. Yaser Homsi Joins The Oncology Institute of Hope and Innovation – Benzinga

categoriaBone Marrow Stem Cells commentoComments Off on Dr. Yaser Homsi Joins The Oncology Institute of Hope and Innovation – Benzinga dataSeptember 8th, 2017
Read all