Search Results

IPS and G-CON Launch iCON Cell Therapy Facility Platform …

By daniellenierenberg

Information contained on this page is provided by an independent third-party content provider. Frankly and this Site make no warranties or representations in connection therewith. If you are affiliated with this page and would like it removed please contact pressreleases@franklyinc.com

SOURCE G-CON Manufacturing

iCON Cell Therapy Platform Launched with Shipment of the 1st BERcellFLEX PODs

COLLEGE STATION, Texas, Sept. 5, 2018 /PRNewswire-PRWeb/ --Following up on the launch of the iCON Turnkey Facility Platform for a mAb manufacturing facility late last year, IPS-Integrated Project Services, LLC and G-CON Manufacturing have successfully designed and delivered the first BERcellFLEX PODs for the manufacturing of autologous cell therapies. The iCON solution provides a pre-fabricated modular cleanroom infrastructure for the drug manufacturers' requirements for both clinical and commercial manufacture of critical therapies. Following the iCON model, IPS provided the engineering design while G-CON built, tested and delivered the BERcellFLEX CAR-T processing suites in both twelve (12) foot and twenty-four (24) foot wide POD configurations.

"This is an exciting time for our companies as the iCON platform is being adopted by clients who recognize that new innovative approaches are needed to meet the growing demand for cell and gene therapy manufacturing" said Dennis Powers, Vice President of Business Development and Sales Engineering at G-CON Manufacturing Inc. "We believe that the iCON platform approach with its faster and more predictable project schedules for new facility construction are essential for supplying life changing therapies to the patients that need them."

"The gene therapy industry needs standardized solutions to meet its speed to market requirements," said Tom J. Piombino, Vice President & Process Architect at IPS. "In addition to our larger 2K mAb facility platform that we rolled out earlier this year, the BERcellFLEX12 and 24 represent a line of gene/cell therapy products that operating companies can buy today, ready-to-order, in either an open or closed-processing format with little to no engineering time we start fabricating almost immediately after URS alignment. Multiple cellFLEX units can be installed to scale up/out from Phase 1 Clinical production to Commercial Manufacturing and serve the needs of thousands of CAR-T patients per year. Being able to meet this critical need is consistent with our vision; we're thrilled to be able to offer this modular solution to help our clients get therapies to their patients."

About iCON The iCON platform, the collaborative efforts of IPS and G-CON Manufacturing, Inc., is redefining facility project execution for the biopharma industry where there is a growing need for more rapidly deployable and flexible manufacturing capability. iCON has launched turnkey designs for monoclonal antibody facilities and autologous cell therapies, and is developing platforms for cell and gene therapies, vaccines, OSD, and aseptic filling. An iCON solution can be deployed for:

About G-CON G-CON Manufacturing designs, produces and installs prefabricated cleanroom PODs. G-CON's cleanroom POD portfolio encompasses a variety of different dimensions and purposes, from laboratory environments to personalized medicine and production process platforms. The POD cleanroom units are unique from traditional cleanroom structures due to the ease of scalability, mobility and the ability to repurpose the PODs once the production process reaches the end of its lifecycle. For more information, please visit the Company's website at http://www.gconbio.com.

About IPS IPS is a global leader in developing innovative facility and bioprocess solutions for the biotechnology and pharmaceutical industries. Through operational expertise and industry-leading knowledge, skill and passion, IPS provides consulting, architecture, engineering, construction management, and compliance services that allow clients to create and manufacture life-impacting products around the world. Headquartered in Blue Bell, PA-USA, IPS is one of the largest multi-national companies servicing the life sciences industry with over 1,100 professionals in the US, Canada, Brazil, UK, Ireland, Switzerland, Singapore, China, and India. Visit our website at http://www.ipsdb.com.

2017 PR Newswire. All Rights Reserved.

Go here to read the rest:
IPS and G-CON Launch iCON Cell Therapy Facility Platform ...

categoriaIPS Cell Therapy commentoComments Off on IPS and G-CON Launch iCON Cell Therapy Facility Platform … dataSeptember 6th, 2018
Read all

Stem Cell Therapy and Stem Cell Injection Provider Finder …

By raymumme

Stem cell therapy can be described as a means or process by which stem cells are used for the prevention, treatment or the cure of diseases. Stem cells are a special kind of cells that have features other types of cells dont have. As an illustration, stem cells are capable of proliferation. This implies that they can develop into any type of cell, and grow to start performing the functions of the tissue. In addition, they can regenerate. This means they can multiply themselves. This is most important when a new tissue has to be formed. Also, they modulate immune reactions. This has made them useful for the treatment of autoimmune diseases, especially those that affect the musculoskeletal system such as rheumatoid arthritis, systemic lupus erythematosus and so on. Stem cells can be derrived from different sources. They can be extracted from the body, and in some specific parts of the body. This includes the blood, bone marrow, umbilical cord in newborns, adipose tissue, and from embryos. There are 2 main types of stem cell transplant. These are autologous stem cell transplant, and allogeneic stem cell transplant. The autologous stem cell transplant means that stem cells are extracted from the patient, processed, and then transplanted back to the patient, for therapeutic purposes. On the other hand, allogeneic stem cell transplant means the transplant of stem cells or from another individual, known as the donor, to another person, or recipient. Some treatments must be given to the receiver to prevent any cases of rejections, and other complications. The autologous is usually the most preferred type of transplant because of its almost zero side effects. Below are some of the stem cell treatments. Our goal is to provide education, research and an opportunity to connect with Stem Cell Doctors, as well as provide stem cell reviews

Adipose Stem Cell TreatmentsAdipose stem cell treatment is one of the most commonly used. This is because large quantities of stem cells can be derrived from them. According to statistics, the number of stem cells in adipose tissue are usually hundreds of times higher than what can be obtained from other sources, such as the bone marrow stem cells. Adipose stem cells have taken the center stage in the world of stem cell therapy. Apart from the ease that comes with the harvesting of these cells from the adipose tissue, they also have some special features, that separates them from other types of cells. Adipose stem cells are capable of regulating and modulating the immune system. This includes immune suppression, which is important for the treatment of autoimmune diseases. In addition, adipose stem cells can differentiate to form other types of cells. Some of them include the bone forming cells, cardiomyocytes, and cells of the nervous system.

This process can be divided into four parts. These are

Stem cell joint injection is fast becoming the new treatment of joint diseases. Stem cells derived from bone marrow, adipose and mesenchymal stem cells are the most commonly used. The stem cells are injected into the joints, and they proceed to repair and replace the damaged tissues. The cells also modulate the inflammatory process going on. Overall, stem cell joint injections significantly reduce the recovery time of patients and also eliminates pain and risks associated with surgery. Examples of diseases where this treatment is used include osteoarthritis, rheumatoid arthritis, and so on. Researchers and physicians have rated this procedure to be the future of joint therapy.

Losing a tooth as a kid isnt news because youd eventually grow them back, but losing one as an adult isnt a pleasant experience. Youd have to go through the pains of getting a replacement from your dentist. Apart from the cost of these procedures, the pain and number of days youd have to stay at home nursing the pain is also a problem. Nevertheless, there are great teeth replacement therapies available for all kinds of dental problems. Although there are already good dental treatment methods, stem cell therapy might soon become the future of dental procedures. Currently, a lot of research is being done on how stem cells can be used to develop teeth naturally, especially in patients with dental problems. The aim of the project is to develop a method whereby peoples stem cells are used in regenerating their own teeth and within the shortest time possible. Some of the benefits of the stem cell tooth would be:

The quality of life of those that underwent serious procedures, especially those that had an allogeneic hematopoietic stem cell transplantation done was studied. It was discovered that this set of people had to cope with some psychological problems, even years after the procedure. In addition, allogeneic stem cell transplantation often comes with some side effects. However, this a small price to pay, considering that the adverse effects are not usually life-threatening. Also theses types of procedures are used for severe disorders or even terminal diseases. On the other hand, autologous stem cell transplantation bears the minimum to no side effects. Patients do have a great quality of life, both in the short term and in the long term.

This is one of the many uses of stem cells. The stem cell gun is a device that is used in treating people with wounds or burns. This is done by simply triggering it, and it sprays stem cells on the affected part. This kind of treatment is crucial for victims of a severe burn. Usually, people affected by severe burns would have to endure excruciating pain. The process of recovery is usually long, which might vary from weeks to months, depending on the severity of the burn. Even after treatment, most patients are left with scars forever. However, the stem cell gun eliminates these problems, the skin can be grown back in just a matter of days. The new skin also grows evenly and blends perfectly with the other part of the body. This process is also without the scars that are usually associated with the traditional burns therapy. The stem cell gun is without any side effects.

There is one company that focuses on the production of stem cell supplements. These stem cells are usually natural ingredients that increase the development of stem cells, and also keeps them healthy. The purpose of the stem cell supplements is to help reduce the aging process and make people look younger. These supplements work by replacing the dead or repairing the damaged tissues of the body. There have been a lot of testimonials to the efficacy of these supplements.

It is the goal of researchers to make stem cell therapy a good alternative for the millions of patients suffering from cardiac-related diseases. According to some experiments carried out in animals, stem cells were injected into the ones affected by heart diseases. A large percentage of them showed great improvement, even within just a few weeks. However, when the trial was carried out in humans, some stem cells went ahead to develop into heart muscles, but overall, the heart function was generally improved. The reason for the improvement has been attributed to the formation of new vessels in the heart. The topic that has generated a lot of arguments have been what type of cells should be used in the treatment of heart disorders. Stem cells extracted from the bone marrow, embryo have been in use, although bone marrow stem cells are the most commonly used. Stem cells extracted from bone marrow can differentiate into cardiac cells, while studies have shown that other stem cells cannot do the same. Even though the stem cell therapy has a lot of potential in the future, more research and studies have to be done to make that a reality.

The use of stem cells for the treatment of hair loss has increased significantly. This can be attributed to the discovery of stem cells in bone marrow, adipose cells, umbilical cord, and so on. Stem cells are extracted from the patient, through any of the sources listed above. Adipose tissue stem cells are usually the most convenient in this scenario, as they do not require any special extraction procedure. Adipose tissue is harvested from the abdominal area. The stem cells are then isolated from the other cells through a process known as centrifugation. The stem cells are then activated and are now ready for use. The isolated stem cells are then introduced into the scalp, under local anesthesia. The entire process takes about three hours. Patients are free to go home, after the procedure. Patients would begin to see improvements in just a few months, however, this depends largely on the patients ability to heal. Every patient has a different outcome.

Human umbilical stem cells are cells extracted from the umbilical cord of a healthy baby, shortly after birth. Umbilical cord tissue is abundant in stem cells, and the stem cells can differentiate into many types of cells such as red blood cells, white blood cells, and platelets. They are also capable of differentiating into non-blood cells such as muscle cells, cartilage cells and so on. These cells are usually preferred because its' extraction is minimally non invasive. It also is nearly painless. It also has zero risks of rejecting, as it does not require any form of matching or typing.Human umbilical stem cell injections are used for the treatment of spinal cord injuries. A trial was done on twenty-five patients that had late-stage spinal cord injuries. They were placed on human umbilical stem cell therapy, while another set of 25 patients were simultaneously placed on the usual rehabilitation therapy. The two groups were studied for the next twelve months. The results of the trial showed that those people placed on stem cell therapy by administering the human umbilical cell tissue injections had a significant recovery, as compared to the other group that underwent the traditional rehabilitation therapy. It was concluded that human umbilical tissue injections applied close to the injured part gives the best outcomes.

Stem cell therapy has been used for the treatment of many types diseases. This ranges from terminal illnesses such as cancer, joint diseases such as arthritis, and also autoimmune diseases. Stem cell therapy is often a better alternative to most traditional therapy today. This is because stem cell procedure is minimally invasive when compared to chemotherapy and so on. It harnesses the bodys own ability to heal. The stem cells are extracted from other parts of the body and then transplanted to other parts of the body, where they would repair and maintain the tissues. They also perform the function of modulating the immune system, which makes them important for the treatment of autoimmune diseases. Below are some of the diseases that stem cell therapies have been used successfully:

A stem cell bank can be described as a facility where stem cells are stored for future purposes. These are mostly amniotic stem cells, which are derived from the amnion fluid. Umbilical cord stem cells are also equally important as it is rich in stem cells and can be used for the treatment of many diseases. Examples of these diseases include cancer, blood disorders, autoimmune diseases, musculoskeletal diseases and so on. According to statistics, umbilical stem cells can be used for the treatment of over eighty diseases. Storing your stem cells should be seen as an investment in your health for future sake. Parents do have the option of either throwing away their babys umbilical cord or donating it to stem cell banks.

The adipose tissue contains a lot of stem cells, that has the ability to transform into other cells such as muscle, cartilage, neural cells. They are also important for the treatment of some cardiovascular diseases. This is what makes it important for people to want to store their stem cells. The future health benefit is huge. The only way adults can store their stem cells in sufficient amounts is to extract the stem cells from their fat tissues. This process is usually painless and fast. Although, the extraction might have to be done between 3 to 5 times before the needed quantity is gotten. People that missed the opportunity to store their stem cells, using their cord cells, can now store it using their own adipose tissues. This can be used at any point in time.

Side effects often accompany every kind of treatment. However, this depends largely on the individual. While patients might present with side effects, some other people wouldnt. Whether a patient will present with adverse effects, depends on the following factors;

Some of the common side effects of stem cell transplant are;

Stem cell treatment has been largely successful so far, however, more studies and research needs to be done. Stem cell therapy could be the future.

Stem cells are unique cells that have some special features such as self-regeneration, tissue repair, and modulation of the immune system. These are the features that are employed in the treatment of diseases.

Our doctors are certified by iSTEMCELL but operate as part of a medical group or as independent business owners and as such are free to charge what the feel to be the right fit for their practice and clients. We have seen Stem Cell Treatment costs range from $3500 upwards of $30,000 depending on the condition and protocol required for intended results. Find the Best Stem Cell Doctor Near me If you are interested in saving money, try our STEM CELL COUPON!

Travel Medcations are becoming very popular around the globe for several reasons but not for what one might think. It is not about traveling to Mexico to save money, but to get procedures or protocols that are not yet available in your home country. Many procedures are started in your home country, then the tissue is set to the tissue lab where it is then grown in a process to maximize live cells, then sent to a hospital in Mexico designed to treat or provide different therapies for different conditions. If you're ready to take a medical vacation call 972-800-6670 for our"WHITE GLOVE" service.

Chen, C. and Hou, J. (2016). Mesenchymal stem cell-based therapy in kidney transplantation. Stem Cell Research & Therapy, 7(1).

Donnelly, A., Johar, S., OBrien, T. and Tuan, R. (2010). Welcome to Stem Cell Research & Therapy. Stem Cell Research & Therapy, 1(1), p.1.

Groothuis, S. (2015). Changes in Stem Cell Research. Stem Cell Research, 14(1), p.130.

Rao, M. (2012). Stem cells and regenerative medicine. Stem Cell Research & Therapy, 3(4), p.27.

Vunjak-Novakovic, G. (2013). Physical influences on stem cells. Stem Cell Research & Therapy, 4(6), p.153.

Here is the original post:
Stem Cell Therapy and Stem Cell Injection Provider Finder ...

categoriaCardiac Stem Cells commentoComments Off on Stem Cell Therapy and Stem Cell Injection Provider Finder … dataAugust 19th, 2018
Read all

Induced Pluripotent Stem Cell (iPS Cell): 2018-2022 …

By admin

Dublin, Aug. 02, 2018 (GLOBE NEWSWIRE) -- The "Global Induced Pluripotent Stem Cell (iPS Cell) Industry Report 2018-19" report has been added to ResearchAndMarkets.com's offering.

Groundbreaking experimentation in 2006 led to the introduction of induced pluripotent stem cells (iPSCs). These are adult cells which are isolated and then transformed into embryonic-like stem cells through the manipulation of gene expression, as well as other methods. Research and experimentation using mouse cells by Shinya Yamanaka's lab at Kyoto University in Japan was the first instance in which there was a successful generation of iPSCs.

In 2007, a series of follow-up experiments were done at Kyoto University in which human adult cells were transformed into iPSCs. Nearly simultaneously, a research group led by James Thomson at the University of Wisconsin-Madison accomplished the same feat of deriving iPSC lines from human somatic cells.

Since the discovery of iPSCs a large and thriving research product market has grown into existence, largely because the cells are non-controversial and can be generated directly from adult cells. While it is clear that iPSCs represent a lucrative product market, methods for commercializing this cell type are still being explored, as clinical studies investigating iPSCs continue to increase in number.

iPS Cell Therapies

2013 was a landmark year in Japan because it saw the first cellular therapy involving the transplant of iPS cells into humans initiated at the RIKEN Center in Kobe, Japan. Led by Masayo Takahashi of the RIKEN Center for Developmental Biology (CDB). Dr. Takahashi was investigating the safety of iPSC-derived cell sheets in patients with wet-type age-related macular degeneration.

Although the study was suspended in 2015 due to safety concerns, in June 2016 RIKEN Institute announced that it would resume the clinical study using allogeneic rather than autologous iPSC-derived cells, because of the cost and time efficiencies.

In a world-first, Cynata Therapeutics received approval in September 2016 to launch the world's first formal clinical trial of an allogeneic iPSC-derived cell product, called CYP-001. The study involves centers in the UK and Australia. In this trial, Cynata is testing an iPS cell-derived mesenchymal stem cell (MSC) product for the treatment of GvHD.

On 16 May 2018, Nature News then reported that Japan's health ministry gave doctors at Osaka University permission to take sheets of tissue derived from iPS cells and graft them onto diseased human hearts. The team of Japanese doctors, led by cardiac surgeon Yoshiki Sawa at Osaka University, will use iPS cells to create a sheet of 100 million heart-muscle cells. From preclinical studies in pigs, the medical team determined that thin sheets of cell grafts can improve heart function, likely through paracrine signaling.

Kyoto University Hospital in Kobe, Japan also stated it would be opening an iPSC therapy center in 2019, for purposes of conducting clinical studies on iPS cell therapies. Officials for Kyoto Hospital said it will open a 30-bed ward to test the efficacy and safety of the therapies on volunteer patients, with the hospital aiming to initiate construction at the site in February of 2016 and complete construction by September 2019.

iPS Cell Market Competitors

In 2009 ReproCELL, a company established as a venture company originating from the University of Tokyo and Kyoto University was the first to make iPSC products commercially available with the launch of its human iPSC-derived cardiomyocytes, which it called ReproCario.

Cellular Dynamics International, a Fujifilm company, is another major market player in the iPSC sector. Similar to ReproCELL, CDI established its control of the iPSC industry after being founded in 2004 by Dr. James Thomson at the University of Wisconsin-Madison, who in 2007 derived iPSC lines from human somatic cells for the first time ever (the feat was accomplished simultaneously by Dr. Shinya Yamanaka's lab in Japan).

A European leader within the iPSC market is Ncardia, formed through the merger of Axiogenesis and Pluriomics. Founded in 2001 and headquartered in Cologne, Germany, Axiogenesis initially focused on generating mouse embryonic stem cell-derived cells and assays. After Yamanaka's groundbreaking iPSC technology became available, Axiogenesis was the first European company to license and adopt Yamanaka's iPSC technology in 2010.

Ncardia's focus lies on preclinical drug discovery and drug safety through the development of functional assays using human neuronal and cardiac cells, although it is expanding into new areas. Its flagship offering is its Cor.4U human cardiomyocyte product family, including cardiac fibroblasts.

In summary, market leaders have emerged in all areas of iPSC development, including:

iPS Cell Commercialization

Key Findings

Key Topics Covered

1. SCOPE AND METHODOLOGY

2. EXECUTIVE SUMMARY

3. BACKGROUND - iPSC RESEARCH

4. MARKET ANALYSIS BY PRODUCT CATEGORY

5. MARKET ANALYSIS BY APPLICATION

6. MARKET ANALYSIS BY GEOGRAPHY

7. PATENTS

8. COMPANIES

9. COMPANY PROFILES

10. CONCLUSIONS

For more information about this report visit https://www.researchandmarkets.com/research/njhzjc/induced?w=12

Read the original here:
Induced Pluripotent Stem Cell (iPS Cell): 2018-2022 ...

categoriaIPS Cell Therapy commentoComments Off on Induced Pluripotent Stem Cell (iPS Cell): 2018-2022 … dataAugust 5th, 2018
Read all

Myocyte – Wikipedia

By raymumme

"Muscle fiber" and "Myofiber" redirect here. For protein structures inside cells, see Myofibril.

A myocyte (also known as a muscle cell)[1] is the type of cell found in muscle tissue. Myocytes are long, tubular cells that develop from myoblasts to form muscles in a process known as myogenesis.[2] There are various specialized forms of myocytes: cardiac, skeletal, and smooth muscle cells, with various properties. The striated cells of cardiac and skeletal muscles are referred to as muscle fibers.[3] Cardiomyocytes are the muscle fibres that form the chambers of the heart, and have a single central nucleus.[4] Skeletal muscle fibers help support and move the body and tend to have peripheral nuclei.[5][6] Smooth muscle cells control involuntary movements such as the peristalsis contractions in the oesophagus and stomach.

The unusual microstructure of muscle cells has led cell biologists to create specialized terminology. However, each term specific to muscle cells has a counterpart that is used in the terminology applied to other types of cells:

The sarcoplasm is the cytoplasm of a muscle fiber. Most of the sarcoplasm is filled with myofibrils, which are long protein cords composed of myofilaments. The sarcoplasm is also composed of glycogen, a polysaccharide of glucose monomers, which provides energy to the cell with heightened exercise, and myoglobin, the red pigment that stores oxygen until needed for muscular activity.[7]

There are three types of myofilaments:[7]

Together, these myofilaments work to produce a muscle contraction.

The sarcoplasmic reticulum, a specialized type of smooth endoplasmic reticulum, forms a network around each myofibril of the muscle fiber. This network is composed of groupings of two dilated end-sacs called terminal cisternae, and a single transverse tubule, or T tubule, which bores through the cell and emerge on the other side; together these three components form the triads that exist within the network of the sarcoplasmic reticulum, in which each T tubule has two terminal cisternae on each side of it. The sarcoplasmic reticulum serves as reservoir for calcium ions, so when an action potential spreads over the T tubule, it signals the sarcoplasmic reticulum to release calcium ions from the gated membrane channels to stimulate a muscle contraction.[7][8]

The sarcolemma is the cell membrane of a striated muscle fiber and receives and conducts stimuli. At the end of each muscle fiber, the outer layer of the sarcolemma combines with tendon fibers.[9] Within the muscle fiber pressed against the sarcolemma are multiple flattened nuclei; this multinuclear condition results from multiple myoblasts fusing to produce each muscle fiber, where each myoblast contributes one nucleus.[7]

The cell membrane of a myocyte has several specialized regions, which may include the intercalated disk and the transverse tubular system. The cell membrane is covered by a lamina coat which is approximately 50nm wide. The laminar coat is separable into two layers; the lamina densa and lamina lucida. In between these two layers can be several different types of ions, including calcium.[10]

The cell membrane is anchored to the cell's cytoskeleton by anchor fibers that are approximately 10nm wide. These are generally located at the Z lines so that they form grooves and transverse tubules emanate. In cardiac myocytes this forms a scalloped surface.[10]

The cytoskeleton is what the rest of the cell builds off of and has two primary purposes; the first is to stabilize the topography of the intracellular components and the second is to help control the size and shape of the cell. While the first function is important for biochemical processes, the latter is crucial in defining the surface to volume ratio of the cell. This heavily influences the potential electrical properties of excitable cells. Additionally deviation from the standard shape and size of the cell can have negative prognostic impact.[10]

Each muscle fiber contains myofibrils, which are very long chains of sarcomeres, the contractile units of the cell. A cell from the biceps brachii muscle may contain 100,000 sarcomeres.[11][verification needed] The myofibrils of smooth muscle cells are not arranged into sarcomeres. The sarcomeres are composed of thin and thick filaments. Thin filaments are made of actin and attach at Z lines which help them line up correctly with each other.[12] Troponins are found at intervals along the thin filaments. Thick filaments are made of the elongated protein myosin.[13] The sarcomere does not contain organelles or a nucleus. Sarcomeres are marked by Z lines which show the beginning and the end of a sarcomere. Individual myocytes are surrounded by endomysium.

Myocytes are bound together by perimysium into bundles called fascicles; the bundles are then grouped together to form muscle tissue, which is enclosed in a sheath of epimysium. The perimysium contains blood vessels and nerves which provide for the muscle fibers. Muscle spindles are distributed throughout the muscles and provide sensory feedback information to the central nervous system. Myosin is shaped like a long shaft with a rounded end pointed out towards the surface. This structure forms the cross bridge that connects with the thin filaments.[13]

A myoblast is a type of embryonic progenitor cell that differentiates to give rise to muscle cells.[14] Differentiation is regulated by myogenic regulatory factors, including MyoD, Myf5, myogenin, and MRF4.[15] GATA4 and GATA6 also play a role in myocyte differentiation.[16]

Skeletal muscle fibers are made when myoblasts fuse together; muscle fibers therefore are cells with multiple nuclei, known as myonuclei, with each cell nucleus originating from a single myoblast. The fusion of myoblasts is specific to skeletal muscle (e.g., biceps brachii) and not cardiac muscle or smooth muscle.

Myoblasts in skeletal muscle that do not form muscle fibers dedifferentiate back into myosatellite cells. These satellite cells remain adjacent to a skeletal muscle fiber, situated between the sarcolemma and the basement membrane[17] of the endomysium (the connective tissue investment that divides the muscle fascicles into individual fibers). To re-activate myogenesis, the satellite cells must be stimulated to differentiate into new fibers.

Myoblasts and their derivatives, including satellite cells, can now be generated in vitro through directed differentiation of pluripotent stem cells.[18]

Kindlin-2 plays a role in developmental elongation during myogenesis.[19]

Muscle fibers grow when exercised and shrink when not in use. This is due to the fact that exercise stimulates the increase in myofibrils which increase the overall size of muscle cells. Well exercised muscles can not only add more size but can also develop more mitochondria, myoglobin, glycogen and a higher density of capillaries. However muscle cells cannot divide to produce new cells, and as a result we have fewer muscle cells as an adult than a newborn.[20]

When contracting, thin and thick filaments slide with respect to each other by using adenosine triphosphate. This pulls the Z discs closer together in a process called sliding filament mechanism. The contraction of all the sarcomeres results in the contraction of the whole muscle fiber. This contraction of the myocyte is triggered by the action potential over the cell membrane of the myocyte. The action potential uses transverse tubules to get from the surface to the interior of the myocyte, which is continuous within the cell membrane. Sarcoplasmic reticula are membranous bags that transverse tubules touch but remain separate from. These wrap themselves around each sarcomere and are filled with Ca2+.[13]

Excitation of a myocyte causes depolarization at its synapses, the neuromuscular junctions, which triggers action potential. With a singular neuromuscular junction, each muscle fiber receives input from just one somatic efferent neuron. Action potential in a somatic efferent neuron causes the release of the neurotransmitter acetylcholine.[21]

When the acetylcholine is released it diffuses across the synapse and binds to a receptor on the sarcolemma, a term unique to muscle cells that refers to the cell membrane. This initiates an impulse that travels across the sarcolemma.[20]

When the action potential reaches the sarcoplasmic reticulum it triggers the release of Ca2+ from the Ca2+ channels. The Ca2+ flows from the sarcoplasmic reticulum into the sarcomere with both of its filaments. This causes the filaments to start sliding and the sarcomeres to become shorter. This requires a large amount of ATP, as it is used in both the attachment and release of every myosin head. Very quickly Ca2+ is actively transported back into the sarcoplasmic reticulum, which blocks the interaction between the thin and thick filament. This in turn causes the muscle cell to relax.[20]

There are four main different types of muscle contraction: twitch, treppe, tetanus and isometric/isotonic. Twitch contraction is the process previously described, in which a single stimulus signals for a single contraction. In twitch contraction the length of the contraction may vary depending on the size of the muscle cell. During treppe (or summation) contraction muscles do not start at maximum efficiency; instead they achieve increased strength of contraction due to repeated stimuli. Tetanus involves a sustained contraction of muscles due to a series of rapid stimuli, which can continue until the muscles fatigue. Isometric contractions are skeletal muscle contractions that do not cause movement of the muscle. However, isotonic contractions are skeletal muscle contractions that do cause movement.[20]

Specialized cardiomyocytes located in the sinoatrial node are responsible for generating the electrical impulses that control the heart rate. These electrical impulses coordinate contraction throughout the remaining heart muscle via the electrical conduction system of the heart. Sinoatrial node activity is modulated, in turn, by nerve fibres of both the sympathetic and parasympathetic nervous systems. These systems act to increase and decrease, respectively, the rate of production of electrical impulses by the sinoatrial node.

There are numerous methods employed for fiber-typing, and confusion between the methods is common among non-experts. Two commonly confused methods are histochemical staining for myosin ATPase activity and immunohistochemical staining for Myosin heavy chain (MHC) type. Myosin ATPase activity is commonlyand correctlyreferred to as simply "fiber type", and results from the direct assaying of ATPase activity under various conditions (e.g. pH).[22] Myosin heavy chain staining is most accurately referred to as "MHC fiber type", e.g. "MHC IIa fibers", and results from determination of different MHC isoforms.[22] These methods are closely related physiologically, as the MHC type is the primary determinant of ATPase activity. Note, however, that neither of these typing methods is directly metabolic in nature; they do not directly address oxidative or glycolytic capacity of the fiber. When "type I" or "type II" fibers are referred to generically, this most accurately refers to the sum of numerical fiber types (I vs. II) as assessed by myosin ATPase activity staining (e.g. "type II" fibers refers to type IIA + type IIAX + type IIXA... etc.).

Below is a table showing the relationship between these two methods, limited to fiber types found in humans. Note the sub-type capitalization used in fiber typing vs. MHC typing, and that some ATPase types actually contain multiple MHC types. Also, a subtype B or b is not expressed in humans by either method.[23] Early researchers believed humans to express a MHC IIb, which led to the ATPase classification of IIB. However, later research showed that the human MHC IIb was in fact IIx,[23] indicating that the IIB is better named IIX. IIb is expressed in other mammals, so is still accurately seen (along with IIB) in the literature. Non human fiber types include true IIb fibers, IIc, IId, etc.

Further fiber typing methods are less formally delineated, and exist on more of a spectrum. They tend to be focused more on metabolic and functional capacities (i.e., oxidative vs. glycolytic, fast vs. slow contraction time). As noted above, fiber typing by ATPase or MHC does not directly measure or dictate these parameters. However, many of the various methods are mechanistically linked, while others are correlated in vivo.[26][27] For instance, ATPase fiber type is related to contraction speed, because high ATPase activity allows faster crossbridge cycling.[22] While ATPase activity is only one component of contraction speed, type I fibers are "slow", in part, because they have low speeds of ATPase activity in comparison to type II fibers. However, measuring contraction speed is not the same as ATPase fiber typing.

Because of these types of relationships, Type I and Type II fibers have relatively distinct metabolic, contractile, and motor-unit properties. The table below differentiates these types of properties. These types of propertieswhile they are partly dependent on the properties of individual fiberstend to be relevant and measured at the level of the motor unit, rather than individual fiber.[22]

Traditionally, fibers were categorized depending on their varying color, which is a reflection of myoglobin content. Type I fibers appear red due to the high levels of myoglobin. Red muscle fibers tend to have more mitochondria and greater local capillary density. These fibers are more suited for endurance and are slow to fatigue because they use oxidative metabolism to generate ATP (adenosine triphosphate). Less oxidative type II fibers are white due to relatively low myoglobin and a reliance on glycolytic enzymes.

Fibers can also be classified on their twitch capabilities, into fast and slow twitch. These traits largely, but not completely, overlap the classifications based on color, ATPase, or MHC.

Some authors define a fast twitch fiber as one in which the myosin can split ATP very quickly. These mainly include the ATPase type II and MHC type II fibers. However, fast twitch fibers also demonstrate a higher capability for electrochemical transmission of action potentials and a rapid level of calcium release and uptake by the sarcoplasmic reticulum. The fast twitch fibers rely on a well-developed, short term, glycolytic system for energy transfer and can contract and develop tension at 23 times the rate of slow twitch fibers. Fast twitch muscles are much better at generating short bursts of strength or speed than slow muscles, and so fatigue more quickly.[28]

The slow twitch fibers generate energy for ATP re-synthesis by means of a long term system of aerobic energy transfer. These mainly include the ATPase type I and MHC type I fibers. They tend to have a low activity level of ATPase, a slower speed of contraction with a less well developed glycolytic capacity. They contain high mitochondrial volumes, and the high levels of myoglobin that give them a red pigmentation. They have been demonstrated to have high concentrations of mitochondrial enzymes, thus they are fatigue resistant. Slow twitch muscles fire more slowly than fast twitch fibers, but are able to contract for a longer time before fatiguing.[28]

Individual muscles tend to be a mixture of various fiber types, but their proportions vary depending on the actions of that muscle and the species. For instance, in humans, the quadriceps muscles contain ~52% type I fibers, while the soleus is ~80% type I.[29] The orbicularis oculi muscle of the eye is only ~15% type I.[29] Motor units within the muscle, however, have minimal variation between the fibers of that unit. It is this fact that makes the size principal of motor unit recruitment viable.

The total number of skeletal muscle fibers has traditionally been thought not to change.It is believed there are no sex or age differences in fiber distribution; however, proportions of fiber types vary considerably from muscle to muscle and person to person.Sedentary men and women (as well as young children) have 45% type II and 55% type I fibers.[citation needed]People at the higher end of any sport tend to demonstrate patterns of fiber distribution e.g. endurance athletes show a higher level of type I fibers.Sprint athletes, on the other hand, require large numbers of type IIX fibers.Middle distance event athletes show approximately equal distribution of the two types. This is also often the case for power athletes such as throwers and jumpers.It has been suggested that various types of exercise can induce changes in the fibers of a skeletal muscle.[30]It is thought that if you perform endurance type events for a sustained period of time, some of the type IIX fibers transform into type IIA fibers. However, there is no consensus on the subject.It may well be that the type IIX fibers show enhancements of the oxidative capacity after high intensity endurance training which brings them to a level at which they are able to perform oxidative metabolism as effectively as slow twitch fibers of untrained subjects. This would be brought about by an increase in mitochondrial size and number and the associated related changes, not a change in fiber type.

Continued here:
Myocyte - Wikipedia

categoriaCardiac Stem Cells commentoComments Off on Myocyte – Wikipedia dataJuly 31st, 2018
Read all

Market Players Developing iPS Cell Therapies – BioInformant

By raymumme

1. Cellular Dynamics International, Owned by FujiFilm Holdings

Founded in 2004 and listed on NASDAQ in July 2013, Cellular Dynamics International (CDI) is headquartered in Madison, Wisconsin. The company is known for its extremely robust patent portfolio containing more than 900 patents.

According to the company, CDI is the worlds largest producer of fully functional human cells derived from induced pluripotent stem (iPS) cells.[1] Their trademarked, iCell Cardiomyocytes, derived from iPSCs, are human cardiac cells used to aid drug discovery, improve the predictability of a drugs worth, and screen for toxicity. In addition, CDI provides: iCell Endothelial Cells for use in vascular-targeted drug discovery and tissue regeneration, iCell Hepatocytes, and iCell Neurons for pre-clinical drug discovery, toxicity testing, disease prediction, and cellular research.[2]

Induced pluripotent stem cells were first produced in 2006 from mouse cells and in 2007 from human cells, by Shinya Yamanaka at Kyoto University,[3] who also won the Nobel Prize in Medicine or Physiology for his work on iPSCs.[4] Yamanaka has ties to Cellular Dynamics International as a member of the scientific advisory board of iPS Academia Japan. IPS Academia Japan was originally established to manage the patents and technology of Yamanakas work, and is now the distributor of several of Cellular Dynamics products, including iCell Neurons, iCell Cardiomyocytes, and iCell Endothelial Cells.[5]

Importantly, in 2010 Cellular Dynamics became the first foreign company to be granted rights to use Yamanakas iPSC patent portfolio. Not only has CDI licensed rights to Yamanakas patents, but it also has a license to use Otsu, Japan-based Takara Bios RetroNectin product, which it uses as a tool to produce its iCell and MyCell products.[6]

Furthermore, in February 2015, Cellular Dynamics International announced it would be manufacturing cGMP HLA Superdonor stem cell lines that will support cellular therapy applications through genetic matching.[8] Currently, CDI has two HLA super donor cell lines that provide a partial HLA match to approximately 19% of the population within the U.S., and it aims to expand its master stem cell bank by collecting more donor cell lines that will cover 95% of the U.S. population.[9] The HLA super donor cell lines were manufactured using blood samples and used to produce pluripotent iPSC lines, giving the cells the capacity to differentiate into nearly any cell within the human body.

On March 30, 2015, Fujifilm Holdings Corporation announced that it was acquiring CDI for $307 million, allowing CDI to continue to run its operations in Madison, Wisconsin, and Novato, California as a consolidated subsidiary of Fujifilm.[14] A key benefit of the merger is that CDIs technology platform enables the production of high-quality fully functioning iPSCs (and other human cells) on an industrial scale, while Fujifilm has developed highly-biocompatible recombinant peptides that can be shaped into a variety of forms for use as a cellular scaffold in regenerative medicine when used in conjunction with CDIs products.[15]

Additionally, Fujifilm has been strengthening its presence in the regenerative medicine field over the past several years, including a recent A$4M equity stake in Cynata Therapeutics and an acquisition of Japan Tissue Engineering Co. Ltd. in December 2014. Most commonly called J-TEC, Japan Tissue Engineering Co. Ltd. successfully launched the first two regenerative medicine products in the country of Japan. According to Kaz Hirao, CEO of CDI, It is very important for CDI to get into the area of therapeutic products, and we can accelerate this by aligning it with strategic and technical resources present within J-TEC.

Kaz Hirao also states, For our Therapeutic businesses, we will aim to file investigational new drugs (INDs) with the U.S. FDA for the off-the-shelf iPSC-derived allogeneic therapeutic products. Currently, we are focusing on retinal diseases, heart disorders, Parkinsons disease, and cancers. For those four indicated areas, we would like to file several INDs within the next five years.

Finally, in September 2015, CDI again strengthened its iPS cell therapy capacity by setting up a new venture, Opsis Therapeutics. Opsis is focused on discovering and developing novel medicines to treat retinal diseases and is a partnership with Dr. David Gamm, the pioneer of iPS cell-derived retinal differentiation and transplantation.

In summary, several key events indicate CDIs commitment to developing iPS cell therapeutics, including:

Australian stem cell company Cynata Therapeutics (ASX:CYP) is taking a unique approach by creating allogeneic iPSC derived mesenchyal stem cell (MSCs) on a commercial scale. Cynatas Cymerus technology utilizes iPSCs provided by Cellular Dynamics International, a Fujifilm company, as the starting material for generating mesenchymoangioblasts (MCAs), and subsequently, for manufacturing clinical-grade MSCs. According to Cynatas Executive Chairman Stewart Washer who was interviewed by The Life Sciences Report, The Cymerus technology gets around the loss of potency with the unlimited iPS cellor induced pluripotent stem cellwhich is basically immortal.

On January 19, 2017, Fujifilm took an A$3.97 million (10%) strategic equity stake in Cynata, positioning the parties to collaborate on the further development and commercialization of Cynatas lead Cymerus therapeutic MSC product CYP-001 for graft-versus-host disease (GvHD). (CYP-001 is the product designation unique to the GVHD indication). The Fujifilm partnership also includes potential future upfront and milestone payments in excess of A$60 million and double-digit royalties on CYP-001 product net sales for Cynata Therapeutics, as well as a strategic relationship for the potential future manufacture of CYP-001 and certain rights to other Cynata technology.

One of the key inventors of Cynatas technology is Igor Slukvin, MD, Ph.D., Scientific Founder of Cellular Dynamics International (CDI) and Cynata Therapeutics. Dr. Slukvin has released more than 70 publications about stem cell topics, including the landmark article in Cell describing the now patented Cymerus technique. Dr. Slukvins co-inventor is Dr. James Thomson, the first person to isolate an embryonic stem cell (ESC) and one of the first people to create a human induced pluripotent stem cell (hiPSC). Dr. James Thompson was the Founder of CDI in 2004.

There are three strategic connections between Cellular Dynamics International (CDI) and Cynata Therapeutics, which include:

Recently, Cynata received advice from the UK Medicines and Healthcare products Regulatory Agency (MHRA) that its Phase I clinical trial application has been approved, titled An Open-Label Phase 1 Study to Investigate the Safety and Efficacy of CYP-001 for the Treatment of Adults With Steroid-Resistant Acute Graft Versus Host Disease. It will be the worlds first clinical trial involving a therapeutic product derived from allogeneic (unrelated to the patient) induced pluripotent stem cells (iPSCs).

Participants for Cynatas upcoming Phase I clinical trial will be adults who have undergone an allogeneic haematopoietic stem cell transplant (HSCT) to treat a hematological disorder and subsequently been diagnosed with steroid-resistant Grade II-IV GvHD. The primary objective of the trial is to assess safety and tolerability, while the secondary objective is to evaluate the efficacy of two infusions of CYP-001 in adults with steroid-resistant GvHD.

Using Professor Yamanakas Nobel Prize-winning achievement of ethically uncontentious iPSCs and CDIs high-quality iPSCs as source material, Cynata has achieved two world firsts:

Cynata has also released promising pre-clinical data in Asthma, Myocardial Infarction (Heart Attack), and Critical Limb Ischemia.

There are four key advantages of Cynatas proprietary Cymerus MSC manufacturing platform. Because the proprietary Cymerus technology allows nearly unlimited production of MSCs from a single iPSC donor, there is batch-to-batch uniformity. Utilizing a consistent starting material allows for a standardized cell manufacturing process and a consistent cell therapy product. Unlike other companies involved with MSC manufacturing, Cynata does not require a constant stream of new donors in order to source fresh stem cells for its cell manufacturing process, nor does it require the massive expansion of MSCs necessitated by reliance on freshly isolated donations.

Finally, Cynata has achieved a cost-savings advantage through its unique approach to MSC manufacturing. Its proprietary Cymerus technology addresses a critical shortcoming in existing methods of production of MSCs for therapeutic use, which is the ability to achieve economic manufacture at commercial scale.

On June 22, 2016, RIKEN announced that it is resuming its retinal induced pluripotent stem cell (iPSC) study in partnership with Kyoto University.

2013 was the first time in which clinical research involving transplant of iPSCs into humans was initiated, led by Masayo Takahashi of the RIKEN Center for Developmental Biology (CDB) in Kobe, Japan. Dr. Takahashi and her team were investigating the safety of iPSC-derived cell sheets in patients with wet-type age-related macular degeneration. Although the trial was initiated in 2013 and production of iPSCs from patients began at that time, it was not until August of 2014 that the first patient, a Japanese woman, was implanted with retinal tissue generated using iPSCs derived from her own skin cells.

A team of three eye specialists, led by Yasuo Kurimoto of the Kobe City Medical Center General Hospital, implanted a 1.3 by 3.0mm sheet of iPSC-derived retinal pigment epithelium cells into the patients retina.[196] Unfortunately, the study was suspended in 2015 due to safety concerns. As the lab prepared to treat the second trial participant, Yamanakas team identified two small genetic changes in the patients iPSCs and the retinal pigment epithelium (RPE) cells derived from them. Therefore, it is major news that the RIKEN Institute will now be resuming the worlds first clinical study involving the use of iPSC-derived cells in humans.

According to the Japan Times, this attempt at the clinical study will involve allogeneic rather than autologous iPSC-derived cells for purposes of cost and time efficiency. Specifically, the researchers will be developing retinal tissues from iPS cells supplied by Kyoto Universitys Center for iPS Cell Research and Application, an institution headed by Nobel prize winner Shinya Yamanaka. To learn about this announcement, view this article from Asahi Shimbun, a Tokyo- based newspaper.

In November 2015 Astellas Pharma announced it was acquiring Ocata Therapeutics for $379M. Ocata Therapeutics is a biotechnology company that specializes in the development of cellular therapies, using both adult and human embryonic stem cells to develop patient-specific therapies. The companys main laboratory and GMP facility are in Marlborough, Massachusetts, and its corporate offices are in Santa Monica, California.

When a number of private companies began to explore the possibility of using artificially re-manufactured iPSCs for therapeutic purposes, one such company that was ready to capitalize on the breakthrough technology was Ocata Therapeutics, at the time called Advanced Cell Technology. In 2010, the company announced that it had discovered several problematic issues while conducting experiments for the purpose of applying for U.S. Food and Drug Administration approval to use iPSCs in therapeutic applications. Concerns such as premature cell death, mutation into cancer cells, and low proliferation rates were some of the problems that surfaced. [17]

As a result, the company shifted its induced pluripotent stem cell approach to producing iPS cell-derived human platelets, as one of the benefits of a platelet-based product is that platelets do not contain nuclei, and therefore, cannot divide or carry genetic information. While the companys Induced Pluripotent Stem Cell-Derived Human Platelet Program received a great deal of media coverage in late 2012, including being awarded the December 2012 honor of being named one of the 10 Ideas that Will Shape the Year by New Scientist Magazine,[178]. Unfortunately, the company did not succeed in moving the concept through to clinical testing in 2013.

Nonetheless, Astellas is clearly continuing to develop Ocatas pluripotent stem cell technologies involving embryonic stem cells (ESCs) and induced pluripotent stem cells (iPS cells). In a November 2015 presentation by Astellas President and CEO, Yoshihiko Hatanaka, he indicated that the company will aim to develop an Ophthalmic Disease Cell Therapy Franchise based around its embryonic stem cell (ESC) and induced pluripotent stem cell (iPS cell) technology. [19]

What other companies are developing iPSC derived therapeutics and products? Share your thoughts in the comments below.

BioInformant is the first and only market research firm to specialize in the stem cell industry. BioInformant research has been cited by major news outlets that include the Wall Street Journal, Nature Biotechnology, Xconomy, and Vogue Magazine. Serving Fortune 500 leaders that include GE Healthcare, Pfizer, and Goldman Sachs. BioInformant is your global leader in stem cell industry data.

Footnotes[1] CellularDynamics.com (2014). About CDI. Available at: http://www.cellulardynamics.com/about/index.html. Web. 1 Apr. 2015.[2] Ibid.[3] Takahashi K, Yamanaka S (August 2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126 (4): 66376.[4] 2012 Nobel Prize in Physiology or Medicine Press Release. Nobelprize.org. Nobel Media AB 2013. Web. 7 Feb 2014. Available at: http://www.nobelprize.org/nobel_prizes/medicine/laureates/2012/press.html. Web. 1 Apr. 2015.[5] Striklin, D (Jan 13, 2014). Three Companies Banking on Regenerative Medicine. Wall Street Cheat Sheet. Retrieved Feb 1, 2014 from, http://wallstcheatsheet.com/stocks/3-companies-banking-on-regenerative-medicine.html/?a=viewall.%5B6%5D Striklin, D (2014). Three Companies Banking on Regenerative Medicine. Wall Street Cheat Sheet [Online]. Available at: http://wallstcheatsheet.com/stocks/3-companies-banking-on-regenerative-medicine.html/?a=viewall. Web. 1 Apr. 2015.[7] Cellular Dynamics International (July 30, 2013). Cellular Dynamics International Announces Closing of Initial Public Offering [Press Release]. Retrieved from http://www.cellulardynamics.com/news/pr/2013_07_30.html.%5B8%5D Investors.cellulardynamics.com,. Cellular Dynamics Manufactures Cgmp HLA Superdonor Stem Cell Lines To Enable Cell Therapy With Genetic Matching (NASDAQ:ICEL). N.p., 2015. Web. 7 Mar. 2015.[9] Ibid.[10] Cellulardynamics.com,. Cellular Dynamics | Mycell Products. N.p., 2015. Web. 7 Mar. 2015.[11]Sirenko, O. et al. Multiparameter In Vitro Assessment Of Compound Effects On Cardiomyocyte Physiology Using Ipsc Cells.Journal of Biomolecular Screening 18.1 (2012): 39-53. Web. 7 Mar. 2015.[12] Sciencedirect.com,. Prevention Of -Amyloid Induced Toxicity In Human Ips Cell-Derived Neurons By Inhibition Of Cyclin-Dependent Kinases And Associated Cell Cycle Events. N.p., 2015. Web. 7 Mar. 2015.[13] Sciencedirect.com,. HER2-Targeted Liposomal Doxorubicin Displays Enhanced Anti-Tumorigenic Effects Without Associated Cardiotoxicity. N.p., 2015. Web. 7 Mar. 2015.[14] Cellular Dynamics International, Inc. Fujifilm Holdings To Acquire Cellular Dynamics International, Inc.. GlobeNewswire News Room. N.p., 2015. Web. 7 Apr. 2015.[15] Ibid.[16] Cyranoski, David. Japanese Woman Is First Recipient Of Next-Generation Stem Cells. Nature (2014): n. pag. Web. 6 Mar. 2015.[17] Advanced Cell Technologies (Feb 11, 2011). Advanced Cell and Colleagues Report Therapeutic Cells Derived From iPS Cells Display Early Aging [Press Release]. Available at: http://www.advancedcell.com/news-and-media/press-releases/advanced-cell-and-colleagues-report-therapeutic-cells-derived-from-ips-cells-display-early-aging/.%5B18%5D Advanced Cell Technology (Dec 20, 2012). New Scientist Magazine Selects ACTs Induced Pluripotent Stem (iPS) Cell-Derived Human Platelet Program As One of 10 Ideas That Will Shape The Year [Press Release]. Available at: http://articles.latimes.com/2009/mar/06/science/sci-stemcell6. Web. 9 Apr. 2015.[19] Astellas Pharma (2015). Acquisition of Ocata Therapeutics New Step Forward in Ophthalmology with Cell Therapy Approach. Available at: https://www.astellas.com/en/corporate/news/pdf/151110_2_Eg.pdf. Web. 29 Jan. 2017.

Read the original here:
Market Players Developing iPS Cell Therapies - BioInformant

categoriaIPS Cell Therapy commentoComments Off on Market Players Developing iPS Cell Therapies – BioInformant dataJuly 27th, 2018
Read all

iPSC | Induced Pluripotent Stem Cells | Human | HiPSC …

By daniellenierenberg

Consistency

Quality Control and Testing

Product Selection & Support

HiPSC Custom Services

Human Induced Pluripotent Stem Cells (HiPSC)Top:HiPSC express pluriotency markers OCT4, Nanog, LIN28 and SSEA-4.Bottom:HiPSC differentiate into cell derivatives from the 3 embryonic layers: Neuronal marker beta III tubulin (TUJ1), Smooth Muscle Actin (SMA) and Hepatocyte Nuclear Factor 3 Beta (HNF3b).

Cutting-edge development and manufacturing provides high quality, thoroughly-characterized HiPSC cells to researchers around the world. HiPSC are generated from somatic cells, eliminating ethical considerations associated with scientific work based on embryonic stem cells. Furthermore, being donor/patient-specific, they open possibilities for a wide variety of studies in biomedical research. Donor somatic cells carry the genetic makeup of the diseased patient, hence HiPSC can be used directly to model disease on a dish.

Thus, one of the main uses of HiPSC has been in genetic disease modeling in organs and tissues, such as the brain (Alzheimers, Autism Spectrum Disorders), heart (Familial Hypertrophic, Dilated, and Arrhythmogenic Right Ventricular Cardiomyopathies), and skeletal muscle (Amyotrophic Lateral Sclerosis, Spinal Muscle Atrophy). The combination of HiPSC technology and gene editing strategies such as the CRISPR/Cas9 system creates a powerful platform in which disease-causing mutations can be created on demand and sets of isogenic cell lines (with and without mutations) serve as convenient tools for disease modeling studies.

Other applications of HiPSC and iPSC-differentiated cells include drug screening, development, efficacy and toxicity assessment. As an example, through the FDA-backed CiPA (Comprehensive in vitro Pro-Arrhythmia Assessment) initiative, HiPSC-derived cardiac muscle cells (cardiomyocytes) are poised to constitute a new standard model for the evaluation of cardiotoxicity of new drugs, which is the main reason of drug withdrawal from the market. Finally, HiPSC-differentiated cells are being used in early stage technology development for applications in regenerative medicine. Bio-printing and tissue constructs have also been considered as attractive applications for HiPSC.

Human iPSC and Derived Cells are forResearch Use Only (RUO). Not for human clinical or therapeutic use.

See original here:
iPSC | Induced Pluripotent Stem Cells | Human | HiPSC ...

categoriaCardiac Stem Cells commentoComments Off on iPSC | Induced Pluripotent Stem Cells | Human | HiPSC … dataJuly 13th, 2018
Read all

Skin & Human Stem Cells – BareFacedTruth.com

By LizaAVILA

We have a lot of knowledge to share with you about stem cells and their value in skin care. We thought we would start with a current review of ongoing work in human stem cell science to give you some context. In the next few days we will be getting a lot more specific about wound healing, anti-aging, and related applications.

Human Stem Cells: Introduction

Future advances in many medical fields are thought to be dependent on continued progress in stem cell research. In this section, BTF briefly looks at the future of stem cell based therapies in the treatment of traumatic injury, degenerative diseases, and other ailments, and concludes with a review of current cell based therapies (stem cell and non-stem cell) in the field of skin care.

While the possible indications for stem cell based therapies are numerous,the field of stem cell science is young and years (or decades) may pass before todays promising laboratory results translate into useful clinical treatments. Only time will tell whether successes evolve or remain frustratingly elusive. We do know that success is possible.

The first stem cell therapy was bone marrow transplantation, originally accomplished in the mid 1960s. Last year, there were more than 50,000 such transplants worldwide. In earlier years, infusion of filtered bone marrow cells was performed with stem cells comprising but a very small part of the volume. Newer techniques have made it possible to separate cellular types to enable use of much higher concentrations of stem cells.

Much progress has been made in characterizing stem cells and understanding how they function. There is much more to the story than differentiation into tissue specific cells. Recent research shows that perhaps even more important is the fact that stem cells, especially certain types of stem cells, communicate with the cells around them by producing cellular signals called cytokines, of which there are hundreds.

Cytokines trigger specific receptors on cell membranes that result in precise responses. This phenomenon is considered an essential element in the healing response of all tissues. Identifying and characterizing the large number of cytokines is an important part of stem cell research.

Not every induced response is necessarily beneficial. It is the symphony of responses that is important. How to promote helpful responses while inhibiting non-beneficial ones is a continuing focus of cellular biochemical research as well as the basis upon which drug companies spend huge resources developing drugs to either trigger or block particular cytokine receptors. Good examples in the field of dermatology are EGFR (epidermal growth factor receptor) blocking compounds for use in treating susceptible cells, most notably cancers stimulated by EGF.

Potential Treatments

Stem cell therapies hold potential to treat many conditions and diseases that affect millions of people in the U.S.

From the Laboratory to the Bedside

Going from the research laboratory to the bedside takes time. Only one month ago, the FDA granted marketing approval for the first licensed stem cell product. Derived from donated umbilical cord blood, the product contains stem cells that can restore a recipients blood cell levels and function. In the chart below, the type of cells recovered from umbilical cord blood are those designated as HSC cell. They are the exact cells responsible for the success of bone marrow transplantation.

Of particular note are the cells designated in the chart as MSC or mesenchymal stem cells. MSC cells are the focus of intense research in the treatment of a number of conditions because this type of stem cell can differentiate into a variety of cell types including bone, cartilage, muscles, nerve, and skin (fibroblast.)

Recent announcements about stem cells being used to fabricate replacement parts (bone, cartilage, heart muscle) are based on MSC research. They truly are the duct tape of the bodys repair tool box; a phrase coined because of their importance in the healing of injuries.

Research has shown MSC cells reside in a number of tissues, including the bone marrow. Through precise chemical signaling that originate from sites of injury, MSC cells have the ability to become mobile, enter the blood stream and travel through the circulation to the injury. Upon arrival, MSCs orchestrate the healing response. Local resident stem cells are also called into action, to produce more stem cells or to produce needed tissue specific cells. In large part, MSCs accomplish their tasks bio-chemically.

Secreted cytokines have been identified as themajormechanism by which MSCs perform their important reparative functions. There are hundreds of cytokines identified thus far. The healing response is an intricate and balanced process in which many cytokines participate.

Despite their inherent ability to differentiate into essentially any type of cell, embryonic stem cells are unlikely to be a major research focus in the foreseeable future. Ethical and political considerations limit the acceptability of their use. Federal regulations permit research only on existing cell lines which are few in number. It is difficult to see how this prohibition will end any time soon.

Getting Closer butNot There Yet

MSC (mesenchymal stem cell) therapies include use ofcellsanduse of MSC factors, the cytokines or chemical messengers mentioned above. Methods of administration will likely include intravenous infusion, injections into tissues or body spaces, or development of drugs that activate or block certain cytokine effects. Drugs already in development include epidermal growth factor receptor (EGFR) blockers for use in cancer treatment.

Stem Cells and Skin Health

From fetal life to death, the numbers and activity of stem cells diminish. The chart at left shows how the population of mesenchymal stem cells in the bone marrow dwindles with age.

Knowing that stem cells are important in producing differentiated daughter cells (such as fibroblasts within the dermis) and are instrumental in orchestrating the bodys response to injury, it is easy to understand how skin damage from sun exposure, gravity, smoking, trauma, toxins, even repetitive facial movement, accumulates over time.

This is one line of evidence (we will look at others) that mesenchymal stem cells (or more specifically the relative lack of same) has a lot to do with aging. Skin aging included.

Products Claiming to Activate Skin Stem Cells

The number of skin products claiming to activate human skin stem cells is large and growing. As discussed previously on BFT, a whole slew of plant derived stem cell products are being marketing, NONE of which can actually or theoretically activate anything, especially not a human stem cell.

Other products claim to have essential nutrients or antioxidants or some other magical ingredient that will suddenly make stem cells take notice and unleash their regenerative power. It is highly unlikely, except in the most extreme case of malnourishment, that any nutrient or antioxidant is deficient enough to cause a cell not to function.

These and the botanical stem cell products are marketing ploys. Human stem cells deep within the dermis will never know whether or not these substances are applied. Moisturizers and other recognized ingredients in these products can be beneficial to skin appearancebut not because a stem cell is involved.

This is worse than junk science. This is scamming.

Link:
Skin & Human Stem Cells - BareFacedTruth.com

categoriaSkin Stem Cells commentoComments Off on Skin & Human Stem Cells – BareFacedTruth.com dataJuly 13th, 2018
Read all

iPS Cell Therapy: Is Japan the Market Leader?

By NEVAGiles23

Although there are key players in markets like the U.S., Australia, and the EU, Japan continues to accelerates its position as a hub for induced pluripotent stem cell (iPS cell) therapy with generous funding, acquisitions, and strategic partnerships.

Pluripotent stem cells are cells that are capable of developing into any type of cell or tissue in the human body. These cells have the capability to replicate and help in repairing damaged tissues within the body. In 2006, the Japanese scientist Shinya Yamanaka demonstrated that an ordinary cell can be turned into a pluripotent cell by genetic modification. These genetically reprogrammed cells are known as induced pluripotent cells, also called iPS cells or iPSCs.

An induced pluripotent stem cell (iPS cell) is a type of pluripotent stem cell that has the capacity to divide indefinitely and create any cell found within the three germ layers of an organism. These layers include the ectoderm (cells giving rise to the skin and nervous system), endoderm (cells forming gastrointestinal and respiratory tracts, endocrine gland, liver, and pancreas), and mesoderm (cells forming bones, cartilage, most of the circulatory system, muscles, connective tissues, and other related tissues.).

iPS cells have significant potential for therapeutic applications. For autologous applications, the cells are extracted from the patients own body, making them genetically identical to the patient and eliminating the issues associated with tissue matching and tissue rejection.

iPS cells have the potential to be used to treat a wide range of diseases, including diabetes, heart diseases, autoimmune diseases, and neural complications, such as Parkinsons disease, Alzheimers disease.

Over the past few years, Japan has accelerated its position as a hub for regenerative medicine research, largely driven by support from Prime Minister Shinzo Abe who has identified regenerative medicine and cellular therapy as key to the Japans strategy to drive economic growth.

The Prime Minister has encouraged a growing range of collaborations between private industry and academic partners through an innovative legal framework approved last fall.

He has also initiated campaigns to drive technological advances in drugs and devices by connecting private companies with public funding sources. The result has been to drive progress in both basic and applied research involving induced pluripotent stem cells (iPS cells) and related stem cell technologies.

2013 was a landmark year in Japan, because it saw the first cellular therapy involving transplant of iPS cells into humans initiated at the RIKEN Center in Kobe, Japan.[1]Led by Masayo Takahashi of theRIKEN Center for Developmental Biology (CDB).Dr. Takahashi and her team wereinvestigating the safety of iPSC-derived cell sheets in patients with wet-type age-related macular degeneration.

To speed things along, RIKEN did not seek permission for a clinical trial involving iPS cells, but instead applied for a type of pretrial clinical research allowed under Japanese regulations.The RIKEN Center is Japans largest, most comprehensive research institution, backed by both Japans Health Ministry and government.

This pretrial clinical research allowed the RIKEN research team to test the use of iPS cells for the treatment of wet-type age-related macular degeneration (AMD) on a very small scale, in only a handful of patients.Unfortunately, the study was suspended in 2015 due to safety concerns. As the lab prepared to treat the second trial participant, Yamanakas team identified two small genetic changes in the patients iPSCs and the retinal pigment epithelium (RPE) cells derived from them.

However, in June 2016 RIKEN Institute announced that it would be resuming the clinical study involving the use of iPSC-derived cellsin humans.According to theJapan Times, this second attempt at the clinical studyis using allogeneic rather than autologous iPSC-derived cells, because of the greater cost and time efficiencies.

Specifically,the researchers will be developing retinal tissues from iPS cells supplied by Kyoto Universitys Center for iPS Cell Research and Application, an institution headed by Nobel prize winner Shinya Yamanaka.

Japan has a unique affection for iPS cells, as the cells were originally discovered by the Japanese scientist, Shinya Yamanaka of Kyoto University. Mr. Yamanaka was awarded the Nobel Prize in Physiology or Medicine for 2012, an honor shared jointly with John Gurdon, for the discovery that mature cells can be reprogrammed to become pluripotent.

In addition, Japans Education Ministry said its planning to spend 110 billion yen ($1.13 billion) on induced pluripotent stem cell research during the next 10 years, and the Japanese parliament has been discussing bills that would speed the approval process and ensure the safety of such treatments.[3]

In April, Japanese parliament even passed a law calling for Japan to make regenerative medical treatments like iPSC technology available for its citizens ahead of the rest of the world.[4] If those forces were not enough, Masayo Takahashi of the RIKEN Center for Developmental Biology in Kobe, Japan, who is heading the worlds first clinical research using iPSCs in humans, was also chosen by the journal Natureas one of five scientists to watch in 2014.[5]

Clearly, Japan is the global leader in iPS cell technologies and therapies. However, progress with stem cells has not been without setbacks within Japan, including a recent scandal at the RIKEN Institute that involved falsely manipulated research findings and a hold on the first clinical trial involving transplant of an iPS cell product into humans.

Nonetheless, Japan has emerged from these troubles to become the most liberalized nation pursuing the development of iPS cell products and services.

iPS cells represent one of the most promising advances within the field of stem cell research, because of their diverse ability to differentiate into any of the approximately 200 cell types that compose the human body.

Even though there is growing evidence to support the safety of iPS cells within cell therapy applications,some people remain concerned that patients who receive implants of iPS derived cells might be at risk of cancer, as genetic manipulation is required to create the cell type.

In a world-first, Cynata Therapeutics (ASX:CYP) received approval in September 2016 to launch a clinical trial in the UK with the worlds first first formal clinical trial of an allogeneic iPSC-derived cell product, which it calls CYP-001.The study involves centers in both the UK and Australia.

In this landmark trial, the Australian regenerative medicine company is testing an iPS cell-derived mesenchymal stem cell (MSC) product for the treatment of Graft-vs-Host-Disease (GvHD).Not surprisingly, the Japanese conglomerate Fujifilm is also involved with this historic trial.

Headquartered in Tokyo, Fujifilm is one of the largest players in regenerative medicine field and has invested significantly into stem cells through their acquisition of Cellular Dynamics International (CDI). Additionally, Fujifilm has invested in Japan Tissue Engineering Co. Ltd. (J-Tec), giving it a broad base in regenerative medicine across multiple therapeutic areas.

For a young company like Cynata, having validation from an industry giant like Fujifilm is a huge boost. As stated by Cynata CEO, Dr. Ross Macdonald, The decision by Fujifilm confirms that our technology is very exciting in their eyes. It is a useful yardstick for other investors as well. Of course, the effect of the relationship with Fujifilm on our balance sheet is also important.

If Fujifilm exercises their option to license Cynatas GvHD product, then the costs of the product and commercialization will become the responsibility of Fujifilm. Cynata would also receive milestone payments from Fujifilm of approximately $60M AUS and a double-digit royalty payment.

Cynata was also the first to scale-up manufacture of an allogeneic cGMP iPS celll line. It sourced the cell line from Cellular Dynamics International (CDI) when CDI was still an independent company listed on NASDAQ. In April 2015, CDI was subsequently acquired by Fujifilm, who as mentioned, is a major shareholder in Cynata and its strategic partner for GvHD.

Although Cynata is showing promising early-stage data from its GvHD trial, methods for commercializing iPS cells are still being explored and clinical studies investigating iPS cells remain extremely low in number.

Footnotes[1] Dvorak, K. (2014).Japan Makes Advance on Stem-Cell Therapy [Online]. Available at: http://online.wsj.com/news/articles/SB10001424127887323689204578571363010820642. Web. 14 Apr. 2015.[2] Note: In the United States, some patients have been treated with retina cells derived from embryonic stem cells (ESCs) to treat macular degeneration. There was a successful patient safety test for this stem cell treatment last year that was conducted at the Jules Stein Eye Institute in Los Angeles. The ESC-derived cells used for this study were developed by Advanced Cell Technology, Inc, a company located in Marlborough, Massachusetts.[3] Dvorak, K. (2014).Japan Makes Advance on Stem-Cell Therapy [Online]. Available at: http://online.wsj.com/news/articles/SB10001424127887323689204578571363010820642. Web. 8 Apr. 2015.[4] Ibid.[5] Riken.jp. (2014).RIKEN researcher chosen as one of five scientists to watch in 2014 | RIKEN [Online]. Available at: http://www.riken.jp/en/pr/topics/2014/20140107_1/. Web. 14 Apr. 2015.

View original post here:
iPS Cell Therapy: Is Japan the Market Leader?

categoriaIPS Cell Therapy commentoComments Off on iPS Cell Therapy: Is Japan the Market Leader? dataJuly 11th, 2018
Read all

Stem Cell Treatment/Therapy COST in India| DheerajBojwani.Com

By LizaAVILA

Get your Stem Cell Treatment in India with Dheeraj Bojwani Consultants

Stem Cell treatment is an intricate process. Stem Cell transplant patients need utmost care with respect to both emotionally and physically. Dheeraj Bojwani Consultants is a prominent medical tourism company in India making world-class medical facilities from best surgeons and hospitals accessible for international patients looking for budget-friendly treatment abroad.

Mrs. Marilyn Obiora - Nigeria Stem Cell Therapy For her Daughter in India

Hi, my name is Mrs. Marilyn Obiora, and I am from Nigeria. I came to India for my daughter's Stem Cell Therapy in India. My daughter had her first stroke in 2011. She couldn't sit, talk and had lost control of her neck. We could not find suitable help for her condition and searched for treatment in India.

We sent a query to the dheerajbojwani.com and received fast reply. Within no time we were in India for my daughter's treatment. We are very pleased with the treatment offered and there has been serious improvement in her condition in just two weeks. Thanks to the Dheeraj Bojwani Consultants, my daughter is regaining proper body functions and recuperating well.

Medical science has come a long way since its practice began thousands of years ago. Scientists are finding superior and more resourceful ways to cure diseases of different organs. Stem cells are undifferentiated parent cells that can transform into specialized cell types, divide further and produce more stem cells of the same group. Stem Cell therapy is performed to prevent or treat a health condition. Stem Cell Treatment is a reproductive therapy where nourishing tissues reinstate damaged tissues for relief from incurable diseases. Stem cell treatment is one of the approaches with a potential to heal a wide range of diseases in the near future. Science has always provided ground-breaking answers to obdurate health conditions, but the latest medical miracle that the medical fraternity has gifted to mankind is the Stem Cell Therapy.

Stem cell therapy is an array of techniques intended to replace cells damaged or destroyed by disease with healthy functioning ones. Even though the techniques are relatively new, their applications and advantages are broad and surprising the medical world with every new research. Stem cells are obtained from bone marrow or human umbilical cord. They are also known as the fundamental cells of our body and have the power to develop into any type of tissue cell in the body. Stem cell treatment is based on the principle that the cells move to the site of injury and transform themselves to form new tissue cells to replace the damaged ones. They have the capacity to proliferate and renew themselves indefinitely and can form mature muscle cells, nerve cells, and blood cells. In this type of therapy, they are derived from the body, kept under artificial conditions where they mature into the type of cells that are required to heal a certain part of the body or disease.

Stem cells are being studied and used to treat different types of cancers, disorders related to the blood, immune disorders, and metabolic disorders. Some other diseases and health conditions that may be healed using stem cell treatment are,

Recently, a team of researchers successfully secured the peripheral nerves in the upper arms of a patient suffering peripheral nerve damage, by using skin-derived stem cells (SDSCs) and a previously developed collagen tube, premeditated to successfully bridge gaps in injured nerves.

A research has found potential in bone marrow stem cell therapy to treat TB. Patients injected with new mesenchymal stromal cells derived from their own bone marrow showed positive response against the TB bacteria. The therapy also didnt show any serious adverse effects.

Stem cells are also used to treat hair loss. A small amount of fat is taken from the waist area of the patient by a mini-liposuction process. This fat contains dormant stem cells, and is then spun to separate the stem cells from the fat. An activation solution is added to the cells, and may be multiplied in number, depending on the size of the bald area. Once activated, the solution is washed off so that only cells remain. Now, the stem cells are injected into the scalp. One can find some hair growth in about two to four weeks.

Damaged cones in retinas can be regenerated and eyesight restored through stem cell. Stem cell therapy could regenerate damaged cones in people, especially in the cone-rich regions of the retina that provide daytime/color vision.

Kidney transplants have become more common and easier thanks stem cell therapy. Normally patients who undergo organ transplants need a lifetime of costly anti-rejection drugs but the new procedure may negate this need, with organ donors stem cells. Unless there is a perfect match donor, patients have to wait long for an organ transplant. Though still in early stages, the stem cell research is being considered as a potential player in the field of transplantation.

Transplanted stem cells serve as migratory signals for the brain's own neurogenic cells, guiding the new host cells towards the injured brain tissue. Stem cells have the potential to give rise to many different cell types that carry out different functions. While the stem cells in adult bone marrow tend to develop into the cells that make up the organ system from which they originated. These multipotent stem cells can be manipulated to take up the characteristics of neural cells.

Experts are using Stem cell Transplant to treat the symptoms of spinal cord injury by transplantation of cells directly into the gray matter of the patients spinal cord. Expectedly, the cells will integrate into the patients own neural tissue and create new circuitry to help transmit nerve signals to muscles. The transplanted cells may also promote reorganization of the spinal cord segmental circuitry, possibly leading to improved motor function.

Stem cells are capable of differentiating into a variety of different cell types, and if the architecture of damaged tendon is restored, it would improve the management of patients with these injuries significantly.

A promising benefit of stem cell therapy is its potential for cardiac tissue regeneration to reverse tissue loss underlying the development of heart failure after cardiac injury. Possible mechanisms of recovery include generation of heart muscle cells, stimulation of new blood vessels growth, secretion of growth factors.

It is a complex and multifarious procedure, with several risks and complications involved and is thus recommended to a few patients when other treatments have failed. Stem Cell therapy is recommended when other treatments fail to give positive results. The best candidates for Stem cell Treatment are those in good health and have stem cells available from a sibling, or any other family member.

India has been recognized as the new medical destination for Stem Cell therapies. Hundreds of international patients from around the world visit to India for high quality medical care at par with developed nations like the US, UK, at the most affordable costs. The Hospitals in India have the most extensive diagnostic and imaging facilities including Asias most advanced MRI and CT technology. India provides services of the most leading doctors and Stem Cell Therapy professionals at reasonable cost budget in the following cities

India offers outstanding Stem Cell Treatment at rates far below that prevailing in USA or other Western countries. Even with travel expenses taken into account, the comprehensive medical tourism packages still provide a savings measured in the thousands of dollars for major procedures. A cost comparison can give you the exact idea about the difference:

There are many reasons for India becoming a popular medical tourism spot is the low cost stem cell treatment in the area. When in contrast to the first world countries like, US and UK, medical care in India costs as much as 60-90% lesser, that makes it a great option for the citizens of those countries to opt for stem cell treatment in India because of availability of quality healthcare in India, affordable prices strategic connectivity, food, zero language barrier and many other reasons.

The maximum number of patients for Stem Cell Treatment comes from Nigeria, Kenya, Ethiopia, USA, UK, Australia, Saudi Arabia, UAE, Uzbekistan, Bangladesh

Below are the downloadable links that will help you to plan your medical trip to India in a more organized and better way. Attached word and pdf files gives information that will help you to know India more and make your trip to India easy and memorable one.

Back

View original post here:
Stem Cell Treatment/Therapy COST in India| DheerajBojwani.Com

categoriaIPS Cell Therapy commentoComments Off on Stem Cell Treatment/Therapy COST in India| DheerajBojwani.Com dataJune 25th, 2018
Read all

Repairing the Damaged Spinal Cord – Scientific American

By admin

Editor's Note: This story, originally printed in the September 1999 issue of Scientific American, is being posted due to a new study showing that nerve cells can be regenerated by knocking out genes that typically inhibit their growth.

For Chinese gymnast Sang Lan, the cause was a highly publicized headfirst fall during warm-ups for the 1998 Goodwill Games. For Richard Castaldo of Littleton, Colo., it was bullets; for onetime football player Dennis Byrd, a 1992 collision on the field; and for a child named Samantha Jennifer Reed, a fall during infancy. Whatever the cause, the outcome of severe damage to the spinal cord is too often the same: full or partial paralysis and loss of sensation below the level of the injury.

Ten years ago doctors had no way of limiting such disability, aside from stabilizing the cord to prevent added destruction, treating infections and prescribing rehabilitative therapy to maximize any remaining capabilities. Nor could they rely on the cord to heal itself. Unlike tissue in the peripheral nervous system, that in the central nervous system (the spinal cord and brain) does not repair itself effectively. Few scientists held out hope that the situation would ever change.

Then, in 1990, a human trial involving multiple research centers revealed that a steroid called methylprednisolone could preserve some motor and sensory function if it was administered at high doses within eight hours after injury. For the first time, a therapy had been proved to reduce dysfunction caused by spinal cord trauma. The improvements were modest, but the success galvanized a search for additional therapies. Since then, many investigatorsincluding us have sought new ideas for treatment in studies of why an initial injury triggers further damage to the spinal cord and why the disrupted tissue fails to reconstruct itself.

In this article we will explain how the rapidly burgeoning knowledge might be harnessed to help people with spinal cord injuries. We should note, however, that workers have also been devising strategies that compensate for cord damage instead of repairing it. In the past two years, for example, the U.S. Food and Drug Administration has approved two electronic systems that regulate muscles by sending electrical signals through implanted wires. One returns certain hand movements (such as grasping a cup or a pen) to patients who have shoulder mobility; another restores a measure of control over the bladder and bowel.

A different approach can also provide grasping ability to certain patients. Surgeons identify tendons that link paralyzed forearm muscles to the bones of the hand, disconnect them from those muscles and connect them to arm muscles regulated by parts of the spine above the injury (and thus still under voluntary control). Further, many clinicians suspect that initiating rehabilitative therapy earlyexercising the limbs almost as soon as the spine is stabilizedmay enhance motor and sensory function in limbs. Those perceptions have not been tested rigorously in people, but animal studies lend credence to them.

The Cord at Work The organ receiving all this attention is no thicker than an inch but is the critical highway of communication between the brain and the rest of the body. The units of communication are the nerve cells (neurons), which consist of a bulbous cell body (home to the nucleus), trees of signal-detecting dendrites, and an axon that extends from the cell body and carries signals to other cells. Axons branch toward their ends and can maintain connections, or synapses, with many cells at once. Some traverse the entire length of the cord.

The soft, jellylike cord has two major systems of neurons. Of these, the descending, motor pathways control both smooth muscles of internal organs and striated muscles; they also help to modulate the actions of the autonomic nervous system, which regulates blood pressure, temperature and the bodys circulatory response to stress. The descending pathways begin with neurons in the brain, which send electrical signals to specific levels, or segments, of the cord. Neurons in those segments then convey the impulses outward beyond the cord.

The other main system of neurons the ascending, sensory pathwaystransmit sensory signals received from the extremities and organs to specific segments of the cord and then up to the brain. Those signals originate with specialized, transducer cells, such as sensors in the skin that detect changes in the environment or cells that monitor the state of internal organs. The cord also contains neuronal circuits (such as those involved in reflexes and certain aspects of walking) that can be activated by incoming sensory signals without input from the brain, although they can be influenced by messages from the brain.

The cell bodies in the trunk of the cord reside in a gray, butterfly-shaped core that spans the length of the spinal cord. The ascending and descending axonal fibers travel in a surrounding area known as the white matter, so called because the axons are wrapped in myelin, a white insulating material. Both regions also house glial cells, which help neurons to survive and work properly. The glia include star-shaped astrocytes, microglia (small cells that resemble components of the immune system) and oligodendrocytes, the myelin producers. Each oligodendrocyte myelinates as many as 40 different axons simultaneously.

The precise nature of a spinal cord injury can vary from person to person. Nevertheless, certain commonalities can be discerned.

When Injury Strikes When a fall or some other force fractures or dislocates the spinal column, the vertebral bones that normally enclose and protect the cord can crush it, mechanically killing and damaging axons. Occasionally, only the gray matter in the damaged area is significantly disrupted. If the injury ended there, muscular and sensory disturbances would be confined to tissues that send input to or receive it from neurons in the affected level of the cord, without much disturbing function below that level.

For instance, if only the gray matter were affected, a cervical 8 (C8) lesion involving the cord segment where the nerves labeled C8 originatewould paralyze the hands without impeding walking or control over the bowel and bladder. No signals would go out to, or be received from, the tissues connected to the C8 nerves, but the axons conveying signals up and down the surrounding white matter would keep working.

In contrast, if all the white matter in the same cord segment were destroyed, the injury would now interrupt the vertical signals, stopping messages that originated in the brain from traveling below the damaged area and blocking the flow to the brain of sensory signals coming from below the wound. The person would become paralyzed in the hands and lower limbs and would lose control over urination and defecation.

Sadly, the initial insult is only the beginning of the trouble. The early mechanical injury triggers a second wave of damageone that, over the subsequent minutes, hours and days, progressively enlarges the lesion and thus the extent of functional impairment. This secondary spread tends to occur longitudinally through the gray matter at first before expanding into the white matter (roughly resembling the inflation of a footballshaped balloon). Eventually the destruction can encompass several spinal segments above and below the original wound.

The end result is a complex state of disrepair. Axons that have been damaged become useless stumps, connected to nothing, and their severed terminals disintegrate. Often many axons remain intact but are rendered useless by loss of their insulating myelin. A fluid-filled cavity, or cyst, sits where neurons, other cells and axons used to be. And glial cells proliferate abnormally, creating clusters termed glial scars. Together the cyst and scars pose a formidable barrier to any cut axons that might somehow try to regrow and connect to cells they once innervated. A few axons may remain whole, myelinated and able to carry signals up or down the spine, but often their numbers are too small to convey useful directives to the brain or muscles.

First, Contain the Damage If all these changes had to be fully reversed to help patients, the prospects for new treatments would be grim. Fortunately, it appears that salvaging normal activity in as little as 10 percent of the standard axon complement would sometimes make walking possible for people who would otherwise lack that capacity. In addition, lowering the level of injury by just a single segment (about half an inch) can make an important difference to a persons quality of life. People with a C6 injury have no power over their arms, save some ability to move their shoulders and flex their elbows. But individuals with a lower, C7 injury can move the shoulders and elbow joints and extend the wrists; with training and sometimes a tendon transfer, they can make some use of their arms and hands.

Because so much damage arises after the initial injury, clarifying how that secondary destruction occurs and blocking those processes are critical. The added wreckage has been found to result from many interacting mechanisms.

Within minutes of the trauma, small hemorrhages from broken blood vessels appear, and the spinal cord swells. The blood vessel damage and swelling prevent the normal delivery of nutrients and oxygen to cells, causing many of them to starve to death.

Meanwhile damaged cells, axons and blood vessels release toxic chemicals that go to work on intact neighboring cells. One of these chemicals in particular triggers a highly disruptive process known as excitotoxicity. In the healthy cord the end tips of many axons secrete minute amounts of glutamate. When this chemical binds to receptors on target neurons, it stimulates those cells to fire impulses. But when spinal neurons, axons or astrocytes are injured, they release a flood of glutamate. The high levels overexcite neighboring neurons, inducing them to admit waves of ions that then trigger a series of destructive events in the cellsincluding production of free radicals. These highly reactive molecules can attack membranes and other components of formerly healthy neurons and kill them.

Until about a year ago, such excitotoxicity, also seen after a stroke, was thought to be lethal to neurons alone, but new results suggest it kills oligodendrocytes (the myelin producers) as well. This effect may help explain why even unsevered axons become demyelinated, and thus unable to conduct impulses, after spinal cord trauma.

Prolonged inflammation, marked by an influx of certain immune system cells, can exacerbate these effects and last for days. Normally, immune cells stay in the blood, unable to enter tissues of the central nervous system. But they can flow in readily where blood vessels are damaged. As they and microglia become activated in response to an injury, the activated cells release still more free radicals and other toxic substances.

Methylprednisolone, the first drug found to limit spinal cord damage in humans, may act in part by reducing swelling, inflammation, the release of glutamate and the accumulation of free radicals. The precise details of how it helps patients remain unclear, however.

Studies of laboratory animals with damaged spinal cords indicate that drugs able to stop cells from responding to excess glutamate could minimize destruction as well. Agents that selectively block glutamate receptors of the so-called AMPA class, a kind abundant on oligodendrocytes and neurons, seem to be particularly effective at limiting the final extent of a lesion and the related disability. Certain AMPA receptor antagonists have already been tested in early human trials as a therapy for stroke, and related compounds could enter safety studies in patients with spinal cord injury within several years.

Much of the early cell loss in the injured spinal cord occurs by necrosis, a process in which cells essentially become passive victims of murder. In the past few years, neurobiologists have also documented a more active form of cell death, somewhat akin to suicide, in the cord. Days or weeks after the initial trauma, a wave of this cell suicide, or apoptosis, frequently sweeps through oligodendrocytes as many as four segments from the trauma site. This discovery, too, has opened new doors for protective therapy. Rats given apoptosisinhibiting drugs retained more ambulatory ability after a traumatic spinal cord injury than did untreated rats.

In the past few years, biologists have identified many substances, called neurotrophic factors, that also promote neuronal and glial cell survival. A related substance, GM-1 ganglioside (Sygen), is now being evaluated for limiting cord injury in humans. Ultimately, interventions for reducing secondary damage in the spinal cord will probably enlist a variety of drugs given at different times to thwart specific mechanisms of death in distinct cell populations.

The best therapy would not only reduce the extent of an injury but also repair damage. A key component of that repair would be stimulating the regeneration of damaged axonsthat is, inducing their elongation and reconnection with appropriate target cells.

Although neurons in the central nervous system of adult mammals generally fail to regenerate damaged axons, this lapse does not stem from an intrinsic property of those cells. Rather the fault lies with shortcomings in their environment. After all, neurons elsewhere in the body and in the immature spinal cord and brain regrow axons readily, and animal experiments have shown that the right environment can induce axons of the spinal cord to extend quite far.

Then, Induce Regeneration One shortcoming of the cord environment turns out to be an overabundance of molecules that actively inhibit axonal regenerationsome of them in myelin. The scientists who discovered these myelin-related inhibitors have produced a molecule named IN-1 (inhibitorneutralizing antibody) that blocks the action of those inhibitors. They have also demonstrated that infusion of mouse-derived IN-1 into the injured rat spinal cord can lead to long-distance regrowth of some interrupted axons. And when pathways controlling front paw activity are severed, treated animals regain some paw motion, whereas untreated animals do not. The rodent antibody would be destroyed by the human immune system, but workers are developing a humanized version for testing in people.

Many other inhibitory molecules have now been found as well, including some produced by astrocytes and a number that reside in the extracellular matrix (the scaffolding between cells). Given this array, it seems likely that combination therapies will be needed to counteract or shut down the production of multiple inhibitors at once.

Beyond removing the brakes on axonal regrowth, a powerful tactic would supply substances that actively promote axonal extension. The search for such factors began with studies of nervous system development. Decades ago scientists isolated nerve growth factor (NGF), a neurotrophic factor that supports the survival and development of the peripheral nervous system. Subsequently, this factor turned out to be part of a family of proteins that both enhance neuronal survival and favor the outgrowth of axons. Many other families of neurotrophic factors with similar talents have been identified as well. For instance, the molecule neurotrophin- 3 (NT-3) selectively encourages the growth of axons that descend into the spinal cord from the brain.

Luckily, adult neurons remain able to respond to axon-regenerating signals from such factors. Obviously, however, natural production of these substances falls far short of the amount needed for spinal cord repair. Indeed, manufacture of some of the compounds apparently declines, instead of rising, for weeks after a spinal trauma occurs. According to a host of animal studies, artificially raising those levels after an injury can enhance regeneration. Some regeneration- promoting neurotrophic factors, such as basic fibroblast growth factor, have been tested in stroke patients. None has been evaluated as an aid to regeneration in people with spinal cord damage, but many are being assessed in animals as a prelude to such studies.

Those considering neurotrophic factors for therapy will have to be sure that the agents do not increase pain, a common long-term complication of spinal cord injury. This pain has many causes, but one is the sprouting of nascent axons where they do not belong (perhaps in a failed attempt to address the injury) and their inappropriate connection to other cells. The brain sometimes misinterprets impulses traveling through those axons as pain signals. Neurotrophic factors can theoretically exacerbate that problem and can also cause pain circuits in the spiral cord and pain-sensing cells in the skin to become oversensitive.

After axons start growing, they will have to be guided to their proper targets, the cells to which they were originally wired. But how? In this case, too, studies of embryonic development have offered clues.

During development, growing axons are led to their eventual targets by molecules that act on the leading tip, or growth cone. In the past five years especially, a startling number of substances that participate in this process have been uncovered. Some, such as a group called netrins, are released or displayed by neurons or glial cells. They beckon axons to grow in some directions and repel growth in others. Additional guidance molecules are fixed components of the extracellular matrix. Certain of the matrix molecules bind well to specific molecules (cell adhesion molecules) on the growth cones and thus provide anchors for growing axons. During development, the required directional molecules are presented to the growth cones in specific sequences.

Establish Proper Connections At the moment, no one knows how to supply all the needed chemical road signs in the right places. But some findings suggest that regeneration may be aided by supplying just a subset of those targeting moleculessay, a selection of netrins and components from the extracellular matrix. Substances already in the spinal cord may well be capable of supplying the rest of the needed guidance.

A different targeting approach aims to bridge the gap created by cord damage. It directs injured axons toward their proper destinations by supplying a conduit through which they can travel or by providing another friendly scaffolding able to give physical support to the fibers as they try to traverse the normally impenetrable cyst. The scaffolding can also serve as a source of growth-promoting chemicals.

For instance, researchers have implanted tubes packed with Schwann cells into the gap where part of the spinal cord was removed in rodents. Schwann cells, which are glia of the peripheral nervous system, were chosen because they have many attributes that favor axonal regeneration. In animal experiments, such grafts spurred some axonal growth into the tubes.

A second bridging material consists of olfactory-ensheathing glial cells, which are found only in the tracts leading from the nose to the olfactory bulbs of the brain. When those cells were put into the rat spinal cord where descending tracts had been cut, the implants spurred partial regrowth of the axons over the implant. Transplanting the olfactory-ensheathing glia with Schwann cells led to still more extensive growth.

In theory, a biopsy could be performed to obtain the needed olfactory ensheathing glia from a patient. But once the properties that enable them (or other cells) to be competent escorts for growing axons are determined, researchers may instead be able to genetically alter other cell types if desired, giving them the required combinations of growthpromoting properties.

Fibroblasts (cells common in connective tissue and the skin) are among those already being engineered to serve as bridges. They have been altered to produce the neurotrophic molecule NT-3 and then transplanted into the cut spinal cord of rodents. The altered fibroblasts have resulted in partial regrowth of axons. Along with encouraging axonal regrowth, NT-3 stimulates remyelination. In these studies the genetically altered fibroblasts have enhanced myelination of regenerated axons and improved hind limb activity.

Replace Lost Cells Other transplantation schemes would implant cells that normally occur in the central nervous system. In addition to serving as bridges and potentially releasing proteins helpful for axonal regeneration, certain of these grafts might be able to replace cells that have died.

Transplantation of tissue from the fetal central nervous system has produced a number of exciting results in animals treated soon after a trauma. This immature tissue can give rise to new neurons, complete with axons that travel long distances into the recipients tissues (up and down several segments in the spinal cord or out to the periphery). It can also prompt host neurons to send regenerating axons into the implanted tissue. In addition, transplant recipients, unlike untreated animals, may recover some limb function, such as the ability to move the paw in useful ways. What is more, studies of fetal tissue implants suggest that axons can at times find appropriate targets even in the absence of externally supplied guidance molecules. The transplants, however, are far more effective in the immature spinal cord than in the injured adult cordan indication that young children would probably respond to such therapy much better than adolescents or adults would.

Some patients with long-term spinal cord injuries have received human fetal tissue transplants, but too little information is available so far for drawing any conclusions. In any case, application of fetal tissue technology in humans will almost surely be limited by ethical dilemmas and a lack of donor tissue. Therefore, other ways of achieving the same results will have to be devised. Among the alternatives is transplanting stem cells: immature cells that are capable of dividing endlessly, of making exact replicas of themselves and also of spawning a range of more specialized cell types.

Various kinds of stem cells have been identified, including ones that generate all the cell types in the blood system, the skin, or the spinal cord and brain. Stem cells found in the human adult central nervous system have, moreover, been shown capable of producing neurons and all their accompanying glia, although these so-called neural stem cells seem to be quiescent in most regions of the system. In 1998 a few laboratories also obtained much more versatile stem cells from human tissue. These human embryonic stem cells (in common with embryonic stem cells obtained previously from other vertebrates) can be grown in culture and, in theory, can yield almost all the cell types in the body, including those of the spinal cord.

Stem Cell Strategies How might stem cells aid in spinal cord repair? A great deal will be possible once biologists learn how to obtain those cells readily from a patient and how to control the cells differentiation. Notably, physicians might be able to withdraw neural stem cells from a patients brain or spinal cord, expand the numbers of the still undifferentiated cells in the laboratory and place the enlarged population in the same persons cord with no fear that the immune system will reject the implant as foreign. Or they might begin with frozen human embryonic stem cells, coax those cells to become precursors, or progenitors, of spinal cells and implant a large population of the precursors. Studies proposing to examine the effects on patients with spinal cord injuries of transplanting neural stem cells (isolated from the patients brains by biopsy) are being considered.

Simply implanting progenitor cells into the cord may be enough to prod them to multiply and differentiate into the needed lineages and thus to replace useful numbers of lost neurons and glial cells and establish the proper synaptic connections between neurons. Stem cells transplanted into the normal and injured nervous systems of animals can form neurons and glia appropriate for the region of transplantation. Combined with the fetal tissue results, this outcome signifies that many important cues for differentiation and targeting preexist in the injured nervous system. But if extra help is needed, scientists might be able to deliver it through genetic engineering. As a rule, to be genetically altered easily, cells have to be able to divide. Stem cells, unlike mature neurons, fit that bill.

Scenarios involving stem cell transplants are admittedly futuristic, but one day they themselves may become unnecessary, replaced by gene therapy alone. Delivery of genes into surviving cells in the spinal cord could enable those cells to manufacture and release a steady supply of proteins able to induce stem cell proliferation, to enhance cell differentiation and survival, and to promote axonal regeneration, guidance and remyelination. For now, though, technology for delivering genes to the central nervous system and for ensuring that the genes survive and work properly is still being refined.

Until, and even after, cell transplants and gene therapies become commonplace for coping with spinal cord injury, patients might gain help through a different avenuedrugs that restore signal conduction in axons quieted by demyelination. Ongoing clinical tests are evaluating the ability of a drug called 4-aminopyridine to compensate for demyelination. This agent temporarily blocks potassium ion channels in axonal membranes and, in so doing, allows axons to transmit electrical signals past zones of demyelination. Some patients receiving the drug have demonstrated modest improvement in sensory or motor function.

At first glance, this therapy might seem like a good way to treat multiple sclerosis, which destroys the myelin around axons of neurons in the central nervous system. Patients with this disease are prone to seizures, however, and 4-aminopyridine can exacerbate that tendency.

Neurotrophic factors, such as NT-3, that can stimulate remyelination of axons in animals could be considered for therapy as well. NT-3 is already entering extensive (phase III) trials in humans with spinal cord injury, though not to restore myelin. It will be administered by injection in amounts capable of acting on nerves in the gut and of enhancing bowel function, but the doses will be too low to yield high concentrations in the central nervous system. If the drug proves to be safe in this trial, though, that success could pave the way for human tests of doses large enough to enhance myelination or regeneration.

The Years Ahead Clearly, the 1990s have seen impressive advances in understanding of spinal cord injury and the controls on neuronal growth. Like axons inching toward their targets, a growing number of investigators are pushing their way through the envelope of discovery and generating a rational game plan for treating such damage. That approach will involve delivery of multiple therapies in an orderly sequence. Some treatments will combat secondary injury, some will encourage axonal regrowth or remyelination, and some will replace lost cells.

When will the new ideas become real treatments? We wish we had an answer. Drugs that work well in animals do not always prove useful in people, and those that show promise in small human trials do not always pan out when examined more extensively. It is nonetheless encouraging that at least two human trials are now under way and that others could start in the next several years.

Limiting an injury will be easier than reversing it, and so treatments for ameliorating the secondary damage that follows acute trauma can be expected to enter human testing most quickly. Of the repair strategies, promoting remyelination will be the simplest to accomplish, because all it demands is the recoating of intact axons. Remyelination strategies have the potential to produce meaningful recovery of function, such as returning control over the bladder or bowel abilities that uninjured people take for granted but that would mean the world to those with spinal cord injuries.

Of course, tendon-transfer surgery and advanced electrical devices can already restore important functions in some patients. Yet for many people, a return of independence in daily activities will depend on reconstruction of damaged tissue through the regrowth of injured axons and the reconnection of disrupted pathways.

So far, few interventions in animals with well-established spinal cord injuries have achieved the magnitude of regrowth and synapse formation that would be needed to provide a hand grasp or the ability to stand and walk in human adults with long-term damage. Because of the great complexities and difficulties involved in those aspects of cord repair, we cannot guess when reconstructive therapies might begin to become available. But we anticipate continued progress toward that end.

Traditionally, medical care for patients with spinal cord injury has emphasized compensatory strategies that maximize use of any residual cord function. That focus is now expanding, as treatments designed to repair the damaged cord and restore lost functionscience fiction only a decade agoare becoming increasingly plausible.

See original here:
Repairing the Damaged Spinal Cord - Scientific American

categoriaSpinal Cord Stem Cells commentoComments Off on Repairing the Damaged Spinal Cord – Scientific American dataJune 21st, 2018
Read all

Mending a Broken Heart: Stem Cells and Cardiac Repair …

By Sykes24Tracey

Charles A. Goldthwaite, Jr., Ph.D.

Cardiovascular disease (CVD), which includes hypertension, coronary heart disease (CHD), stroke, and congestive heart failure (CHF), has ranked as the number one cause of death in the United States every year since 1900 except 1918, when the nation struggled with an influenza epidemic.1 In 2002, CVD claimed roughly as many lives as cancer, chronic lower respiratory diseases, accidents, diabetes mellitus, influenza, and pneumonia combined. According to data from the 19992002 National Health and Nutrition Examination Survey (NHANES), CVD caused approximately 1.4 million deaths (38.0 percent of all deaths) in the U.S. in 2002. Nearly 2600 Americans die of CVD each day, roughly one death every 34 seconds. Moreover, within a year of diagnosis, one in five patients with CHF will die. CVD also creates a growing economic burden; the total health care cost of CVD in 2005 was estimated at $393.5 billion dollars.

Given the aging of the U.S. population and the relatively dramatic recent increases in the prevalence of cardiovascular risk factors such as obesity and type 2 diabetes,2,3 CVD will continue to be a significant health concern well into the 21st century. However, improvements in the acute treatment of heart attacks and an increasing arsenal of drugs have facilitated survival. In the U.S. alone, an estimated 7.1 million people have survived a heart attack, while 4.9 million live with CHF.1 These trends suggest an unmet need for therapies to regenerate or repair damaged cardiac tissue.

Ischemic heart failure occurs when cardiac tissue is deprived of oxygen. When the ischemic insult is severe enough to cause the loss of critical amounts of cardiac muscle cells (cardiomyocytes), this loss initiates a cascade of detrimental events, including formation of a non-contractile scar, ventricular wall thinning (see Figure 6.1), an overload of blood flow and pressure, ventricular remodeling (the overstretching of viable cardiac cells to sustain cardiac output), heart failure, and eventual death.4 Restoring damaged heart muscle tissue, through repair or regeneration, therefore represents a fundamental mechanistic strategy to treat heart failure. However, endogenous repair mechanisms, including the proliferation of cardiomyocytes under conditions of severe blood vessel stress or vessel formation and tissue generation via the migration of bone-marrow-derived stem cells to the site of damage, are in themselves insufficient to restore lost heart muscle tissue (myocardium) or cardiac function.5 Current pharmacologic interventions for heart disease, including beta-blockers, diuretics, and angiotensin-converting enzyme (ACE) inhibitors, and surgical treatment options, such as changing the shape of the left ventricle and implanting assistive devices such as pacemakers or defibrillators, do not restore function to damaged tissue. Moreover, while implantation of mechanical ventricular assist devices can provide long-term improvement in heart function, complications such as infection and blood clots remain problematic.6 Although heart transplantation offers a viable option to replace damaged myocardium in selected individuals, organ availability and transplant rejection complications limit the widespread practical use of this approach.

Figure 6.1. Normal vs. Infarcted Heart. The left ventricle has a thick muscular wall, shown in cross-section in A. After a myocardial infarction (heart attack), heart muscle cells in the left ventricle are deprived of oxygen and die (B), eventually causing the ventricular wall to become thinner (C).

2007 Terese Winslow

The difficulty in regenerating damaged myocardial tissue has led researchers to explore the application of embryonic and adult-derived stem cells for cardiac repair. A number of stem cell types, including embryonic stem (ES) cells, cardiac stem cells that naturally reside within the heart, myoblasts (muscle stem cells), adult bone marrow-derived cells, mesenchymal cells (bone marrow-derived cells that give rise to tissues such as muscle, bone, tendons, ligaments, and adipose tissue), endothelial progenitor cells (cells that give rise to the endothelium, the interior lining of blood vessels), and umbilical cord blood cells, have been investigated to varying extents as possible sources for regenerating damaged myocardium. All have been tested in mouse or rat models, and some have been tested in large animal models such as pigs. Preliminary clinical data for many of these cell types have also been gathered in selected patient populations.

However, clinical trials to date using stem cells to repair damaged cardiac tissue vary in terms of the condition being treated, the method of cell delivery, and the primary outcome measured by the study, thus hampering direct comparisons between trials.7 Some patients who have received stem cells for myocardial repair have reduced cardiac blood flow (myocardial ischemia), while others have more pronounced congestive heart failure and still others are recovering from heart attacks. In some cases, the patient's underlying condition influences the way that the stem cells are delivered to his/her heart (see the section, quot;Methods of Cell Deliveryquot; for details). Even among patients undergoing comparable procedures, the clinical study design can affect the reporting of results. Some studies have focused on safety issues and adverse effects of the transplantation procedures; others have assessed improvements in ventricular function or the delivery of arterial blood. Furthermore, no published trial has directly compared two or more stem cell types, and the transplanted cells may be autologous (i.e., derived from the person on whom they are used) or allogeneic (i.e., originating from another person) in origin. Finally, most of these trials use unlabeled cells, making it difficult for investigators to follow the cells' course through the body after transplantation (see the section quot;Considerations for Using These Stem Cells in the Clinical Settingquot; at the end of this article for more details).

Despite the relative infancy of this field, initial results from the application of stem cells to restore cardiac function have been promising. This article will review the research supporting each of the aforementioned cell types as potential source materials for myocardial regeneration and will conclude with a discussion of general issues that relate to their clinical application.

In 2001, Menasche, et.al. described the successful implantation of autologous skeletal myoblasts (cells that divide to repair and/or increase the size of voluntary muscles) into the post-infarction scar of a patient with severe ischemic heart failure who was undergoing coronary artery bypass surgery.8 Following the procedure, the researchers used imaging techniques to observe the heart's muscular wall and to assess its ability to beat. When they examined patients 5 months after treatment, they concluded that treated hearts pumped blood more efficiently and seemed to demonstrate improved tissue health. This case study suggested that stem cells may represent a viable resource for treating ischemic heart failure, spawning several dozen clinical studies of stem cell therapy for cardiac repair (see Boyle, et.al.7 for a complete list) and inspiring the development of Phase I and Phase II clinical trials. These trials have revealed the complexity of using stem cells for cardiac repair, and considerations for using stem cells in the clinical setting are discussed in a subsequent section of this report.

The mechanism by which stem cells promote cardiac repair remains controversial, and it is likely that the cells regenerate myocardium through several pathways. Initially, scientists believed that transplanted cells differentiated into cardiac cells, blood vessels, or other cells damaged by CVD.911 However, this model has been recently supplanted by the idea that transplanted stem cells release growth factors and other molecules that promote blood vessel formation (angiogenesis) or stimulate quot;residentquot; cardiac stem cells to repair damage.1214 Additional mechanisms for stem-cell mediated heart repair, including strengthening of the post-infarct scar15 and the fusion of donor cells with host cardiomyocytes,16 have also been proposed.

Regardless of which mechanism(s) will ultimately prove to be the most significant in stem-cell mediated cardiac repair, cells must be successfully delivered to the site of injury to maximize the restored function. In preliminary clinical studies, researchers have used several approaches to deliver stem cells. Common approaches include intravenous injection and direct infusion into the coronary arteries. These methods can be used in patients whose blood flow has been restored to their hearts after a heart attack, provided that they do not have additional cardiac dysfunction that results in total occlusion or poor arterial flow.12, 17 Of these two methods, intracoronary infusion offers the advantage of directed local delivery, thereby increasing the number of cells that reach the target tissue relative to the number that will home to the heart once they have been placed in the circulation. However, these strategies may be of limited benefit to those who have poor circulation, and stem cells are often injected directly into the ventricular wall of these patients. This endomyocardial injection may be carried out either via a catheter or during open-heart surgery.18

To determine the ideal site to inject stem cells, doctors use mapping or direct visualization to identify the locations of scars and viable cardiac tissue. Despite improvements in delivery efficiency, however, the success of these methods remains limited by the death of the transplanted cells; as many as 90% of transplanted cells die shortly after implantation as a result of physical stress, myocardial inflammation, and myocardial hypoxia.4 Timing of delivery may slow the rate of deterioration of tissue function, although this issue remains a hurdle for therapeutic approaches.

Embryonic and adult stem cells have been investigated to regenerate damaged myocardial tissue in animal models and in a limited number of clinical studies. A brief review of work to date and specific considerations for the application of various cell types will be discussed in the following sections.

Because ES cells are pluripotent, they can potentially give rise to the variety of cell types that are instrumental in regenerating damaged myocardium, including cardiomyocytes, endothelial cells, and smooth muscle cells. To this end, mouse and human ES cells have been shown to differentiate spontaneously to form endothelial and smooth muscle cells in vitro19 and in vivo,20,21 and human ES cells differentiate into myocytes with the structural and functional properties of cardiomyocytes.2224 Moreover, ES cells that were transplanted into ischemically-injured myocardium in rats differentiated into normal myocardial cells that remained viable for up to four months,25 suggesting that these cells may be candidates for regenerative therapy in humans.

However, several key hurdles must be overcome before human ES cells can be used for clinical applications. Foremost, ethical issues related to embryo access currently limit the avenues of investigation. In addition, human ES cells must go through rigorous testing and purification procedures before the cells can be used as sources to regenerate tissue. First, researchers must verify that their putative ES cells are pluripotent. To prove that they have established a human ES cell line, researchers inject the cells into immunocompromised mice; i.e., mice that have a dysfunctional immune system. Because the injected cells cannot be destroyed by the mouse's immune system, they survive and proliferate. Under these conditions, pluripotent cells will form a teratoma, a multi-layered, benign tumor that contains cells derived from all three embryonic germ layers. Teratoma formation indicates that the stem cells have the capacity to give rise to all cell types in the body.

The pluripotency of ES cells can complicate their clinical application. While undifferentiated ES cells may possibly serve as sources of specific cell populations used in myocardial repair, it is essential that tight quality control be maintained with respect to the differentiated cells. Any differentiated cells that would be used to regenerate heart tissue must be purified before transplantation can be considered. If injected regenerative cells are accidentally contaminated with undifferentiated ES cells, a tumor could possibly form as a result of the cell transplant.4 However, purification methodologies continue to improve; one recent report describes a method to identify and select cardiomyocytes during human ES cell differentiation that may make these cells a viable option in the future.26

This concern illustrates the scientific challenges that accompany the use of all human stem cells, whether derived from embryonic or adult tissues. Predictable control of cell proliferation and differentiation requires additional basic research on the molecular and genetic signals that regulate cell division and specialization. Furthermore, long-term cell stability must be well understood before human ES-derived cells can be used in regenerative medicine. The propensity for genetic mutation in the human ES cells must be determined, and the survival of differentiated, ES-derived cells following transplantation must be assessed. Furthermore, once cells have been transplanted, undesirable interactions between the host tissue and the injected cells must be minimized. Cells or tissues derived from ES cells that are currently available for use in humans are not tissue-matched to patients and thus would require immunosuppression to limit immune rejection.18

While skeletal myoblasts (SMs) are committed progenitors of skeletal muscle cells, their autologous origin, high proliferative potential, commitment to a myogenic lineage, and resistance to ischemia promoted their use as the first stem cell type to be explored extensively for cardiac application. Studies in rats and humans have demonstrated that these cells can repopulate scar tissue and improve left ventricular function following transplantation.27 However, SM-derived cardiomyocytes do not function in complete concert with native myocardium. The expression of two key proteins involved in electromechanical cell integration, N-cadherin and connexin 43, are downregulated in vivo,28 and the engrafted cells develop a contractile activity phenotype that appears to be unaffected by neighboring cardiomyocytes.29

To date, the safety and feasibility of transplanting SM cells have been explored in a series of small studies enrolling a collective total of nearly 100 patients. Most of these procedures were carried out during open-heart surgery, although a couple of studies have investigated direct myocardial injection and transcoronary administration. Sustained ventricular tachycardia, a life-threatening arrhythmia and unexpected side-effect, occurred in early implantation studies, possibly resulting from the lack of electrical coupling between SM-derived cardiomyocytes and native tissue.30,31 Changes in preimplantation protocols have minimized the occurrence of arrhythmias in conjunction with the use of SM cells, and Phase II studies of skeletal myoblast therapy are presently underway.

In 2001, Jackson, et.al. demonstrated that cardiomyocytes and endothelial cells could be regenerated in a mouse heart attack model through the introduction of adult mouse bone marrow-derived stem cells.9 That same year, Orlic and colleagues showed that direct injection of mouse bone marrow-derived cells into the damaged ventricular wall following an induced heart attack led to the formation of new cardiomyocytes, vascular endothelium, and smooth muscle cells.11 Nine days after transplanting the stem cells, the newly-formed myocardium occupied nearly 70 percent of the damaged portion of the ventricle, and survival rates were greater in mice that received these cells than in those that did not. While several subsequent studies have questioned whether these cells actually differentiate into cardiomyocytes,32,33 the evidence to support their ability to prevent remodeling has been demonstrated in many laboratories.7

Based on these findings, researchers have investigated the potential of human adult bone marrow as a source of stem cells for cardiac repair. Adult bone marrow contains several stem cell populations, including hematopoietic stem cells (which differentiate into all of the cellular components of blood), endothelial progenitor cells, and mesenchymal stem cells; successful application of these cells usually necessitates isolating a particular cell type on the basis of its' unique cell-surface receptors. In the past three years, the transplantation of bone marrow mononuclear cells (BMMNCs), a mixed population of blood and cells that includes stem and progenitor cells, has been explored in more patients and clinical studies of cardiac repair than any other type of stem cell.7

The results from clinical studies of BMMNC transplantation have been promising but mixed. However, it should be noted that these studies have been conducted under a variety of conditions, thereby hampering direct comparison. The cells have been delivered via open-heart surgery and endomyocardial and intracoronary catheterization. Several studies, including the Bone Marrow Transfer to Enhance ST-Elevation Infarct Regeneration (BOOST) and the Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI) trials, have shown that intracoronary infusion of BMMNCs following a heart attack significantly improves the left ventricular (LV) ejection fraction, or the volume of blood pumped out of the left ventricle with each heartbeat.3436 However, other studies have indicated either no improvement in LV ejection fraction upon treatment37 or an increased LV ejection fraction in the control group.38 An early study that used endomyocardial injection to enhance targeted delivery indicated a significant improvement in overall LV function.39 Discrepancies such as these may reflect differences in cell preparation protocols or baseline patient statistics. As larger trials are developed, these issues can be explored more systematically.

Mesenchymal stem cells (MSCs) are precursors of non-hematopoietic tissues (e.g., muscle, bone, tendons, ligaments, adipose tissue, and fibroblasts) that are obtained relatively easily from autologous bone marrow. They remain multipotent following expansion in vitro, exhibit relatively low immunogenicity, and can be frozen easily. While these properties make the cells amenable to preparation and delivery protocols, scientists can also culture them under special conditions to differentiate them into cells that resemble cardiac myocytes. This property enables their application to cardiac regeneration. MSCs differentiate into endothelial cells when cultured with vascular endothelial growth factor40 and cardiomyogenic (CMG) cells when treated with the dna-demethylating agent, 5-azacytidine.41 More important, however, is the observation that MSCs can differentiate into cardiomyocytes and endothelial cells in vivo when transplanted to the heart following myocardial infarct (MI) or non-injury in pig, mouse, or rat models.4245 Additionally, the ability of MSCs to restore functionality may be enhanced by the simultaneous transplantation of other stem cell types.43

Several animal model studies have shown that treatment with MSCs significantly increases myocardial function and capillary formation.5,41 One advantage of using these cells in human studies is their low immunogenicity; allogeneic MSCs injected into infarcted myocardium in a pig model regenerated myocardium and reduced infarct size without evidence of rejection.46 A randomized clinical trial implanting MSCs after MI has demonstrated significant improvement in global and regional LV function,47 and clinical trials are currently underway to investigate the application of allogeneic and autologous MSCs for acute MI and myocardial ischemia, respectively.

Recent evidence suggests that the heart contains a small population of endogenous stem cells that most likely facilitate minor repair and turnover-mediated cell replacement.7 These cells have been isolated and characterized in mouse, rat, and human tissues.48,49 The cells can be harvested in limited quantity from human endomyocardial biopsy specimens50 and can be injected into the site of infarction to promote cardiomyocyte formation and improvements in systolic function.49 Separation and expansion ex vivo over a period of weeks are necessary to obtain sufficient quantities of these cells for experimental purposes. However, their potential as a convenient resource for autologous stem cell therapy has led the National Heart, Lung, and Blood Institute to fund forthcoming clinical trials that will explore the use of cardiac stem cells for myocardial regeneration.

The endothelium is a layer of specialized cells that lines the interior surface of all blood vessels (including the heart). This layer provides an interface between circulating blood and the vessel wall. Endothelial progenitor cells (EPCs) are bone marrow-derived stem cells that are recruited into the peripheral blood in response to tissue ischemia.4 EPCs are precursor cells that express some cell-surface markers characteristic of mature endothelium and some of hematopoietic cells.19,5153 EPCs home in on ischemic areas, where they differentiate into new blood vessels; following a heart attack, intravenously injected EPCs home to the damaged region within 48 hours.12 The new vascularization induced by these cells prevents cardiomyocyte apoptosis (programmed cell death) and LV remodeling, thereby preserving ventricular function.13 However, no change has been observed in non-infarcted regions upon EPC administration. Clinical trials are currently underway to assess EPC therapy for growing new blood vessels and regenerating myocardium.

Several other cell populations, including umbilical cord blood (UCB) stem cells, fibroblasts (cells that synthesize the extracellular matrix of connective tissues), and peripheral blood CD34+ cells, have potential therapeutic uses for regenerating cardiac tissue. Although these cell types have not been investigated in clinical trials of heart disease, preliminary studies in animal models indicate several potential applications in humans.

Umbilical cord blood contains enriched populations of hematopoietic stem cells and mesencyhmal precursor cells relative to the quantities present in adult blood or bone marrow.54,55 When injected intravenously into the tail vein in a mouse model of MI, human mononuclear UCB cells formed new blood vessels in the infarcted heart.56 A human DNA assay was used to determine the migration pattern of the cells after injection; although they homed only to injured areas within the heart, they were also detected in the marrow, spleen, and liver. When injected directly into the infarcted area in a rat model of MI, human mononuclear UCB cells improved ventricular function.57 Staining for CD34 and other markers found on the cell surface of hematopoietic stem cells indicated that some of the cells survived in the myocardium. Results similar to these have been observed following the injection of human unrestricted somatic stem cells from UCB into a pig MI model.58

Adult peripheral blood CD34+ cells offer the advantage of being obtained relatively easily from autologous sources.59 Although some studies using a mouse model of MI claim that these cells can transdifferentiate into cardiomyocytes, endothelial cells, and smooth muscle cells at the site of tissue injury,60 this conclusion is highly contested. Recent studies that involve the direct injection of blood-borne or bone marrow-derived hematopoietic stem cells into the infarcted region of a mouse model of MI found no evidence of myocardial regeneration following injection of either cell type.33 Instead, these hematopoietic stem cells followed traditional differentiation patterns into blood cells within the microenvironment of the injured heart. Whether these cells will ultimately find application in myocardial regeneration remains to be determined.

Autologous fibroblasts offer a different strategy to combat myocardial damage by replacing scar tissue with a more elastic, muscle-like tissue and inhibiting host matrix degradation.4 The cells may be manipulated to express muscle-specific transcription factors that promote their differentiation into myotubes such as those derived from skeletal myoblasts.61 One month after these cells were implanted into the post-infarction scar in a rat model of MI, they occupied a large portion of the scar but were not functionally integrated.61 Although the effects on ventricular function were not evaluated in this study, authors noted that modified autologous fibroblasts may ultimately prove useful in elderly patients who have a limited population of autologous skeletal myoblasts or bone marrow stem cells.

As these examples indicate, many types of stem cells have been applied to regenerate damaged myocardium. In select applications, stem cells have demonstrated sufficient promise to warrant further exploration in large-scale, controlled clinical trials. However, the current breadth of application of these cells has made it difficult to compare and contextualize the results generated by the various trials. Most studies published to date have enrolled fewer than 25 patients, and the studies vary in terms of cell types and preparations used, methods of delivery, patient populations, and trial outcomes. However, the mixed results that have been observed in these studies do not necessarily argue against using stem cells for cardiac repair. Rather, preliminary results illuminate the many gaps in understanding of the mechanisms by which these cells regenerate myocardial tissue and argue for improved characterization of cell preparations and delivery methods to support clinical applications.

Future clinical trials that use stem cells for myocardial repair must address two concerns that accompany the delivery of these cells: 1) safety and 2) tracking the cells to their ultimate destination(s). Although stem cells appear to be relatively safe in the majority of recipients to date, an increased frequency of non-sustained ventricular tachycardia, an arrhythmia, has been reported in conjunction with the use of skeletal myoblasts.30,6264 While this proarrhythmic effect occurs relatively early after cell delivery and does not appear to be permanent, its presence highlights the need for careful safety monitoring when these cells are used. Additionally, animal models have demonstrated that stem cells rapidly diffuse from the heart to other organs (e.g., lungs, kidneys, liver, spleen) within a few hours of transplantation,65,66 an effect observed regardless of whether the cells are injected locally into the myocardium. This migration may or may not cause side-effects in patients; however, it remains a concern related to the delivery of stem cells in humans. (Note: Techniques to label stem cells for tracking purposes and to assess their safety are discussed in more detail in other articles in this publication).

In addition to safety and tracking, several logistical issues must also be addressed before stem cells can be used routinely in the clinic. While cell tracking methodologies allow researchers to determine migration patterns, the stem cells must target their desired destination(s) and be retained there for a sufficient amount of time to achieve benefit. To facilitate targeting and enable clinical use, stem cells must be delivered easily and efficiently to their sites of application. Finally, the ease by which the cells can be obtained and the cost of cell preparation will also influence their transition to the clinic.

The evidence to date suggests that stem cells hold promise as a therapy to regenerate damaged myocardium. Given the worldwide prevalence of cardiac dysfunction and the limited availability of tissue for cardiac transplantation, stem cells could ultimately fulfill a large-scale unmet clinical need and improve the quality of life for millions of people with CVD. However, the use of these cells in this setting is currently in its infancymuch remains to be learned about the mechanisms by which stem cells repair and regenerate myocardium, the optimal cell types and modes of their delivery, and the safety issues that will accompany their use. As the results of large-scale clinical trials become available, researchers will begin to identify ways to standardize and optimize the use of these cells, thereby providing clinicians with powerful tools to mend a broken heart.

Chapter 5|Table of Contents|Chapter 7

Continue reading here:
Mending a Broken Heart: Stem Cells and Cardiac Repair ...

categoriaCardiac Stem Cells commentoComments Off on Mending a Broken Heart: Stem Cells and Cardiac Repair … dataJune 21st, 2018
Read all

Press Releases Viacyte, Inc.

By Sykes24Tracey

12.15.17CIRM Grants ViaCyte $1.4M to Create Immune-Evasive Pluripotent Stem Cell Lines

SAN DIEGO, December 15, 2017 ViaCyte, Inc., a privately-held regenerative medicine company, today announced that the California Institute for Regenerative Medicine (CIRM) approved a grant of $1.4 million to support the initial development of []

ViaCyte is developing PEC-Direct to address the urgent medical need of high-risk type 1 diabetes and provide a potentially life-saving therapy SAN DIEGO,December 6, 2017 ViaCyte today announced that CONNECT, a premier innovation company []

SAN DIEGO, October 4, 2017 ViaCyte, Inc., a privately-held regenerative medicine company, today announced upcoming company presentations at the Cell and Gene Meeting on the Mesa and the BIO Investor Forum. In addition, ViaCyte []

SAN DIEGO, September 28, 2017 ViaCyte, Inc., a privately-held regenerative medicine company, today announced that the California Institute for Regenerative Medicine (CIRM) approved a grant of $20 million to support the clinical development of []

Developing PEC-Direct to address urgent medical need in patients with high-risk type 1 diabetes SAN DIEGO, September 21, 2017 Today, ViaCyte announced that its PEC-Direct product candidate has been selected as one of three []

SAN DIEGO, September 7, 2017 ViaCyte, Inc., a privately-held, leading regenerative medicine company, today announced upcoming scientific presentations. ViaCyte is developing novel stem cell-derived islet replacement therapies for insulin-requiring diabetes. ViaCytes product candidates have []

San Diego, August 1, 2017 ViaCyte, Inc., a privately-held, leading regenerative medicine company, announced today that the first patients have been implanted with the PEC-Direct product candidate, a novel islet cell replacement therapy in []

SAN DIEGO, June 15, 2017 ViaCyte, Inc., a privately-held regenerative medicine company, today announced a presentation at the International Society for Stem Cell Research (ISSCR) 2017 Annual Meeting in Boston. ViaCyte is developing novel []

San Diego, May 22, 2017 ViaCyte, Inc., a privately-held leading regenerative medicine company, announced today that the U.S. Food and Drug Administration (FDA) has allowed the companys Investigational New Drug Application (IND) for the []

San Diego, May 22, 2017 ViaCyte, Inc., a privately-held leading regenerative medicine company, announced today $10 million in financing to support operations. Participants in the financing included Asset Management Partners, W.L. Gore & Associates, []

New York and San Diego, May 22, 2017 ViaCyte, Inc., a privately-held leading regenerative medicine company, and JDRF, the leading global organization funding type 1 diabetes research, jointly announced today JDRF grant funding to []

ViaCyte to also present at World Advanced Therapies and Regenerative Medicine Congress in London SAN DIEGO, April 24, 2017 ViaCyte, Inc., a privately-held regenerative medicine company, today announced two presentations on April 27 at []

SAN DIEGO, California and NEWARK, Delaware, March 29, 2017 ViaCyte, Inc., a privately-held regenerative medicine company, and W. L. Gore & Associates, Inc. (Gore), a global materials science company, today announced a collaborative research []

SAN DIEGO and SAN FRANCISCO, February 23, 2017 ViaCyte, Inc., a privately-held regenerative medicine company, and Beyond Type 1, a not-for-profit advocacy and education group for those living with type 1 diabetes, today []

SAN DIEGO, February 21, 2017 ViaCyte, Inc., a privately-held regenerative medicine company, today announced four presentations at upcoming healthcare events. ViaCyte is advancing two novel cell replacement therapies as long-term diabetes treatments. ViaCytes product []

President and CEO, Paul Laikind, PhD to present at 2017 Biotech Showcase SAN DIEGO, January 4, 2017 ViaCyte, Inc., a privately-held regenerative medicine company, today announced the addition of twenty-two new patents in 2016. []

Read more here:
Press Releases Viacyte, Inc.

categoriaIPS Cell Therapy commentoComments Off on Press Releases Viacyte, Inc. dataApril 29th, 2018
Read all

Bone Marrow-Derived Stem Cell Therapy Milwaukee, WI …

By LizaAVILA

Advanced Therapy with Advanced Results

Since 1968, the medical community has been harnessing the incredible healing, and regenerative power of bone marrow-derived stem cells. Bone Marrow Derived Stem Cell Therapy takes stem cells isolated from your bone marrow and relocates them to heal, regenerate and treat damaged areas and chronic conditions. This revolutionary technology is a result of decades of evidence-based research and advancements in the area of stem cells.

A process called hematopoiesis, which occurs inside your bones, has been working to grow and regenerate cells in your body since you were in the womb. The human body is in constant high demand for blood cells, so the hematopoiesis process stays hard at work to produce. During hematopoiesis, hematopoietic stem cells are produced with the raw potential power to develop into white blood cells, red blood cells, and platelets. Blood cells are vital to immune function and healing, so these stem cells are rich in growth factors that facilitate the repair and replacement of damaged cells. Mesenchymal stem cells are also found in bone marrow. Mesenchymal stem cells are reserved adult stem cells that help facilitate the regeneration of tissue naturally in the body. They are an integral part of wound healing, regulation of aging, and stabilizing vital organs. These mesenchymal stem cells are considered to be raw potential meaning they can differentiate into the tissue cells needed in a specific area. These mesenchymal stem cells have the potential to repair damaged cartilage, bone, tendons, muscle, skin, and connective cell tissue.

Stem cell therapy is one of the newest and most cutting-edge therapies for chronic joint pain. Using this therapy, our providers offer patients essential properties for healing and restoring joint health:

See original here:
Bone Marrow-Derived Stem Cell Therapy Milwaukee, WI ...

categoriaBone Marrow Stem Cells commentoComments Off on Bone Marrow-Derived Stem Cell Therapy Milwaukee, WI … dataApril 27th, 2018
Read all

Stem Cell Treatments – Brain and Spinal Cord

By Sykes24Tracey

Because stem cells have the potential to generate cells designed to replace or repair cells damaged by spinal cord injury, advocates of stem cell research and treatment believe that the benefits far outweigh the negative aspects. Opponents of this research and treatment, however, typically bring up the issue of embryonic stem cells, which are harvested from embryos and fetal tissue. Accordingly, they feel the use of these embryonic stem cells is not moral or ethical. Because stem cells are harvested from embryos and fetal tissue, they feel it is not moral or ethical. Secondly, opponents are concerned about the health and safety of the participants in human stem cell research trials. It is important to note that non-embryonic stem cells, called somatic or adult stem cells, have recently been identified in various body tissues including brain, bone marrow, blood vessels, and various organ tissues.

Lets talk about how stem cell research could possibly impact spinal cord injury. Stem cell research came on the scene in 1998, when a group of scientists isolated pluripotent stem cells from human embryos and grew them in a culture. Since then, specialists have discovered that stem cells can become any of the 200 specialized cells in the body, giving them the ability to repair or replace damaged cells and tissues. While not yet known to have the diversification potential of embryonic stem cells, adult somatic cells act similarly and are generating excitement in the research and medical community.

When all is said and done, could stem cell treatment be the miracle cure for spinal cord injury and paralysis? Well, we dont really know. Because of all of the controversy, much of the evidence that shows stem cells can be turned into specific cells for transplantation involves only mice, whose cells are significantly different than human cells. Nevertheless, some initial research points to promising results. One hurdle that remains to be cleared is whether an immune response would reject a cellular transplant.

Ultimately, no one yet knows the extent to which stem cell treatment could help spinal cord injury and paralysis. Scientists remain hopeful, but currently there just hasnt been enough research done to substantiate any particular result. Additional research needs to be done before we have more definitive answers.

Again, we just dont know. Much of the answer depends upon whether the political process and moral debate continues to limitand put the hold onthe amount of research done. At this point its impossible to say for sure whenor even ifstem cells will be useful in the treatment of paralysis.

Read the original:
Stem Cell Treatments - Brain and Spinal Cord

categoriaSpinal Cord Stem Cells commentoComments Off on Stem Cell Treatments – Brain and Spinal Cord dataApril 15th, 2018
Read all

Studies: Stem cells reverse heart damage – CNN

By LizaAVILA

Story highlights

On a June day in 2009, a 39-year-old man named Ken Milles lay on an exam table at Cedars-Sinai Medical Center in Los Angeles. A month earlier, he'd suffered a massive heart attack that destroyed nearly a third of his heart.

"The most difficult part was the uncertainty," he recalls. "Your heart is 30% damaged, and they tell you this could affect you the rest of your life." He was about to receive an infusion of stem cells, grown from cells taken from his own heart a few weeks earlier. No one had ever tried this before.

About three weeks later, in Kentucky, a patient named Mike Jones underwent a similar procedure at the University of Louisville's Jewish Hospital. Jones suffered from advanced heart failure, the result of a heart attack years earlier. Like Milles, he received an infusion of stem cells, grown from his own heart tissue.

"Once you reach this stage of heart disease, you don't get better," says Dr. Robert Bolli, who oversaw Jones' procedure, explaining what doctors have always believed and taught. "You can go down slowly, or go down quickly, but you're going to go down."

Conventional wisdom took a hit Monday, as Bolli's group and a team from Cedars-Sinai each reported that stem cell therapies were able to reverse heart damage, without dangerous side effects, at least in a small group of patients.

In Bolli's study, published in The Lancet, 16 patients with severe heart failure received a purified batch of cardiac stem cells. Within a year, their heart function markedly improved. The heart's pumping ability can be quantified through the "Left Ventricle Ejection Fraction," a measure of how much blood the heart pumps with each contraction. A patient with an LVEF of less than 40% is considered to suffer severe heart failure. When the study began, Bolli's patients had an average LVEF of 30.3%. Four months after receiving stem cells, it was 38.5%. Among seven patients who were followed for a full year, it improved to an astounding 42.5%. A control group of seven patients, given nothing but standard maintenance medications, showed no improvement at all.

"We were surprised by the magnitude of improvement," says Bolli, who says traditional therapies, such as placing a stent to physically widen the patient's artery, typically make a smaller difference. Prior to treatment, Mike Jones couldn't walk to the restroom without stopping for breath, says Bolli. "Now he can drive a tractor on his farm, even play basketball with his grandchildren. His life was transformed."

At Cedars-Sinai, 17 patients, including Milles, were given stem cells approximately six weeks after suffering a moderate to major heart attack. All had lost enough tissue to put them "at big risk" of future heart failure, according to Dr. Eduardo Marban, the director of the Cedars-Sinai Heart Institute, who developed the stem cell procedure used there.

The results were striking. Not only did scar tissue retreat -- shrinking 40% in Ken Milles, and between 30% and 47% in other test subjects -- but the patients actually generated new heart tissue. On average, the stem cell recipients grew the equivalent of 600 million new heart cells, according to Marban, who used MRI imaging to measure changes. By way of perspective, a major heart attack might kill off a billion cells.

"This is unprecedented, the first time anyone has grown living heart muscle," says Marban. "No one else has demonstrated that. It's very gratifying, especially when the conventional teaching has been that the damage is irreversible."

Perhaps even more important, no treated patient in either study suffered a significant health setback.

The twin findings are a boost to the notion that the heart contains the seeds of its own rebirth. For years, doctors believed that heart cells, once destroyed, were gone forever. But in a series of experiments, researchers including Bolli's collaborator, Dr. Piero Anversa, found that the heart contains a type of stem cell that can develop into either heart muscle or blood vessel components -- in essence, whatever the heart requires at a particular point in time. The problem for patients like Mike Jones or Ken Milles is that there simply aren't enough of these repair cells waiting around. The experimental treatments involve removing stem cells through a biopsy, and making millions of copies in a laboratory.

The Bolli/Anversa group and Marban's team both used cardiac stem cells, but Bolli and Anversa "purified" the CSCs, so that more than 90% of the infusion was actual stem cells. Marban, on the other hand, used a mixture of stem cells and other types of cells extracted from the patient's heart. "We've found that the mixture is more potent than any subtype we've been able to isolate," he says. He says the additional cells may help by providing a supportive environment for the stem cells to multiply.

Other scientists, including Dr. Douglas Losordo, have produced improvements in cardiac patients using stem cells derived from bone marrow. "The body contains cells that seem to be pre-programmed for repair," explains Losordo. "The consistent thing about all these approaches is that they're leveraging what seems to be the body's own repair mechanism."

Losordo praised the Lancet paper, and recalls the skepticism that met Anversa's initial claims, a decade ago, that there were stem cells in the adult heart. "Some scientists are always resistant to that type of novelty. You know the saying: First they ignore you, then they attack you and finally they imitate you."

Denis Buxton, who oversees stem cell research at the National Heart, Lung and Blood Institute at the National Institutes of Health, calls the new studies "a paradigm shift, harnessing the heart's own regenerative processes." But he says he would like to see more head-to-head comparisons to determine which type of cells are most beneficial.

Questions also remain about timing. Patients who suffer large heart attacks are prone to future damage, in part because the weakened heart tries to compensate by dilating -- swelling -- and by changing shape. In a vicious circle, the changes make the heart a less efficient pump, which leads to more overcompensation, and so on, until the end result is heart failure. Marban's study aimed to treat patients before they could develop heart failure in the first place.

In a third study released Monday, researchers treated patients with severe heart failure with stem cells derived from bone marrow. In a group of 60 patients, those receiving the treatment had fewer heart problems over the course of a year, as well as improved heart function.

A fourth study also used cells derived from bone marrow, but injected them into patients two to three weeks after a heart attack. Previous studies, with the cells given just days afterward, found a modest improvement in heart function. But Monday, the lead researcher, Dr. Dan Simon of UH Case Medical Center, reported that with the three-week delay, patients did not see the same benefit.

With other methods, there may be a larger window of opportunity. At least in initial studies, Losordo's bone marrow treatments helped some patients with long-standing heart problems. Bolli's Lancet paper suggests that CSCs, too, might help patients with advanced disease. "These patients had had heart failure for several years. They were a wreck!" says Bolli. "But we found their stem cells were still very competent." By that, he means the cells were still capable of multiplying and of turning into useful muscle and blood vessel walls.

Marban has an open mind on the timing issue. In fact, one patient from his control group e-mailed after the study was complete, saying he felt terrible and pleading for an infusion of stem cells. At Marban's request, the FDA granted special approval to treat him. "He had a very nice response. That was 14 months after his heart attack. Of course that's just one person, and we need bigger studies," says Marban.

For Ken Milles, the procedure itself wasn't painful, but it was unsettling. The biopsy to harvest the stem cells felt "weird," he recalls, as he felt the doctor poking around inside his heart. The infusion, a few weeks later, was harder. The procedure -- basically the same as an angioplasty -- involved stopping blood flow through the damaged artery for three minutes, while the stem cells were infused. "It felt exacfly like I was having a heart attack again," Milles remembers.

Milles had spent the first weeks after his heart attack just lying in bed re-watching his "Sopranos" DVDs, but within a week of the stem cell infusion, he says, "I was reinvigorated." Today he's back at work full time, as an accounting manager at a construction company. He's cut out fast food and shed 50 pounds. His wife and two teenage sons are thrilled.

Denis Buxton says the new papers could prove a milestone. "We don't have anything else to actually regenerate the heart. These stem cell therapies have the possibility of actually reversing damage."

Bolli says he'll have to temper his enthusiasm until he can duplicate the results in larger studies, definitive enough to get stem cell therapy approved as a standard treatment. "If a phase 3 study confirmed this, it would be the biggest advance in cardiology in my lifetime. We would possibly be curing heart failure. It would be a revolution."

Read this article:
Studies: Stem cells reverse heart damage - CNN

categoriaCardiac Stem Cells commentoComments Off on Studies: Stem cells reverse heart damage – CNN dataApril 2nd, 2018
Read all

Lung Institute | Stem Cell Research Study for Lung Disease

By admin

The Problem with Chronic Pulmonary Diseases

Chronic Obstructive Pulmonary Disease (COPD) is a progressive lung disorder that often occurs as a result of prolonged cigarette smoking, second-hand smoke, and polluted air or working conditions. COPD is the most prevalent form of chronic lung disease. The physiological symptoms of COPD include shortness of breath (dyspnea), cough, and sputum production, exercise intolerance and reduced Quality of Life (QOL). These signs and symptoms are brought about by chronic inflammation of the airways, which restricts breathing. When fibrotic tissues contract, the lumen is narrowed, compromising lung function. As histological studies confirm, airway fibrosis and luminal narrowing are major features that lead to airflow limitation in COPD1-3.

Today, COPD is a serious global health issue, with a prevalence of 9-10% of adults aged 40 and older4. And the prevalence of the disease is only expected to rise. Currently COPD accounts for 27% of tobacco related deaths and is anticipated to become the fourth leading cause of death worldwide by 2030 5. Today, COPD affects approximately 600 million individualsroughly 5% of the worlds population 6. Despite modern medicine and technological advancements, there is no known cure for COPD.

The difficulty in treating COPD and other lung diseases rests in the trouble of stimulating alveolar wall formation15. Until recently, treatment has been limited by two things: a lack of understanding of the pathophysiology of these disease processes on a molecular level and a lack of pharmaceutical development that would affect these molecular mechanisms. This results in treatment focused primarily in addressing the symptoms of the disease rather than healing or slowing the progression of the disease itself.

The result is that there are few options available outside of bronchodilators and corticosteroids7. Although lung transplants are performed as an alternative option, there is currently a severe shortage of donor lungs, leaving many patients to die on waiting lists prior to transplantation. Lung transplantation is also a very invasive form of treatment, commonly offering poor results, a poor quality of life with a 5-year mortality rate of approximately 50%, and a litany of health problems associated with lifelong immunosuppression13.

However, it has been shown that undifferentiated multipotent endogenous tissue stem cells (cells that have been identified in nearly all tissues) may contribute to tissue maintenance and repair due to their inherent anti-inflammatory properties. Human mesenchymal stromal cells have been shown to produce large quantities of bioactive factors including cytokines and various growth factors which provide molecular cueing for regenerative pathways. This affects the status of responding cells intrinsic in the tissue 18. These bioactive factors have the ability to influence multiple immune effector functions including cell development, maturation, and allo-reactive T-cell responses 19. Although research on the use of autologous stem cells (both hematopoietic and mesenchymal) in regenerative stem cell therapy is still in the early stages of implementation, it has shown substantive progress in treating patients with few if any adverse effects.

The Lung Institute (LI) provided treatment by harvesting autologous stem cells (hematopoietic stem cells and mesenchymal stromal cells) by withdrawing adipose tissue (fat), bone marrow or peripheral blood. These harvested cells are isolated and concentrated, and along with platelet-rich plasma, are then reintroduced into the body and enter the pulmonary vasculature (vessels of the lungs) where cells are trapped in the microcirculation (the pulmonary trap). Alternatively, nebulized stem cells are reintroduced through the airways in patients who have undergone an adipose (fat tissue) treatment.

Individuals diagnosed with COPD were tracked by the Lung Institute to measure the effects of treatment via either the venous protocol or adipose protocol on both their pulmonary function as well as their Quality of Life.

All PFTs were performed according to national practice guideline standards for repeatability and acceptability8-10. On PFTs, pre-treatment data was collected through on-site testing or through previous medical examinations by the patients primary physician (if done within two weeks). The test was then repeated by their primary physician 6 months after treatment.*

* Due to the examination information required from primary physicians, only 25 out of 100 patients are reflected in the PFT data.

Patients with progressive COPD will typically experience a steady decrease in their Quality of Life. Given this development, a patients Quality of Life score is frequently used to define additional therapeutic effects, with regulatory authorities frequently encouraging their use as primary or secondary outcomes17.

On quality of life testing, data was collected through the implementation of the Clinical COPD Questionnaire (CCQ) based survey17. The survey measured the patients self-assessed quality of life on a 0-6 scale, with adverse Quality of Life correlated in ascending numerical order. It was implemented in three stages: pre-treatment, 3-months post-treatment, and 6-months post-treatment. The survey measured two distinct outcomes: the QLS score, which measured the patients self-assessed quality of life score, and the QIS, a percentage-based measurement determining the proportion of patients within the sample that experienced QLS score improvements.

Over the duration of six months, the results of 100 patients treated for COPD through venous and adipose based therapies were tracked by the Lung Institute in order to measure changes in pulmonary function and any improvement in Quality of Life.

Of the 100 patients treated by the Lung Institute, 64 were male (64%) and 36 were female (36%). Ages of those treated range from 55-88 years old with an average age of 71. Throughout the study, 82 (82%) were treated with venous derived stem cells, while 18 (18%) were treated from stem cells derived from adipose tissue.

* The survey measured the patients self-assessed quality of life on a 0-6 scale, with adverse Quality of Life correlated in ascending numerical order.

Over the course of the study, the patient group averaged an increase of 35.5% to their Quality of Life (QLS) score within three months of treatment. While in the QIS, 84% of all patients found that their Quality of Life score had improved within three months of treatment (figure 1.3).

Within the PFT results, 48% of patients tested saw an increase of over 10% to their original pulmonary function with an average increase of 16%. During the three to six month period after treatment, patients saw a small decline in their progress, with QLS scores dropping from 35.5% to 32%, and the QIS from 84% to 77%.Fletcher and Petos work shows that patient survival rate can be improved through appropriate or positive intervention14 (figure 1.4). It remains to be seen if better quality of life will translate to longevity, but if one examines what factors allow for improved quality of life such as improvement in oxygen use, exercise tolerance, medication use, visits to the hospital and reduction in disease flare ups then one can see that quality of life improves in association with clinical improvement.

Currently the most utilized options for treating COPD are bronchodilator inhalers with or without corticosteroids and lung transplant each has downsides. Inhalers are often used incorrectly11, are expensive over time, and can only provide temporary relief of symptoms. Corticosteroids, though useful, have risk of serious adverse side effects such as infections, blood sugar imbalance, and weight gain to name a few 16. Lung transplants are expensive, have an adverse impact on quality of life and have a high probability of rejection by the body the treatment of which creates a new set of problems for patients. In contrast, initial studies of stem cells treatments show efficacy, lack of adverse side effects and may be used safely in conjunction with other treatments.

Through the data collected by the Lung Institute, developing methodologies for this form of treatment are quickly taking place as other entities of the medical community follow suit. In a recent study of regenerative stem cell therapy done by the University of Utah, patients exhibited improvement in PFTs and oxygen requirement compared to the control group with no acute adverse events12. Through the infusion of stem cells derived from the patients own body, stem cell therapy minimizes the chance of rejection to the highest degree, promotes healing and can improve the patients pulmonary function and quality of life with no adverse side effects.

Although more studies using a greater number of patients is needed to further examine objective parameters such as PFTs, exercise tests, oxygen, medication use and hospital visits, larger sample sizes will also help determine if one protocol is more beneficial than others. With deeper research, utilizing economic analysis along with longer-term follow up will answer questions on patient selection, the benefits of repeated treatments, and a possible reduction in healthcare costs for COPD treatment.

The field of Cellular Therapy and Regenerative Medicine is rapidly advancing and providing effective treatments for diseases in many areas of medicine.The Lung Institutes strives to provide the latest in safe, effective therapy for chronic lung disease and maintain a leadership role in the clinical application of these technologies.

In a landscape of scarce options and rising costs, the Lung Institute believes that stem cell therapy is the future of treatment for those suffering from COPD and other lung diseases. Although data is limited at this stage, we are proud to champion this form of treatment while sharing our findings.

See the rest here:
Lung Institute | Stem Cell Research Study for Lung Disease

categoriaIPS Cell Therapy commentoComments Off on Lung Institute | Stem Cell Research Study for Lung Disease dataMarch 9th, 2018
Read all

Paraplegic breakthrough using adult stem cells – WND

By raymumme

In an apparent major breakthrough, scientists in Korea report using umbilical cord blood stem cells to restore feeling and mobility to a spinal-cord injury patient.

The research, published in the peer-reviewed journal Cythotherapy, centered on a woman had been a paraplegic 19 years due to an accident.

After an infusion of umbilical cord blood stem cells, stunning results were recorded:

The patient could move her hips and feel her hip skin on day 15 after transplantation. On day 25 after transplantation her feet responded to stimulation.

Umbilical cord cells are considered adult stem cells, in contrast to embryonic stem cells, which have raised ethical concerns because a human embryo must be destroyed in order to harvest them.

The report said motor activity was noticed on day 7, and she was able to maintain an upright position on day 13. Fifteen days after surgery, she began to elevate both lower legs about one centimeter.

The studys abstract says not only did the patient regain feeling, but 41 days after stem cell transplantation, testing also showed regeneration of the spinal cord at the injured cite and below it.

The scientists conclude the transplantation could be a good treatment method for paraplegic patients.

Bioethics specialist Wesley J. Smith, writing in Lifesite.com, expressed enthusiasm about the apparent breakthrough, but also urged caution.

We have to be cautious, said Smith, a senior fellow at the Seattle-based Discovery Institute and a special consultant to the Center for Bioethics and Culture. One patient does not a treatment make.

The authors of the study note, writes Smith, that the lamenectomy the patient received might have offered some benefit.

But still, this is a wonderful story that offers tremendous hope for paralyzed patients, he said.

The fact that the patient has a very old injury, Smith added, makes the results even more dramatic.

Smith said he has known about the study for some time, but because I didnt want to be guilty of the same hyping that is so often engaged in by some therapeutic cloning proponents, I waited until it was published in a peer reviewed journal.

Like most breakthroughs using adult stem cells, this one has been completely ignored by the U.S. mainstream media, Smith pointed out.

Can you imagine the headlines if the cells used had been embryonic? he asked.

Read the original post:
Paraplegic breakthrough using adult stem cells - WND

categoriaSpinal Cord Stem Cells commentoComments Off on Paraplegic breakthrough using adult stem cells – WND dataMarch 4th, 2018
Read all

Adult Stem Cell Success Story | Spinal Cord Injury | SCRF

By raymumme

(May, 2010) If there was ever a woman on a mission, its Laura Dominguez. Doctors once told her shed never walk again. And while shes not ready to run a marathon, shes already proving them wrong, with the best yet to come.

An oil spill on a San Antonio freeway is blamed for the car crash that sent Laura and her brother directly into a retaining wall one summer afternoon in 2001. Laura was just 16 years old at the time and the crash left her completely paralyzed from the neck down. Surgeons say she suffered whats known as a C6 vertebrae fracture that severely damaged her spinal cord.

I refused to accept their prognosis that I never would walk again and began searching for other options, says Laura. After stays in several hospitals for nearly a year, Laura and her mother relocated to San Diego, CA so that she could undergo extensive physical therapy. While in California, they met a family whose daughter was suffering from a similar spinal cord injury. They were also looking for other alternatives to deal with spinal cord injuries.

After extensive research and consultations with medical experts in the field of spinal cord injuries, they decided to explore a groundbreaking new surgical procedure using adult stem cells pioneered by Dr. Carlos Lima of Portugal.

The surgery involved the removal of tissue from the olfactory sinus area at the back of the nose--and transplanting it into the spinal cord at the injury site. Both procedures, the harvesting of the tissue and the transplant, were done at the same time. Laura was the tenth person in the world and the second American to have this procedure done and was featured in a special report by PBS called Miracle Cell.(Link to Miracle Cell (PBS) Episode)

Following the surgery she returned to California where she continued with the physical therapy regimen, then eventually returned home to San Antonio. Upon her return home, an MRI revealed her spinal cord was beginning to heal. Approximately 70% of the lesion now looked like normal spinal cord tissue. More importantly to Laura, she began to regain feeling in parts of her upper body and within six months of the surgery regained feeling down to her abdomen.

Improvements in sensory feelings have continued until the present time. She can feel down to her hips, and has regained feeling and some movement in her legs. Lauras upper body has gained more strength and balance and one of the most evident improvements has been her ability to stand and remain standing, using a walker, and with minimal assistance. When she stands she can contract her quadriceps and hamstring muscles.

Every week it seems Im able to do something new, something different that I hadnt done the week before, says Laura.

Now Lauras story is poised to take a new, potentially groundbreaking turn. In the Fall of 2009, she traveled again to Portugal where adult stem cells were extracted from her nose for culturing. As this story is written, she is preparing to fly back to Portugal where scar tissue at her injury site will be removed and her own adult stem cells injected in the area of her original wound.

The Laura Dominguez story is not complete. The next chapter may or may not yield the results she seeksbut no one can deny the determination and courage of Laura. For her part, she has one goal in mind: I will walk again.

We shall update this site and keep you informed on her progress.

Read more:
Adult Stem Cell Success Story | Spinal Cord Injury | SCRF

categoriaSpinal Cord Stem Cells commentoComments Off on Adult Stem Cell Success Story | Spinal Cord Injury | SCRF dataMarch 1st, 2018
Read all

Home – STEM CELL SCIENCE

By LizaAVILA

Stem cell can be isolated from the the bone marrow and adipose tissue in the abdomen that are capable of forming new blood vessels and heart muscle cells. The cell number is so small in the tissues that the cells should be grown for several weeks before there is enough for the treatment of patients.

We have conducted three clinical stem cell therapy studies in which patients with coronary artery disease havebeen treated with their own mesenchymal stem cells from either the bone marrow or adipose tissue. Encouraging results are available from two studies and there is ongoing follow-up in the third study. Treatments with stem cells have in all previous studies been without any side effects.

During the course of the SCIENCE study a total of 138 patients with heart failure will be included and treated in a so-called blinded placebo-controlled design. This means that 92 patients will receive stem cells and 46 patients placebo (inactive medication, saline). Choice of treatment will be done by drawing lots. The study is carried out by an international collaboration between cardiac centers in Denmark, Poland, Germany, Netherlands, Austria and Sloveniaand the industrial partners Terumo BCT and COOK Tegentec.

See original here:
Home - STEM CELL SCIENCE

categoriaCardiac Stem Cells commentoComments Off on Home – STEM CELL SCIENCE dataFebruary 13th, 2018
Read all

Levels of Spinal Cord Injury – Brain and Spinal Cord

By NEVAGiles23

Basic Spinal Cord Anatomy

To understand this confusion and what you are actually being told when your injury is described as being at a certain level, it is necessary to understand basic spinal anatomy. The spine and the spinal cord are two different structures. The spinal cord is a long series of nerve cells and fibers running from the base of the brain to shortly above the tailbone. It is encased in the bony vertebrae of the spine, which offers it some protection.

The spinal cord relays nerve signals from the brain to all parts of the body and from all points of the body back to the brain. Part of the confusion regarding spinal cord injury levels comes from the fact that the spine and the spinal cord each are divided into named segments which do not always correspond to each other. The spine itself is divided into vertebral segments corresponding to each of the vertebrae.

The spinal cord is divided into neurological segmental levels, meaning that the focus is on what part of the body the nerves from each section control. The spine is divided into seven neck (cervical) vertebrae, twelve chest (thoracic) vertebra, five back (lumbar) vertebrae, and five tail (sacral) vertebrae. The segments of the spine and spinal cord are designated by letters and numbers; the letters used in the designation correspond to the location on the spine or the spinal cord. For example:

The spinal cord segments are named in the same fashion, but their location does not necessarily correspond to the spinal segments location. For example:

The spinal cord is responsible for relaying the nerve messages that control voluntary and involuntary movement of the muscles, including those of the diaphragm, bowels, and bladder. It relays these messages to the rest of the body via spinal roots which branch out from the cord.

The spinal roots are nerves that go through the spines bone canal and come out at the vertebral segments of the spinal cord. Bodily functions can be disrupted by injury to the spinal cord. The amount of the impairment depends on the degree of damage and the location of the injury.

The head is held by the first and second cervical segments. The cervical cord supplies the nerves for the deltoids, biceps, triceps, wrist extensors, and hands. The phrenic nucleus (a group of cell bodies with nerve links to the diaphragm) is located in the C3 cord.

The thoracic vertebral segments compose the rear wall of the ribs and pulmonary cavity. In this area, the spinal roots compose the between the ribs nerves (intercostal nerves) which control the intercostal muscles.

The spinal cord does not travel the entire length of the spine. It ends at the second lumbar segment (L2). Spinal roots exit below the spinal cords tip (conus) in a spray; this is called the cauda equine (horses tail). Damage below the L2 generally does not interfere with leg movement, although it can contribute to weakness.

In addition to motor function, the spinal cord segments each innervate different sections of skin called dermatomes. This provides the sense of touch and pain. The area of a dermatome may expand or contract after a spinal cord injury.

The differences between some of the spinal vertebral and spinal cord levels have added to the confusion in developing a standardized rating scale for spinal cord injuries. In the 1990s, the American Spinal Cord Association devised a new scale to help eliminate ambiguities in rating scales. The ASIA scale is more accurate than previous rating systems, but there are still differences in the ways various medical specialists evaluate an SCI injury.

Dr. Wise Young, founding director of Rutgers W. M. Keck Center for Collaborative Neuroscience explains that usually neurologists (nerve specialists) will rate the level of injury at the first spinal segment level which exhibits loss of normal function; however, rehabilitation doctors (physiatrists) usually rate the level of injury at the lowest spinal segment level which remains normal.

For example, a neurologist might say that an individual with normal sensations in the C3 spinal segment who lacks sensation at the C4 spinal segment should be classified as a sensory level C4, but a physiatrist might call it a C3 injury level. Obviously, these differences are confusing to the patient and to the patients family. People with a spinal cord injury simply want to know what level of disability they will have and how much function they are likely to regain. Adding to the confusion is the debate over how to define complete versus incomplete injuries.

For many years, a complete spinal cord injury was thought of as meaning no conscious sensations or voluntary muscle use below the site of the injury; however, this does not take in to account that partial preservation of function below the injury site is rather common. This definition of a complete injury also failed to take into account the fact that may people have lateral preservation (function on one side).

In addition, a person may later recover a degree of function, after being labeled in the first few days after the injury as having a complete injury. In 1992, the American Spinal Cord Association sought to remedy this dilemma by coming up with a simple definition of complete injury.

According to the ASIA scale, a person has a complete injury if they have no sensory or motor function in the perineal and anal region; this area corresponds to the lowest part of the sacral cord (S4-S5). A rectal examination is used to help determine function in this area. The ASIA Scale is classified as follows:

At this point, if you are a patient with a spinal cord injury or the family member of a spinal cord injury patient you may be more confused than ever. How do these ratings apply to the daily life of someone with a spinal cord injury? A brief overview of the basic definitions may help.

This is the greatest level of paralysis. Complete C1-C4 tetraplegia means that the person has no motor function of the arms or legs. He or she generally can move the neck and possibly shrug the shoulders. When the injury is at the C1-C3 level, the person will usually need to be on a ventilator for the long-term; fortunately, new techniques may be able to reduce the need for a ventilator.

A person whose injury is at the C4 level usually will not need to use the ventilator for the long-term, but will likely need ventilation in the first days after the injury. People with complete C1-C4 quadriplegia may be able to use a power wheelchair that can be controlled with the chin or the breath. They may be able control a computer with adaptive devices in a similar fashion and some can work in this way. They can also control light switches, bed controls, televisions and so with the help of adaptive devices. They will require a caregivers assistance for most or all of their daily needs.

People with C5 tetraplegia can flex their elbows and with the help of assistive devices to help them hold objects, they can learn to feed and groom themselves. With some help they can dress their upper body and change positions in bed. They can use a power wheelchair equipped with hand controls and some may be able use a manual wheelchair with grip attachments for a short distance on level ground.

People with C5 will need to rely on caregivers for transfers from bed to chair and so forth, and for assistance with bladder and bowel management, as well as with bathing and dressing the lower body. Adaptive technology can help these people be independent in many areas, including driving. People with C5 tetraplegia can drive a vehicle equipped with hand controls.

People with C6 tetraplegia have the use both of the elbow and the wrist and with assistive support can grasp objects. Some people with C6 learn to transfer independently with the help of a slide board. Some can also handle bladder and bowel management with assistive devices, although this can be difficult.

People with C6 can learn to feed, groom, and bath themselves with the help of assistance devices. They can operate a manual wheelchair with grip attachments and they can drive specially adapted vehicles. Most people with C6 will need some assistance from a caregiver at times.

People with C7 tetraplegia can extend the elbow, which allows them greater freedom of movement. People with C7 can live independently. They can learn to feed and bath themselves and to dress the upper body. They can move in bed by themselves and transfer by themselves. They can operate a manual wheelchair, but will need help negotiating curbs. They can drive specially-equipped vehicles. They can write, type, answer phones, and use computers; some may need assistive devices to do so, while others will not.

People with C8 tetraplegia can flex their fingers, allowing them a better grip on objects. They can learn to feed, groom, dress, and bath themselves without help. They can manage bladder and bowel care and transfer by themselves. They can use a manual wheelchair and type, write, answer the phone and use the computer. They can drive vehicles adapted with hand controls.

People with T1-T12 paraplegia have nerve sensation and function of all their upper extremities. They can become functionally independent, feeding and grooming themselves and cooking and doing light housework. They can transfer independently and manage bladder and bowel function. They can handle a wheelchair quite well and can learn to negotiate over uneven surfaces and handle curbs. They can drive specially adaptive vehicles.

People with a T2-T9 injury may have enough torso control to be able to stand with the help of braces and a walker or crutches. People with a T10-T12 injury have better torso control than those with a T2-T9 injury, and they may be able to walk short distances with the aid of a walker or crutches.

Some can even go up and down stairs; however, walking with such an injury requires a great deal of effort and can quickly exhaust the patient. Many people with thoracic paraplegia prefer to use a wheelchair so that they will not tire so quickly.

People with sacral or lumbar paraplegia can be functionally independent in all of their self-care and mobility needs. They can learn to skillfully handle a manual wheelchair and can drive specially equipped vehicles. People with a lumbar injury can usually learn to walk for distances of 150 feet or longer, using assistive devices. Some can walk this distance without assistance devices. Most rely on a manual wheelchair when longer distances must be covered.

There are many other functional scales besides the ASIA scale, but it is the most frequently used. Neurologists find the NLOI (the Neurological level of injury) scale helpful; it is a simply administered test of motor function and range of motion. The Function Independence Measure (FIM) evaluates function in mobility, locomotion, self-care, continence, communication, and social cognition on a 7-point scale.

The Quadriplegic Index of Function (QIF) detects small, clinically significant changes in people with tetraplegia. Other scales include the Modified Barthel Index, the Spinal Cord Independence Measure (SCIM), the Capabilities of Upper Extremity Instrument (CUE), the Walking Index for SCI (WISCI), and the Canadian Occupational Performance Measure (COPM).

View post:
Levels of Spinal Cord Injury - Brain and Spinal Cord

categoriaSpinal Cord Stem Cells commentoComments Off on Levels of Spinal Cord Injury – Brain and Spinal Cord dataFebruary 12th, 2018
Read all