Sam Shepard Died of ALS. Here’s Why It’s so Difficult to Treat. – Fortune

By daniellenierenberg

We lost an American icon Thursday with the death of actor and playwright Sam Shepard. He had ALS (amyotrophic lateral sclerosis), more commonly known in the U.S. as Lou Gehrigs disease. Its an invariably fatal neurological disease that robs individuals of their ability to move muscles, their ability to swallow, and eventually, their ability to breathe.

ALS often starts in a fairly nonspecific way, with weakness in a persons hand or foot. Although I never examined the late Mr. Shepard, even in public photos from 2016, the atrophy of his hand muscle was evidenta hallmark of the loss of muscle that occurs in ALS.

In about 90% of cases diagnosed by neurologists, ALS happens out of the blueits sporadic, and the cause isnt known. About 10% of the time, ALS is inherited through a defective gene; that is, a patient has a family member who also had the disease. We can readily diagnose inherited ALS with a relatively simple blood test.

Five years ago, we learned that even in some patients who have no family history of ALS, a defect in a gene known as C9orf72 underlies the disease. In some patients, the disease may be initially diagnosed incorrectly as a nerve problem in the hands or wrist (carpel tunnel syndrome), or a pinched nerve in the neck or back. But those conditions are commonly associated with painALS is not generally a painful disease.

The weakness typically progressesslowly over many years in some patients, or rapidly over a few months in othersprogressing from one hand to the other, from hand to foot, or foot to hand. Eventually it affects ones ability to chew, swallow, and breathe. The weakness of the breathing muscles is what makes ALS fatal. Unlike cancer, with its rare but real remissions, ALS is always fatal. Patients might choose to have a ventilator artificially breathe for them; that intervention delays death, but not the progressive weakening and paralysis of all muscles.

As treating physicians, we have a paucity of options to slow down the disease and have no real effective drug to halt its relentless progression or to recover functionno cure. ALS is not really one disease, but a combination of different genetic, even environmental, insults, that culminate in this horribly disabling and life-ending malady. Not unlike what we have learned about cancers, there may be many different causesgenetic, molecular, biochemicalthat underlie the disease. In cancers, sampling the actual diseased tissue, commonly through tissue biopsies, has provided a trove of clues about what underlies the basis of the different cancers and how to approach the different forms, sometimes quite successfully. But with ALS, we cannot readily take a chunk of someones brain or spinal cord, so we are often left guessing as to what may underlie the cause of the disease and how to best treat it. That antiquated approach may soon end.

Advances in the generation of stems cells from individual patients provide the most powerful way to generate their own brain cells. We are now able to take a small tube of blood or skin and turn those cells into stem cells (by a procedure that won the Noble prize several years ago), and then, by adding a few more chemicals and special genes, turn those cells into motor neuronsbrain and spinal cord cells that die in ALS.

This procedure, which in essence creates a biopsy of the brain/spinal cord of ALS patients, will allow us to achieve what has been so successful in cancerto truly understand the different kinds of ALS, to use our patients brain cells to discover their individual disease causes, and to develop a more individualized pathway for drug therapy. We aim to personalize ALS therapywhat we call Answer ALS. That is the hope on the horizon for ALS, along with drugs now already under development or in clinical trials that are specifically targeted to patients with known genetic mutations. How far that horizon is in the distance, we dont know, but we can see it. We only wish Mr. Shepard and all our past patients could have reached that hopeful horizon.

Jeffrey D. Rothstein MD, PhD, a neurologist and professor at Johns Hopkins University, is the director of the universitys Brain Science Institute, ALS clinic and Robert Packard Center for ALS Research.

Read more from the original source:
Sam Shepard Died of ALS. Here's Why It's so Difficult to Treat. - Fortune

Related Post


categoriaSkin Stem Cells commentoComments Off on Sam Shepard Died of ALS. Here’s Why It’s so Difficult to Treat. – Fortune | dataAugust 2nd, 2017

About...

This author published 4757 posts in this site.

Share

FacebookTwitterEmailWindows LiveTechnoratiDeliciousDiggStumbleponMyspaceLikedin

Comments are closed.





Personalized Gene Medicine | Mesenchymal Stem Cells | Stem Cell Treatment for Multiple Sclerosis | Stem Cell Treatments | Board Certified Stem Cell Doctors | Stem Cell Medicine | Personalized Stem Cells Therapy | Stem Cell Therapy TV | Individual Stem Cell Therapy | Stem Cell Therapy Updates | MD Supervised Stem Cell Therapy | IPS Stem Cell Org | IPS Stem Cell Net | Genetic Medicine | Gene Medicine | Longevity Medicine | Immortality Medicine | Nano Medicine | Gene Therapy MD | Individual Gene Therapy | Affordable Stem Cell Therapy | Affordable Stem Cells | Stem Cells Research | Stem Cell Breaking Research

Copyright :: 2024