Priming ‘cocktail’ shows promise as cardiac stem cell grafting …

By NEVAGiles23

PUBLIC RELEASE DATE:

5-Dec-2013

Contact: Jennifer Nachbur jennifer.nachbur@uvm.edu 802-656-7875 University of Vermont

New research by University of Vermont Associate Professor of Medicine Jeffrey Spees, Ph.D., and colleagues has identified a new tool that could help facilitate future stem cell therapy for the more than 700,000 Americans who suffer a heart attack each year. The study appeared online in Stem Cells Express.

Stem cells, which can come from embryos, fetal tissue and adult tissues, have the potential to develop into a variety of cell types in the body, such as muscle cells, brain cells and red blood cells. These cells also possess the ability to repair human tissues. The field of regenerative medicine which explores the viability of using embryonic, fetal and adult stem cells to repair and regenerate tissues and organs has struggled to successfully graft cells from culture back into injured tissue.

"Many grafts simply didn't take; the cells wouldn't stick or would die," explains Spees. So he and his research team set out to develop ways to enhance graft success.

They focused on a type of bone marrow-derived progenitor cell that forms stromal cells. Stromal cells form connective tissue and also support the creation of blood cells. The researchers were aware of that these cells secrete a diverse array of molecules called ligands that protect injured tissue, promote tissue repair and support stem and progenitor cells in culture. Different ligands interact with specific receptors on the surface of a stem or progenitor cell, transmitting signals that can instruct the cell to adhere, to divide, or to differentiate into a mature functional cell.

To confirm whether or not these types of ligands would protect a cardiac progenitor cell and help it graft, the group isolated a conditioned medium from human bone marrow-derived progenitor cells. They found that the medium contained Connective Tissue Growth Factor (CTGF) and the hormone insulin.

"Both CTGF and insulin are protective," says Spees. "Together, they have a synergistic effect."

In the study, Spees and colleagues compared the impact of sending a cardiac stem cell "naked" into a rodent heart with infarction (heart attack) to a cell that instead wore a "backpack" of protective ligands, created by incubating about 125,000 cardiac cells in a "cocktail" of CTGF and insulin on ice for 30 minutes. The team grafted the cells sub-epicardially between the outer layer and the muscle tissue of the heart and found that their priming cocktail resulted in improved graft success.

Follow this link:
Priming 'cocktail' shows promise as cardiac stem cell grafting ...

Related Post


categoriaCardiac Stem Cells commentoComments Off on Priming ‘cocktail’ shows promise as cardiac stem cell grafting … | dataDecember 5th, 2013

About...

This author published 858 posts in this site.
Just for fun

Share

FacebookTwitterEmailWindows LiveTechnoratiDeliciousDiggStumbleponMyspaceLikedin

Comments are closed.





Personalized Gene Medicine | Mesenchymal Stem Cells | Stem Cell Treatment for Multiple Sclerosis | Stem Cell Treatments | Board Certified Stem Cell Doctors | Stem Cell Medicine | Personalized Stem Cells Therapy | Stem Cell Therapy TV | Individual Stem Cell Therapy | Stem Cell Therapy Updates | MD Supervised Stem Cell Therapy | IPS Stem Cell Org | IPS Stem Cell Net | Genetic Medicine | Gene Medicine | Longevity Medicine | Immortality Medicine | Nano Medicine | Gene Therapy MD | Individual Gene Therapy | Affordable Stem Cell Therapy | Affordable Stem Cells | Stem Cells Research | Stem Cell Breaking Research

Copyright :: 2024