Page 379«..1020..378379380381..390400..»

Exciting Times For Spinal Cord Injury Clinical Trials …

By LizaAVILA

These are indeed exciting times for spinal cord injury (SCI) clinical trials. There are trials ongoing around the world targeting different repair strategies. In this article we want to take the opportunity to explain some of the high profile clinical trials ongoing in the United States utilizing cells as a therapeutic intervention.

Miami Project Schwann Cells

As many of our readers know, The Miami Projects 1st Phase I clinical trial testing Schwann cells began in November 2012 and we are happy to announce that the final participant was transplanted in August 2015. Schwann cells come from your own body and they are a type of cell found throughout the entire peripheral nervous system (PNS). The PNS includes all nerves going out to muscles as well as sensory nerves coming from the muscles back to the spinal cord. Schwann cells are a type of support cell in the PNS and some important points about Schwann cells are that they 1) insulate (myelinate) individual nerve fibers (axons), which is necessary for sending appropriate electrical signals throughout the nervous system, 2) are not stem cells, they are adult cells and can only be Schwann cells, and 3) can be obtained from each persons own body thereby eliminating the need for immunosuppression medicine.

This trial is specifically targeting people with new SCI, less than 30 days after injury, having sustained a trauma-induced lesion between thoracic levels T3-T11 and whom were neurologically complete. This is a dose escalation treatment trial, meaning that we will test 3 different doses: 5 million, 10 million, and 15 million Schwann cells. There were a total of 39 people screened for eligibility, 9 were enrolled, and 6 participants were transplanted. The first two participants received the 5 million cell dose, the second two received the 10 million cell dose, and the final two received the 15 million cell dose. Thus far, there have been no treatment-related adverse effects in any of the transplanted subjects, which is excellent news. Remember, safety is the determinate of success for this phase I trial. We are not releasing any other information about the participants or results because the trial is still ongoing and we cannot compromise the data. After the final participant is 12 months post-transplant we will prepare the results for publication in a peer-reviewed scientific journal.

Our 2nd Phase I clinical trial began in February 2015 for chronic SCI and will also be primarily focused on safety, but in addition it will involve a preliminary evaluation of the efficacy of combining Schwann cells with exercise and rehabilitation. For humans with chronic SCI, we hypothesize that axons might show improved function if myelin repair is induced with the implantation of autologous Schwann cells. In addition, spinal cord cavitation may be reduced and neural sprouting and plasticity may be enhanced via neurotrophic effects. In this trial, participants will receive three months of fitness conditioning and locomotor rehabilitation prior to transplantation in order to validate the stability of their neurological baseline as well as to enhance their fitness level thereby reducing any deconditioning effects. They will also receive fitness conditioning and rehabilitation for six months post-transplantation to maintain health and promote neuronal activity and potential neuroplasticity. We believe that this combination of cell therapy with intense rehabilitation prior to and following cell transplantation will enhance our chances of seeing improved recovery in the chronic setting https://clinicaltrials.gov/ct2/show/NCT02354625 .

StemCells Inc

Drs. Allan Levi and Kim Anderson, along with several other University of Miami faculty members, are also participating in a clinical trial testing a different cell therapy neural stem cells. That trial, referred to as the Pathway Study, is sponsored by a company called StemCells, Inc.

The Pathway Study is testing the safety and potential benefit of a very specific stem cell type known as a neural stem cell; these are not Schwann cells. The neural stem cells being used in the Pathway Study were derived from fetal brain tissue and have the ability to self-renew and become the main types of mature cells found both in the brain and spinal cord. These cells do not come from your own body, therefore anyone who receives them into their body has to be on immunosuppression medicine. Studies of SCI in animals have shown that these human neural stem cells can survive and lead to recovery of function through remyelination and possibly neuronal cell replacement.

Prior to the Pathway Study, the company conducted a Phase I/II safety & preliminary efficacy clinical trial in humans with thoracic SCI. Twelve participants were transplanted within 3 to 12 months of injury. The results they have disclosed at scientific meetings indicate that neural stem cell transplantation appears to be safe; several participants have regained some sensation.

The Pathway Study is a larger Phase II efficacy clinical trial designed to determine if neural stem cells can help people with cervical SCI recover spinal cord function and gain strength and sensation. They will enroll up to 52 participants. Individuals may be able to join the study if they are 18 to 60 years old, have a cervical SCI that is classified as ASIA Impairment Scale grade A, B, or C, are less than two years post-injury, and are generally in good health. Individuals that are eligible for the study will participate for approximately 12 months. There are several sites around the country that are enrolling https://clinicaltrials.gov/ct2/show/NCT02163876 .

Asterias Biotherapeutics

Many of you have probably heard of the Geron clinical trial that was prematurely halted a few years ago for financial reasons. In 2013, a new company called Asterias Biotherapeutics took over the rights for everything related to the prior trial. The first trial was a Phase I safety trial using a human embryonic stem cell line pre-differentiated into oligodendrocyte progenitor cells. The oligodendrocyte progenitor cells are targeting reduction of the size of the injury cavity as well as remyelination of demyelinated axons to restore conduction. These cells also cannot be obtained from your own body, hence require immunosuppression medicine as well when administered to anyone. In that trial, 5 individuals with complete thoracic injury received the cells within 14 days after their injury. The results they have disclosed at scientific meetings indicate that the cell transplantation appears to be safe and that four of the five participants appear to have a smaller cavity when evaluated by MRI.

In 2015, they began a Phase I/IIa dose escalation trial, the SCI-Star study. This trial is enrolling individuals with cervical injury between levels C5-C7 whom are neurologically complete. The cells have to be injected between 14 to 30 days post-injury; up to 13 participants will receive the cells. There are at least 3 centers enrolling https://clinicaltrials.gov/ct2/show/NCT02302157 .

Neuralstem

The final cell therapy of high profile is being conducted by a company called Neuralstem. This is a Phase I safety trial using human fetal spinal cord neural precursor cells. These stem cells are targeting growth factor replacement and possibly neuronal cell replacement. Again, because these cells do not come from ones own body, they require immunosuppression medicine. The company previously completed a Phase I safety trial using the same cells in individuals with Lou Gehrigs disease. They transplanted 18 participants in mid- to late stages of the disease and demonstrated safety. The company then obtained approval for the SCI Phase I trial. A total of 4 participants with complete thoracic injury, between one and two years post-injury, will be transplanted. The study procedures are all performed in California https://clinicaltrials.gov/ct2/show/NCT01772810 .

To find out more information about the trials being conducted at The Miami Project, contact The Miami Project Education Department at 305-243-7108 or MPinfo@med.miami.edu . More information about all of our clinical trials and studies is available at http://www.themiamiproject.org/trials .

Read the original here:
Exciting Times For Spinal Cord Injury Clinical Trials ...

To Read More: Exciting Times For Spinal Cord Injury Clinical Trials …
categoriaSpinal Cord Stem Cells commentoComments Off on Exciting Times For Spinal Cord Injury Clinical Trials … | dataJune 2nd, 2017
Read All

Resurrected: A controversial trial to bring the dead back to life plans a restart – STAT

By Sykes24Tracey

F

or any given medical problem, it seems, theres a research team trying to use stem cells to find a solution. In clinical trials to treat everything from diabetes to macular degeneration to ALS, researchers are injecting the cells in efforts to curepatients.

But in one study expectedto launch later this year, scientists hope to use stem cells in a new, highly controversial way to reverse death.

The idea ofthe trial, run by Philadelphia-based Bioquark, isto inject stem cells into the spinal cords of people who have been declared clinically brain-dead. The subjects will also receive an injected protein blend, electrical nerve stimulation, and laser therapy directed at the brain.

advertisement

The ultimate goal: to grow new neurons and spur them to connect to each other, and thereby bring the brain back to life.

Its our contention that theres no single magic bullet for this, so to start with a single magic bullet makes no sense. Hence why we have to take a different approach, said Ira Pastor, CEO of Bioquark.

A dogged quest to fix broken spinal cords pays off with new hope for the paralyzed

But the scientific literature scarce as it is seems to show that even several magic bullets are unlikely to accomplish what Bioquark hopes itwill.

This isnt the first start for the trial. The study launched in Rudrapur, India, in April 2016 but it never enrolled any patients. Regulators shut the study down in November2016 because, according to Science, IndiasDrug Controller General hadnt cleared it.

Now, Pastor said, the company is in the final stages of finding a new location to host trials. The company willannounce a trial in Latin America in coming months, Pastor told STAT.

If that trial mirrors the protocol for the halted Indian one, itll aim to enroll 20 patients wholl receive a barrage of treatments. First theres the injection of stem cells isolatedfrom the individuals own fat or blood. Second, theres a peptide formula injected into the spinal cord, purported to help nurture new neurons growth. (The company has tested the same concoction, called BQ-A, in animalmodels of melanoma, traumatic brain injuries, and skin wrinkling.) Third, theres a regimen of nerve stimulation and laser therapyover 15 days to spur the neurons to form connections. Researcherswilllook to behavior and EEG for signs that the treatment is working.

But the process is fraught with questions. How do researchers complete trial paperwork when the person participating is, legally, dead? (In the United States, state laws most often define death as the irreversible loss of heart and lung or brain function.) If the person did regain brain activity, what kind of functional abilities would he or she have? Are families getting their hopes up for an incredibly long-shot cure?

Answers to most of those questions are still far off. Of course, many folks are asking the what comes next? question, Pastor acknowledged. While full recovery in such patients is indeed a long term vision of ours, and a possibility that we foresee with continued work along this path, it is not the core focus or primary endpoint of this first protocol.

No real template exists to know whether this approach might work and its gotten some prominent backlash. Neurologist Dr. Ariane Lewis and bioethicist Arthur Caplan wrote in a 2016 editorial that the trial borders on quackery, has no scientific foundation, and gave families a cruel, false hope for recovery. (Exploratory research programs of this nature are not false hope. They are a glimmer of hope, Pastor responded.)

The company hasnt tested the full, four-pronged treatment, even in animal models. Studies have evaluated the treatments singly for other conditions stroke, coma but brain death is a quite different proposition.

Stem cell injections to the brain or spinal cord have shown some positive results for children with brain injuries; trials using similar procedures to treat cerebral palsy and ALS have also been completed. One small, uncontrolled studyof 21 stroke patients found that they recoveredmore mobility after they received an injection of donor stem cells into their brains.

On transcranial laserdevices, the evidence is mixed. The approach has been shown to stimulate neuron growth in some animal studies. However, a high-profile Phase 3 study of one such device in humans was halted in 2014 after it showed no effect on 600 patients physical capabilities as they recovered from a stroke. Othertrialsto revive people from comasusing laser therapy are underway.

The literature around electrical stimulation of the median nerve whichbranches from the spinal cord downthe arm and to the fingers primarily consists of case studies.Dr. EdCooper wrote some of those papers, one of which described dozens of patients treated in his home state of North Carolina, including 12 who had a Glasgow Coma Score of 4 an extremely low score on the scale. With time (and with the nerve stimulation), four of those 12people made a good recovery, the paper described; others were left with minor or major disabilities after their coma.

Mini-me brains-in-a-dish mimic disease, raise hope for eventual therapies

But Cooper, an orthopedic surgeon by training who worked with neurosurgeons on the paper, said unequivocally that there is no way this technique could work on someone who is brain-dead. The technique, he said, relies on there being a functional brain stem one of the structuresthat mostmotor neurons go through before connecting with the cortex proper. If theres no functional brain stem, then it cant work.

Pastor agreed but heclaimed the technique would work because there are a small nestofcells that still function in patients who are brain-dead.

Complicating such trials, there is noclear-cut confirmatory test for brain death meaning a recovery in the trial might not be entirely due to the treatment. Some poisons and drugs, for instance, can make people look brain-dead.Bioquark plans to rely on local physicians in the trials host country to make the declaration. Were not doing the confirmatory work ourselves, Pastor said, but each participant would have undergone a battery of tests considered appropriate by local authorities.

But asurvey of 38 papers published over 13 years found that, if the American Academy of Neurology guidelines for brain death had been met, no brain-dead people have ever regained brain function.

Of Bioquarks full protocol, its not the absolute craziest thing Ive ever heard, but I think the probability of that working is next to zero, said Dr. Charles Cox, a pediatric surgeon who has doneresearch with mesenchymal stem cells the type used in the trial at the University of Texas Health Science Center at Houston. Cox is not involved in Bioquarks work.

Some studies have found that cells from a part of thebrain called the subventricular zone can grow in culture even after a person is declared dead, Cox said. However, its unlikely that the trials intended outcome to havea stem cell treatment result in new neurons or connections would actually happen. Neurons would likely struggle tosurvive, because blood flow to the brain isalmost always lostin people whohave been declared brain-dead, Cox said.

But Pastor thinksBioquarks protocol will work. I give us a pretty good chance, he said. I just think its a matter of putting it all together and getting the right people and the right minds on it.

Cox is less optimistic. I think [someone reviving] would technically be a miracle, he said. I think the pope would technically call that a miracle.

Kate Sheridan can be reached at kate.sheridan@statnews.com Follow Kate on Twitter @sheridan_kate

Trending

The addict brokers: Middlemen profit as desperate patients are

The addict brokers: Middlemen profit as desperate patients are treated like paychecks

Medicine with a side of mysticism: Top hospitals promote

Medicine with a side of mysticism: Top hospitals promote unproven therapies

Drug used to halt puberty in children may cause

Drug used to halt puberty in children may cause lasting health problems

Recommended

When might patients use their brains to restore movement?

When might patients use their brains to restore movement? We all want the answer to be

Just dont do it: Compression tights fail to curb

Just dont do it: Compression tights fail to curb runners muscle fatigue

A shrimp studys jumbo error and what other researchers

A shrimp studys jumbo error and what other researchers can learn

Follow this link:
Resurrected: A controversial trial to bring the dead back to life plans a restart - STAT

To Read More: Resurrected: A controversial trial to bring the dead back to life plans a restart – STAT
categoriaSpinal Cord Stem Cells commentoComments Off on Resurrected: A controversial trial to bring the dead back to life plans a restart – STAT | dataJune 2nd, 2017
Read All

Looking at the role of the protein TDP-43 in ALS – Brandeis University

By Dr. Matthew Watson

A postdoctoral fellow will examine the protein's effects in human cells.

By Lawrence GoodmanJune 1, 2017

In ALS, also known as Lou Gehrigs disease, the bodys motor neurons degenerate and eventually die. As a result, muscles waste away, leading to an inability tospeak, move and, eventually, breathe. Patients typically die within five years of symptom onset.

One possible target for a drug treatment for ALS is the protein TDP-43. Mutations in the gene encoding TDP-43 cause some cases of inherited ALS and almost all sufferers of sporadic ALS to develop clumps of TDP-43 protein intheir neurons.

In recent years, postdoctoral fellow Mugdha Deshpande has been working withassociate professors of biology Avital Rodal and Suzanne Paradis to uncover how the TDP-43 protein damages neurons in model organisms such as the fruit fly Drosophila melanogaster. Now, they want to take the next step and see whether the same effects occur in human cells.

Deshpande is the Blazeman Postdoctoral Fellow for ALS Research, a position funded by the Rhode Island-based Blazeman Foundation for ALS. Based on her discoveries of how TDP-43 affects neurons in model organisms, she recently received a Brandeis Provost Research award to further her research on TDP-43 in human cells.

Deshpandes research focuses on motor neurons, whose nuclei are located in thespinal cord and whose nerve fibers, or axons, stretch throughout the body. In flies, defective TDP-43 has been shown to cause damage in the area where axonsconnect to muscles.

To test whether the same defects occur in humans, Deshpande will utilize a line of induced pluripotent stem cells isolated from an ALS patients skin cells and developed at the University of Massachusetts Medical School. In collaboration with the Human Neuron Core at Boston Children's Hospital, she will transform the stem cells into neurons.

Deshpande plans to study the defects that arise when human neurons develop whileharboring a genetic mutation in the TDP-43 gene. We need to gain an understanding of whats going on, she says. Without that, we are not going to get a therapy for ALS.

See more here:
Looking at the role of the protein TDP-43 in ALS - Brandeis University

To Read More: Looking at the role of the protein TDP-43 in ALS – Brandeis University
categoriaSpinal Cord Stem Cells commentoComments Off on Looking at the role of the protein TDP-43 in ALS – Brandeis University | dataJune 2nd, 2017
Read All

Vistagen Therapeutics, Inc. – Seeking Alpha

By JoanneRUSSELL25

Vistagen Therapeutics, Inc.

Save ChangesCancel

"VistaGen Therapeutics, Inc. (NASDAQ: VTGN), is a clinical-stage biopharmaceutical company focused on developing new generation medicines for depression and other central nervous system (CNS) disorders. Our lead CNS product candidate, AV-101, is a new generation oral antidepressant drug candidate in Phase 2 development. AV-101's mechanism of action is fundamentally differentiated from all FDA-approved antidepressants and atypical antipsychotics used adjunctively to treat major depressive disorder (MDD), with potential to drive a paradigm shift towards a new generation of safer and faster-acting antidepressants. AV-101 is currently being evaluated by the U.S. National Institute of Mental Health (NIMH) in a Phase 2 monotherapy study in MDD being fully funded by the NIMH and conducted by Dr. Carlos Zarate Jr., Chief, Section on the Neurobiology and Treatment of Mood Disorders and Chief of Experimental Therapeutics and Pathophysiology Branch at the NIMH, and one of the world's foremost experts on the use of low dose IV ketamine and other NMDA receptor antagonists to treat MDD. VistaGen is also preparing to launch a 180-patient Phase 2 study of AV-101 as an adjunctive treatment for MDD patients with inadequate response to standard, FDA-approved antidepressant therapies. Dr. Maurizio Fava of Harvard University will be the Principal Investigator of the Phase 2 adjunctive treatment study. AV-101 may also have the potential to treat multiple CNS disorders and neurodegenerative diseases in addition to MDD, including chronic neuropathic pain, epilepsy, Parkinson's disease and Huntington's disease, where modulation of the NMDAR, AMPA pathway and/or key active metabolites of AV-101 may achieve therapeutic benefit. In addition to our AV-101 programs, VistaStem, VistaGens wholly owned subsidiary, is applying our human pluripotent stem cell (hPSC) technology platform and CardioSafe 3D, our customized in-vitro human cardiac cell bioassay system, to predict potential heart toxicity of new chemical entities (NCEs) long before they are tested in preclinical animal studies and human clinical studies. Having successfully assessed AV-101 and numerous other drug candidates to establish the clinically predictive capabilities of CardioSafe 3D, we are now using CardioSafe 3D to expand our pipeline through cardiac liability-focused small molecule drug rescue, and to participate, together with a select group of companies, in the FDA's Comprehensive in-vitro Proarrhythmia Assay (CIPA) initiative designed to change the landscape of preclinical drug development by providing a more complete and accurate assessment of potential drug effects on cardiac risk. We are also focused on collaborating with others to advance development and commercialization of medicine and cell therapy applications of our stem cell technology across a range of cell types, including blood, bone, cartilage, heart and liver cells. In December 2016, we entered into an exclusive sublicense agreement with BlueRock Therapeutics L.P, a next generation regenerative medicine company established by Bayer AG and Versant Ventures, for our rights to proprietary technologies relating to the production of cardiac stem cells for the treatment of heart disease."

Excerpt from:
Vistagen Therapeutics, Inc. - Seeking Alpha

To Read More: Vistagen Therapeutics, Inc. – Seeking Alpha
categoriaCardiac Stem Cells commentoComments Off on Vistagen Therapeutics, Inc. – Seeking Alpha | dataJune 2nd, 2017
Read All

Can Tiny Plumbing Fix Broken Hearts? – NC State News

By daniellenierenberg

Illustration of the heart patch using artificial capillaries.

Editors note: This is a guest post by Frances Ligler, Lampe Distinguished Professor in the Joint Department of Biomedical Engineering (BME) at NC State and UNC-Chapel Hill. This is one of a series of posts from NC State researchers that address the value of science, technology, engineering and mathematics.

Judging from evidence provided by Star Wars and The Six Million Dollar Man, repairing body parts seems to require a screwdriver. However, teams of scientists and engineers are exploring other ways to repair our bodies and NC State faculty and students are collaborating across colleges to perform cutting-edge experiments to further regenerative medicine therapeutics.

Before joining NC State, Michael Daniele (an assistant professor of BME and electrical and computer engineering) and I invented a method of making long strings of artificial blood capillaries by creating soft walls in between fluids streaming through a small channel. Cells present in the streams were incorporated into the capillaries to mimic the 3-D architecture of your capillaries and veins.

At NC State, we joined forces with Ke Cheng, an expert in stem cells and cardiology from the College of Veterinary Medicine, to incorporate these artificial capillaries into a degradable patch containing cardiac stem cells. Postdoctoral fellow Teng Su placed the patches on damaged areas of rat hearts and showed both repair of the rat heart tissue and return of the pumping capacity of the heart (which does not happen under the untreated condition where scar tissue forms in the damaged heart).

In another exciting collaboration, Matt Fisher from BME, Rohan Shirwaiker (an associate professor of industrial and systems engineering) and Behnam Pourdeyhimi from the College of Textiles are teaming up to reconstruct damaged knees. They are recreating the underlying fibrous scaffolds that support the cartilage in a manner that better mimics the original knee and supports the growth of the normal cell type within the new scaffolds which should improve healing and support a return to normal function in the knee.

The variety of skills required for this project include designing an entirely new device for printing fibers, understanding how to arrange the fibers and change their composition to accommodate bone or cartilage-forming cells, and learning how the new tissue develops to accommodate physical motion.

The lure of replacement body parts is widespread. There are far more people waiting for replacement organs than can be accommodated by human donors. Learning to use an individuals own cells to trigger tissue regeneration has far more long-term potential to address the ever-growing needs of accident victims and an aging population.

The key to success lies with teams of dedicated scientists, engineers, medical professionals and financial supporters that are focused on using the lessons learned across many fields to solve this grand challenge.

Read the original post:
Can Tiny Plumbing Fix Broken Hearts? - NC State News

To Read More: Can Tiny Plumbing Fix Broken Hearts? – NC State News
categoriaCardiac Stem Cells commentoComments Off on Can Tiny Plumbing Fix Broken Hearts? – NC State News | dataJune 2nd, 2017
Read All

SpaceX to launch heart, bone health experiments to space station – CU Boulder Today

By Sykes24Tracey

Editors note: The SpaceX Falcon 9 rocket scheduled to launch today from Florida was delayed due to weather conditions. The launch has been rescheduled for Saturday, June 3.

A SpaceX rocket wasslated to launch two University of Colorado Boulder-built payloads to the International Space Station (ISS) from Florida on Thursday, including oneto look at changes in cardiovascular stem cells in microgravity that may someday help combat heart disease on Earth.

The Dragon spacecraft

The second payload will be used for rodent studies testing a novel treatment for bone loss in space, which has been documented in both astronauts and mice. The two payloads were developed by BioServe Space Technologies, a research center within the Ann and H.J Smead Department of Aerospace Engineering,

We have a solid relationship with SpaceX and NASA that allows us to regularly fly our flight hardware to the International Space Station, said BioServe Director Louis Stodieck. The low gravity of space provides a unique environment for biomedical experiments that cannot be reproduced on Earth, and our faculty, staff and students are very experienced in designing and building custom payloads for our academic, commercial and government partners.

The experiments will be launched on a SpaceX Falcon 9 rocket from Cape Canaveral, Florida, and carried to the ISS on the companys Dragon spacecraft. The SpaceX-CRS-11 mission launching Thursday marks BioServes 55th mission to space.

The cardiovascular cell experiments, designed by Associate Professor Mary Kearns-Jonker of the Loma Linda University School of Medicine in Loma Linda, California, will investigate how low gravity affects stem cells, including physical and molecular changes. While spaceflight is known to affect cardiac cell structure and function, the biological basis for such impacts is not clearly understood, said BioServe Associate director Stefanie Countryman.

As part of the study, the researchers will be comparing changes in heart muscle stem cells in space with similar cells simultaneously cultured on Earth, said Countryman. Researchers are hopeful the findings could help lead to stem cell therapies to repair damaged cardiac tissue. The findings also could confirm suspicions by scientists that microgravity speeds up the aging process, Countryman said.

For the heart cell experiments, BioServe is providing high-tech, cell-culture hardware known as BioCells that will be loaded into shoebox-sized habitats on ISS. The experiments will be housed in BioServes Space Automated Bioproduct Lab (SABL), a newly updated smart incubator that will reduce the time astronauts spend manipulating the experiments.

The second experiment, created by Dr. Chia Soo of the UCLA School of Medicine, will test a new drug designed to not only block loss of bone but also to rebuild it.

The mice will ride in a NASA habitat designed for spaceflight to the ISS. Once on board, some mice will undergo injections with the new drug while others will be given a placebo. At the end of the experiments half of the mice will be returned to Earth in SpaceXs Dragon spacecraft and transported to UCLA for further study, said Stodieck, a scientific co-investigator on the experiment.

BioServes Space Automated Byproduct Lab

In addition to the two science experiments, BioServe is launching its third SABL unit to the ISS. Two SABL units are currently onboard ISS supporting multiple research experiments, including three previous stem cell experiments conducted by BioServe in collaboration with Stanford University, the Mayo Clinic and the University of Minnesota.

The addition of the third SABL unit will expand BioServes capabilities in an era of high-volume science on board the ISS, said Countryman.

BioServe researchers and students have flown hardware and experiments on missions aboard NASA space shuttles, the ISS and on Russian and Japanese government cargo rockets. BioServe previously has flown payloads on commercial cargo rockets developed by both SpaceX, headquartered in Hawthorne, California, and Orbital ATK, Inc. headquartered in Dulles, Virginia.

Since it was founded by NASA in 1987, BioServe has partnered with more than 100 companies and performed dozens of NASA-sponsored investigations. Itspartners include large and small pharmaceutical and biotechnology companies, universities and NASA-funded researchers, and investigations sponsored by the Center for the Advancement of Science in Space, which manages the ISS U.S. National Laboratory. CU-Boulder students are involved in all aspects of BioServe research efforts, said Stodieck.

Read this article:
SpaceX to launch heart, bone health experiments to space station - CU Boulder Today

To Read More: SpaceX to launch heart, bone health experiments to space station – CU Boulder Today
categoriaCardiac Stem Cells commentoComments Off on SpaceX to launch heart, bone health experiments to space station – CU Boulder Today | dataJune 2nd, 2017
Read All

Station Ramps Up for Cardiac Research Loaded on Dragon … – Space Fellowship

By NEVAGiles23

The Expedition 51 crew members are awaiting a new space shipment and getting ready for new science experiments. The crew is also preparing for the departure of a pair of International Space Station flight engineers.

The Falcon 9 rocket that will launch the SpaceX Dragon cargo craft to space is resting at its launch pad today at the Kennedy Space Center in Florida. Dragon will lift off Thursday at 5:55 p.m. EDT on a three-day trip to the stations Harmony module.

Inside the commercial space freighter is nearly 6,000 pounds of crew supplies, station hardware and science experiments. One of those experiments, Cardiac Stem Cells, will research how stem cells affect cardiac biology and tissue regeneration in space. The stations Microgravity Science Glovebox is being readied for the study which may provide insight into accelerated aging due to living in microgravity.

On Friday, cosmonaut Oleg Novitskiy will command the Soyuz MS-03 spacecraft to return him and European Space Agency astronaut Thomas Pesquet back to Earth after 196 days in space. The two crew members are packing their spacecraft with research samples, hardware and personal items for the near 3.5 hour ride home. The duo will undock from the Rassvet module at 6:47 a.m. EDT. They will then parachute to a landing in Kazakhstan at 10:10 a.m. (8:10 p.m. Kazakh time).

Continue reading here:
Station Ramps Up for Cardiac Research Loaded on Dragon ... - Space Fellowship

To Read More: Station Ramps Up for Cardiac Research Loaded on Dragon … – Space Fellowship
categoriaCardiac Stem Cells commentoComments Off on Station Ramps Up for Cardiac Research Loaded on Dragon … – Space Fellowship | dataJune 2nd, 2017
Read All

Oxford University staff join bone marrow stem cell donor drive for … – Oxford Mail

By daniellenierenberg

COUNTLESS lives across the world could be saved by an Oxfordshire familys appeal to find a bone marrow donor for their little boy.

Two-year-old Alastair Ally Kim has Chronic Granulomatous Disorder (CGD), a life-threatening condition.

He has now become the fourth person in the world to start an experimental gene therapy course at Great Ormond Street Hospital.

In the meantime, his parents have spearheaded 200 international donor drives to find their son a match, signing up 7,000 would-be donors in the process - some of whom have since been matched with other patients.

Father Andrew Kim, 37, of Hinton Waldrist near Longworth, said: We want to use whatever momentum Allys story has to help someone else. We know that matches have come through our drives for other people. Its awesome that someone will benefit from all this.

On Thursday, May 25 family friend Cathy Oliveira organised a drive at the Oxford Universitys Old Road research building, signing up 80 staff members in a day.

Ms Oliveira said: When everything happened with Ally I wanted to show support in any way we could; this is directly beneficial not just for Ally but for others.

Allys CGD means his immune system is compromised and the tiniest infection could leave him seriously ill.

His only chance of a permanent cure is a bone marrow stem cell donation, with a match likely to be of Korean or East Asian origin.

In April the youngster and mum Judy Kim, 36, an Oxford University researcher, travelled to London for him to begin a pioneering new gene therapy treatment.

After a week of chemotherapy to wipe out Allys immune system, cells taken from him are modified in a lab and re-introduced to correct the disorder.

Mr Kim said: Bone marrow would give him back 100 per cent functionality and gene therapy is 10 to 15 per cent; its enough to live in the real world, and not be scared he will die every time he gets an infection.

It has been a roller-coaster of a year, but theres nothing to do but move forward. We are really excited at the thought of him being able to come home this summer.

Blood cancer charity DKMS supported last weeks donor drive in Oxford.

Senior donor recruitment manager Joe Hallet said: Around 30 per cent of patients in need of a blood stem cell donor will find a matching donor within their own family.

The remaining 70 per cent, like Ally, will need to find an unrelated donor to have a second chance of life, so events like these are crucial.

The rest is here:
Oxford University staff join bone marrow stem cell donor drive for ... - Oxford Mail

To Read More: Oxford University staff join bone marrow stem cell donor drive for … – Oxford Mail
categoriaBone Marrow Stem Cells commentoComments Off on Oxford University staff join bone marrow stem cell donor drive for … – Oxford Mail | dataJune 2nd, 2017
Read All

Limitless Lab-Grown Blood Is ‘Tantalizingly Close’ After 20 Years – Singularity Hub

By Sykes24Tracey

Blood stem cells are things of wonder: hidden inside each single cell is the power to reconstitute an entire blood system, like a sort of biological big bang.

Yet with great power comes greater vulnerability. Once these master cells are compromised, as in the case of leukemia and other blood disorders, treatment options are severely limited.

A bone marrow transplant is often the only chance for survival. The surgery takes a healthy donors marrowrich with blood stem cellsand reboots the patients blood system. Unfortunately, like organ transplants, finding a matching donor places a chokehold on the entire process.

According to Dr. George Daley at Harvard Medical School, a healthy sibling gives you a one in four chance. A stranger? One in a million.

For 20 years, scientists have been trying to find a way to beat the odds. Now, two studies published in Nature suggest they may be tantalizingly close to being able to make a limitless supply of blood stem cells, using the patients own healthy tissues.

"This step opens up an opportunity to take cells from patients with genetic blood disorders, use gene editing to correct their genetic defect and make functional blood cells," without depending on donors, says Dr. Ryohichi Sugimura at Boston Childrens Hospital, who authored one of the studies with Daley.

Using a magical mix of seven proteins called transcription factors, the team coaxed lab-made human stem cells into primordial blood cells that replenished themselves and all components of blood.

A second study led by Dr. Shahin Rafii, a stem cell scientist at Weill Cornell Medical College took a more direct route, turning mature cells from mice straight into genuine blood stem cells indiscernible from their natural counterparts.

This is the first time researchers have checked all the boxes and made blood stem cells, says Dr. Mick Bhatia at McMaster University, who was not involved in either study, That is the holy grail.

The life of a blood stem cell starts as a special cell nestled on the walls of a large blood vesselthe dorsal aorta.

Under the guidance of chemical signals, these cells metamorphose into immature baby blood stem cells, like caterpillars transforming into butterflies. The exact conditions that prompt this birthing process are still unclear and is one of the reasons why lab-grown blood stem cells have been so hard to make.

These baby blood stem cells dont yet have the full capacity to reboot blood systems. To fully mature, they have to learn to respond to all sorts of commands in their environment, like toddlers making sense of the world.

Some scientists liken this learning process to going to school, where different external cues act as textbooks to train baby blood stem cells to correctly respond to the body.

For example, when should they divide and multiply? When should they give up their stem-ness, instead transforming into oxygen-carrying red blood cells or white blood cells, the immune defenders?

Both new studies took aim at cracking the elusive curriculum.

In the first study, Daley and team started with human skin and other cells that have been transformed back into stem cells (dubbed iPSCs, or induced pluripotent stem cells). Although iPSCs theoretically have the ability to turn into any cell type, no one has previously managed to transform them into blood stem cells.

A lot of people have become jaded, saying that these cells dont exist in nature and you cant just push them into becoming anything else, says Bhatia.

All cells in an organism share the same genes. However, for any given cell only a subset of genes are turned into proteins. This process is what gives cells their identitiesmay it be a heart cell, liver cell, or blood stem cell.

Daley and team focused on a family of transcription factors. Similar to light switches, these proteins can flip genes on or off. By studying how blood vessels normally give birth to blood stem cells, they found seven factors that encouraged iPSCs to grow into immature blood stem cells.

Using a virus, the team inserted these factors into their iPSCs and injected the transformed cells into the bone marrow of mice. These mice had been irradiated to kill off their own blood stem cells to make room for the lab-grown human replacements.

In this way, Daley exposed the immature cells to signals in a blood stem cells normal environment. The bone marrow acts like a school, explains Drs. Carolina Guibentif and Berthold Gttgens at the University of Cambridge, who are not involved in the study.

It worked. In just twelve weeks, the lab-made blood stem cells had fully matured into master cells capable of making the entire range of cells normally found in human blood. Whats more, when scientists took these cells out and transplanted them into a second recipient, they retained their power.

This a major step forward compared with previous methods, says Guibentif.

In contrast, the second study took a more direct route. Rafii and team took cells lining a mouses vessels, based on the finding that these cells normally turn into blood stem cells during development.

With a set of four transcription factors, the team directly reprogrammed them into baby blood stem cells, bypassing the iPSC stage.

These factors act like a maternity ward, allowing the blood stem cells to be born, says Guibentif.

To grow them to adulthood, Rafii and team laid the cells onto a blanket of supporting cells that mimics the blood vessel nursery. Under the guidance of molecular cues secreted by these supporting cells, the blood stem cells multiplied and matured.

When transplanted into short-lived mice without a functional immune system, the cells sprung to action. In 20 weeks, the mice generated an active immune response when given a vaccine. Whats more, they went on to live a healthy 1.5 yearsroughly equivalent to 60 years old for a human.

Rafii is especially excited about using his system to finally crack the stem cell learning curriculum.

If we can figure out the factors that coax stem cells to divide and mature, we may be able to unravel the secrets of their longevity and make full-fledged blood stem cells in a dish, he says.

Calling both experiments a breakthrough, Guibentif says, this is something people have been trying to achieve for a long time.

However, she points out that both studies have caveats. A big one is cancer. The transcription factors that turn mature cells into stem cells endow them with the ability to multiply efficientlya hallmark of cancerous cells. Whats more, the virus used to insert the factors into cells may also inadvertently turn on cancer-causing genes.

That said, neither team found evidence of increased risk of blood cancers. Guibentif also acknowledges that future studies could use CRISPR in place of transcription factors to transform cells into blood stem cells on demand, further lowering the risk.

The techniques will also have to be made more efficient to make lab-grown blood stem cells cost efficient. Itll be years until human use, says Guibentif.

Even so, the studies deter even the most cynical of critics.

After 20 years, were finally tantalizingly close to generating bona fide human blood stem cells in a dish,"says Daley.

Image Credit: Pond5

See the article here:
Limitless Lab-Grown Blood Is 'Tantalizingly Close' After 20 Years - Singularity Hub

To Read More: Limitless Lab-Grown Blood Is ‘Tantalizingly Close’ After 20 Years – Singularity Hub
categoriaBone Marrow Stem Cells commentoComments Off on Limitless Lab-Grown Blood Is ‘Tantalizingly Close’ After 20 Years – Singularity Hub | dataJune 2nd, 2017
Read All

A new baldness treatment? | University of California – University of California

By raymumme

In experiments in mice, UC San Francisco researchers have discovered that regulatory T cells (Tregs; pronounced tee-regs), a type of immune cell generally associated with controlling inflammation,directly trigger stem cells in the skin to promote healthy hair growth. Without these immune cells as partners, the researchers found, the stem cells cannot regenerate hair follicles, leading to baldness.

Our hair follicles are constantly recycling: when a hair falls out, a portion of the hair follicle has to grow back, saidMichael Rosenblum, M.D., an assistant professor of dermatology at UCSF and senior author on the new paper. This has been thought to be an entirely stem cell-dependent process, but it turns out Tregs are essential. If you knock out this one immune cell type, hair just doesnt grow.

The new study published online May 26 inCell suggests that defects in Tregs could be responsible for alopecia areata, a common autoimmune disorder that causes hair loss, and could potentially play a role in other forms of baldness, including male pattern baldness, Rosenblum said. Since the same stem cells are responsible for helping heal the skin after injury, the study raises the possibility that Tregs may play a key role in wound repair as well.

Normally Tregs act as peacekeepers and diplomats, informing the rest of the immune system of the difference between friend and foe. When Tregs dont function properly, we may develop allergies to harmless substances like peanut protein or cat dander, or suffer from autoimmune disorders in which the immune system turns on the bodys own tissues.

Like other immune cells, most Tregs reside in the bodys lymph nodes, but some live permanently in other tissues, where they seem to have evolved to assist with local metabolic functions as well as playing their normal anti-inflammatory role. In the skin, for example, Rosenblum and colleagues have previously shown that Tregs help establish immune tolerance to healthy skin microbes in newborn mice, and these cells also secrete molecules that help with wound healing into adulthood.

Rosenblum, who is both an immunologist and a dermatologist, wanted to better understand the role of these resident immune cells in skin health. To do this, he and his team developed a technique for temporarily removing Tregs from the skin. But when they shaved patches of hair from these mice to make observations of the affected skin, they made a surprising discovery. We quickly noticed that the shaved patches of hair never grew back, and we thought, Hmm, now thats interesting, Rosenblum said. We realized we had to delve into this further.

In the new research, led by UCSF postdoctoral fellow and first authorNiwa Ali,several lines of evidence suggested that Tregs play a role in triggering hair follicle regeneration.

First, imaging experiments revealed that Tregs have a close relationship with the stem cells that reside within hair follicles and allow them to regenerate: the number of active Tregs clustering around follicle stem cells typically swells by three-fold as follicles enter the growth phase of their regular cycle of rest and regeneration. Also, removing Tregs from the skin blocked hair regrowth only if this was done within the first three days after shaving a patch of skin, when follicle regeneration would normally be activated. Getting rid of Tregs later on, once the regeneration had already begun, had no effect on hair regrowth.

Tregs role in triggering hair growth did not appear related to their normal ability to tamp down tissue inflammation, the researchers found. Instead, they discovered that Tregs trigger stem cell activation directly through a common cell-cell communication system known as the Notch pathway. First, the team demonstrated that Tregs in the skin express unusually high levels of a Notch signaling protein called Jagged 1 (Jag1), compared to Tregs elsewhere in the body. They then showed that removing Tregs from the skin significantly reduced Notch signaling in follicle stem cells, and that replacing Tregs with microscopic beads covered in Jag1 protein restored Notch signaling in the stem cells and successfully activated follicle regeneration.

Its as if the skin stem cells and Tregs have co-evolved, so that the Tregs not only guard the stem cells against inflammation but also take part in their regenerative work, Rosenblum said. Now the stem cells rely on the Tregs completely to know when its time to start regenerating.

Rosenblum said the findings may have implications for alopecia areata, an autoimmune disease that interferes with hair follicle regeneration and causes patients to lose hair in patches from their scalp, eyebrows, and faces. Alopecia is among the most common human autoimmune diseases its as common as rheumatoid arthritis, and more common than type 1 diabetes but scientists have little idea what causes it.

After his team first observed hair loss in Treg-deficient mice, Rosenblum learned that the genes associated with alopecia in previous studies are almost all related to Tregs, and treatments that boost Treg function have been shown to be an effective treatment for the disease. Rosenblum speculates that better understanding Tregs critical role in hair growth could lead to improved treatments for hair loss more generally.

The study also adds to a growing sense that immune cells play much broader roles in tissue biology than had previously been appreciated, said Rosenblum, who plans to explore whether Tregs in the skin also play a role in wound healing, since the same follicle stem cells are involved in regenerating skin following injury.

We think of immune cells as coming into a tissue to fight infection, while stem cells are there to regenerate the tissue after its damaged, he said. But what we found here is that stem cells and immune cells have to work together to make regeneration possible.

Niwa Aliof UCSF was the lead author on the new study. Additional authors were Bahar Zirak,Robert Sanchez Rodriguez, Mariela L. Pauli,Hong-An Truong, Kevin Lai,Richard Ahn, Kaitlin Corbin, Margaret M. Lowe, PharmD,Tiffany C. Scharschmidt, M.D., Keyon Taravati, Madeleine R. Tan,Roberto R. Ricardo-Gonzalez, M.D., Audrey Nosbaum, M.D.,Wilson Liao, M.D., andAbul K. Abbas, MBBS, of UCSF; Frank O. Nestle, M.D., of Kings College London; Marta Bertoliniand Ralf Paus, M.D., of the University of Mnster in Germany; and George Cotsarelis, M.D., of the University of Pennsylvanias Perelman School of Medicine.

The work was primarily supported by the U.S. National Institutes of Health (K08-AR062064, DP2-AR068130, R21-AR066821), the Burroughs Wellcome Fund, a Scleroderma Research Foundation grant, the National Psoriasis Foundation and the Dermatology Foundation.

See original here:
A new baldness treatment? | University of California - University of California

To Read More: A new baldness treatment? | University of California – University of California
categoriaSkin Stem Cells commentoComments Off on A new baldness treatment? | University of California – University of California | dataJune 2nd, 2017
Read All

SpaceX to launch heart, bone health experiments to space station Thursday – CU Boulder Today

By LizaAVILA

A SpaceX rocket is slated to launch two University of Colorado Boulder-built payloads to the International Space Station (ISS) from Florida Thursday, including oneto look at changes in cardiovascular stem cells in microgravity that may someday help combat heart disease on Earth.

The Dragon spacecraft

The second payload will be used for rodent studies testing a novel treatment for bone loss in space, which has been documented in both astronauts and mice. The two payloads were developed by BioServe Space Technologies, a research center within the Ann and H.J Smead Department of Aerospace Engineering,

We have a solid relationship with SpaceX and NASA that allows us to regularly fly our flight hardware to the International Space Station, said BioServe Director Louis Stodieck. The low gravity of space provides a unique environment for biomedical experiments that cannot be reproduced on Earth, and our faculty, staff and students are very experienced in designing and building custom payloads for our academic, commercial and government partners.

The experiments will be launched on a SpaceX Falcon 9 rocket from Cape Canaveral, Florida and carried to the ISS on the companys Dragon spacecraft. The SpaceX-CRS-11 mission launching Thursday marks BioServes 55th mission to space.

The cardiovascular cell experiments, designed by Associate Professor Mary Kearns-Jonker of the Loma Linda University School of Medicine in Loma Linda, California, will investigate how low gravity affects stem cells, including physical and molecular changes. While spaceflight is known to affect cardiac cell structure and function, the biological basis for such impacts is not clearly understood, said BioServe Associate director Stefanie Countryman.

As part of the study, the researchers will be comparing changes in heart muscle stem cells in space with similar cells simultaneously cultured on Earth, said Countryman. Researchers are hopeful the findings could help lead to stem cell therapies to repair damaged cardiac tissue. The findings also could confirm suspicions by scientists that microgravity speeds up the aging process, Countryman said.

For the heart cell experiments, BioServe is providing high-tech, cell-culture hardware known as BioCells that will be loaded into shoebox-sized habitats on ISS. The experiments will be housed in BioServes Space Automated Bioproduct Lab (SABL), a newly updated smart incubator that will reduce the time astronauts spend manipulating the experiments.

The second experiment, created by Dr. Chia Soo of the UCLA School of Medicine, will test a new drug designed to not only block loss of bone but also to rebuild it.

The mice will ride in a NASA habitat designed for spaceflight to the ISS. Once on board, some mice will undergo injections with the new drug while others will be given a placebo. At the end of the experiments half of the mice will be returned to Earth in SpaceXs Dragon spacecraft and transported to UCLA for further study, said Stodieck, a scientific co-investigator on the experiment.

BioServes Space Automated Byproduct Lab

In addition to the two science experiments, BioServe is launching its third SABL unit to the ISS. Two SABL units are currently onboard ISS supporting multiple research experiments, including three previous stem cell experiments conducted by BioServe in collaboration with Stanford University, the Mayo Clinic and the University of Minnesota.

The addition of the third SABL unit will expand BioServes capabilities in an era of high-volume science on board the ISS, said Countryman.

BioServe researchers and students have flown hardware and experiments on missions aboard NASA space shuttles, the ISS and on Russian and Japanese government cargo rockets. BioServe previously has flown payloads on commercial cargo rockets developed by both SpaceX, headquartered in Hawthorne, California, and Orbital ATK, Inc. headquartered in Dulles, Virginia.

Since it was founded by NASA in 1987, BioServe has partnered with more than 100 companies and performed dozens of NASA-sponsored investigations. Itspartners include large and small pharmaceutical and biotechnology companies, universities and NASA-funded researchers, and investigations sponsored by the Center for the Advancement of Science in Space, which manages the ISS U.S. National Laboratory. CU-Boulder students are involved in all aspects of BioServe research efforts, said Stodieck.

More here:
SpaceX to launch heart, bone health experiments to space station Thursday - CU Boulder Today

To Read More: SpaceX to launch heart, bone health experiments to space station Thursday – CU Boulder Today
categoriaCardiac Stem Cells commentoComments Off on SpaceX to launch heart, bone health experiments to space station Thursday – CU Boulder Today | dataMay 31st, 2017
Read All

SpaceX rocket will be carrying CU experiments – 9NEWS.com

By raymumme

Jaime Berg, KUSA 3:00 PM. MDT May 31, 2017

Source: University of Colorado

KUSA - A SpaceX rocket is scheduled to launch Thursday -- and on board will be two payloads built by researchers at the University of Colorado in Boulder. The payloads include studies that could be life-changing for people on earth.

One of the experiments involves cardiovascular stem cells. The work is with some researchers in California.

Theyre investigating how gravity affects stem cells, including physical and molecular changes. The information, could help lead to stem cell therapies to repair damaged cardiac tissue.

One of the experiments has to do with rodents.

Mice are actually being sent to the international space station, in a NASA habitat, designed for spaceflight.

The mice will be going through a series of experiments to study bone loss in space.

The experiments will be sent in shoebox sized habitats.

Both undergrad and graduate students at CU are involved in the research efforts.

2017 KUSA-TV

Read this article:
SpaceX rocket will be carrying CU experiments - 9NEWS.com

To Read More: SpaceX rocket will be carrying CU experiments – 9NEWS.com
categoriaCardiac Stem Cells commentoComments Off on SpaceX rocket will be carrying CU experiments – 9NEWS.com | dataMay 31st, 2017
Read All

Scientists Close to Generating Unlimited Blood Supply from Stem Cells – Wall Street Pit

By LizaAVILA

Two separate research teams have succeeded in generating blood stem cells using completely different procedures. One team was led by stem cell biologist Dr. George Q. Daley of Harvard Medical School and Boston Childrens Hospital. The other team was spearheaded by Dr. Shahin Rafii of the Weill Cornell Medicines Ansary Stem Cell Institute in New York.

In both cases, reprogrammed blood stem cells were able to successfully produce blood cells when implanted into mice. And if either or both procedures turn out to be viable for humans, a future where blood donors will no longer be needed may soon be in the horizon because science has provided us with a way to produce unlimited blood supply.

Stem cells are specially programmed cells that are responsible for creating all of the bodys other cells. There are two types of stem cells embryonic and adult. Embryonic stem cells are located you guessed it in the embryo where they stay before they start to specialise. Adult stem cells are the ones used to repair and replace worn out or old cells.

Those are the natural types. Theres another type, though. Theyre called induced pluripotent stem cells (iPS cells for short). Unlike the first two types, iPS cells arent naturally present. Theyre actually adult stem cells that were converted back to their primitive state, which means they can be coaxed to turn into any type of cell.

Dr. Daley and his team chose to use both embryonic stem cells and iPS cells for their research. Using a combination of proteins, they coaxed the cells to turn into hemogenic endothelium a kind of embryonic tissue that eventually turns into blood stem cells. Next, they tested several transcription factors genes that tell other genes what to do until they came up with the combination (specifically: ERG, HOXA5, HOXA9, HOXA10, LCOR, RUNX1, and SPI1) that pushed the hemogenic endothelium into a blood-forming or blood stem cell state. They then injected those modified cells into the bone marrow of their mice subjects. After several weeks, portions of the mices blood and bone marrow developed different types of blood cells, including red blood cells, white blood cells, and even immune cells.

As Daley described the feat: Were tantalizingly close to generating bona fide human blood stem cells in a dish.

On the other hand, Rafii and his team chose a different route. They didnt make use of iPS cells. Instead, they created true blood stem cells, starting off by extracting stem cells from the blood vessel lining of mature mice. Next, they inserted transcription factors (Fosb, Gfi1, Runx1, and Spi1) into the genomes of the extracted cells, then kept these cells in Petri dishes designed to replicate the environment within human blood vessels.

Over time, the cells turned into blood stem cells and multiplied. They then injected those stem cells into mice treated with radiation (which meant most of their blood and immune cells were gone). The stem cells regenerated not just the blood, but the immune cells too. Consequently, the mice recovered and went on to live for over 1.5 years in the lab.

As described by Rafii, the procedure they used is similar to a direct aeroplane flight, while Daleys is like a flight that took a detour prior to reaching its ultimate destination. Doing away with the iPS part kind of makes Rafiis method slightly better than Daleys because it minimizes the threat of tumors forming or the body rejecting the stem cells, which is a typical reaction that iPS cells might cause. But if Daleys team is able to refine their process to eliminate this risk, then that will level the playing field, so to speak.

Whatever happens from here on, both procedures are nonetheless considered significant breakthroughs. And even though its not yet certain which method will turn out to be the better one for humans, whats clear is that both methods have the potential to be game-changers when it comes to any kind of treatment involving blood infusion and transfusion.

Both studies have been published in the journal Nature, with Daleys under the title Haematopoietic stem and progenitor cells from human pluripotent stem cells and Rafiis under the title Conversion of adult endothelium to immunocompetent haematopoietic stem cells.

Here is the original post:
Scientists Close to Generating Unlimited Blood Supply from Stem Cells - Wall Street Pit

To Read More: Scientists Close to Generating Unlimited Blood Supply from Stem Cells – Wall Street Pit
categoriaBone Marrow Stem Cells commentoComments Off on Scientists Close to Generating Unlimited Blood Supply from Stem Cells – Wall Street Pit | dataMay 31st, 2017
Read All

Skin grafts from stem cells – NHS

By Dr. Matthew Watson

Friday November 20 2009

Human embryonic stem cells

Stem cells could create new skin to help burn victims, BBC News reported. It said that French researchers have duplicated the biological steps that occur during skin formation in embryos. This could potentially provide an unlimited source of temporary skin replacements for burn victims while they wait for grafts from their own skin.

The study in mice behind this report used human embryonic stem cells to make keratinocytes (the most common cell types in the skin). These cultured cells were used to create skin equivalents, which grew successfully when they were grafted onto the backs of mice.

This well-conducted research has potentially developed a successful method of culturing tissue in the laboratory that resembles human skin. Only human trials of the technology will show whether such grafts will be accepted (i.e. not rejected by human patients) as permanent transplants or can provide a temporary skin replacement before grafting.

The research was carried out by Dr Hind Guenou and colleagues from the Institute for Stem Cell Therapy and Exploration of Monogenic disease, and BIOalternatives SAS in France along with colleagues in Madrid. The research was funded by the Institut National de la Sant et de la Recherche Mdicale, University Evry Val dEssonne, Association Franaise contre les Myopathies, Fondation Ren Touraine, and Genopole. The authors declare that they have no conflicts of interest and say that the funders had no role in the studys design, analysis or write-up.

The research was published in thepeer-reviewed medical journal the Lancet.

BBC News has covered this research in a balanced way, pointing out that thiswas animal research and that human studies will follow.

This well-conducted research involved laboratory and animal research which investigated whether epidermal stem cells could be cultured in the laboratory and used in skin grafts.

Burn patients are often treated using autologous skin grafts. These involve a section of healthy skin being removed from another part of the body to harvest the patients own skin cells for culture. A graft for the burn site is produced from this culture. There is a delay of about three weeks between the harvesting of the skin and the graft to allow the cells to grow. During this time, the patient is at risk of dehydration and infection.

Having a ready source of skin cells for temporary grafts while patients are waiting for their autologous grafts would improve the outcome of treatment. With this in mind, the researchers investigated whether keratinocytes (the major cell constituent of the outer layer of the skin, or epidermis) could be derived from human embryonic stem cells.

The researchers began by culturing embryonic stem cells in a specialised medium that encourages cell differentiation (the process whereby cells become specialised). Embryonic stem cells can renew themselves and also have the potential to develop into any type of specialised cell.

Cultures of human embryonic stem cells were then grown on a framework made of fibroblast cells and collagen (a fibrous protein that can form a mesh-like structure) made by fibroblasts. Fibroblasts are the cells that form the underlying structure of tissues and are involved in healing.

The stem cells were manipulated so that they developed into epidermal cells, and monitored throughout their specialisation process to make sure the cells were developing into skin cells. The researchers named the cells keratinocytes derived from human embryonic stem cells (K-hESCs).

After several rounds of subculturing and replication, the cells could be frozen and used in further experiments. Bioengineered skin equivalents were then created by growing the K-hESCs on an artificial matrix. These were then grafted onto the backs of five six-week-old immunodeficient female mice. After 10 to 12 weeks, samples were taken from the implants for analysis.

The researchers confirmed thatthe embryonic stem cells differentiated into keratinocytes, which could be grown in culture medium and which replicated well. These derived skin cells were structurally and functionally similar to normal skin cells in that they could be grown on an artificial matrix using classic techniques.

After 12 weeks of growth on immunodeficient mice, the grafted epidermis had developed into a structure that was consistent with mature human skin.

The researchers concluded that their findings build on previous research and show that K-hESCs can develop into a multi-layer epithelium. This epithelium resembles normal human skin both in cell cultures (in vitro) and following grafting onto live animals (in vivo).

They say that growing human skin from human embryonic stem cells could provide an unlimited resource for temporary skin replacement in patients with large burns who are waiting for autologous skin grafts.

If it can be demonstrated that it works in humans, this technology could improve outcomes for burns patients. The researchers report that the first human trial is currently underway.

At present, skin from deceased donors is used to treat burns patients while they wait for their own skin transplant, but there are often problems with rejection. The researchers highlight several potential benefits of an epidermis reconstructed using K-hESCs, including:

It is important to note that, at present, the researchers are only investigating this technology for providing temporary grafts. They say that whether it can be used for permanent grafts for patients who cant use their own cells needs further investigation. They say that for temporary use, the grafts would only be used for the three-week period while the patients permanent graft is grown.

This is a good study and the findings are exciting in this field, but only human research will tell whether it will have a wider application in the treatment of burns patients.

More here:
Skin grafts from stem cells - NHS

To Read More: Skin grafts from stem cells – NHS
categoriaSkin Stem Cells commentoComments Off on Skin grafts from stem cells – NHS | dataMay 31st, 2017
Read All

Patients’ stem cells point to potential treatments for motor | Cosmos – Cosmos

By Sykes24Tracey

Physicist Stephen Hawking is perhaps the most famous sufferer of motor neuron disease, a crippling degenerative condition that affects an estimated 150,00 people around the world.

Karwai Tang / Getty

In news that may bring hope to Stephen Hawking and hundreds of thousands of others around the world, British scientists have used reprogrammed skin cells to study the development of motor neuron disease.

Its like changing the postcode of a house without actually moving it, explains neuroscientist Rickie Patani, referring to research offering startling new insights into the progress and treatment of the crippling degenerative condition, also known as amyotrophic lateral sclerosis (ALS).

Patani, together with colleague Sonia Gandhi, both from the Francis Crick Institute and University College London, in the UK, led a team of researchers investigating how the disease destroys the nerve cells that govern muscle movement.

The results, published in the journal Cell Reports, comprise the most fine-grained work to date on how ALS operates on a molecular level and suggest powerful new treatment methods based on stem cells.

Indeed, so exciting are the implications of the research that Ghandi and Patani are already working with pharmaceutical companies to develop their discoveries.

The neurologists uncovered two key interlinked interactions in the development of motor neuron disease, the first concerning a particular protein, and the second concerning an auxiliary nerve cell type called astrocytes.

To make their findings, the team developed stem cells from the skin of healthy volunteers and a cohort carrying a genetic mutation that leads to ALS. The stem cells were then guided into becoming motor neurons and astrocytes.

We manipulated the cells using insights from developmental biology, so that they closely resembled a specific part of the spinal cord from which motor neurons arise, says Patani.

We were able to create pure, high-quality samples of motor neurons and astrocytes which accurately represent the cells affected in patients with ALS."

The scientists then closely monitored the two sets of cells healthy and mutated to see how their functioning differed over time.

The first thing they noted was that a particular protein TDP-43 behaved differently. In the patient-derived samples TDP-43 leaked out of the cell nucleus, catalysing a damaging chain of events inside the cell and causing it to die.

The observation provided a powerful insight into the molecular mechanics of motor neuron disease.

Knowing when things go wrong inside a cell, and in what sequence, is a useful approach to define the critical molecular event in disease, says Ghandi.

One therapeutic approach to stop sick motor neurons from dying could be to prevent proteins like TDP-43 from leaving the nucleus, or try to move them back.

The second critical insight was derived from the behaviour of astrocytes, which turned out to function as a kind of nursemaid, supporting motor neuron cells when they began to lose function because of protein leakage.

During the progression of motor neuron disease, however, the astrocytes like nurses during an Ebola outbreak eventually fell ill themselves and died, hastening the death of the neurons.

To test this, the team did a type of mix and match exercise, concocting various combinations of neurons and astrocytes from healthy and diseased tissue.

They discovered that healthy astrocytes could prolong the functional life of ALS-affected motor neurons, but damaged astrocytes struggled to keep even healthy motor neurons functioning.

The research reveals both TDP-43 and astrocytes as key therapeutic targets, raising the possibility that the progress of ALS might be significantly slowed, or perhaps even halted.

Our work, along with other studies of ageing and neurodegeneration, would suggest that the cross-talk between neurons and their supporting cells is crucial in the development and progression of ALS, says Patani.

The rest is here:
Patients' stem cells point to potential treatments for motor | Cosmos - Cosmos

To Read More: Patients’ stem cells point to potential treatments for motor | Cosmos – Cosmos
categoriaSkin Stem Cells commentoComments Off on Patients’ stem cells point to potential treatments for motor | Cosmos – Cosmos | dataMay 31st, 2017
Read All

Neurosurgeon Dr. Jay Jagannathan discussed the future of spine surgery, motion-sparing techniques and minimally … – PR Newswire (press release)

By Sykes24Tracey

TROY, Mich., May 30, 2017 /PRNewswire/ --Jay Jagannathan, M.D., known as one of the United States' top neurosurgeons, was featured on WJR AM-760 radio show Anything is Possible! hosted by Jack Krasula on May 27, 2017. During the one-hour show, Dr. Jagannathan discussed the importance of patient-centric care in spine surgery. "It is important that patients know the full spectrum of surgical and non-surgical options," he said, adding that "a full understanding of their options puts patients in a position to make the best decision for themselves."

When asked by Jack Krasula show about the future of spine surgery, Dr. Jagannathan specifically pointed to motion-sparing techniques. Motion-sparing techniques aim to preserve motion in the spine, and are increasingly relevant given the recent FDA approval of 2-level cervical artificial disks. "The idea of preserving motion will permit many patients who were not previously candidates for spine surgery to have procedures that can help with pain while still maintaining normal spinal motion and hopefully reducing the future need for re-operation," he said. Dr. Jagannathan also discussed the importance of stem cells, which are undifferentiated, primitive cells that have the capability of maturing into specific tissue types. According to Dr. Jagannathan, "stem cells not only have the ability to possibly enhance spinal fusion outcomes, but also to serve as a vector to induce healing following spinal cord injury or stroke." Dr. Jagannathan also pointed to the advances in imaging modalities and technology, which has allowed surgeons to provide minimally invasive treatment for pathology which previously were untreatable. "What MIS has taught us is that using image-guided targeting while decreasing tissue manipulation can greatly reduce post-operative pain, hospital stays and post-operative drug use."

Read the original here:
Neurosurgeon Dr. Jay Jagannathan discussed the future of spine surgery, motion-sparing techniques and minimally ... - PR Newswire (press release)

To Read More: Neurosurgeon Dr. Jay Jagannathan discussed the future of spine surgery, motion-sparing techniques and minimally … – PR Newswire (press release)
categoriaSpinal Cord Stem Cells commentoComments Off on Neurosurgeon Dr. Jay Jagannathan discussed the future of spine surgery, motion-sparing techniques and minimally … – PR Newswire (press release) | dataMay 30th, 2017
Read All

World Multiple Sclerosis Day 2017: Cellular Therapy helps induce long-term remission of Multiple Sclerosis – TheHealthSite

By JoanneRUSSELL25

Genetically and immune-mediated disease, Multiple Sclerosis symptoms and progression are unpredictable at the time of diagnosis.

Multiple Sclerosis is an inflammatory disease that affects the brain and spinal cord of an individual. It occurs due to the combination of genetic susceptibility and can also occur due to low vitamin levels, virus, and environmental factors. The Multiple Sclerosis Foundation estimates that more than 400,000 people in the United States and about 2.5 million people around the world have Multiple Sclerosis. No large epidemiological studies have been reported from India but calculations based on hospital data in the 1970s suggested an approximate prevalence rate of only 0.17 to 1.33 per 100,000 in different parts of India. Increased awareness and the rise in the number of neurologists and availability of MRI has led the current estimates to about 7 to 10 per 100,000. As there are many Indians who still do not have access to adequate medical facilities especially in the rural sector, there can be a rise in the figures mentioned too. As per hospital-based studies within India, an increase in the incidence of Multiple Sclerosis from 1.58% to 2.54% has been noted in the last decade.

This immune-mediated disease affects the protective covering (myelin sheath) around the nerves which result in neurological defects. With the help cellular therapy, utilising the various properties of stem cells, Multiple Sclerosis can be treated. In autologous cell-based therapy, stem cells from the patients own body are transplanted, which resets the immune system. A patient suffering from Multiple Sclerosis is often treated with immune-suppressive drugs and monoclonal antibodies. But, these agents are associated with side effects with long-term use and are not entirely effective in managing symptoms. Autologous stem cells are neuroprotective and also have other paracrine properties by which patients of Multiple Sclerosis can benefit. The immunomodulatory properties of the stem cells help reduce damage in the central nervous system of patients with Multiple Sclerosis. It also helps in regeneration of the injured nerves, said Dr Pradeep Mahajan, Regenerative Medicine researcher at StemRx Bioscience Solutions Pvt. Ltd.

The time taken to heal varies from patient to patient and can go from 2 months to 1 year. There are various ways to administer the stem cells back into the body, the route depending on the condition and requirement of the patient. In neurological conditions, the appropriate route of administration would be the one which facilitates cell delivery into the brain.

Published: May 30, 2017 4:09 pm | Updated:May 30, 2017 4:10 pm

Disclaimer: TheHealthSite.com does not guarantee any specific results as a result of the procedures mentioned here and the results may vary from person to person. The topics in these pages including text, graphics, videos and other material contained on this website are for informational purposes only and not to be substituted for professional medical advice.

Please Wait. Article Loading ....

Continued here:
World Multiple Sclerosis Day 2017: Cellular Therapy helps induce long-term remission of Multiple Sclerosis - TheHealthSite

To Read More: World Multiple Sclerosis Day 2017: Cellular Therapy helps induce long-term remission of Multiple Sclerosis – TheHealthSite
categoriaSpinal Cord Stem Cells commentoComments Off on World Multiple Sclerosis Day 2017: Cellular Therapy helps induce long-term remission of Multiple Sclerosis – TheHealthSite | dataMay 30th, 2017
Read All

Baby Max can only survive with a constant supply of stem cells … – Devon Live

By NEVAGiles23

Comments(0)

A Devon family are swimming to Great Ormond Street Hospital to help a mum whose 15-month-old son has been diagnosed with very rare syndrome called Diskeratosis Congenita. Little Max Hilton's treatment is reliant on a steady supply of stem cell donors and after being around children with similar conditions Max's mum, Becca, is determined to encourage donors to come forward.

Through a touching Facebook group called Be There For Buzz Man Becca, has charted her son's journey and the difficulty they both face.

Becca's North Devon family have sprung into action to help spread the message that the UK needs more Stem Cell donors and to raise funds for the Antony Nolan Register, an organisation dedicated to researching stem cells and matching donors to those in need of help.

"We're delighted with the support we have received by so many people in aid of raising money for Anthony Nolan, including Reef, Tace and Aimee who are based in North Devon, have organised a charity swim called Swimming to Max; swimming 250 miles from Barnstaple to Romford, the distance between them and Max, over 20 weeks to raise as much as they can for the charity," said Becca.

READ NEXT: New shooting range opens in Torridge after years of hard work

"Nobody ever expects their newborn child to be diagnosed with such a rare condition, to see him fighting every day is extremely painful, and to see so many brave children in the same ward really does showcase the need of more stem cell and bone marrow donors. Great Ormond Street Hospital are doing all they can, and we'd like to thank the staff for providing invaluable support to both Max and our family.

"For us, converting the negativity we have experienced with Max into making a positive impact for other patients in the same position will make our day.

"If just one person who reads our story decides to see if they're eligible, that could then continue to save a life. Please don't let it affect someone you love to then decide to register. There are so many patients waiting for suitable donors."

For Becca, telling Max's story is not just important for friends and family, but primarily to raise awareness of the desperate need for donors.

To see if you're eligible to donate stem cells, you must be 16 or over, and it is as easy as spitting in a cup to provide a saliva sample for Anthony Nolan to then assess eligibility to then donate - all done through a free sample kit sent via post, from their website.

Donating bone marrow and stem cells is not invasive at all; 9 out of 10 people donate stem cells via the bloodstream, in a procedure called peripheral blood stem cell collection. One in 10 people will have stem cells taken from the bone marrow itself, whilst under general anaesthetic.

Neither procedure hurts, and it's time more is done to increase the people on the register so patients, similar to Max, have a chance in recovering from their rare conditions with the help of those that are genetically matched to their blood type.

The Be There For Buzz Man Facebook page can be found at http://www.facebook.com/buzzman11, and to find out how to donate stem cells visit http://www.anthonynolan.org.

See original here:
Baby Max can only survive with a constant supply of stem cells ... - Devon Live

To Read More: Baby Max can only survive with a constant supply of stem cells … – Devon Live
categoriaBone Marrow Stem Cells commentoComments Off on Baby Max can only survive with a constant supply of stem cells … – Devon Live | dataMay 30th, 2017
Read All

Unrelated donor transplants to aid thalassemics – The Hindu – The Hindu

By LizaAVILA


The Hindu
Unrelated donor transplants to aid thalassemics - The Hindu
The Hindu
A study carried out at Chennai's Apollo Speciality Cancer Hospital now gives hope to children who have no related donors.

Read the original here:
Unrelated donor transplants to aid thalassemics - The Hindu - The Hindu

To Read More: Unrelated donor transplants to aid thalassemics – The Hindu – The Hindu
categoriaBone Marrow Stem Cells commentoComments Off on Unrelated donor transplants to aid thalassemics – The Hindu – The Hindu | dataMay 30th, 2017
Read All

Stem cells show promise in helping to heal eye injuries in horses … – Horsetalk

By raymumme

These photomicrographs show the initial scratches created with a pipette tip compared with the same scratch 36 hours later and at end of study, at 72 hours, for each experimental group. ac show the control group, from left, at the start, after 36 hours, and after 72 hours. df show the results for the same horse with use of the supernatant solution; and gi show the results for the same horse from the stem cell group. Images: Sherman et al DOI: 10.1186/s13287-017-0577-3

Stem cells taken from bone marrow may substantially improve corneal wound healing in horses, evidence from a study suggests.

Eye injuries are common in horses, most likely because of the size of their eyes and their prominent position in the head.

Researchers from the North Carolina State University College of Veterinary Medicine conducted a laboratory experiment to assess the performance of stem cells taken from bone marrow in the breast bone of five horses.

Amanda Sherman and her colleagues, writing in Stem Cell Research & Therapy, described the process by which they collected and isolated the autologous bone marrow-derived mesenchymal stem cells for their study.

Mesenchymal stem cells are multipotent connective-tissue cells that can change into a variety of cell types to form the likes of bone, cartilage, muscle and fat.

The supernatant solution comprising cell-medium sediment left over from the centrifuging process was also used in the study to compare its performance against the stem cells. A naive culture media was used as a control.

Corneal stromal cells were cultured and transferred on to six collagen-coated plates. A scratch was then placed the length of these equine corneal fibroblast cultures using a fine pipette.

The plates were then exposed to either the stem cells, the supernatant solution or the naive culture medium.

The researchers reported a significant percentage decrease in the scratch area remaining in the stem cell and supernatant groups compared to the control group after 72 hours.

The decrease was significantly greater in the stem-cell group compared to the supernatant group 36 hours after exposure and at all times thereafter.

The performance of the supernatant solution was most likely due to the presence of the growth factor TGF-1, which was identified on analysis. TGF-1 was found in even greater concentrations in the stem cell group.

The researchers concluded that the use of autologous bone marrow-derived mesenchymal stem cells may substantially improve corneal wound healing in horses.

The supernatant solution may also improve corneal wound healing, given the significant decrease in scratch area compared to control treatments, and would be an immediately available and cost-effective treatment option, they said.

The researchers said studies in live horses were warranted to evaluate the potential treatments safety and effectiveness for corneal wound healing.

The universitys study team comprised Sherman,Brian Gilger,Alix Berglund and Lauren Schnabel.

Effect of bone marrow-derived mesenchymal stem cells and stem cell supernatant on equine corneal wound healing in vitro Amanda B. Sherman, Brian C. Gilger, Alix K. Berglund and Lauren V. Schnabel Stem Cell Research & Therapy 2017 8:120 DOI: 10.1186/s13287-017-0577-3

The study, published under a Creative Commons License, can be read here.

The rest is here:
Stem cells show promise in helping to heal eye injuries in horses ... - Horsetalk

To Read More: Stem cells show promise in helping to heal eye injuries in horses … – Horsetalk
categoriaBone Marrow Stem Cells commentoComments Off on Stem cells show promise in helping to heal eye injuries in horses … – Horsetalk | dataMay 30th, 2017
Read All

Page 379«..1020..378379380381..390400..»


Copyright :: 2024