Page 6«..5678..2030..»

Stem Cells Applications in Regenerative Medicine and …

By daniellenierenberg

Int J Cell Biol. 2016; 2016: 6940283.

Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462066, India

Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462066, India

Academic Editor: Paul J. Higgins

Received 2016 Mar 13; Accepted 2016 Jun 5.

This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Regenerative medicine, the most recent and emerging branch of medical science, deals with functional restoration of tissues or organs for the patient suffering from severe injuries or chronic disease. The spectacular progress in the field of stem cell research has laid the foundation for cell based therapies of disease which cannot be cured by conventional medicines. The indefinite self-renewal and potential to differentiate into other types of cells represent stem cells as frontiers of regenerative medicine. The transdifferentiating potential of stem cells varies with source and according to that regenerative applications also change. Advancements in gene editing and tissue engineering technology have endorsed the ex vivo remodelling of stem cells grown into 3D organoids and tissue structures for personalized applications. This review outlines the most recent advancement in transplantation and tissue engineering technologies of ESCs, TSPSCs, MSCs, UCSCs, BMSCs, and iPSCs in regenerative medicine. Additionally, this review also discusses stem cells regenerative application in wildlife conservation.

Regenerative medicine, the most recent and emerging branch of medical science, deals with functional restoration of specific tissue and/or organ of the patients suffering with severe injuries or chronic disease conditions, in the state where bodies own regenerative responses do not suffice [1]. In the present scenario donated tissues and organs cannot meet the transplantation demands of aged and diseased populations that have driven the thrust for search for the alternatives. Stem cells are endorsed with indefinite cell division potential, can transdifferentiate into other types of cells, and have emerged as frontline regenerative medicine source in recent time, for reparation of tissues and organs anomalies occurring due to congenital defects, disease, and age associated effects [1]. Stem cells pave foundation for all tissue and organ system of the body and mediates diverse role in disease progression, development, and tissue repair processes in host. On the basis of transdifferentiation potential, stem cells are of four types, that is, (1) unipotent, (2) multipotent, (3) pluripotent, and (4) totipotent [2]. Zygote, the only totipotent stem cell in human body, can give rise to whole organism through the process of transdifferentiation, while cells from inner cells mass (ICM) of embryo are pluripotent in their nature and can differentiate into cells representing three germ layers but do not differentiate into cells of extraembryonic tissue [2]. Stemness and transdifferentiation potential of the embryonic, extraembryonic, fetal, or adult stem cells depend on functional status of pluripotency factors like OCT4, cMYC, KLF44, NANOG, SOX2, and so forth [35]. Ectopic expression or functional restoration of endogenous pluripotency factors epigenetically transforms terminally differentiated cells into ESCs-like cells [3], known as induced pluripotent stem cells (iPSCs) [3, 4]. On the basis of regenerative applications, stem cells can be categorized as embryonic stem cells (ESCs), tissue specific progenitor stem cells (TSPSCs), mesenchymal stem cells (MSCs), umbilical cord stem cells (UCSCs), bone marrow stem cells (BMSCs), and iPSCs (; ). The transplantation of stem cells can be autologous, allogenic, and syngeneic for induction of tissue regeneration and immunolysis of pathogen or malignant cells. For avoiding the consequences of host-versus-graft rejections, tissue typing of human leucocyte antigens (HLA) for tissue and organ transplant as well as use of immune suppressant is recommended [6]. Stem cells express major histocompatibility complex (MHC) receptor in low and secret chemokine that recruitment of endothelial and immune cells is enabling tissue tolerance at graft site [6]. The current stem cell regenerative medicine approaches are founded onto tissue engineering technologies that combine the principles of cell transplantation, material science, and microengineering for development of organoid; those can be used for physiological restoration of damaged tissue and organs. The tissue engineering technology generates nascent tissue on biodegradable 3D-scaffolds [7, 8]. The ideal scaffolds support cell adhesion and ingrowths, mimic mechanics of target tissue, support angiogenesis and neovascularisation for appropriate tissue perfusion, and, being nonimmunogenic to host, do not require systemic immune suppressant [9]. Stem cells number in tissue transplant impacts upon regenerative outcome [10]; in that case prior ex vivo expansion of transplantable stem cells is required [11]. For successful regenerative outcomes, transplanted stem cells must survive, proliferate, and differentiate in site specific manner and integrate into host circulatory system [12]. This review provides framework of most recent (; Figures ) advancement in transplantation and tissue engineering technologies of ESCs, TSPSCs, MSCs, UCSCs, BMSCs, and iPSCs in regenerative medicine. Additionally, this review also discusses stem cells as the tool of regenerative applications in wildlife conservation.

Promises of stem cells in regenerative medicine: the six classes of stem cells, that is, embryonic stem cells (ESCs), tissue specific progenitor stem cells (TSPSCs), mesenchymal stem cells (MSCs), umbilical cord stem cells (UCSCs), bone marrow stem cells (BMSCs), and induced pluripotent stem cells (iPSCs), have many promises in regenerative medicine and disease therapeutics.

ESCs in regenerative medicine: ESCs, sourced from ICM of gastrula, have tremendous promises in regenerative medicine. These cells can differentiate into more than 200 types of cells representing three germ layers. With defined culture conditions, ESCs can be transformed into hepatocytes, retinal ganglion cells, chondrocytes, pancreatic progenitor cells, cone cells, cardiomyocytes, pacemaker cells, eggs, and sperms which can be used in regeneration of tissue and treatment of disease in tissue specific manner.

TSPSCs in regenerative medicine: tissue specific stem and progenitor cells have potential to differentiate into other cells of the tissue. Characteristically inner ear stem cells can be transformed into auditory hair cells, skin progenitors into vascular smooth muscle cells, mesoangioblasts into tibialis anterior muscles, and dental pulp stem cells into serotonin cells. The 3D-culture of TSPSCs in complex biomaterial gives rise to tissue organoids, such as pancreatic organoid from pancreatic progenitor, intestinal tissue organoids from intestinal progenitor cells, and fallopian tube organoids from fallopian tube epithelial cells. Transplantation of TSPSCs regenerates targets tissue such as regeneration of tibialis muscles from mesoangioblasts, cardiac tissue from AdSCs, and corneal tissue from limbal stem cells. Cell growth and transformation factors secreted by TSPSCs can change cells fate to become other types of cell, such that SSCs coculture with skin, prostate, and intestine mesenchyme transforms these cells from MSCs into epithelial cells fate.

MSCs in regenerative medicine: mesenchymal stem cells are CD73+, CD90+, CD105+, CD34, CD45, CD11b, CD14, CD19, and CD79a cells, also known as stromal cells. These bodily MSCs represented here do not account for MSCs of bone marrow and umbilical cord. Upon transplantation and transdifferentiation these bodily MSCs regenerate into cartilage, bones, and muscles tissue. Heart scar formed after heart attack and liver cirrhosis can be treated from MSCs. ECM coating provides the niche environment for MSCs to regenerate into hair follicle, stimulating hair growth.

UCSCs in regenerative medicine: umbilical cord, the readily available source of stem cells, has emerged as futuristic source for personalized stem cell therapy. Transplantation of UCSCs to Krabbe's disease patients regenerates myelin tissue and recovers neuroblastoma patients through restoring tissue homeostasis. The UCSCs organoids are readily available tissue source for treatment of neurodegenerative disease. Peritoneal fibrosis caused by long term dialysis, tendon tissue degeneration, and defective hyaline cartilage can be regenerated by UCSCs. Intravenous injection of UCSCs enables treatment of diabetes, spinal myelitis, systemic lupus erythematosus, Hodgkin's lymphoma, and congenital neuropathies. Cord blood stem cells banking avails long lasting source of stem cells for personalized therapy and regenerative medicine.

BMSCs in regenerative medicine: bone marrow, the soft sponge bone tissue that consisted of stromal, hematopoietic, and mesenchymal and progenitor stem cells, is responsible for blood formation. Even halo-HLA matched BMSCs can cure from disease and regenerate tissue. BMSCs can regenerate craniofacial tissue, brain tissue, diaphragm tissue, and liver tissue and restore erectile function and transdifferentiation monocytes. These multipotent stem cells can cure host from cancer and infection of HIV and HCV.

iPSCs in regenerative medicine: using the edge of iPSCs technology, skin fibroblasts and other adult tissues derived, terminally differentiated cells can be transformed into ESCs-like cells. It is possible that adult cells can be transformed into cells of distinct lineages bypassing the phase of pluripotency. The tissue specific defined culture can transform skin cells to become trophoblast, heart valve cells, photoreceptor cells, immune cells, melanocytes, and so forth. ECM complexation with iPSCs enables generation of tissue organoids for lung, kidney, brain, and other organs of the body. Similar to ESCs, iPSCs also can be transformed into cells representing three germ layers such as pacemaker cells and serotonin cells.

Stem cells in wildlife conservation: tissue biopsies obtained from dead and live wild animals can be either cryopreserved or transdifferentiated to other types of cells, through culture in defined culture medium or in vivo maturation. Stem cells and adult tissue derived iPSCs have great potential of regenerative medicine and disease therapeutics. Gonadal tissue procured from dead wild animals can be matured, ex vivo and in vivo for generation of sperm and egg, which can be used for assistive reproductive technology oriented captive breeding of wild animals or even for resurrection of wildlife.

Application of stem cells in regenerative medicine: stem cells (ESCs, TSPSCs, MSCs, UCSCs, BMSCs, and iPSCs) have diverse applications in tissue regeneration and disease therapeutics.

For the first time in 1998, Thomson isolated human ESCs (hESCs) [13]. ESCs are pluripotent in their nature and can give rise to more than 200 types of cells and promises for the treatment of any kinds of disease [13]. The pluripotency fate of ESCs is governed by functional dynamics of transcription factors OCT4, SOX2, NANOG, and so forth, which are termed as pluripotency factors. The two alleles of the OCT4 are held apart in pluripotency state in ESCs; phase through homologues pairing during embryogenesis and transdifferentiation processes [14] has been considered as critical regulatory switch for lineage commitment of ESCs. The diverse lineage commitment potential represents ESCs as ideal model for regenerative therapeutics of disease and tissue anomalies. This section of review on ESCs discusses transplantation and transdifferentiation of ESCs into retinal ganglion, hepatocytes, cardiomyocytes, pancreatic progenitors, chondrocytes, cones, egg sperm, and pacemaker cells (; ). Infection, cancer treatment, and accidents can cause spinal cord injuries (SCIs). The transplantation of hESCs to paraplegic or quadriplegic SCI patients improves body control, balance, sensation, and limbal movements [15], where transplanted stem cells do homing to injury sites. By birth, humans have fixed numbers of cone cells; degeneration of retinal pigment epithelium (RPE) of macula in central retina causes age-related macular degeneration (ARMD). The genomic incorporation of COCO gene (expressed during embryogenesis) in the developing embryo leads lineage commitment of ESCs into cone cells, through suppression of TGF, BMP, and Wnt signalling pathways. Transplantation of these cone cells to eye recovers individual from ARMD phenomenon, where transplanted cone cells migrate and form sheet-like structure in host retina [16]. However, establishment of missing neuronal connection of retinal ganglion cells (RGCs), cones, and PRE is the most challenging aspect of ARMD therapeutics. Recently, Donald Z Jacks group at John Hopkins University School of Medicine has generated RGCs from CRISPER-Cas9-m-Cherry reporter ESCs [17]. During ESCs transdifferentiation process, CRIPER-Cas9 directs the knock-in of m-Cherry reporter into 3UTR of BRN3B gene, which is specifically expressed in RGCs and can be used for purification of generated RGCs from other cells [17]. Furthermore, incorporation of forskolin in transdifferentiation regime boosts generation of RGCs. Coaxing of these RGCs into biomaterial scaffolds directs axonal differentiation of RGCs. Further modification in RGCs generation regime and composition of biomaterial scaffolds might enable restoration of vision for ARMD and glaucoma patients [17]. Globally, especially in India, cardiovascular problems are a more common cause of human death, where biomedical therapeutics require immediate restoration of heart functions for the very survival of the patient. Regeneration of cardiac tissue can be achieved by transplantation of cardiomyocytes, ESCs-derived cardiovascular progenitors, and bone marrow derived mononuclear cells (BMDMNCs); however healing by cardiomyocytes and progenitor cells is superior to BMDMNCs but mature cardiomyocytes have higher tissue healing potential, suppress heart arrhythmias, couple electromagnetically into hearts functions, and provide mechanical and electrical repair without any associated tumorigenic effects [18, 19]. Like CM differentiation, ESCs derived liver stem cells can be transformed into Cytp450-hepatocytes, mediating chemical modification and catabolism of toxic xenobiotic drugs [20]. Even today, availability and variability of functional hepatocytes are a major a challenge for testing drug toxicity [20]. Stimulation of ESCs and ex vivo VitK12 and lithocholic acid (a by-product of intestinal flora regulating drug metabolism during infancy) activates pregnane X receptor (PXR), CYP3A4, and CYP2C9, which leads to differentiation of ESCs into hepatocytes; those are functionally similar to primary hepatocytes, for their ability to produce albumin and apolipoprotein B100 [20]. These hepatocytes are excellent source for the endpoint screening of drugs for accurate prediction of clinical outcomes [20]. Generation of hepatic cells from ESCs can be achieved in multiple ways, as serum-free differentiation [21], chemical approaches [20, 22], and genetic transformation [23, 24]. These ESCs-derived hepatocytes are long lasting source for treatment of liver injuries and high throughput screening of drugs [20, 23, 24]. Transplantation of the inert biomaterial encapsulated hESCs-derived pancreatic progenitors (CD24+, CD49+, and CD133+) differentiates into -cells, minimizing high fat diet induced glycemic and obesity effects in mice [25] (). Addition of antidiabetic drugs into transdifferentiation regime can boost ESCs conservation into -cells [25], which theoretically can cure T2DM permanently [25]. ESCs can be differentiated directly into insulin secreting -cells (marked with GLUT2, INS1, GCK, and PDX1) which can be achieved through PDX1 mediated epigenetic reprogramming [26]. Globally, osteoarthritis affects millions of people and occurs when cartilage at joints wears away, causing stiffness of the joints. The available therapeutics for arthritis relieve symptoms but do not initiate reverse generation of cartilage. For young individuals and athletes replacement of joints is not feasible like old populations; in that case transplantation of stem cells represents an alternative for healing cartilage injuries [27]. Chondrocytes, the cartilage forming cells derived from hESC, embedded in fibrin gel effectively heal defective cartilage within 12 weeks, when transplanted to focal cartilage defects of knee joints in mice without any negative effect [27]. Transplanted chondrocytes form cell aggregates, positive for SOX9 and collagen II, and defined chondrocytes are active for more than 12wks at transplantation site, advocating clinical suitability of chondrocytes for treatment of cartilage lesions [27]. The integrity of ESCs to integrate and differentiate into electrophysiologically active cells provides a means for natural regulation of heart rhythm as biological pacemaker. Coaxing of ESCs into inert biomaterial as well as propagation in defined culture conditions leads to transdifferentiation of ESCs to become sinoatrial node (SAN) pacemaker cells (PCs) [28]. Genomic incorporation TBox3 into ESCs ex vivo leads to generation of PCs-like cells; those express activated leukocyte cells adhesion molecules (ALCAM) and exhibit similarity to PCs for gene expression and immune functions [28]. Transplantation of PCs can restore pacemaker functions of the ailing heart [28]. In summary, ESCs can be transdifferentiated into any kinds of cells representing three germ layers of the body, being most promising source of regenerative medicine for tissue regeneration and disease therapy (). Ethical concerns limit the applications of ESCs, where set guidelines need to be followed; in that case TSPSCs, MSCs, UCSCs, BMSCs, and iPSCs can be explored as alternatives.

TSPSCs maintain tissue homeostasis through continuous cell division, but, unlike ESCs, TSPSCs retain stem cells plasticity and differentiation in tissue specific manner, giving rise to few types of cells (). The number of TSPSCs population to total cells population is too low; in that case their harvesting as well as in vitro manipulation is really a tricky task [29], to explore them for therapeutic scale. Human body has foundation from various types of TSPSCs; discussing the therapeutic application for all types is not feasible. This section of review discusses therapeutic application of pancreatic progenitor cells (PPCs), dental pulp stem cells (DPSCs), inner ear stem cells (IESCs), intestinal progenitor cells (IPCs), limbal progenitor stem cells (LPSCs), epithelial progenitor stem cells (EPSCs), mesoangioblasts (MABs), spermatogonial stem cells (SSCs), the skin derived precursors (SKPs), and adipose derived stem cells (AdSCs) (; ). During embryogenesis PPCs give rise to insulin-producing -cells. The differentiation of PPCs to become -cells is negatively regulated by insulin [30]. PPCs require active FGF and Notch signalling; growing more rapidly in community than in single cell populations advocates the functional importance of niche effect in self-renewal and transdifferentiation processes. In 3D-scaffold culture system, mice embryo derived PPCs grow into hollow organoid spheres; those finally differentiate into insulin-producing -cell clusters [29]. The DSPSCs, responsible for maintenance of teeth health status, can be sourced from apical papilla, deciduous teeth, dental follicle, and periodontal ligaments, have emerged as regenerative medicine candidate, and might be explored for treatment of various kinds of disease including restoration neurogenic functions in teeth [31, 32]. Expansion of DSPSCs in chemically defined neuronal culture medium transforms them into a mixed population of cholinergic, GABAergic, and glutaminergic neurons; those are known to respond towards acetylcholine, GABA, and glutamine stimulations in vivo. These transformed neuronal cells express nestin, glial fibrillary acidic protein (GFAP), III-tubulin, and voltage gated L-type Ca2+ channels [32]. However, absence of Na+ and K+ channels does not support spontaneous action potential generation, necessary for response generation against environmental stimulus. All together, these primordial neuronal stem cells have possible therapeutic potential for treatment of neurodental problems [32]. Sometimes, brain tumor chemotherapy can cause neurodegeneration mediated cognitive impairment, a condition known as chemobrain [33]. The intrahippocampal transplantation of human derived neuronal stem cells to cyclophosphamide behavioural decremented mice restores cognitive functions in a month time. Here the transplanted stem cells differentiate into neuronal and astroglial lineage, reduce neuroinflammation, and restore microglial functions [33]. Furthermore, transplantation of stem cells, followed by chemotherapy, directs pyramidal and granule-cell neurons of the gyrus and CA1 subfields of hippocampus which leads to reduction in spine and dendritic cell density in the brain. These findings suggest that transplantation of stem cells to cranium restores cognitive functions of the chemobrain [33]. The hair cells of the auditory system produced during development are not postmitotic; loss of hair cells cannot be replaced by inner ear stem cells, due to active state of the Notch signalling [34]. Stimulation of inner ear progenitors with -secretase inhibitor ({"type":"entrez-nucleotide","attrs":{"text":"LY411575","term_id":"1257853995","term_text":"LY411575"}}LY411575) abrogates Notch signalling through activation of transcription factor atonal homologue 1 (Atoh1) and directs transdifferentiation of progenitors into cochlear hair cells [34]. Transplantation of in vitro generated hair cells restores acoustic functions in mice, which can be the potential regenerative medicine candidates for the treatment of deafness [34]. Generation of the hair cells also can be achieved through overexpression of -catenin and Atoh1 in Lrg5+ cells in vivo [35]. Similar to ear progenitors, intestine of the digestive tract also has its own tissue specific progenitor stem cells, mediating regeneration of the intestinal tissue [34, 36]. Dysregulation of the common stem cells signalling pathways, Notch/BMP/TGF-/Wnt, in the intestinal tissue leads to disease. Information on these signalling pathways [37] is critically important in designing therapeutics. Coaxing of the intestinal tissue specific progenitors with immune cells (macrophages), connective tissue cells (myofibroblasts), and probiotic bacteria into 3D-scaffolds of inert biomaterial, crafting biological environment, is suitable for differentiation of progenitors to occupy the crypt-villi structures into these scaffolds [36]. Omental implementation of these crypt-villi structures to dogs enhances intestinal mucosa through regeneration of goblet cells containing intestinal tissue [36]. These intestinal scaffolds are close approach for generation of implantable intestinal tissue, divested by infection, trauma, cancer, necrotizing enterocolitis (NEC), and so forth [36]. In vitro culture conditions cause differentiation of intestinal stem cells to become other types of cells, whereas incorporation of valproic acid and CHIR-99021 in culture conditions avoids differentiation of intestinal stem cells, enabling generation of indefinite pool of stem cells to be used for regenerative applications [38]. The limbal stem cells of the basal limbal epithelium, marked with ABCB5, are essential for regeneration and maintenance of corneal tissue [39]. Functional status of ABCB5 is critical for survival and functional integrity of limbal stem cells, protecting them from apoptotic cell death [39]. Limbal stem cells deficiency leads to replacement of corneal epithelium with visually dead conjunctival tissue, which can be contributed by burns, inflammation, and genetic factors [40]. Transplanted human cornea stem cells to mice regrown into fully functional human cornea, possibly supported by blood eye barrier phenomena, can be used for treatment of eye diseases, where regeneration of corneal tissue is critically required for vision restoration [39]. Muscle degenerative disease like duchenne muscular dystrophy (DMD) can cause extensive thrashing of muscle tissue, where tissue engineering technology can be deployed for functional restoration of tissue through regeneration [41]. Encapsulation of mouse or human derived MABs (engineered to express placental derived growth factor (PDGF)) into polyethylene glycol (PEG) fibrinogen hydrogel and their transplantation beneath the skin at ablated tibialis anterior form artificial muscles, which are functionally similar to those of normal tibialis anterior muscles [41]. The PDGF attracts various cell types of vasculogenic and neurogenic potential to the site of transplantation, supporting transdifferentiation of mesoangioblasts to become muscle fibrils [41]. The therapeutic application of MABs in skeletal muscle regeneration and other therapeutic outcomes has been reviewed by others [42]. One of the most important tissue specific stem cells, the male germline stem cells or spermatogonial stem cells (SSCs), produces spermatogenic lineage through mesenchymal and epithets cells [43] which itself creates niche effect on other cells. In vivo transplantation of SSCs with prostate, skin, and uterine mesenchyme leads to differentiation of these cells to become epithelia of the tissue of origin [43]. These newly formed tissues exhibit all physical and physiological characteristics of prostate and skin and the physical characteristics of prostate, skin, and uterus, express tissue specific markers, and suggest that factors secreted from SSCs lead to lineage conservation which defines the importance of niche effect in regenerative medicine [43]. According to an estimate, more than 100 million people are suffering from the condition of diabetic retinopathy, a progressive dropout of vascularisation in retina that leads to loss of vision [44]. The intravitreal injection of adipose derived stem cells (AdSCs) to the eye restores microvascular capillary bed in mice. The AdSCs from healthy donor produce higher amounts of vasoprotective factors compared to glycemic mice, enabling superior vascularisation [44]. However use of AdSCs for disease therapeutics needs further standardization for cell counts in dose of transplant and monitoring of therapeutic outcomes at population scale [44]. Apart from AdSCs, other kinds of stem cells also have therapeutic potential in regenerative medicine for treatment of eye defects, which has been reviewed by others [45]. Fallopian tubes, connecting ovaries to uterus, are the sites where fertilization of the egg takes place. Infection in fallopian tubes can lead to inflammation, tissue scarring, and closure of the fallopian tube which often leads to infertility and ectopic pregnancies. Fallopian is also the site where onset of ovarian cancer takes place. The studies on origin and etiology of ovarian cancer are restricted due to lack of technical advancement for culture of epithelial cells. The in vitro 3D organoid culture of clinically obtained fallopian tube epithelial cells retains their tissue specificity, keeps cells alive, which differentiate into typical ciliated and secretory cells of fallopian tube, and advocates that ectopic examination of fallopian tube in organoid culture settings might be the ideal approach for screening of cancer [46]. The sustained growth and differentiation of fallopian TSPSCs into fallopian tube organoid depend both on the active state of the Wnt and on paracrine Notch signalling [46]. Similar to fallopian tube stem cells, subcutaneous visceral tissue specific cardiac adipose (CA) derived stem cells (AdSCs) have the potential of differentiation into cardiovascular tissue [47]. Systemic infusion of CA-AdSCs into ischemic myocardium of mice regenerates heart tissue and improves cardiac function through differentiation to endothelial cells, vascular smooth cells, and cardiomyocytes and vascular smooth cells. The differentiation and heart regeneration potential of CA-AdSCs are higher than AdSCs [48], representing CA-AdSCs as potent regenerative medicine candidates for myocardial ischemic therapy [47]. The skin derived precursors (SKPs), the progenitors of dermal papilla/hair/hair sheath, give rise to multiple tissues of mesodermal and/or ectodermal origin such as neurons, Schwann cells, adipocytes, chondrocytes, and vascular smooth muscle cells (VSMCs). VSMCs mediate wound healing and angiogenesis process can be derived from human foreskin progenitor SKPs, suggesting that SKPs derived VSMCs are potential regenerative medicine candidates for wound healing and vasculature injuries treatments [49]. In summary, TSPSCs are potentiated with tissue regeneration, where advancement in organoid culture (; ) technologies defines the importance of niche effect in tissue regeneration and therapeutic outcomes of ex vivo expanded stem cells.

MSCs, the multilineage stem cells, differentiate only to tissue of mesodermal origin, which includes tendons, bone, cartilage, ligaments, muscles, and neurons [50]. MSCs are the cells which express combination of markers: CD73+, CD90+, CD105+, CD11b, CD14, CD19, CD34, CD45, CD79a, and HLA-DR, reviewed elsewhere [50]. The application of MSCs in regenerative medicine can be generalized from ongoing clinical trials, phasing through different state of completions, reviewed elsewhere [90]. This section of review outlines the most recent representative applications of MSCs (; ). The anatomical and physiological characteristics of both donor and receiver have equal impact on therapeutic outcomes. The bone marrow derived MSCs (BMDMSCs) from baboon are morphologically and phenotypically similar to those of bladder stem cells and can be used in regeneration of bladder tissue. The BMDMSCs (CD105+, CD73+, CD34, and CD45), expressing GFP reporter, coaxed with small intestinal submucosa (SIS) scaffolds, augment healing of degenerated bladder tissue within 10wks of the transplantation [51]. The combinatorial CD characterized MACs are functionally active at transplantation site, which suggests that CD characterization of donor MSCs yields superior regenerative outcomes [51]. MSCs also have potential to regenerate liver tissue and treat liver cirrhosis, reviewed elsewhere [91]. The regenerative medicinal application of MSCs utilizes cells in two formats as direct transplantation or first transdifferentiation and then transplantation; ex vivo transdifferentiation of MSCs deploys retroviral delivery system that can cause oncogenic effect on cells. Nonviral, NanoScript technology, comprising utility of transcription factors (TFs) functionalized gold nanoparticles, can target specific regulatory site in the genome effectively and direct differentiation of MSCs into another cell fate, depending on regime of TFs. For example, myogenic regulatory factor containing NanoScript-MRF differentiates the adipose tissue derived MSCs into muscle cells [92]. The multipotency characteristics represent MSCs as promising candidate for obtaining stable tissue constructs through coaxed 3D organoid culture; however heterogeneous distribution of MSCs slows down cell proliferation, rendering therapeutic applications of MSCs. Adopting two-step culture system for MSCs can yield homogeneous distribution of MSCs in biomaterial scaffolds. For example, fetal-MSCs coaxed in biomaterial when cultured first in rotating bioreactor followed with static culture lead to homogeneous distribution of MSCs in ECM components [7]. Occurrence of dental carries, periodontal disease, and tooth injury can impact individual's health, where bioengineering of teeth can be the alternative option. Coaxing of epithelial-MSCs with dental stem cells into synthetic polymer gives rise to mature teeth unit, which consisted of mature teeth and oral tissue, offering multiple regenerative therapeutics, reviewed elsewhere [52]. Like the tooth decay, both human and animals are prone to orthopedic injuries, affecting bones, joint, tendon, muscles, cartilage, and so forth. Although natural healing potential of bone is sufficient to heal the common injuries, severe trauma and tumor-recession can abrogate germinal potential of bone-forming stem cells. In vitro chondrogenic, osteogenic, and adipogenic potential of MSCs advocates therapeutic applications of MSCs in orthopedic injuries [53]. Seeding of MSCs, coaxed into biomaterial scaffolds, at defective bone tissue, regenerates defective bone tissues, within fourwks of transplantation; by the end of 32wks newly formed tissues integrate into old bone [54]. Osteoblasts, the bone-forming cells, have lesser actin cytoskeleton compared to adipocytes and MSCs. Treatment of MSCs with cytochalasin-D causes rapid transportation of G-actin, leading to osteogenic transformation of MSCs. Furthermore, injection of cytochalasin-D to mice tibia also promotes bone formation within a wk time frame [55]. The bone formation processes in mice, dog, and human are fundamentally similar, so outcomes of research on mice and dogs can be directional for regenerative application to human. Injection of MSCs to femur head of Legg-Calve-Perthes suffering dog heals the bone very fast and reduces the injury associated pain [55]. Degeneration of skeletal muscle and muscle cramps are very common to sledge dogs, animals, and individuals involved in adventurous athletics activities. Direct injection of adipose tissue derived MSCs to tear-site of semitendinosus muscle in dogs heals injuries much faster than traditional therapies [56]. Damage effect treatment for heart muscle regeneration is much more complex than regeneration of skeletal muscles, which needs high grade fine-tuned coordination of neurons with muscles. Coaxing of MSCs into alginate gel increases cell retention time that leads to releasing of tissue repairing factors in controlled manner. Transplantation of alginate encapsulated cells to mice heart reduces scar size and increases vascularisation, which leads to restoration of heart functions. Furthermore, transplanted MSCs face host inhospitable inflammatory immune responses and other mechanical forces at transplantation site, where encapsulation of cells keeps them away from all sorts of mechanical forces and enables sensing of host tissue microenvironment, and respond accordingly [57]. Ageing, disease, and medicine consumption can cause hair loss, known as alopecia. Although alopecia has no life threatening effects, emotional catchments can lead to psychological disturbance. The available treatments for alopecia include hair transplantation and use of drugs, where drugs are expensive to afford and generation of new hair follicle is challenging. Dermal papillary cells (DPCs), the specialized MSCs localized in hair follicle, are responsible for morphogenesis of hair follicle and hair cycling. The layer-by-layer coating of DPCs, called GAG coating, consists of coating of geletin as outer layer, middle layer of fibroblast growth factor 2 (FGF2) loaded alginate, and innermost layer of geletin. GAG coating creates tissue microenvironment for DPCs that can sustain immunological and mechanical obstacles, supporting generation of hair follicle. Transplantation of GAG-coated DPCs leads to abundant hair growth and maturation of hair follicle, where GAG coating serves as ECM, enhancing intrinsic therapeutic potential of DPCs [58]. During infection, the inflammatory cytokines secreted from host immune cells attract MSCs to the site of inflammation, which modulates inflammatory responses, representing MSCs as key candidate of regenerative medicine for infectious disease therapeutics. Coculture of macrophages (M) and adipose derived MSCs from Leishmania major (LM) susceptible and resistant mice demonstrates that AD-MSCs educate M against LM infection, differentially inducing M1 and M2 phenotype that represents AD-MSC as therapeutic agent for leishmanial therapy [93]. In summary, the multilineage differentiation potential of MSCs, as well as adoption of next-generation organoid culture system, avails MSCs as ideal regenerative medicine candidate.

Umbilical cord, generally thrown at the time of child birth, is the best known source for stem cells, procured in noninvasive manner, having lesser ethical constraints than ESCs. Umbilical cord is rich source of hematopoietic stem cells (HSCs) and MSCs, which possess enormous regeneration potential [94] (; ). The HSCs of cord blood are responsible for constant renewal of all types of blood cells and protective immune cells. The proliferation of HSCs is regulated by Musashi-2 protein mediated attenuation of Aryl hydrocarbon receptor (AHR) signalling in stem cells [95]. UCSCs can be cryopreserved at stem cells banks (; ), in operation by both private and public sector organization. Public stem cells banks operate on donation formats and perform rigorous screening for HLA typing and donated UCSCs remain available to anyone in need, whereas private stem cell banks operation is more personalized, availing cells according to donor consent. Stem cell banking is not so common, even in developed countries. Survey studies find that educated women are more eager to donate UCSCs, but willingness for donation decreases with subsequent deliveries, due to associated cost and safety concerns for preservation [96]. FDA has approved five HSCs for treatment of blood and other immunological complications [97]. The amniotic fluid, drawn during pregnancy for standard diagnostic purposes, is generally discarded without considering its vasculogenic potential. UCSCs are the best alternatives for those patients who lack donors with fully matched HLA typing for peripheral blood and PBMCs and bone marrow [98]. One major issue with UCSCs is number of cells in transplant, fewer cells in transplant require more time for engraftment to mature, and there are also risks of infection and mortality; in that case ex vivo propagation of UCSCs can meet the demand of desired outcomes. There are diverse protocols, available for ex vivo expansion of UCSCs, reviewed elsewhere [99]. Amniotic fluid stem cells (AFSCs), coaxed to fibrin (required for blood clotting, ECM interactions, wound healing, and angiogenesis) hydrogel and PEG supplemented with vascular endothelial growth factor (VEGF), give rise to vascularised tissue, when grafted to mice, suggesting that organoid cultures of UCSCs have promise for generation of biocompatible tissue patches, for treating infants born with congenital heart defects [59]. Retroviral integration of OCT4, KLF4, cMYC, and SOX2 transforms AFSCs into pluripotency stem cells known as AFiPSCs which can be directed to differentiate into extraembryonic trophoblast by BMP2 and BMP4 stimulation, which can be used for regeneration of placental tissues [60]. Wharton's jelly (WJ), the gelatinous substance inside umbilical cord, is rich in mucopolysaccharides, fibroblast, macrophages, and stem cells. The stem cells from UCB and WJ can be transdifferentiated into -cells. Homogeneous nature of WJ-SCs enables better differentiation into -cells; transplantation of these cells to streptozotocin induced diabetic mice efficiently brings glucose level to normal [7]. Easy access and expansion potential and plasticity to differentiate into multiple cell lineages represent WJ as an ideal candidate for regenerative medicine but cells viability changes with passages with maximum viable population at 5th-6th passages. So it is suggested to perform controlled expansion of WJ-MSCS for desired regenerative outcomes [9]. Study suggests that CD34+ expression leads to the best regenerative outcomes, with less chance of host-versus-graft rejection. In vitro expansion of UCSCs, in presence of StemRegenin-1 (SR-1), conditionally expands CD34+ cells [61]. In type I diabetic mellitus (T1DM), T-cell mediated autoimmune destruction of pancreatic -cells occurs, which has been considered as tough to treat. Transplantation of WJ-SCs to recent onset-T1DM patients restores pancreatic function, suggesting that WJ-MSCs are effective in regeneration of pancreatic tissue anomalies [62]. WJ-MSCs also have therapeutic importance for treatment of T2DM. A non-placebo controlled phase I/II clinical trial demonstrates that intravenous and intrapancreatic endovascular injection of WJ-MSCs to T2DM patients controls fasting glucose and glycated haemoglobin through improvement of -cells functions, evidenced by enhanced c-peptides and reduced inflammatory cytokines (IL-1 and IL-6) and T-cells counts [63]. Like diabetes, systematic lupus erythematosus (SLE) also can be treated with WJ-MSCs transplantation. During progression of SLE host immune system targets its own tissue leading to degeneration of renal, cardiovascular, neuronal, and musculoskeletal tissues. A non-placebo controlled follow-up study on 40 SLE patients demonstrates that intravenous infusion of WJ-MSC improves renal functions and decreases systematic lupus erythematosus disease activity index (SLEDAI) and British Isles Lupus Assessment Group (BILAG), and repeated infusion of WJ-MSCs protects the patient from relapse of the disease [64]. Sometimes, host inflammatory immune responses can be detrimental for HSCs transplantation and blood transfusion procedures. Infusion of WJ-MSC to patients, who had allogenic HSCs transplantation, reduces haemorrhage inflammation (HI) of bladder, suggesting that WJ-MSCs are potential stem cells adjuvant in HSCs transplantation and blood transfusion based therapies [100]. Apart from WJ, umbilical cord perivascular space and cord vein are also rich source for obtaining MSCs. The perivascular MSCs of umbilical cord are more primitive than WJ-MSCs and other MSCs from cord suggest that perivascular MSCs might be used as alternatives for WJ-MSCs for regenerative therapeutics outcome [101]. Based on origin, MSCs exhibit differential in vitro and in vivo properties and advocate functional characterization of MSCs, prior to regenerative applications. Emerging evidence suggests that UCSCs can heal brain injuries, caused by neurodegenerative diseases like Alzheimer's, Krabbe's disease, and so forth. Krabbe's disease, the infantile lysosomal storage disease, occurs due to deficiency of myelin synthesizing enzyme (MSE), affecting brain development and cognitive functions. Progression of neurodegeneration finally leads to death of babies aged two. Investigation shows that healing of peripheral nervous system (PNS) and central nervous system (CNS) tissues with Krabbe's disease can be achieved by allogenic UCSCs. UCSCs transplantation to asymptomatic infants with subsequent monitoring for 46 years reveals that UCSCs recover babies from MSE deficiency, improving myelination and cognitive functions, compared to those of symptomatic babies. The survival rate of transplanted UCSCs in asymptomatic and symptomatic infants was 100% and 43%, respectively, suggesting that early diagnosis and timely treatment are critical for UCSCs acceptance for desired therapeutic outcomes. UCSCs are more primitive than BMSCs, so perfect HLA typing is not critically required, representing UCSCs as an excellent source for treatment of all the diseases involving lysosomal defects, like Krabbe's disease, hurler syndrome, adrenoleukodystrophy (ALD), metachromatic leukodystrophy (MLD), Tay-Sachs disease (TSD), and Sandhoff disease [65]. Brain injuries often lead to cavities formation, which can be treated from neuronal parenchyma, generated ex vivo from UCSCs. Coaxing of UCSCs into human originated biodegradable matrix scaffold and in vitro expansion of cells in defined culture conditions lead to formation of neuronal organoids, within threewks' time frame. These organoids structurally resemble brain tissue and consisted of neuroblasts (GFAP+, Nestin+, and Ki67+) and immature stem cells (OCT4+ and SOX2+). The neuroblasts of these organoids further can be differentiated into mature neurons (MAP2+ and TUJ1+) [66]. Administration of high dose of drugs in divesting neuroblastoma therapeutics requires immediate restoration of hematopoiesis. Although BMSCs had been promising in restoration of hematopoiesis UCSCs are sparely used in clinical settings. A case study demonstrates that neuroblastoma patients who received autologous UCSCs survive without any associated side effects [12]. During radiation therapy of neoplasm, spinal cord myelitis can occur, although occurrence of myelitis is a rare event and usually such neurodegenerative complication of spinal cord occurs 624 years after exposure to radiations. Transplantation of allogenic UC-MSCs in laryngeal patients undergoing radiation therapy restores myelination [102]. For treatment of neurodegenerative disease like Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), traumatic brain injuries (TBI), Parkinson's, SCI, stroke, and so forth, distribution of transplanted UCSCs is critical for therapeutic outcomes. In mice and rat, injection of UCSCs and subsequent MRI scanning show that transplanted UCSCs migrate to CNS and multiple peripheral organs [67]. For immunomodulation of tumor cells disease recovery, transplantation of allogenic DCs is required. The CD11c+DCs, derived from UCB, are morphologically and phenotypically similar to those of peripheral blood derived CTLs-DCs, suggesting that UCB-DCs can be used for personalized medicine of cancer patient, in need for DCs transplantation [103]. Coculture of UCSCs with radiation exposed human lung fibroblast stops their transdifferentiation, which suggests that factors secreted from UCSCs may restore niche identity of fibroblast, if they are transplanted to lung after radiation therapy [104]. Tearing of shoulder cuff tendon can cause severe pain and functional disability, whereas ultrasound guided transplantation of UCB-MSCs in rabbit regenerates subscapularis tendon in fourwks' time frame, suggesting that UCB-MSCs are effective enough to treat tendons injuries when injected to focal points of tear-site [68]. Furthermore, transplantation of UCB-MSCs to chondral cartilage injuries site in pig knee along with HA hydrogel composite regenerates hyaline cartilage [69], suggesting that UCB-MSCs are effective regenerative medicine candidate for treating cartilage and ligament injuries. Physiologically circulatory systems of brain, placenta, and lungs are similar. Infusion of UCB-MSCs to preeclampsia (PE) induced hypertension mice reduces the endotoxic effect, suggesting that UC-MSCs are potential source for treatment of endotoxin induced hypertension during pregnancy, drug abuse, and other kinds of inflammatory shocks [105]. Transplantation of UCSCs to severe congenital neutropenia (SCN) patients restores neutrophils count from donor cells without any side effect, representing UCSCs as potential alternative for SCN therapy, when HLA matched bone marrow donors are not accessible [106]. In clinical settings, the success of myocardial infarction (MI) treatment depends on ageing, systemic inflammation in host, and processing of cells for infusion. Infusion of human hyaluronan hydrogel coaxed UCSCs in pigs induces angiogenesis, decreases scar area, improves cardiac function at preclinical level, and suggests that the same strategy might be effective for human [107]. In stem cells therapeutics, UCSCs transplantation can be either autologous or allogenic. Sometimes, the autologous UCSCs transplants cannot combat over tumor relapse, observed in Hodgkin's lymphoma (HL), which might require second dose transplantation of allogenic stem cells, but efficacy and tolerance of stem cells transplant need to be addressed, where tumor replace occurs. A case study demonstrates that second dose allogenic transplants of UCSCs effective for HL patients, who had heavy dose in prior transplant, increase the long term survival chances by 30% [10]. Patients undergoing long term peritoneal renal dialysis are prone to peritoneal fibrosis and can change peritoneal structure and failure of ultrafiltration processes. The intraperitoneal (IP) injection of WJ-MSCs prevents methylglyoxal induced programmed cell death and peritoneal wall thickening and fibrosis, suggesting that WJ-MSCs are effective in therapeutics of encapsulating peritoneal fibrosis [70]. In summary, UCB-HSCs, WJ-MSCs, perivascular MSCs, and UCB-MSCs have tissue regeneration potential.

Bone marrow found in soft spongy bones is responsible for formation of all peripheral blood and comprises hematopoietic stem cells (producing blood cells) and stromal cells (producing fat, cartilage, and bones) [108] (; ). Visually bone marrow has two types, red marrow (myeloid tissue; producing RBC, platelets, and most of WBC) and yellow marrow (producing fat cells and some WBC) [108]. Imbalance in marrow composition can culminate to the diseased condition. Since 1980, bone marrow transplantation is widely accepted for cancer therapeutics [109]. In order to avoid graft rejection, HLA typing of donors is a must, but completely matched donors are limited to family members, which hampers allogenic transplantation applications. Since matching of all HLA antigens is not critically required, in that case defining the critical antigens for haploidentical allogenic donor for patients, who cannot find fully matched donor, might relieve from donor constraints. Two-step administration of lymphoid and myeloid BMSCs from haploidentical donor to the patients of aplastic anaemia and haematological malignancies reconstructs host immune system and the outcomes are almost similar to fully matched transplants, which recommends that profiling of critically important HLA is sufficient for successful outcomes of BMSCs transplantation. Haploidentical HLA matching protocol is the major process for minorities and others who do not have access to matched donor [71]. Furthermore, antigen profiling is not the sole concern for BMSCs based therapeutics. For example, restriction of HIV1 (human immune deficiency virus) infection is not feasible through BMSCs transplantation because HIV1 infection is mediated through CD4+ receptors, chemokine CXC motif receptor 4 (CXCR4), and chemokine receptor 5 (CCR5) for infecting and propagating into T helper (Th), monocytes, macrophages, and dendritic cells (DCs). Genetic variation in CCR2 and CCR5 receptors is also a contributory factor; mediating protection against infection has been reviewed elsewhere [110]. Engineering of hematopoietic stem and progenitor cells (HSPCs) derived CD4+ cells to express HIV1 antagonistic RNA, specifically designed for targeting HIV1 genome, can restrict HIV1 infection, through immune elimination of latently infected CD4+ cells. A single dose infusion of genetically modified (GM), HIV1 resistant HSPCs can be the alternative of HIV1 retroviral therapy. In the present scenario stem cells source, patient selection, transplantation-conditioning regimen, and postinfusion follow-up studies are the major factors, which can limit application of HIV1 resistant GM-HSPCs (CD4+) cells application in AIDS therapy [72, 73]. Platelets, essential for blood clotting, are formed from megakaryocytes inside the bone marrow [74]. Due to infection, trauma, and cancer, there are chances of bone marrow failure. To an extent, spongy bone marrow microenvironment responsible for lineage commitment can be reconstructed ex vivo [75]. The ex vivo constructed 3D-scaffolds consisted of microtubule and silk sponge, flooded with chemically defined organ culture medium, which mimics bone marrow environment. The coculture of megakaryocytes and embryonic stem cells (ESCs) in this microenvironment leads to generation of functional platelets from megakaryocytes [75]. The ex vivo 3D-scaffolds of bone microenvironment can stride the path for generation of platelets in therapeutic quantities for regenerative medication of burns [75] and blood clotting associated defects. Accidents, traumatic injuries, and brain stroke can deplete neuronal stem cells (NSCs), responsible for generation of neurons, astrocytes, and oligodendrocytes. Brain does not repopulate NSCs and heal traumatic injuries itself and transplantation of BMSCs also can heal neurodegeneration alone. Lipoic acid (LA), a known pharmacological antioxidant compound used in treatment of diabetic and multiple sclerosis neuropathy when combined with BMSCs, induces neovascularisation at focal cerebral injuries, within 8wks of transplantation. Vascularisation further attracts microglia and induces their colonization into scaffold, which leads to differentiation of BMSCs to become brain tissue, within 16wks of transplantation. In this approach, healing of tissue directly depends on number of BMSCs in transplantation dose [76]. Dental caries and periodontal disease are common craniofacial disease, often requiring jaw bone reconstruction after removal of the teeth. Traditional therapy focuses on functional and structural restoration of oral tissue, bone, and teeth rather than biological restoration, but BMSCs based therapies promise for regeneration of craniofacial bone defects, enabling replacement of missing teeth in restored bones with dental implants. Bone marrow derived CD14+ and CD90+ stem and progenitor cells, termed as tissue repair cells (TRC), accelerate alveolar bone regeneration and reconstruction of jaw bone when transplanted in damaged craniofacial tissue, earlier to oral implants. Hence, TRC therapy reduces the need of secondary bone grafts, best suited for severe defects in oral bone, skin, and gum, resulting from trauma, disease, or birth defects [77]. Overall, HSCs have great value in regenerative medicine, where stem cells transplantation strategies explore importance of niche in tissue regeneration. Prior to transplantation of BMSCs, clearance of original niche from target tissue is necessary for generation of organoid and organs without host-versus-graft rejection events. Some genetic defects can lead to disorganization of niche, leading to developmental errors. Complementation with human blastocyst derived primary cells can restore niche function of pancreas in pigs and rats, which defines the concept for generation of clinical grade human pancreas in mice and pigs [111]. Similar to other organs, diaphragm also has its own niche. Congenital defects in diaphragm can affect diaphragm functions. In the present scenario functional restoration of congenital diaphragm defects by surgical repair has risk of reoccurrence of defects or incomplete restoration [8]. Decellularization of donor derived diaphragm offers a way for reconstruction of new and functionally compatible diaphragm through niche modulation. Tissue engineering technology based decellularization of diaphragm and simultaneous perfusion of bone marrow mesenchymal stem cells (BM-MSCs) facilitates regeneration of functional scaffolds of diaphragm tissues [8]. In vivo replacement of hemidiaphragm in rats with reseeded scaffolds possesses similar myography and spirometry as it has in vivo in donor rats. These scaffolds retaining natural architecture are devoid of immune cells, retaining intact extracellular matrix that supports adhesion, proliferation, and differentiation of seeded cells [8]. These findings suggest that cadaver obtained diaphragm, seeded with BM-MSCs, can be used for curing patients in need for restoration of diaphragm functions (; ). However, BMSCs are heterogeneous population, which might result in differential outcomes in clinical settings; however clonal expansion of BMSCs yields homogenous cells population for therapeutic application [8]. One study also finds that intracavernous delivery of single clone BMSCs can restore erectile function in diabetic mice [112] and the same strategy might be explored for adult human individuals. The infection of hepatitis C virus (HCV) can cause liver cirrhosis and degeneration of hepatic tissue. The intraparenchymal transplantation of bone marrow mononuclear cells (BMMNCs) into liver tissue decreases aspartate aminotransferase (AST), alanine transaminase (ALT), bilirubin, CD34, and -SMA, suggesting that transplanted BMSCs restore hepatic functions through regeneration of hepatic tissues [113]. In order to meet the growing demand for stem cells transplantation therapy, donor encouragement is always required [8]. The stem cells donation procedure is very simple; with consent donor gets an injection of granulocyte-colony stimulating factor (G-CSF) that increases BMSCs population. Bone marrow collection is done from hip bone using syringe in 4-5hrs, requiring local anaesthesia and within a wk time frame donor gets recovered donation associated weakness.

The field of iPSCs technology and research is new to all other stem cells research, emerging in 2006 when, for the first time, Takahashi and Yamanaka generated ESCs-like cells through genetic incorporation of four factors, Sox2, Oct3/4, Klf4, and c-Myc, into skin fibroblast [3]. Due to extensive nuclear reprogramming, generated iPSCs are indistinguishable from ESCs, for their transcriptome profiling, epigenetic markings, and functional competence [3], but use of retrovirus in transdifferentiation approach has questioned iPSCs technology. Technological advancement has enabled generation of iPSCs from various kinds of adult cells phasing through ESCs or direct transdifferentiation. This section of review outlines most recent advancement in iPSC technology and regenerative applications (; ). Using the new edge of iPSCs technology, terminally differentiated skin cells directly can be transformed into kidney organoids [114], which are functionally and structurally similar to those of kidney tissue in vivo. Up to certain extent kidneys heal themselves; however natural regeneration potential cannot meet healing for severe injuries. During kidneys healing process, a progenitor stem cell needs to become 20 types of cells, required for waste excretion, pH regulation, and restoration of water and electrolytic ions. The procedure for generation of kidney organoids ex vivo, containing functional nephrons, has been identified for human. These ex vivo kidney organoids are similar to fetal first-trimester kidneys for their structure and physiology. Such kidney organoids can serve as model for nephrotoxicity screening of drugs, disease modelling, and organ transplantation. However generation of fully functional kidneys is a far seen event with today's scientific technologies [114]. Loss of neurons in age-related macular degeneration (ARMD) is the common cause of blindness. At preclinical level, transplantation of iPSCs derived neuronal progenitor cells (NPCs) in rat limits progression of disease through generation of 5-6 layers of photoreceptor nuclei, restoring visual acuity [78]. The various approaches of iPSCs mediated retinal regeneration including ARMD have been reviewed elsewhere [79]. Placenta, the cordial connection between mother and developing fetus, gets degenerated in certain pathophysiological conditions. Nuclear programming of OCT4 knock-out (KO) and wild type (WT) mice fibroblast through transient expression of GATA3, EOMES, TFAP2C, and +/ cMYC generates transgene independent trophoblast stem-like cells (iTSCs), which are highly similar to blastocyst derived TSCs for DNA methylation, H3K7ac, nucleosome deposition of H2A.X, and other epigenetic markings. Chimeric differentiation of iTSCs specifically gives rise to haemorrhagic lineages and placental tissue, bypassing pluripotency phase, opening an avenue for generation of fully functional placenta for human [115]. Neurodegenerative disease like Alzheimer's and obstinate epilepsies can degenerate cerebrum, controlling excitatory and inhibitory signals of the brain. The inhibitory tones in cerebral cortex and hippocampus are accounted by -amino butyric acid secreting (GABAergic) interneurons (INs). Loss of these neurons often leads to progressive neurodegeneration. Genomic integration of Ascl1, Dlx5, Foxg1, and Lhx6 to mice and human fibroblast transforms these adult cells into GABAergic-INs (iGABA-INs). These cells have molecular signature of telencephalic INs, release GABA, and show inhibition to host granule neuronal activity [81]. Transplantation of these INs in developing embryo cures from genetic and acquired seizures, where transplanted cells disperse and mature into functional neuronal circuits as local INs [82]. Dorsomorphin and SB-431542 mediated inhibition of TGF- and BMP signalling direct transformation of human iPSCs into cortical spheroids. These cortical spheroids consisted of both peripheral and cortical neurons, surrounded by astrocytes, displaying transcription profiling and electrophysiology similarity with developing fetal brain and mature neurons, respectively [83]. The underlying complex biology and lack of clear etiology and genetic reprogramming and difficulty in recapitulation of brain development have barred understanding of pathophysiology of autism spectrum disorder (ASD) and schizophrenia. 3D organoid cultures of ASD patient derived iPSC generate miniature brain organoid, resembling fetal brain few months after gestation. The idiopathic conditions of these organoids are similar with brain of ASD patients; both possess higher inhibitory GABAergic neurons with imbalanced neuronal connection. Furthermore these organoids express forkhead Box G1 (FOXG1) much higher than normal brain tissue, which explains that FOXG1 might be the leading cause of ASD [84]. Degeneration of other organs and tissues also has been reported, like degeneration of lungs which might occur due to tuberculosis infection, fibrosis, and cancer. The underlying etiology for lung degeneration can be explained through organoid culture. Coaxing of iPSC into inert biomaterial and defined culture leads to formation of lung organoids that consisted of epithelial and mesenchymal cells, which can survive in culture for months. These organoids are miniature lung, resemble tissues of large airways and alveoli, and can be used for lung developmental studies and screening of antituberculosis and anticancer drugs [87]. The conventional multistep reprogramming for iPSCs consumes months of time, while CRISPER-Cas9 system based episomal reprogramming system that combines two steps together enables generation of ESCs-like cells in less than twowks, reducing the chances of culture associated genetic abrasions and unwanted epigenetic [80]. This approach can yield single step ESCs-like cells in more personalized way from adults with retinal degradation and infants with severe immunodeficiency, involving correction for genetic mutation of OCT4 and DNMT3B [80]. The iPSCs expressing anti-CCR5-RNA, which can be differentiated into HIV1 resistant macrophages, have applications in AIDS therapeutics [88]. The diversified immunotherapeutic application of iPSCs has been reviewed elsewhere [89]. The -1 antitrypsin deficiency (A1AD) encoded by serpin peptidase inhibitor clade A member 1 (SERPINA1) protein synthesized in liver protects lungs from neutrophils elastase, the enzyme causing disruption of lungs connective tissue. A1AD deficiency is common cause of both lung and liver disease like chronic obstructive pulmonary disease (COPD) and liver cirrhosis. Patient specific iPSCs from lung and liver cells might explain pathophysiology of A1AD deficiency. COPD patient derived iPSCs show sensitivity to toxic drugs which explains that actual patient might be sensitive in similar fashion. It is known that A1AD deficiency is caused by single base pair mutation and correction of this mutation fixes the A1AD deficiency in hepatic-iPSCs [85]. The high order brain functions, like emotions, anxiety, sleep, depression, appetite, breathing heartbeats, and so forth, are regulated by serotonin neurons. Generation of serotonin neurons occurs prior to birth, which are postmitotic in their nature. Any sort of developmental defect and degeneration of serotonin neurons might lead to neuronal disorders like bipolar disorder, depression, and schizophrenia-like psychiatric conditions. Manipulation of Wnt signalling in human iPSCs in defined culture conditions leads to an in vitro differentiation of iPSCs to serotonin-like neurons. These iPSCs-neurons primarily localize to rhombomere 2-3 segment of rostral raphe nucleus, exhibit electrophysiological properties similar to serotonin neurons, express hydroxylase 2, the developmental marker, and release serotonin in dose and time dependent manner. Transplantation of these neurons might cure from schizophrenia, bipolar disorder, and other neuropathological conditions [116]. The iPSCs technology mediated somatic cell reprogramming of ventricular monocytes results in generation of cells, similar in morphology and functionality with PCs. SA note transplantation of PCs to large animals improves rhythmic heart functions. Pacemaker needs very reliable and robust performance so understanding of transformation process and site of transplantation are the critical aspect for therapeutic validation of iPSCs derived PCs [28]. Diabetes is a major health concern in modern world, and generation of -cells from adult tissue is challenging. Direct reprogramming of skin cells into pancreatic cells, bypassing pluripotency phase, can yield clinical grade -cells. This reprogramming strategy involves transformation of skin cells into definitive endodermal progenitors (cDE) and foregut like progenitor cells (cPF) intermediates and subsequent in vitro expansion of these intermediates to become pancreatic -cells (cPB). The first step is chemically complex and can be understood as nonepisomal reprogramming on day one with pluripotency factors (OCT4, SOX2, KLF4, and hair pin RNA against p53), then supplementation with GFs and chemical supplements on day seven (EGF, bFGF, CHIR, NECA, NaB, Par, and RG), and two weeks later (Activin-A, CHIR, NECA, NaB, and RG) yielding DE and cPF [86]. Transplantation of cPB yields into glucose stimulated secretion of insulin in diabetic mice defines that such cells can be explored for treatment of T1DM and T2DM in more personalized manner [86]. iPSCs represent underrated opportunities for drug industries and clinical research laboratories for development of therapeutics, but safety concerns might limit transplantation applications (; ) [117]. Transplantation of human iPSCs into mice gastrula leads to colonization and differentiation of cells into three germ layers, evidenced with clinical developmental fat measurements. The acceptance of human iPSCs by mice gastrula suggests that correct timing and appropriate reprogramming regime might delimit human mice species barrier. Using this fact of species barrier, generation of human organs in closely associated primates might be possible, which can be used for treatment of genetic factors governed disease at embryo level itself [118]. In summary, iPSCs are safe and effective for treatment of regenerative medicine.

The unstable growth of human population threatens the existence of wildlife, through overexploitation of natural habitats and illegal killing of wild animals, leading many species to face the fate of being endangered and go for extinction. For wildlife conservation, the concept of creation of frozen zoo involves preservation of gene pool and germ plasm from threatened and endangered species (). The frozen zoo tissue samples collection from dead or live animal can be DNA, sperms, eggs, embryos, gonads, skin, or any other tissue of the body [119]. Preserved tissue can be reprogrammed or transdifferentiated to become other types of tissues and cells, which opens an avenue for conservation of endangered species and resurrection of life (). The gonadal tissue from young individuals harbouring immature tissue can be matured in vivo and ex vivo for generation of functional gametes. Transplantation of SSCs to testis of male from the same different species can give rise to spermatozoa of donor cells [120], which might be used for IVF based captive breeding of wild animals. The most dangerous fact in wildlife conservation is low genetic diversity, too few reproductively capable animals which cannot maintain adequate genetic diversity in wild or captivity. Using the edge of iPSC technology, pluripotent stem cells can be generated from skin cells. For endangered drill, Mandrillus leucophaeus, and nearly extinct white rhinoceros, Ceratotherium simum cottoni, iPSC has been generated in 2011 [121]. The endangered animal drill (Mandrillus leucophaeus) is genetically very close to human and often suffers from diabetes, while rhinos are genetically far removed from other primates. The progress in iPSCs, from the human point of view, might be transformed for animal research for recapturing reproductive potential and health in wild animals. However, stem cells based interventions in wild animals are much more complex than classical conservation planning and biomedical research has to face. Conversion of iPSC into egg or sperm can open the door for generation of IVF based embryo; those might be transplanted in womb of live counterparts for propagation of population. Recently, iPSCs have been generated for snow leopard (Panthera uncia), native to mountain ranges of central Asia, which belongs to cat family; this breakthrough has raised the possibilities for cryopreservation of genetic material for future cloning and other assisted reproductive technology (ART) applications, for the conservation of cat species and biodiversity. Generation of leopard iPSCs has been achieved through retroviral-system based genomic integration of OCT4, SOX2, KLF4, cMYC, and NANOG. These iPSCs from snow leopard also open an avenue for further transformation of iPSCs into gametes [122]. The in vivo maturation of grafted tissue depends both on age and on hormonal status of donor tissue. These facts are equally applicable to accepting host. Ectopic xenografts of cryopreserved testis tissue from Indian spotted deer (Moschiola indica) to nude mice yielded generation of spermatocytes [123], suggesting that one-day procurement of functional sperm from premature tissue might become a general technique in wildlife conservation. In summary, tissue biopsies from dead or live animals can be used for generation of iPSCs and functional gametes; those can be used in assisted reproductive technology (ART) for wildlife conservation.

The spectacular progress in the field of stem cells research represents great scope of stem cells regenerative therapeutics. It can be estimated that by 2020 or so we will be able to produce wide array of tissue, organoid, and organs from adult stem cells. Inductions of pluripotency phenotypes in terminally differentiated adult cells have better therapeutic future than ESCs, due to least ethical constraints with adult cells. In the coming future, there might be new pharmaceutical compounds; those can activate tissue specific stem cells, promote stem cells to migrate to the side of tissue injury, and promote their differentiation to tissue specific cells. Except few countries, the ongoing financial and ethical hindrance on ESCs application in regenerative medicine have more chance for funding agencies to distribute funding for the least risky projects on UCSCs, BMSCs, and TSPSCs from biopsies. The existing stem cells therapeutics advancements are more experimental and high in cost; due to that application on broad scale is not feasible in current scenario. In the near future, the advancements of medical science presume using stem cells to treat cancer, muscles damage, autoimmune disease, and spinal cord injuries among a number of impairments and diseases. It is expected that stem cells therapies will bring considerable benefits to the patients suffering from wide range of injuries and disease. There is high optimism for use of BMSCs, TSPSCs, and iPSCs for treatment of various diseases to overcome the contradictions associated with ESCs. For advancement of translational application of stem cells, there is a need of clinical trials, which needs funding rejoinder from both public and private organizations. The critical evaluation of regulatory guidelines at each phase of clinical trial is a must to comprehend the success and efficacy in time frame.

Dr. Anuradha Reddy from Centre for Cellular and Molecular Biology Hyderabad and Mrs. Sarita Kumari from Department of Yoga Science, BU, Bhopal, India, are acknowledged for their critical suggestions and comments on paper.

There are no competing interests associated with this paper.

View post:
Stem Cells Applications in Regenerative Medicine and ...

To Read More: Stem Cells Applications in Regenerative Medicine and …
categoriaCardiac Stem Cells commentoComments Off on Stem Cells Applications in Regenerative Medicine and … | dataDecember 23rd, 2021
Read All

In-depth Analysis of the 22q11.2 Deletion Syndrome Market, 2017-2030 – If Zygel (ZYN002) Gets Approved, the Market Will Grow as There Will Be No…

By daniellenierenberg

DUBLIN, Dec. 20, 2021 /PRNewswire/ -- The "22q11.2 Deletion Syndrome - Global Market Insights, Epidemiology and Forecast to 2030" report has been added to ResearchAndMarkets.com's offering.

This report delivers an in-depth understanding of the 22q11.2 deletion syndrome, historical and forecasted epidemiology as well as the 22q11.2 deletion syndrome market trends in the United States, EU5 (Germany, France, Italy, Spain, and the United Kingdom), and Japan.

Epidemiology

The 22q11.2 deletion syndrome epidemiology division provides the insights about historical and current 22q11.2 deletion syndrome patient pool and forecasted trend for each seven major countries. It helps to recognize the causes of current and forecasted trends by exploring numerous studies and views of key opinion leaders. This part of The report also provides the diagnosed patient pool and their trends along with assumptions undertaken.

Key Findings

The disease epidemiology covered in the report provides historical as well as forecasted 22q11.2 deletion syndrome epidemiology [segmented as Total Prevalent Cases of 22q11.2 deletion syndrome, Total Diagnosed Prevalent Cases of 22q11.2 deletion syndrome, Total diagnosed prevalent cases of 22q11.2 deletion syndrome by age group, Total diagnosed prevalent cases of 22q11.2 deletion syndrome with Behavioral and Psychiatric phenotypes, and Total treated cases of 22q11.2 deletion syndrome with behavioral and psychiatric phenotypes scenario of 22q11.2 deletion syndrome in the 7MM covering United States, EU5 countries (Germany, France, Italy, Spain, and United Kingdom), and Japan from 2018 to 2030.

Country-Wise Epidemiology

In 2020, the total prevalent cases of 22q11.2 deletion syndrome were 196,476 in the 7MM. The United States, in the same year, accounted for 83,326 cases, the highest prevalence of 22q11.2 deletion syndrome cases in the 7MM, accounting for approximately 42% of the total 7MM cases in 2020.

Among the EU-5 countries, the highest number of cases of 22q11.2 deletion syndrome were in Germany and the least in Spain in 2020.

22q11.2 deletion syndrome is often underdiagnosed and misdiagnosed, as the symptoms vary from patient to patient. In the EU-5 countries, the total diagnosed prevalent cases of 22q11.2 deletion syndrome were 35,203 in 2020.

In the year 2020, Japan accounted for 1,409, 1,160, 2,196, 582, and 850 cases for the age groups Infant, 1-5, 6-12, 13-17, and ?18 years, respectively, for 22q11.2 deletion syndrome which are expected to rise during the forecast period.

22q11.2 deletion syndrome is a multisystem disorder characterized by several physical, behavioral and psychiatric disorders. In the 7MM, of the focused age-group 6 to 12 and 13 to 17 years, the diagnosed prevalent cases of 22q11.2 deletion syndrome with Behavioral and Psychiatric Phenotypes were 36,702, in 2020.

Drug Chapters

Drug chapter segment of the 22q11.2 deletion syndrome report encloses the detailed analysis of 22q11.2 deletion syndrome pipeline drugs. It also helps to understand the 22q11.2 deletion syndrome clinical trial details, expressive pharmacological action, agreements and collaborations, approval and patent details, advantages and disadvantages of each included drug and the latest news and press releases.

Emerging Drugs

Zygel (ZYN002; Cannabidiol): Zynerba Pharmaceuticals

Zygel (ZYN002), developed by Zynerba Pharmaceuticals, is the first and only pharmaceutically produced Cannabidiol (CBD). Zygel is formulated as a patent-protected permeation-enhanced gel for transdermal delivery through skin and then into the circulatory system. Zynerba Pharmaceuticals is currently developing the Zygel in Phase II (ACTRN12619000673145; INSPIRE) of the clinical development in Children and Adolescents with 22q11.2 Deletion Syndrome. The trial is currently registered with the Australian New Zealand Clinical Trials Registry (ANZCTR).

RVT-802: Enzyvant/Roivant Sciences/Sumitomo Dainippon Pharma

RVT-802 is a one-time regenerative therapy and is a cultured human thymus tissue engineered to generate a functioning immune response when implanted in pediatric patients with congenital athymia. RVT-802 is a human thymus tissue that has been removed during pediatric cardiac surgery for unrelated conditions. In a healthy, functioning immune system, T cells that start as stem cells in the bone marrow become fully developed in the thymus. Currently, RVT-802 is being developed by Sumitomo Dainippon Pharma (Parent company of Sumitovant Biopharma for Pediatric Congenital Athymia) associated with multiple conditions, including complete DiGeorge Anomaly (cDGA).

Key Findings

The 22q11.2 deletion syndrome market size in the 7MM is expected to change during the forecast period (2021-2030), at a CAGR of 41.9%. According to the estimates, the highest market size of 22q11.2 deletion syndrome is found in the United States.

US: Market Outlook

In United States, the total market size of 22q11.2 deletion syndrome is expected to increase at a CAGR of 43.9% during the study period (2018-2030).

EU-5 Countries: Market Outlook

In the EU-5 countries, the total market size of 22q11.2 deletion syndrome is expected to increase at a CAGR of 37.1% during the study period (2018-2030).

Japan: Market Outlook

In the Japan, the total market size of 22q11.2 deletion syndrome is expected to increase at a CAGR of 41.6% during the study period (2018-2030).

Pipeline Activities

The drugs which are in pipeline include:

Analysts Insight

At present, like many other rare diseases, there is no cure for 22q11.2 deletion syndrome. It is worth mentioning that as a result of the early diagnosis in cases like heart and palate defects, evidence-based protocols can be followed in the early stages of diagnosis to improve the quality of life for children. In such cases, surgery is the major option. The major treatment challenge is seen in patients with psychopathologies (such as Autism, Anxiety disorders, Psychotic disorder [Schizophrenia], Attention deficit hyperactivity disorder [ADHD], and Mood Disorders). In such cases diagnosis is also a major challenge. Antidepressants, antipsychotics, and stimulants are used as off-label therapeutic choices to address all of the aforementioned behavioral and psychiatric traits. Behavioral therapy, on the other hand, is another important part of the treatment process. The pipeline for 22q11.2 deletion syndrome is not competitive, and if Zygel (ZYN002) gets approved by regulatory authorities in the coming years, the overall market size in the seven major markets is likely to grow, as there will be no expected competition.

Access and Reimbursement Scenario

Children are born with this disorder, they require a lifetime of expenditure over diagnosis, treatment, and other supportive care. In a study by Peter et al. (2017), the average pediatric medical care cost associated with the diagnosis of 22q11.2 deletion syndrome in the general population was estimated to be USD 727,178. Costs were highest for patients ascertained prenatally (USD 2,599,955) or in the first year of life (USD 1,043,096), those with cardiac abnormalities or referred for cardiac evaluation (USD 751,535), and patients with low T-cell counts (USD 1,382,222), presumably reflecting the fact that more severely affected cases are more likely to have come to attention early, and that they have a larger number of years of accumulated costs.

KOL Views

To keep up with current market trends, the publisher takes KOLs and SME's opinion working in 22q11.2 deletion syndrome domain through primary research to fill the data gaps and validate our secondary research. Their opinion helps to understand and validate current and emerging therapies treatment patterns o r22q11.2 deletion syndrome market trend. This will support the clients in potential upcoming novel treatment by identifying the overall scenario of the market and the unmet needs.

Competitive Intelligence Analysis

The publisher performs Competitive and Market Intelligence analysis of the 22q11.2 deletion syndrome Market by using various Competitive Intelligence tools that includes - SWOT analysis, PESTLE analysis, Porter's five forces, BCG Matrix, Market entry strategies etc. The inclusion of the analysis entirely depends upon the data availability.

For more information about this report visit https://www.researchandmarkets.com/r/bs6hd4

Media Contact:

Research and Markets Laura Wood, Senior Manager [emailprotected]

For E.S.T Office Hours Call +1-917-300-0470 For U.S./CAN Toll Free Call +1-800-526-8630 For GMT Office Hours Call +353-1-416-8900

U.S. Fax: 646-607-1907 Fax (outside U.S.): +353-1-481-1716

SOURCE Research and Markets

Original post:
In-depth Analysis of the 22q11.2 Deletion Syndrome Market, 2017-2030 - If Zygel (ZYN002) Gets Approved, the Market Will Grow as There Will Be No...

To Read More: In-depth Analysis of the 22q11.2 Deletion Syndrome Market, 2017-2030 – If Zygel (ZYN002) Gets Approved, the Market Will Grow as There Will Be No…
categoriaCardiac Stem Cells commentoComments Off on In-depth Analysis of the 22q11.2 Deletion Syndrome Market, 2017-2030 – If Zygel (ZYN002) Gets Approved, the Market Will Grow as There Will Be No… | dataDecember 23rd, 2021
Read All

Stem cells and the future of health care – The Globe and Mail

By daniellenierenberg

Event summary produced by The Globe and Mail Events team. The Globes editorial department was not involved.

Canada was a pioneer of stem cell research and today, innovators are developing clinical trials to test regenerative treatments for a range of illnesses including cardiac disease and Parkinsons. At the same time, theyre navigating risks and considerations that often surround medical innovations.

The Globe and Mail hosted a webcast on November 30 to explore the promise and potential of stem cells. Speakers also discussed ethical issues, misinformation and the importance of rigorous evaluation in bringing new treatments to market.

Missed the live event or would like to view it again? Scroll down to the video player, below.

Andr Picard, health reporter and columnist with The Globe and Mail moderated the event and hosted the following speakers:

Read a summary of the event here

View the full webcast, below:

The Globe and Mail presented the webcast with sponsor support from Bayer.

Go here to see the original:
Stem cells and the future of health care - The Globe and Mail

To Read More: Stem cells and the future of health care – The Globe and Mail
categoriaCardiac Stem Cells commentoComments Off on Stem cells and the future of health care – The Globe and Mail | dataDecember 10th, 2021
Read All

Cells | Free Full-Text | Improving Cardiac Reprogramming …

By daniellenierenberg

All articles published by MDPI are made immediately available worldwide under an open access license. No specialpermission is required to reuse all or part of the article published by MDPI, including figures and tables. Forarticles published under an open access Creative Common CC BY license, any part of the article may be reused withoutpermission provided that the original article is clearly cited.

Feature Papers represent the most advanced research with significant potential for high impact in the field. FeaturePapers are submitted upon individual invitation or recommendation by the scientific editors and undergo peer reviewprior to publication.

The Feature Paper can be either an original research article, a substantial novel research study that often involvesseveral techniques or approaches, or a comprehensive review paper with concise and precise updates on the latestprogress in the field that systematically reviews the most exciting advances in scientific literature. This type ofpaper provides an outlook on future directions of research or possible applications.

Editors Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world.Editors select a small number of articles recently published in the journal that they believe will be particularlyinteresting to authors, or important in this field. The aim is to provide a snapshot of some of the most exciting workpublished in the various research areas of the journal.

See the original post here:
Cells | Free Full-Text | Improving Cardiac Reprogramming ...

To Read More: Cells | Free Full-Text | Improving Cardiac Reprogramming …
categoriaCardiac Stem Cells commentoComments Off on Cells | Free Full-Text | Improving Cardiac Reprogramming … | dataDecember 10th, 2021
Read All

Biotech company with KU roots wins national competition, secures funding to help move research ‘from bench to bedside’ | The University of Kansas – KU…

By daniellenierenberg

LAWRENCE The human body contains trillions of cells at any given moment, each doing highly specialized work to help us function but they dont operate in isolation. Imagine a sophisticated FedEx or UPS delivery network empowering communication between our cells. The nano-sized delivery vehicles in this scenario are called exosomes, and a company born from technology developed at the University of Kansas is harnessing the power of these tiny vessels to enable tomorrows medical breakthroughs.

Clara Biotech, founded by KU engineering alumnus Jim West and former KU professor of chemical & petroleum engineering and chemistry Mei He, has spent the last three years refining a novel technology to isolate and purify exosomes, which can be used for early disease diagnosis, targeted drug delivery, cancer immunotherapy and other forms of regenerative medicine.

Now, the company is poised to commercialize its first product after recently finalizing $1.5 million in seed funding and being recognized in a national competition. Clara Biotech was the only Midwest company singled out in MedTech Innovators Biotools Innovator program, which recognizes the 10 best life science tools startups. The company received $10,000 for securing a spot in the 2021 cohort and a $5,000 best-video award for a one-minute spot introducing the company and detailing what sets it apart.

Clara Biotech was founded to help move exosomes from the bench to the bedside, said West, who serves as Claras CEO. Our company is about building a platform that everybody can leverage to bring their products to market and help solve challenges around isolation and purification, which today is one of the number one issues in the field.

Exosomes deliver genetic information to cells throughout the body. Exosomes from regenerative cells, such as stem cells, can help the body heal and repair itself. Exosomes released from diseased cells might be used for early detection and diagnosis of cancer and other conditions.

But at 100 nanometers in diameter less than the wavelength of visible light exosomes are difficult to handle.

Clara Biotechs patented ExoRelease platform is unique in the industry. Current processes rely on bulk isolation, whereas Claras capture and release technology isolates pure exosomes. This allows researchers to easily isolate and target specific exosomes including cardiac, neurological, cancer and others and use them for therapeutic treatments and drug delivery platforms.

Im very excited about the work that Clara Biotech is doing to improve exosome purification, said Kathryn Zavala, managing director of BioTools Innovator. Their technology has the potential to significantly impact how we diagnose and treat diseases by advancing the field of exosome research and development.

Clara Biotech launched in 2018 with a Small Business Innovation Research grant from the National Cancer Institute and received training through the National Science Foundations Innovation Corps (I-Corps) program on how to transfer knowledge into products and processes that benefit society. It has seven full-time employees, and its lab is housed in the KU Innovation Park.

Clara Biotech is an example of how KU innovation provides the foundation to form a company that addresses societal needs and creates Kansas jobs, said Tricia Bergman, KUs director of strategic partnerships. It also illustrates how technology developed in KU labs can transition into the KU Innovation Park, where the company can continue to develop through ongoing partnerships with the university.

Until now, Clara Biotech has provided lab services to its customers. Now, its moving toward packaging its technology so other companies, labs and researchers can leverage it to complete the isolation process themselves.

Were trying to democratize access to these exosomes, West said.

Clara Biotech is beta-testing kits containing its isolation technology with promising results from early adopters and hopes to launch its first product by the end of the year.

Building a company is probably the hardest thing Ive ever done in my life, but its also super rewarding, West said. The work were doing is really important.

Photo: Jim West, CEO of Clara Biotech, holds the two checks his company won at MedTech Innovators Biotools Innovator program in San Diego in October.

Read the original:
Biotech company with KU roots wins national competition, secures funding to help move research 'from bench to bedside' | The University of Kansas - KU...

To Read More: Biotech company with KU roots wins national competition, secures funding to help move research ‘from bench to bedside’ | The University of Kansas – KU…
categoriaCardiac Stem Cells commentoComments Off on Biotech company with KU roots wins national competition, secures funding to help move research ‘from bench to bedside’ | The University of Kansas – KU… | dataDecember 10th, 2021
Read All

John Theurer Cancer Center Investigators Present Pioneering Research at the American Society of Hematology Annual Conference – Yahoo Finance

By daniellenierenberg

Findings Continue to Change the Treatment of Blood Cancers

HACKENSACK, N.J., Dec. 9, 2021 /PRNewswire/ -- Researchers from Hackensack Meridian Health John Theurer Cancer Center (JTCC), a part of the Georgetown Lombardi Comprehensive Cancer Center, will present updates on treatment advances in multiple myeloma, lymphoma, leukemia, and bone marrow transplantation at the 63rd American Society of Hematology (ASH) Annual Meeting and Exposition, to be held virtually and live at the Georgia World Congress Center in Atlanta from December 11-14, 2021.

"John Theurer Cancer Center is a world leader in the care of people with hematologic malignancies and a pioneer in clinical research related to blood cancers. The acceptance of 47 studies from our investigators demonstrates our expertise in this area and our commitment to improving outcomes not only for our own patients, but people affected by these diseases everywhere," said Andre Goy, MD, MS, chairman and executive director of the John Theurer Cancer Center.

This year's presentations will include a plenary session as the #2 ranked abstract for the entire conference with data that will change the paradigm in the treatment of relapsed aggressive lymphoma for the FIRST TIME in 40 years. Dr. Lori Leslie, MD, director of the Indolent Lymphoma and Chronic Lymphocytic Leukemia Research Programs at JTCC will be co-presenter of the phase III international ZUMA-7 clinical trial (abstract #2), which compared axicabtagene ciloleucel (axi-cel) CAR T-cell therapy with standard of care (SOC) in patients with relapsed / refractory diffuse large B-cell lymphoma (DLBCL) after initial therapy. For decades the SOC has been high dose therapy followed by autologous stem cell transplant (ASCT) but patients with high risk disease and / or early relapse still do very poorly. Axi-cel is now used to treat DLBCL that have failed two prior regimens of treatment, including standard salvage chemoimmunotherapy (CIT) followed by ASCT.

Story continues

Bringing axi-cel earlier as second line therapy resulted in a 2.5-fold increase in median event-free survival (defined as the time without any cancer progression or any related complications) and doubled the complete response rate (65% vs 32%).

"This study is the first to change the paradigm for relapsed and refractory DLBCL that was established decades ago, demonstrating significant and clinically meaningful improvements in outcome," said Dr. Leslie. "Axi-cel may replace chemoimmunotherapy and autologous stem cell transplantation as the standard of care for people with DLBCL that relapses or persists after initial treatment. It is a game-changer."

The JTCC presentations address new developments in the treatment of multiple myeloma, lymphoma, leukemia, and bone marrow transplantation, as well as a study assessing gene therapy for sickle cell disease in pediatric patients.

Multiple Myeloma Research

Adding a PI3K inhibitor improved duration of CAR T-cell response. (Abstract #548, David S. Siegel, MD, PhD) In this phase I clinical trial, researchers showed that adding a PI3 kinase inhibitor called bb007 to bb2121 CAR T-cell therapy (forming a combined therapy called bb21217) in relapsed/refractory multiple myeloma (MM) patients who had three or more regimens of treatment resulted in a duration of response of 17 months (compared with 10 months for bb2121 alone in a prior study), and CAR T cells were detectable longer.

Study shows feasibility of "off the shelf" donated CAR T cells. (Abstract #651, David S. Siegel, MD, PhD). Current CAR T-cell therapies involve expensive modification of a patient's own T cells. Allogeneic (donated) CAR T cells represent a potentially more accessible, less expensive option but carry the risk of rejection and complications such as graft-vs-host disease. The phase I UNIVERSAL study demonstrated the safety of donated anti-BCMA CAR T cells in heavily pretreated MM patients, with mild to moderate side effects as expected for this type of immunotherapy.

Novel targeted MM therapies. Three abstracts provided additional data on novel targeted agents for relapsed/refractory MM. Selinexor was FDA approved in December 2020 and is being assessed in combination with other agents. A study of once-weekly oral selinexor with pomalidomide and dexamethasone (abstract #2748, Noa Biran, MD) showed an overall response rate of more than 60% in relapsed/refractory MM, including patients whose disease persisted after CAR T-cell therapy or after anti-CD38 antibody treatment. This is important because patients with MM after CAR T-cell therapy usually do not respond to additional treatment.

Study shows patients fare better if treated in high-volume academic medical centers. (Abstract #2996, David Vesole, MD, PhD, with Lombardi Comprehensive Cancer Center researchers) An analysis of data from the National Cancer Database of nearly 175,000 patients with MM treated at all types of facilities showed that the median overall survival was 75.5 months at high-volume centers versus 50.2 months at low-volume centers. Academic/research cancer programs with high volumes have the best outcomes in MM and are more likely to use chemotherapy, immunotherapy, and autologous stem cell transplantation than low-volume centers, particularly community cancer centers.

Lymphoma Research

Long-term data confirm durability of CAR T-cell benefit in indolent lymphoma. (Abstract #93, Lori Leslie, MD) An update of the pivotal ZUMA-5 clinical trial, which led to the approval of axi-cel CAR T-cell therapy for relapsed/refractory follicular lymphoma, confirmed continued benefit in patients with indolent lymphoma. In follicular lymphoma (most common subtype of indolent lymphoma), high response rates translated to durable responses, with a median duration of response of 38.6 months and 57% of patients free of cancer progression at last follow-up.

Study confirms benefit of CAR T-cell therapy for mantle cell lymphoma (MCL). (Abstract #744, Andre Goy, MD) ZUMA-2 led to the first approval of CAR T-cell therapy for MCL. An analysis of real-world data of MCL patients who received this treatment, 73% of whom would not have been eligible for ZUMA-2, demonstrated similar effectiveness, with an overall response rate of 86% and 64% achieving a complete response. The results support the paradigm-shifting benefit of this therapy in a heavily pretreated patient population where the median overall survival would have otherwise been very poor.

Molecular biomarkers predictive of CAR T-cell response. (Abstract #165, Andrew Ip, MD, Andre Goy, MD) Researchers performed whole exome and transcriptome sequencing to show that patients with DLBCL who had genetic signatures of high-risk disease with standard initial therapy do well with CAR T-cell therapy. Some mutations predicted good versus poor outcomes after CAR T-cell therapyreflecting differences in the tumor or its microenvironmentand may provide the rationale for choosing the most appropriate treatment for each patient and augmenting the response to CAR T-cell therapy.

Value of adding brentuximab to standard chemotherapy for peripheral T-cell lymphoma (Abstract #133, Tatyana Feldman, MD, Lori Leslie, MD) Non-anaplastic subtypes of T-cell lymphoma have poor outcomes and require new options. This study showed that adding brentuximab to conventional combination chemotherapy was tolerable and effective in patients with non-anaplastic CD30-positive peripheral T-cell lymphoma.

Machine learning useful for stratifying lymphoma patients. (Abstract #2395, Andre Goy, MD) Using machine learning and data on 380 patients with DLBCL with expression levels of 180 genes, researchers used machine learning to develop a model to reliably stratify patients with DLBCL treated with R-CHOP combination therapy into four survival subgroups. The model can be used to identify which patients may not respond well to R-CHOPa standard DLBCL treatmentand instead be considered for other therapies or clinical trials.

Lymphoma/CLL adversely affects COVID-19 outcomes. (Abstract #184, Lori Leslie, MD) A study of electronic medical record data on 500 patients with lymphoma, chronic lymphocytic leukemia (CLL), or other lymphoid cancers who tested positive for SARS-CoV-2 showed that those with aggressive non-Hodgkin lymphoma and CLL and patients who had received recent cytotoxic chemotherapy or anti-CD20 antibody treatment (such as rituximab) may be at risk for poor COVID-19 outcomes. JTCC researchers are now working with investigators in the Center for Discovery and Innovation to study T-cell immunity in people with cancer.

Other studies focused on adding ublituximab and umbralisib to ibrutinib in people with CLL (Abstract #395, Lori Leslie, MD) and assessing cerdulatinib as monotherapy for patients with relapsed/refractory peripheral T-cell lymphoma (Abstract #622, Tatayana Feldman, MD).

Leukemia Research

Oral therapy for low-risk myelodysplastic syndrome (MDS) (Abstract #66, James McCloskey, MD) People with MDS are at risk for developing acute leukemia. Those with low-risk MDS may receive supportive care for low blood counts. Patients with high-risk MDS have received inconvenient injections with drugs such as azacitidine and decitabine. This study showed that oral decitabine and cedazuridine was pharmacokinetically equivalent to intravenous decitabine; in patients with low-risk MDS, the oral treatment was well tolerated with prolonged treatment and may be useful for preventing the progression of this disease to leukemia.

Effectiveness of adding venetoclax to gilteritinib effective for FLT3-mutated acute leukemia (Abstract #691, James McCloskey, MD) Acute myeloid leukemia (AML) with FLT3 mutations initially responds to FLT3 inhibitors but frequently becomes resistant to these drugs. This study showed that giving venetoclax (a BCL2 inhibitor) with the FLT3 inhibitor gilteritinib was very effective, clearing the FLT3 mutation in most patients, and was associated with longer overall survivaleven in patients with high-risk subtypes.

Liquid biopsy for detecting molecular abnormalities in AML (Abstract #3463, Jamie Koprivnikar, MD, James McCloskey, MD, and others) This study assessed next-generation sequencing (NGS) to detect molecular abnormalities in AML using liquid biopsies. The data show that this approach is reliable for detecting structural chromosomal abnormalities in myeloid neoplasms. It could potentially replace the need for conventional cytogenetic testing, be much more convenient (replacing bone marrow biopsies for materials), and be more cost-effective.

Bone Marrow Transplantation Research

Next-generation sequencing and liquid biopsy valuable for detecting early relapse after stem cell transplantation. (Abstract #1828, Scott Rowley, MD, Michele Donato, MD, Maher Albitar, MD, and others) Cell-free DNA was isolated from the peripheral blood post-allogeneic transplant in patients treated for AML, acute lymphocytic leukemia, chronic myelogenous leukemia, chronic myelomonocytic leukemia, MDS, MM, and lymphoma. Researchers showed that NGS and liquid biopsy are useful for detecting residual disease. The data suggest that this approach, which examines cancer DNA in peripheral blood rather than a sample from a bone marrow biopsy, may be effective for detecting and managing minimal residual disease (MRD)the next frontier in oncologyenabling doctors to modify therapy to achieve MRD negative status or, during transplantation, to adjust immunosuppressors or use additional T cells to prevent relapse.

Use of NGS and machine learning after transplant to predict graft-vs-host disease (GVHD) (Abstract #2892, Scott Rowley, MD, Michele Donato, MD, Maher Albitar, MD, and others) Using NGS RNA sequencing plus a machine learning approach, researchers looked at over 1,400 genes in 46 patients who had an allogeneic bone marrow transplant and developed a model based on 7 genes to predict acute GVHD, one of the most significant complications of receiving a transplant from a bone marrow donor. There are currently no valid ways to predict acute GVHD and intervene early until patients become symptomatic. The ability to identify molecular markers of this complication while patients are asymptomatic may allow for early intervention to prevent GVHD.

Sickle Cell Disease Research

Sustained quality of life in patients receiving gene therapy for sickle cell disease (Abstract #7, Stacey Rifkin-Zenenberg, DO, Hackensack University Medical Center) LentiGlobin gene therapy (bb1111) has been under study in a clinical trial as a one-time treatment and cure for sickle cell disease. This study presented long-term quality of life data for one group in the study, demonstrating an improvement in hematologic parameters and complete resolution of veno-occlusive events and related pain as well as sustained and clinically meaningful improvement in quality of life 6 and 24 months post-treatment. Even patients with the worst baseline quality of life scores experienced a benefit. LentiGlobin is the first gene therapy for sickle cell disease and the results of this study are very promising, with the potential to change patient outcomes for this chronic debilitating disease.

The full set of ASH data presentations by JTCC researchers is as follows:

Abstract #

Type

Title

Authors

Presenting (PST)

2

Plenary Scientific Session

Primary Analysis of ZUMA-7: A Phase 3 Randomized Trial of Axicabtagene Ciloleucel (Axi-Cel) Versus Standard-of-Care Therapy in Patients with Relapsed/Refractory Large B-Cell Lymphoma

Lori A. Leslie

Sunday, December 12, 2021: 2:00 PM-4:00 PM

7

Oral

Sustained Improvements in Patient-Reported Quality of Life up to 24 Months Post-Treatment with LentiGlobin for Sickle Cell Disease (bb1111) Gene Therapy

Stacey Rifkin

Saturday, December 11, 2021: 9:30 AM-11:00 AM

50

Oral

A Large Multicenter Real-World Evidence (RWE) Analysis of Autoimmune (AI) Diseases and Lymphoma: Histologic Associations, Disease Characteristics, Survival, and Prognostication

Tatyana A. Feldman, Jason Lofters

Saturday, December 11, 2021: 9:45 AM

66

Oral

Oral Decitabine/Cedazuridine in Patients with Lower Risk Myelodysplastic Syndrome: A Longer-Term Follow-up of from the Ascertain Study

James K McCloskey

Saturday, December 11, 2021: 10:45 AM

93

Oral

Long-Term Follow-up Analysis of ZUMA-5: A Phase 2 Study of Axicabtagene Ciloleucel (Axi-Cel) in Patients with Relapsed/Refractory (R/R) Indolent Non-Hodgkin Lymphoma (iNHL)

Pashna N. Munshi, Lori A. Leslie,

Saturday, December 11, 2021: 10:00 AM

133

Oral

Brentuximab Vedotin Plus Cyclophosphamide, Doxorubicin, Etoposide, and Prednisone (CHEP-BV) Followed By BV Consolidation in Patients with CD30-Expressing Peripheral T-Cell Lymphomas

Tatyana A. Feldman, Lori A. Leslie

Saturday, December 11, 2021: 12:00 PM-1:30 PM

165

Oral

Impact of Molecular Features of Diffuse Large B-Cell Lymphoma on Treatment Outcomes with Anti-CD19 Chimeric Antigen Receptor (CAR) T-Cell Therapy

Andrew Ip, MD, Andre Goy

Saturday, December 11, 2021: 12:30 PM

184

Oral

A Multi-Center Retrospective Review of COVID-19 Outcomes in Patients with Lymphoid Malignancy

Lori A. Leslie

Saturday, December 11, 2021: 12:00 PM-1:30 PM

307

Oral

Post Hoc Analysis of Responses to Ponatinib in Patients with Chronic-Phase Chronic Myeloid Leukemia (CP-CML) By Baseline BCR-ABL1 Level and Baseline Mutation Status in the Optic Trial

James K McCloskey

Saturday, December 11, 2021: 4:00 PM-5:30 PM

395

Oral

A Phase 2 Study Evaluating the Addition of Ublituximab and Umbralisib (U2) to Ibrutinib in Patients with Chronic Lymphocytic Leukemia (CLL): A Minimal Residual Disease (MRD)-Driven, Time-Limited Approach

Lori A. Leslie

Sunday, December 12, 2021: 10:30 AM

548

Oral

Updated Clinical and Correlative Results from the Phase I CRB-402 Study of the BCMA-Targeted CAR T Cell Therapy bb21217 in Patients with Relapsed and Refractory Multiple Myeloma

David S. Siegel

Sunday, December 12, 2021: 4:30 PM-6:00 PM

561

Oral

Polyclonality Strongly Correlates with Biological Outcomes and Is Significantly Increased Following Improvements to the Phase 1/2 HGB-206 Protocol and Manufacturing of LentiGlobin for Sickle Cell Disease (SCD; bb1111) Gene Therapy (GT)

Stacey Rifkin-Zenenberg

Sunday, December 12, 2021: 4:30 PM-6:00 PM

622

Oral

Phase 2a Study of the Dual SYK/JAK Inhibitor Cerdulatinib (ALXN2075) As Monotherapy in Patients with Relapsed/Refractory Peripheral T-Cell Lymphoma

Feldman

More:
John Theurer Cancer Center Investigators Present Pioneering Research at the American Society of Hematology Annual Conference - Yahoo Finance

To Read More: John Theurer Cancer Center Investigators Present Pioneering Research at the American Society of Hematology Annual Conference – Yahoo Finance
categoriaCardiac Stem Cells commentoComments Off on John Theurer Cancer Center Investigators Present Pioneering Research at the American Society of Hematology Annual Conference – Yahoo Finance | dataDecember 10th, 2021
Read All

Rare Blood Disorders In India: How It Can Lead To Disabilities In People Expert Explains | TheHealthSite. – TheHealthSite

By daniellenierenberg

On International Day of Disabled Persons, TheHealthSite spoke to Dr. Sunil Bhat, Director and Clinical Lead, Pediatric Hematology, Oncology, and Blood & Marrow Transplantation, Mazumdar Shaw Cancer Centre, Narayana Health City, to discuss the condition and understand the ways one can manage it.

Written by Satata Karmakar | Updated : December 3, 2021 5:31 PM IST

3rd December every year is observed as UN-designated International Day for persons with disabilities. The observance of the Day aims to promote an understanding of disability issues and mobilize support for the dignity, rights, and well-being of persons with disabilities. This year's theme is "not all disabilities are visible" since some of the disabilities are non-visible but they cause significant challenges for people living with such conditions for day-to-day participation in society.

Such non-visible disabilities include some of the rare blood disorders such as Thalassemia, Aplastic Anemia, Sickle cell Anemia, Fanconi Anemia, Hemophilia, and so on. The Rights of People with Disability Bill passed by the Parliament of India in December 2016 included newer disabilities like blood disorders sickle cell anemia, thalassemia, and hemophilia. Today, on International Day of Disabled Persons, TheHealthSite spoke to Dr. Sunil Bhat, Director and Clinical Lead, Pediatric Hematology, Oncology, and Blood & Marrow Transplantation, Mazumdar Shaw Cancer Centre, Narayana Health City, to discuss the condition and understand the ways one can manage it.

In India, the burden of blood disorders and blood cancer is huge. India is even called as Thalassemia capital of the world with over 10,000 new cases every year. Thalassemia is a disabling condition not just because of chronic anemia but other co-morbidities like organ damage, bone damage, and cardiac complications.

People with thalassemia may need lifelong blood transfusions and other therapies (like iron removal medications). With the advances in the medical field, blood stem cell transplant plays an important role in the treatment of various blood disorders like thalassemia, aplastic anemia, and blood cancers as well. For a blood stem cell transplant to be deemed successful, the human leukocyte antigens (HLA) of the donor should match the antigens present in the cells of the patient. Only 30% of the patients find a matching donor in the family and the rest 70% depending on an unrelated donor. Such unrelated donors are being registered by stem cell registries like DKMS BMST Foundation India.

However, despite such a huge disease burden, Indian stem cell donors only form a tiny fraction, about 0.04% of the total listed unrelated donors globally. The main reason is the lack of awareness and prevailing myths around the stem cell donation process deny many patients a second chance at their lives in the country. It is high time that healthy people understand blood stem cell donation is a safe process and come forward to register as a donor. There is only a 1 in a million chance that someone comes as a match for a patient!

Follow us on

Read more here:
Rare Blood Disorders In India: How It Can Lead To Disabilities In People Expert Explains | TheHealthSite. - TheHealthSite

To Read More: Rare Blood Disorders In India: How It Can Lead To Disabilities In People Expert Explains | TheHealthSite. – TheHealthSite
categoriaCardiac Stem Cells commentoComments Off on Rare Blood Disorders In India: How It Can Lead To Disabilities In People Expert Explains | TheHealthSite. – TheHealthSite | dataDecember 10th, 2021
Read All

PharmaEssentia’s BESREMi (ropeginterferon alfa-2b-njft) Now Available for the Treatment of People With Polycythemia Vera in the United States -…

By daniellenierenberg

BURLINGTON, Mass.--(BUSINESS WIRE)--PharmaEssentia USA Corporation, a subsidiary of PharmaEssentia Corporation (TPEx:6446), a global biopharmaceutical innovator based in Taiwan leveraging deep expertise and proven scientific principles to deliver new biologics in hematology and oncology, today announced that BESREMi (ropeginterferon alfa-2b-njft) is now commercially available in the U.S. to eligible patients with polycythemia vera (PV). BESREMi was approved by the FDA in November as the only interferon for adults with polycythemia vera. BESREMi was approved with a boxed warning for risk of serious disorders including aggravation of neuropsychiatric, autoimmune, ischemic and infectious disorders.

Today marks the beginning of a new chapter in the treatment of PV. Our team is delivering on our goal to bring an innovative solution that may help more people manage not only the symptoms of PV, but target the disease itself to gain durable control with potential to reduce progression over time, said Meredith Manning, U.S. General Manager. We look forward to working closely with U.S. providers to raise awareness of this therapy and help advance treatment goals.

PharmaEssentia SOURCE Now Available to Support People with PV in the U.S.

With the commercial availability of BESREMi, PharmaEssentia is also launching a comprehensive patient support program, which can be found at http://www.pharmaessentiaSOURCE.com.

The SOURCE program is available for patients prescribed BESREMi and offers a full suite of services designed to help patients start and stay on therapy. Services include insurance navigation support, titration and injection training, and ongoing adherence guidance. The program also includes physician resources, including guides to help patients get started on treatment and ordering processes.

As part of this program, PharmaEssentia will help patients with financial barriers to starting therapy. The company is offering co-pay and co-insurance programs to assist eligible patients who experience financial need. Programs include a $0 copay card for commercially insured patients, temporary product supply in case of insurance delays and/or gaps in coverage, free drug for the uninsured and under-insured as well as assistance identifying additional support as needed.

Weve designed SOURCE with active input from the PV community to simplify the process for appropriate patients to initiate and maintain access to BESREMi and to benefit from its effects over the long-term, added Manning. Our goal is to ensure that any appropriate person with PV who is prescribed BESREMi is able to receive the therapy.

About Polycythemia Vera

Polycythemia Vera (PV) is a cancer originating from a disease-initiating stem cell in the bone marrow resulting in a chronic increase of red blood cells, white blood cells, and platelets. PV may result in cardiovascular complications such as thrombosis and embolism, and often transforms to secondary myelofibrosis or leukemia. While the molecular mechanism underlying PV is still subject of intense research, current results point to a set of acquired mutations, the most important being a mutant form of JAK2.1

About BESREMi

BESREMi is an innovative monopegylated, long-acting interferon. With its unique pegylation technology, BESREMi has a long duration of activity in the body and is aimed to be administered once every two weeks (or every four weeks with hematological stability for at least one year), allowing flexible dosing that helps meet the individual needs of patients. After one year, patients with stable complete hematologic response (CHR) can be treated with BESREMi every four weeks.

BESREMi has orphan drug designation for treatment of PV in the United States. The product was approved by the European Medicines Agency (EMA) in 2019 and has received approval in Taiwan and South Korea. BESREMi was invented and is manufactured by PharmaEssentia.

Important Safety Information

IMPORTANT SAFETY INFORMATION AND INDICATIONS

WARNING: RISK OF SERIOUS DISORDERS

Interferon alfa products may cause or aggravate fatal or life-threatening neuropsychiatric, autoimmune, ischemic, and infectious disorders. Patients should be monitored closely with periodic clinical and laboratory evaluations. Therapy should be withdrawn in patients with persistently severe or worsening signs or symptoms of these conditions. In many, but not all cases, these disorders resolve after stopping therapy.

CONTRAINDICATIONS

WARNINGS AND PRECAUTIONS

Other central nervous system effects, including suicidal ideation, attempted suicide, aggression, bipolar disorder, mania and confusion have been observed with other interferon alfa products.

Closely monitor patients for any symptoms of psychiatric disorders and consider psychiatric consultation and treatment if such symptoms emerge. If psychiatric symptoms worsen, it is recommended to discontinue BESREMi therapy.

ADVERSE REACTIONS

The most common adverse reactions reported in > 40% of patients in the PEGINVERA study (n=51) were influenza-like illness, arthralgia, fatigue, pruritis, nasopharyngitis, and musculoskeletal pain. In the pooled safety population (n=178), the most common adverse reactions greater than 10%, were liver enzyme elevations (20%), leukopenia (20%), thrombocytopenia (19%), arthralgia (13%), fatigue (12%), myalgia (11%), and influenza-like illness (11%).

DRUG INTERACTIONS

Patients on BESREMi who are receiving concomitant drugs which are CYP450 substrates with a narrow therapeutic index should be monitored to inform the need for dosage modification for these concomitant drugs. Avoid use with myelosuppressive agents and monitor patients receiving the combination for effects of excessive myelosuppression. Avoid use with narcotics, hypnotics or sedatives and monitor patients receiving the combination for effects of excessive CNS toxicity.

USE IN SPECIFIC POPULATIONS

Please see accompanying full Prescribing Information, including Boxed Warning.

About PharmaEssentia

PharmaEssentia Corporation (TPEx: 6446), based in Taipei, Taiwan, is a rapidly growing biopharmaceutical innovator. Leveraging deep expertise and proven scientific principles, the company aims to deliver effective new biologics for challenging diseases in the areas of hematology and oncology, with one approved product and a diversifying pipeline. Founded in 2003 by a team of Taiwanese-American executives and renowned scientists from U.S. biotechnology and pharmaceutical companies, today the company is expanding its global presence with operations in the U.S., Japan, China, and Korea, along with a world-class biologics production facility in Taichung. For more information, visit our website or find us on LinkedIn and Twitter.

Forward Looking Statement

This press release contains forward looking statements, including statements regarding the timing of BESREMis availability in the United States, the commercialization plans and expectations for commercializing BESREMi in the United States, and the potential benefits or competitive position of BESREMi. For those statements, we claim the protection of the safe harbor for forward-looking statements contained in the Private Securities Litigation Reform Act of 1995 and similar legislation and regulations under Taiwanese law. These forward-looking statements are based on management expectations and assumptions as of the date of this press release, and actual results may differ materially from those in these forward-looking statements as a result of various factors. These factors include PharmaEssentias ability to launch BESREMi in the United States, whether BESREMi is successfully commercialized and adopted by physicians and patients, the extent to which reimbursement is available for BESREMi, and the ability to receive FDA and other regulatory approvals for additional indications for BESREMi. Any forward-looking statements set forth in this press release speak only as of the date of this press release. We do not undertake to update any of these forward-looking statements to reflect events or circumstances that occur after the date hereof. The information found on our website, and the FDA website, is not incorporated by reference into this press release and is included for reference purposes only.

1 Cerquozzi S, Tefferi A. Blast Transformation and Fibrotic Progression in Polycythemia Vera and Essential Thrombocythemia: A Literature Review of Incidence and Risk Factors. Blood Cancer Journal (2015) 5, e366; doi:10.1038/bcj.2015.95.

2021 PharmaEssentia Corporation. All rights reserved. US-BSRM-2100225 11/21

BESREMi and PharmaEssentia are registered trademarks of PharmaEssentia Corporation, and the PharmaEssentia logo and PharmaEssentia SOURCE are trademarks of PharmaEssentia Corporation.

More here:
PharmaEssentia's BESREMi (ropeginterferon alfa-2b-njft) Now Available for the Treatment of People With Polycythemia Vera in the United States -...

To Read More: PharmaEssentia’s BESREMi (ropeginterferon alfa-2b-njft) Now Available for the Treatment of People With Polycythemia Vera in the United States -…
categoriaCardiac Stem Cells commentoComments Off on PharmaEssentia’s BESREMi (ropeginterferon alfa-2b-njft) Now Available for the Treatment of People With Polycythemia Vera in the United States -… | dataDecember 10th, 2021
Read All

It is imperative to reduce the cost of cancer treatment: Ramesh Ramadurai, MD, 3M India – ETHealthworld.com

By daniellenierenberg

Shahid Akhter, editor, ETHealthworld, spoke to Ramesh Ramadurai, MD, 3M India, to know more 3M collaborations that can improve and impact cancer care, besides cutting down on the costs in a big way.

How has the technological and infrastructural facilities impacted Bone Marrow Transplantation in India ?Every year nearly 20,000 Indian patients, including many children, who suffer from blood and solid cancers require bone marrow transplantation (BMT). However, only 2,000 of these patients are fortunate enough to receive this therapy, as the cost of bone marrow transplantation can vary from INR 10 Lakhs to 30 Lakhs. It is imperative to reduce the cost of cancer treatment while maintaining a stringent focus on sterilization and quality. It is indeed the need of the hour for us to address this issue.

What are the various technological advancement required for the better functioning of the facilities?Despite the increasing demand for bone marrow transplantation, the number of bone marrow doners in India is astonishingly low. India conducts stem cell transplant procedure for approximately 2,000 every year, while around 80,000 to 100,000 annual transplants are required to tackle the burden of blood cancers and fatal blood disorders. Finding a matching donor is very difficult. This option is exercised only after the alternative options have failed.

India has only about 400,000 donors registered on the bone marrow registry. Chances of finding a donor match are as low as 10% to 15% compared to the West where the chances of matching are as high as 60% to 70% due to higher rates of donations.

What are the major and significant developments in treating bone marrow cancer in the country?A bone marrow registry collects information on individuals willing and able to donate bone marrow and gathers the donor information into a database. In India, organisations like Datri are helping to create a pool of donors to help people who do not have blood-related donors by finding an unrelated match for life-saving treatment.

Infusion of a memory cell is another advancement. This involves taking out the cells, sorting the good cells and the memory cells or the fighting cells, which can fight infections, sorting them out, capturing them and putting them back into the body after giving the requisite chemotherapy. This is also called T-cell depletion with memory cell infusion. It is now available in India and is affordable.

Through this partnership with United Way Bengaluru and Sri Shankara Cancer Hospital and Research Centre (SSCHRC), how does 3M aim to foster accessibility for people from different sections of the society in treating cancer. 3M India was brought into the SSCHRC family through United Way of Bengaluru, and this is our second round of engagement with the hospital. Last year, 3M India had donated equipment for cancer research and diagnostics like the Sanger sequencer and QPCR, made enhancements to the childrens play area at the long-stay Lakshmi Childrens center with child-friendly wall graphics, and provided kitchen utensils and cooking counters for the resident families of paediatric cancer patients.

We have donated several critical equipments for the research labs which contribute to the successful treatment of the BMT patients. As on date the BMT unit at SSCHRC has treated and discharged 5 patients and currently 4 are undergoing treatment. This wing of the hospital is accessible by few staff nurses and specialists like Dr K N Nataraj who is the Chief of Adult and Paediatric Haematology at the hospital. For a successful bone marrow transplantation, there are several requisites, some of which include, successful donor matching, extremely technique-sensitive harvesting and transplantation processes and robust infection control. With this essential, life-saving equipment, the cost of the treatment will reduce to approximately 50% (between Rs 8-12 Lacs as against the actual cost of Rs 15- 30 lacs) and help the hospital treat many more cancer patients.

How do 3M India and Sri Shankara Hospital plan to take this initiative ahead in the future for the growth and enhancement of bone marrow transplantation in the facility? It is matter of pride for 3M India and United Way of Bengaluru that we are associated with SSCHRC, an institution at the forefront of providing comprehensive cancer treatment to the needy, through CSR interventions.

By complying with the Foundation for the Accreditation of Cellular Therapy (FACT) Guidelines, the BMT Centre will be a one-of-a-kind medical facility where people of all economic status can receive treatment. Being a growing facility, the hospital is committed to continuing its responsibility towards expansion of multiple hospital beds and medical care. We are inspired by the commitment of the doctors and Sri Shankara Board of Trustees, led by Dr. B.S. Srinath and other dedicated professionals who developed a multifaceted approach to establishment a state of the art, affordable cancer hospital that is accessible to all irrespective of caste, creed, religion, gender or socioeconomic status.

More:
It is imperative to reduce the cost of cancer treatment: Ramesh Ramadurai, MD, 3M India - ETHealthworld.com

To Read More: It is imperative to reduce the cost of cancer treatment: Ramesh Ramadurai, MD, 3M India – ETHealthworld.com
categoriaCardiac Stem Cells commentoComments Off on It is imperative to reduce the cost of cancer treatment: Ramesh Ramadurai, MD, 3M India – ETHealthworld.com | dataDecember 10th, 2021
Read All

Global Induced Pluripotent Stem Cell (iPSC) Market Report 2021-2028 – Increasing Demand for Body Reconstruction Procedures and Tissue Engineering -…

By daniellenierenberg

DUBLIN--(BUSINESS WIRE)--The "Induced Pluripotent Stem Cell (iPSC) Market Share, Size, Trends, Industry Analysis Report By Application (Manufacturing, Academic Research, Drug Development & Discovery, Toxicity Screening, Regenerative Medicine); By Derived Cell; By Region, Segment & Forecast, 2021 - 2028" report has been added to ResearchAndMarkets.com's offering.

The global Induced Pluripotent Stem Cell (iPSC) market size is expected to reach $2,893.3 million by 2028

The ability to model human diseases in vitro as well as high-throughput screening has greatly propelled market growth. Companies have effectively overcome market hurdles faced in the recent past such as proper culturing and differentiation of derived cells at a commercial scale and have developed state-of-the-art manufacturing processes that can achieve scalability and can achieve stringent quality parameters. Such trends are propelling the overall industry growth.

Companies have also developed advanced platforms for Induced pluripotent stem cells that guarantee close connection with a host of in-house technologies that are useful in the proper definition of disease signatures as well as relationships between genetic mutations as well as that properly describe perturbation of specific molecular pathways. This has resulted in the creation of human translational models that are aiding better target identification of diseases that have high unmet medical needs.

Many companies have developed transfection kits, reprogramming vectors, differentiation media, live staining kits, immunocytochemistry, among others to aid the smooth workflow of iPSC production.

However, it has been observed in the recent past that the demand for cells for screening and other purposes is significant and that there are significant challenges that pose a significant hurdle in large-scale iPSC production and differentiation.

Heavy investment in R&D activities pertaining to the development and optimization of iPSC reprogramming process in order to achieve sufficient production is a key industry trend. In the recent past, companies focused more on hepatic, cardiac, pancreatic cells, among others.

However, with the advent of a number of new participants as well as advancements and breakthroughs achieved, it is anticipated that the application portfolio will further increase in the near future.

Industry participants operating in the industry are:

Key Topics Covered:

1. Introduction

2. Executive Summary

3. Research Methodology

4. iPSC Market Insights

4.1. iPSC - Industry Snapshot

4.2. iPSC Market Dynamics

4.2.1. Drivers and Opportunities

4.2.1.1. Increasing demand for body reconstruction procedures and tissue engineering

4.2.1.2. Rising Investments across the globe

4.2.2. Restraints and Challenges

4.2.2.1. Scalability Issues

4.3. Porter's Five Forces Analysis

4.4. PESTLE Analysis

4.5. iPSC Market Industry trends

4.6. COVID-19 Impact Analysis

5. Global iPSC Market, by Derived Cell

5.1. Key Findings

5.2. Introduction

5.3. Hepatocytes

5.4. Fibroblasts

5.5. Amniotic Cells

5.6. Cardiomyocytes

6. Global iPSC Market, by Application

6.1. Key Findings

6.2. Introduction

6.2.1. Global iPSC Market, by Application, 2017 - 2028 (USD Million)

6.3. Manufacturing

6.4. Academic Research

6.5. Drug Development & Discovery

6.6. Toxicity Screening

6.7. Regenerative Medicine

7. Global iPSC Market, by Geography

7.1. Key findings

7.2. Introduction

7.2.1. iPSC Market Assessment, By Geography, 2017 - 2028 (USD Million)

8. Competitive Landscape

8.1. Expansion and Acquisition Analysis

8.1.1. Expansion

8.1.2. Acquisitions

8.2. Partnerships/Collaborations/Agreements/Exhibitions

9. Company Profiles

9.1. Company Overview

9.2. Financial Performance

9.3. Product Benchmarking

9.4. Recent Development

For more information about this report visit https://www.researchandmarkets.com/r/ykewbe

See original here:
Global Induced Pluripotent Stem Cell (iPSC) Market Report 2021-2028 - Increasing Demand for Body Reconstruction Procedures and Tissue Engineering -...

To Read More: Global Induced Pluripotent Stem Cell (iPSC) Market Report 2021-2028 – Increasing Demand for Body Reconstruction Procedures and Tissue Engineering -…
categoriaCardiac Stem Cells commentoComments Off on Global Induced Pluripotent Stem Cell (iPSC) Market Report 2021-2028 – Increasing Demand for Body Reconstruction Procedures and Tissue Engineering -… | dataNovember 22nd, 2021
Read All

Stem Cell Therapy for Heart Failure Reduced Major Cardiac Events and Death – Diagnostic and Interventional Cardiology

By daniellenierenberg

November 19, 2021 Stem cell therapy helped to reduce the number of heart attacks, strokes and death among people with chronic, high-risk, NYHA class II or III heart failure with reduced ejection fraction (HFrEF), especially among those who have higher levels of inflammation, yet hospitalization was not reduced, according to late-breaking research presented at the American Heart Associations Scientific Sessions 2021.

Heart failure is a condition when the heart is unable to adequately pump blood to meet the bodys need for oxygen and nutrients. In heart failure with reduced ejection fraction (HFrEF), the heart muscle enlarges and weakens, resulting in a decrease in pumping ability and fluid buildup in the bodys tissues. Inflammation plays a significant role in the progression of heart failure over time.

This study set out to examine the effects of using stem cells (mesenchymal precursor cells) injected into the heart to target inflammation and treat chronic heart failure. Researchers hypothesized that a single injection of stem cells from healthy adult donors in addition to guideline-directed medical therapy (GDMT) for heart failure would affect the number of times participants were hospitalized for heart failure events and reduce heart attacks, strokes, and/or death.

Cell therapy has the potential to change how we treat heart failure, said Emerson C. Perin, M.D., Ph.D., the studys lead author, the director of the Center for Clinical Research and medical director of the Texas Heart Institute in Houston. This study addresses the inflammatory aspects of heart failure, which go mostly untreated, despite significant pharmaceutical and device therapy development. Our findings indicate stem cell therapy may be considered for use in addition to standard guideline therapies.

The Randomized Trial of Targeted Transendocardial Delivery of Mesenchymal Precursor Cells in High-Risk Chronic Heart Failure Patients with Reduced Ejection Fraction study also called the DREAM-HF trial, is the largest stem cell therapy study to date among people with heart failure. In this multi-center, randomized, sham-controlled, double-blind trial, researchers enrolled 537 participants (average age 63, 20% female) with heart failure and reduced ejection fraction, which is when the left side of the heart, its main pumping chamber, is significantly weakened.

Heart failure was defined using the New York Heart Association (NYHA) functional classification system. This classification system places patients in one of four categories based on how much they are limited during physical activity. Class I heart failure means no limitation of physical activity, with class IV heart failure meaning an inability to have any physical activity without discomfort.

Participants were randomly divided into two groups: 261 adults received an injection of 150 million mesenchymal precursor cells, commonly known as stem cells, directly into the heart using a catheter. The remaining 276 adults received a scripted, or sham, procedure. Healthy adult donors provided the mesenchymal precursor cells.

The study participants were discharged from the hospital the day after the procedure, and researchers followed these participants for an average of 30 months. The studys focus was to examine if the stem cell treatment affected the likelihood of participants returning to the hospital for treatment of worsening heart failure. They also tracked whether participants had a heart attack or stroke, or died, and measured levels of high-sensitivity C-reactive protein (CRP), a measure in the blood indicating inflammation.

While researchers did not see a decrease in hospitalizations due to the stem cell treatment, they did notice several other significant results. The findings include:

We were impressed to learn that stem cell treatment effects were additive to current standard heart failure treatments, Perin said. For the first time, the known anti-inflammatory mechanism of action of these cells may be linked to a cause-and-effect benefit in heart failure. The stem cells acted locally in the heart, and they also helped in blood vessels throughout the body.

Perin and colleagues believe further research is needed to better understand how these stem cells may affect the course of progression of heart failure and how these therapies may be directed to the patient groups that could see the most benefits.

Limitations to the research include the selection of endpoints commonly used in heart failure studies. The studys results suggest that traditional endpoints associated with recurrent heart failure hospitalization do not fully reveal the benefits or mechanisms of these stem cells on heart attack, stroke and death in patients with chronic heart failure.

Co-authors are Barry H. Greenberg, M.D.; Kenneth M. Borow, M.D.; Timothy D. Henry II, M.D.; Farrell O. Mendelsohn, M.D.; Les R. Miller, M.D.; Elizabeth Swiggum, M.D.; Eric D. Adler, M.D.; Christopher A. James, P.A.; and Silviu Itescu, M.D. Authors disclosures are listed in the abstract.

The study was funded by Mesoblast Inc.

https://www.dicardiology.com/article/late-breaking-science-presentations-aha-2021-meeting

Read the rest here:
Stem Cell Therapy for Heart Failure Reduced Major Cardiac Events and Death - Diagnostic and Interventional Cardiology

To Read More: Stem Cell Therapy for Heart Failure Reduced Major Cardiac Events and Death – Diagnostic and Interventional Cardiology
categoriaCardiac Stem Cells commentoComments Off on Stem Cell Therapy for Heart Failure Reduced Major Cardiac Events and Death – Diagnostic and Interventional Cardiology | dataNovember 22nd, 2021
Read All

FDA Approves Merck’s KEYTRUDA (pembrolizumab) as Adjuvant Therapy for Certain Patients With Renal Cell Carcinoma (RCC) Following Surgery – Business…

By daniellenierenberg

KENILWORTH, N.J.--(BUSINESS WIRE)--Merck (NYSE: MRK), known as MSD outside the United States and Canada, today announced that the U.S. Food and Drug Administration (FDA) has approved KEYTRUDA, Mercks anti-PD-1 therapy, for the adjuvant treatment of patients with renal cell carcinoma (RCC) at intermediate-high or high risk of recurrence following nephrectomy, or following nephrectomy and resection of metastatic lesions. The approval is based on data from the pivotal Phase 3 KEYNOTE-564 trial, in which KEYTRUDA demonstrated a statistically significant improvement in disease-free survival (DFS), reducing the risk of disease recurrence or death by 32% (HR=0.68 [95% CI, 0.53-0.87]; p=0.0010) compared to placebo. Median DFS has not been reached for either group.

Despite decades of research, limited adjuvant treatment options have been available for earlier-stage renal cell carcinoma patients who are often at risk for recurrence. In KEYNOTE-564, pembrolizumab reduced the risk of disease recurrence or death by 32%, providing a promising new treatment option for certain patients at intermediate-high or high risk of recurrence, said Dr. Toni K. Choueiri, director, Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, and professor of medicine, Harvard Medical School. With this FDA approval, pembrolizumab may address a critical unmet treatment need and has the potential to become a new standard of care in the adjuvant setting for appropriately selected patients.

Immune-mediated adverse reactions, which may be severe or fatal, can occur in any organ system or tissue and can affect more than one body system simultaneously. Immune-mediated adverse reactions can occur at any time during or after treatment with KEYTRUDA, including pneumonitis, colitis, hepatitis, endocrinopathies, nephritis, dermatologic reactions, solid organ transplant rejection, and complications of allogeneic hematopoietic stem cell transplantation. Important immune-mediated adverse reactions listed here may not include all possible severe and fatal immune-mediated adverse reactions. Early identification and management of immune-mediated adverse reactions are essential to ensure safe use of KEYTRUDA. Based on the severity of the adverse reaction, KEYTRUDA should be withheld or permanently discontinued and corticosteroids administered if appropriate. KEYTRUDA can also cause severe or life-threatening infusion-related reactions. Based on its mechanism of action, KEYTRUDA can cause fetal harm when administered to a pregnant woman. For more information, see Selected Important Safety Information below.

KEYTRUDA is foundational for the treatment of patients with certain advanced cancers, and this approval marks the fourth indication for KEYTRUDA in earlier stages of cancer, said Dr. Scot Ebbinghaus, vice president, clinical research, Merck Research Laboratories. KEYTRUDA is now the first immunotherapy approved for the adjuvant treatment of certain patients with renal cell carcinoma. This milestone is a testament to our commitment to help more people living with cancer.

In RCC, Merck has a broad clinical development program exploring KEYTRUDA, as monotherapy or in combination, as well as other investigational products across multiple settings and stages of RCC, including adjuvant and advanced or metastatic disease.

Data Supporting the Approval

KEYTRUDA demonstrated a statistically significant improvement in DFS in patients with RCC at intermediate-high or high risk of recurrence following nephrectomy, or following nephrectomy and resection of metastatic lesions compared with placebo (HR=0.68 [95% CI, 0.53-0.87]; p=0.0010). The trial will continue to assess overall survival (OS) as a secondary outcome measure.

In KEYNOTE-564, the median duration of exposure to KEYTRUDA was 11.1 months (range, 1 day to 14.3 months). Serious adverse reactions occurred in 20% of these patients receiving KEYTRUDA. Serious adverse reactions (1%) were acute kidney injury, adrenal insufficiency, pneumonia, colitis and diabetic ketoacidosis (1% each). Fatal adverse reactions occurred in 0.2% of those treated with KEYTRUDA, including one case of pneumonia. Adverse reactions leading to discontinuation occurred in 21% of patients receiving KEYTRUDA; the most common (1%) were increased alanine aminotransferase (1.6%), colitis and adrenal insufficiency (1% each). The most common adverse reactions (all grades 20%) in the KEYTRUDA arm were musculoskeletal pain (41%), fatigue (40%), rash (30%), diarrhea (27%), pruritus (23%) and hypothyroidism (21%).

About KEYNOTE-564

KEYNOTE-564 (ClinicalTrials.gov, NCT03142334) is a multicenter, randomized, double-blind, placebo-controlled Phase 3 trial evaluating KEYTRUDA as adjuvant therapy for RCC in 994 patients with intermediate-high or high risk of recurrence of RCC or M1 no evidence of disease (NED). Patients must have undergone a partial nephroprotective or radical complete nephrectomy (and complete resection of solid, isolated, soft tissue metastatic lesion[s] in M1 NED participants) with negative surgical margins for at least four weeks prior to the time of screening. Patients were excluded from the trial if they had received prior systemic therapy for advanced RCC. Patients with active autoimmune disease or a medical condition that required immunosuppression were also ineligible. The major efficacy outcome measure was investigator-assessed DFS, defined as time to recurrence, metastasis or death. An additional outcome measure was OS. Patients were randomized (1:1) to receive KEYTRUDA 200 mg administered intravenously every three weeks or placebo for up to one year until disease recurrence or unacceptable toxicity.

About Renal Cell Carcinoma (RCC)

Renal cell carcinoma is by far the most common type of kidney cancer; about nine out of 10 kidney cancer diagnoses are RCCs. Renal cell carcinoma is about twice as common in men than in women. Most cases of RCC are discovered incidentally during imaging tests for other abdominal diseases. Worldwide, it is estimated there were more than 431,000 new cases of kidney cancer diagnosed and more than 179,000 deaths from the disease in 2020. In the U.S., it is estimated there will be more than 76,000 new cases of kidney cancer diagnosed and almost 14,000 deaths from the disease in 2021.

About Mercks Early-Stage Cancer Clinical Program

Finding cancer at an earlier stage may give patients a greater chance of long-term survival. Many cancers are considered most treatable and potentially curable in their earliest stage of disease. Building on the strong understanding of the role of KEYTRUDA in later-stage cancers, Merck is studying KEYTRUDA in earlier disease states, with approximately 20 ongoing registrational studies across multiple types of cancer.

About KEYTRUDA (pembrolizumab) Injection, 100 mg

KEYTRUDA is an anti-programmed death receptor-1 (PD-1) therapy that works by increasing the ability of the bodys immune system to help detect and fight tumor cells. KEYTRUDA is a humanized monoclonal antibody that blocks the interaction between PD-1 and its ligands, PD-L1 and PD-L2, thereby activating T lymphocytes which may affect both tumor cells and healthy cells.

Merck has the industrys largest immuno-oncology clinical research program. There are currently more than 1,600 trials studying KEYTRUDA across a wide variety of cancers and treatment settings. The KEYTRUDA clinical program seeks to understand the role of KEYTRUDA across cancers and the factors that may predict a patient's likelihood of benefitting from treatment with KEYTRUDA, including exploring several different biomarkers.

Selected KEYTRUDA (pembrolizumab) Indications in the U.S.

Melanoma

KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic melanoma.

KEYTRUDA is indicated for the adjuvant treatment of patients with melanoma with involvement of lymph node(s) following complete resection.

Non-Small Cell Lung Cancer

KEYTRUDA, in combination with pemetrexed and platinum chemotherapy, is indicated for the first-line treatment of patients with metastatic nonsquamous non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.

KEYTRUDA, in combination with carboplatin and either paclitaxel or paclitaxel protein-bound, is indicated for the first-line treatment of patients with metastatic squamous NSCLC.

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with NSCLC expressing PD-L1 [tumor proportion score (TPS) 1%] as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations, and is:

KEYTRUDA, as a single agent, is indicated for the treatment of patients with metastatic NSCLC whose tumors express PD-L1 (TPS 1%) as determined by an FDA-approved test, with disease progression on or after platinum-containing chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving KEYTRUDA.

Head and Neck Squamous Cell Cancer

KEYTRUDA, in combination with platinum and fluorouracil (FU), is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent head and neck squamous cell carcinoma (HNSCC).

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent HNSCC whose tumors express PD-L1 [combined positive score (CPS 1)] as determined by an FDA-approved test.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with recurrent or metastatic HNSCC with disease progression on or after platinum-containing chemotherapy.

Classical Hodgkin Lymphoma

KEYTRUDA is indicated for the treatment of adult patients with relapsed or refractory classical Hodgkin lymphoma (cHL).

KEYTRUDA is indicated for the treatment of pediatric patients with refractory cHL, or cHL that has relapsed after 2 or more lines of therapy.

Primary Mediastinal Large B-Cell Lymphoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory primary mediastinal large B-cell lymphoma (PMBCL), or who have relapsed after 2 or more prior lines of therapy. KEYTRUDA is not recommended for treatment of patients with PMBCL who require urgent cytoreductive therapy.

Urothelial Carcinoma

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC):

Non-muscle Invasive Bladder Cancer

KEYTRUDA is indicated for the treatment of patients with Bacillus Calmette-Guerin-unresponsive, high-risk, non-muscle invasive bladder cancer (NMIBC) with carcinoma in situ with or without papillary tumors who are ineligible for or have elected not to undergo cystectomy.

Microsatellite Instability-High or Mismatch Repair Deficient Cancer

KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR) solid tumors that have progressed following prior treatment and who have no satisfactory alternative treatment options.

This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with MSI-H central nervous system cancers have not been established.

Microsatellite Instability-High or Mismatch Repair Deficient Colorectal Cancer

KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic MSI-H or dMMR colorectal cancer (CRC).

Gastric Cancer

KEYTRUDA, in combination with trastuzumab, fluoropyrimidine- and platinum-containing chemotherapy, is indicated for the first-line treatment of patients with locally advanced unresectable or metastatic HER2-positive gastric or gastroesophageal junction (GEJ) adenocarcinoma.

This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Esophageal Cancer

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic esophageal or GEJ (tumors with epicenter 1 to 5 centimeters above the GEJ) carcinoma that is not amenable to surgical resection or definitive chemoradiation either:

Cervical Cancer

KEYTRUDA, in combination with chemotherapy, with or without bevacizumab, is indicated for the treatment of patients with persistent, recurrent, or metastatic cervical cancer whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with recurrent or metastatic cervical cancer with disease progression on or after chemotherapy whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test.

Hepatocellular Carcinoma

KEYTRUDA is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Merkel Cell Carcinoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with recurrent locally advanced or metastatic Merkel cell carcinoma (MCC). This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Renal Cell Carcinoma

KEYTRUDA, in combination with axitinib, is indicated for the first-line treatment of adult patients with advanced renal cell carcinoma (RCC).

KEYTRUDA is indicated for the adjuvant treatment of patients with RCC at intermediate-high or high risk of recurrence following nephrectomy, or following nephrectomy and resection of metastatic lesions.

Tumor Mutational Burden-High Cancer

KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic tumor mutational burden-high (TMB-H) [10 mutations/megabase] solid tumors, as determined by an FDA-approved test, that have progressed following prior treatment and who have no satisfactory alternative treatment options. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with TMB-H central nervous system cancers have not been established.

Cutaneous Squamous Cell Carcinoma

KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cutaneous squamous cell carcinoma (cSCC) or locally advanced cSCC that is not curable by surgery or radiation.

Triple-Negative Breast Cancer

KEYTRUDA is indicated for the treatment of patients with high-risk early-stage triple-negative breast cancer (TNBC) in combination with chemotherapy as neoadjuvant treatment, and then continued as a single agent as adjuvant treatment after surgery.

KEYTRUDA, in combination with chemotherapy, is indicated for the treatment of patients with locally recurrent unresectable or metastatic TNBC whose tumors express PD-L1 (CPS 10) as determined by an FDA-approved test.

Selected Important Safety Information for KEYTRUDA

Severe and Fatal Immune-Mediated Adverse Reactions

KEYTRUDA is a monoclonal antibody that belongs to a class of drugs that bind to either the PD-1 or the PD-L1, blocking the PD-1/PD-L1 pathway, thereby removing inhibition of the immune response, potentially breaking peripheral tolerance and inducing immune-mediated adverse reactions. Immune-mediated adverse reactions, which may be severe or fatal, can occur in any organ system or tissue, can affect more than one body system simultaneously, and can occur at any time after starting treatment or after discontinuation of treatment. Important immune-mediated adverse reactions listed here may not include all possible severe and fatal immune-mediated adverse reactions.

Monitor patients closely for symptoms and signs that may be clinical manifestations of underlying immune-mediated adverse reactions. Early identification and management are essential to ensure safe use of antiPD-1/PD-L1 treatments. Evaluate liver enzymes, creatinine, and thyroid function at baseline and periodically during treatment. For patients with TNBC treated with KEYTRUDA in the neoadjuvant setting, monitor blood cortisol at baseline, prior to surgery, and as clinically indicated. In cases of suspected immune-mediated adverse reactions, initiate appropriate workup to exclude alternative etiologies, including infection. Institute medical management promptly, including specialty consultation as appropriate.

Withhold or permanently discontinue KEYTRUDA depending on severity of the immune-mediated adverse reaction. In general, if KEYTRUDA requires interruption or discontinuation, administer systemic corticosteroid therapy (1 to 2 mg/kg/day prednisone or equivalent) until improvement to Grade 1 or less. Upon improvement to Grade 1 or less, initiate corticosteroid taper and continue to taper over at least 1 month. Consider administration of other systemic immunosuppressants in patients whose adverse reactions are not controlled with corticosteroid therapy.

Immune-Mediated Pneumonitis

KEYTRUDA can cause immune-mediated pneumonitis. The incidence is higher in patients who have received prior thoracic radiation. Immune-mediated pneumonitis occurred in 3.4% (94/2799) of patients receiving KEYTRUDA, including fatal (0.1%), Grade 4 (0.3%), Grade 3 (0.9%), and Grade 2 (1.3%) reactions. Systemic corticosteroids were required in 67% (63/94) of patients. Pneumonitis led to permanent discontinuation of KEYTRUDA in 1.3% (36) and withholding in 0.9% (26) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, 23% had recurrence. Pneumonitis resolved in 59% of the 94 patients.

Pneumonitis occurred in 8% (31/389) of adult patients with cHL receiving KEYTRUDA as a single agent, including Grades 3-4 in 2.3% of patients. Patients received high-dose corticosteroids for a median duration of 10 days (range: 2 days to 53 months). Pneumonitis rates were similar in patients with and without prior thoracic radiation. Pneumonitis led to discontinuation of KEYTRUDA in 5.4% (21) of patients. Of the patients who developed pneumonitis, 42% interrupted KEYTRUDA, 68% discontinued KEYTRUDA, and 77% had resolution.

Immune-Mediated Colitis

KEYTRUDA can cause immune-mediated colitis, which may present with diarrhea. Cytomegalovirus infection/reactivation has been reported in patients with corticosteroid-refractory immune-mediated colitis. In cases of corticosteroid-refractory colitis, consider repeating infectious workup to exclude alternative etiologies. Immune-mediated colitis occurred in 1.7% (48/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (1.1%), and Grade 2 (0.4%) reactions. Systemic corticosteroids were required in 69% (33/48); additional immunosuppressant therapy was required in 4.2% of patients. Colitis led to permanent discontinuation of KEYTRUDA in 0.5% (15) and withholding in 0.5% (13) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, 23% had recurrence. Colitis resolved in 85% of the 48 patients.

Hepatotoxicity and Immune-Mediated Hepatitis

KEYTRUDA as a Single Agent

KEYTRUDA can cause immune-mediated hepatitis. Immune-mediated hepatitis occurred in 0.7% (19/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (0.4%), and Grade 2 (0.1%) reactions. Systemic corticosteroids were required in 68% (13/19) of patients; additional immunosuppressant therapy was required in 11% of patients. Hepatitis led to permanent discontinuation of KEYTRUDA in 0.2% (6) and withholding in 0.3% (9) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, none had recurrence. Hepatitis resolved in 79% of the 19 patients.

KEYTRUDA with Axitinib

KEYTRUDA in combination with axitinib can cause hepatic toxicity. Monitor liver enzymes before initiation of and periodically throughout treatment. Consider monitoring more frequently as compared to when the drugs are administered as single agents. For elevated liver enzymes, interrupt KEYTRUDA and axitinib, and consider administering corticosteroids as needed. With the combination of KEYTRUDA and axitinib, Grades 3 and 4 increased alanine aminotransferase (ALT) (20%) and increased aspartate aminotransferase (AST) (13%) were seen at a higher frequency compared to KEYTRUDA alone. Fifty-nine percent of the patients with increased ALT received systemic corticosteroids. In patients with ALT 3 times upper limit of normal (ULN) (Grades 2-4, n=116), ALT resolved to Grades 0-1 in 94%. Among the 92 patients who were rechallenged with either KEYTRUDA (n=3) or axitinib (n=34) administered as a single agent or with both (n=55), recurrence of ALT 3 times ULN was observed in 1 patient receiving KEYTRUDA, 16 patients receiving axitinib, and 24 patients receiving both. All patients with a recurrence of ALT 3 ULN subsequently recovered from the event.

Immune-Mediated Endocrinopathies

Adrenal Insufficiency

KEYTRUDA can cause primary or secondary adrenal insufficiency. For Grade 2 or higher, initiate symptomatic treatment, including hormone replacement as clinically indicated. Withhold KEYTRUDA depending on severity. Adrenal insufficiency occurred in 0.8% (22/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (0.3%), and Grade 2 (0.3%) reactions. Systemic corticosteroids were required in 77% (17/22) of patients; of these, the majority remained on systemic corticosteroids. Adrenal insufficiency led to permanent discontinuation of KEYTRUDA in <0.1% (1) and withholding in 0.3% (8) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement.

Hypophysitis

KEYTRUDA can cause immune-mediated hypophysitis. Hypophysitis can present with acute symptoms associated with mass effect such as headache, photophobia, or visual field defects. Hypophysitis can cause hypopituitarism. Initiate hormone replacement as indicated. Withhold or permanently discontinue KEYTRUDA depending on severity. Hypophysitis occurred in 0.6% (17/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (0.3%), and Grade 2 (0.2%) reactions. Systemic corticosteroids were required in 94% (16/17) of patients; of these, the majority remained on systemic corticosteroids. Hypophysitis led to permanent discontinuation of KEYTRUDA in 0.1% (4) and withholding in 0.3% (7) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement.

Thyroid Disorders

KEYTRUDA can cause immune-mediated thyroid disorders. Thyroiditis can present with or without endocrinopathy. Hypothyroidism can follow hyperthyroidism. Initiate hormone replacement for hypothyroidism or institute medical management of hyperthyroidism as clinically indicated. Withhold or permanently discontinue KEYTRUDA depending on severity. Thyroiditis occurred in 0.6% (16/2799) of patients receiving KEYTRUDA, including Grade 2 (0.3%). None discontinued, but KEYTRUDA was withheld in <0.1% (1) of patients.

Hyperthyroidism occurred in 3.4% (96/2799) of patients receiving KEYTRUDA, including Grade 3 (0.1%) and Grade 2 (0.8%). It led to permanent discontinuation of KEYTRUDA in <0.1% (2) and withholding in 0.3% (7) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement. Hypothyroidism occurred in 8% (237/2799) of patients receiving KEYTRUDA, including Grade 3 (0.1%) and Grade 2 (6.2%). It led to permanent discontinuation of KEYTRUDA in <0.1% (1) and withholding in 0.5% (14) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement. The majority of patients with hypothyroidism required long-term thyroid hormone replacement. The incidence of new or worsening hypothyroidism was higher in 1185 patients with HNSCC, occurring in 16% of patients receiving KEYTRUDA as a single agent or in combination with platinum and FU, including Grade 3 (0.3%) hypothyroidism. The incidence of new or worsening hypothyroidism was higher in 389 adult patients with cHL (17%) receiving KEYTRUDA as a single agent, including Grade 1 (6.2%) and Grade 2 (10.8%) hypothyroidism.

Type 1 Diabetes Mellitus (DM), Which Can Present With Diabetic Ketoacidosis

Monitor patients for hyperglycemia or other signs and symptoms of diabetes. Initiate treatment with insulin as clinically indicated. Withhold KEYTRUDA depending on severity. Type 1 DM occurred in 0.2% (6/2799) of patients receiving KEYTRUDA. It led to permanent discontinuation in <0.1% (1) and withholding of KEYTRUDA in <0.1% (1) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement.

Immune-Mediated Nephritis With Renal Dysfunction

KEYTRUDA can cause immune-mediated nephritis. Immune-mediated nephritis occurred in 0.3% (9/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (0.1%), and Grade 2 (0.1%) reactions. Systemic corticosteroids were required in 89% (8/9) of patients. Nephritis led to permanent discontinuation of KEYTRUDA in 0.1% (3) and withholding in 0.1% (3) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, none had recurrence. Nephritis resolved in 56% of the 9 patients.

Immune-Mediated Dermatologic Adverse Reactions

KEYTRUDA can cause immune-mediated rash or dermatitis. Exfoliative dermatitis, including Stevens-Johnson syndrome, drug rash with eosinophilia and systemic symptoms, and toxic epidermal necrolysis, has occurred with antiPD-1/PD-L1 treatments. Topical emollients and/or topical corticosteroids may be adequate to treat mild to moderate nonexfoliative rashes. Withhold or permanently discontinue KEYTRUDA depending on severity. Immune-mediated dermatologic adverse reactions occurred in 1.4% (38/2799) of patients receiving KEYTRUDA, including Grade 3 (1%) and Grade 2 (0.1%) reactions. Systemic corticosteroids were required in 40% (15/38) of patients. These reactions led to permanent discontinuation in 0.1% (2) and withholding of KEYTRUDA in 0.6% (16) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, 6% had recurrence. The reactions resolved in 79% of the 38 patients.

Other Immune-Mediated Adverse Reactions

The following clinically significant immune-mediated adverse reactions occurred at an incidence of <1% (unless otherwise noted) in patients who received KEYTRUDA or were reported with the use of other antiPD-1/PD-L1 treatments. Severe or fatal cases have been reported for some of these adverse reactions. Cardiac/Vascular: Myocarditis, pericarditis, vasculitis; Nervous System: Meningitis, encephalitis, myelitis and demyelination, myasthenic syndrome/myasthenia gravis (including exacerbation), Guillain-Barr syndrome, nerve paresis, autoimmune neuropathy; Ocular: Uveitis, iritis and other ocular inflammatory toxicities can occur. Some cases can be associated with retinal detachment. Various grades of visual impairment, including blindness, can occur. If uveitis occurs in combination with other immune-mediated adverse reactions, consider a Vogt-Koyanagi-Harada-like syndrome, as this may require treatment with systemic steroids to reduce the risk of permanent vision loss; Gastrointestinal: Pancreatitis, to include increases in serum amylase and lipase levels, gastritis, duodenitis; Musculoskeletal and Connective Tissue: Myositis/polymyositis, rhabdomyolysis (and associated sequelae, including renal failure), arthritis (1.5%), polymyalgia rheumatica; Endocrine: Hypoparathyroidism; Hematologic/Immune: Hemolytic anemia, aplastic anemia, hemophagocytic lymphohistiocytosis, systemic inflammatory response syndrome, histiocytic necrotizing lymphadenitis (Kikuchi lymphadenitis), sarcoidosis, immune thrombocytopenic purpura, solid organ transplant rejection.

Infusion-Related Reactions

KEYTRUDA can cause severe or life-threatening infusion-related reactions, including hypersensitivity and anaphylaxis, which have been reported in 0.2% of 2799 patients receiving KEYTRUDA. Monitor for signs and symptoms of infusion-related reactions. Interrupt or slow the rate of infusion for Grade 1 or Grade 2 reactions. For Grade 3 or Grade 4 reactions, stop infusion and permanently discontinue KEYTRUDA.

Complications of Allogeneic Hematopoietic Stem Cell Transplantation (HSCT)

Read more:
FDA Approves Merck's KEYTRUDA (pembrolizumab) as Adjuvant Therapy for Certain Patients With Renal Cell Carcinoma (RCC) Following Surgery - Business...

To Read More: FDA Approves Merck’s KEYTRUDA (pembrolizumab) as Adjuvant Therapy for Certain Patients With Renal Cell Carcinoma (RCC) Following Surgery – Business…
categoriaCardiac Stem Cells commentoComments Off on FDA Approves Merck’s KEYTRUDA (pembrolizumab) as Adjuvant Therapy for Certain Patients With Renal Cell Carcinoma (RCC) Following Surgery – Business… | dataNovember 22nd, 2021
Read All

Stem Cell & Regenerative Medicine Center University of …

By daniellenierenberg

UW Health treats first patient in U.S. with investigational cell therapy for heart disease

Appleton resident Donald Krause became the first patient in the country last week to undergo an investigational cell therapy for a debilitating heart condition called chronic myocardial ischemia (CMI). Krause was treated by Amish Raval, MD, an interventional cardiologist at UW Health, supported by Peiman Hematti, MD, a bone marrow transplantation hematologist at the UW School of Medicine and Public Health.

October 29, 2021SMPH News

Center members Dr. Anita Bhattacharyy and Dr. Su-Chun Zhang, in collaboration with Waisman and the University of Washington-Seattle and Seattle Childrens Hospital, have been awarded an $11 million Transformative Research grant from the National Institutes of Health to create a new approach using stem cells that may reveal how brain development in individuals with Down syndrome differs from typically developing individuals, identify features that will help understand their intellectual disability, and find potential targets for therapy. They will also address questions that remain unanswered about brain development overall.

October 7th, 2021UW News

The U.S. Food and Drug Administration on Tuesday approved StrataGraft, a topical treatment for severe burns made from skin tissue, providing a boost for Madison-based firm Stratatech. Stratatech was founded in 2000 by SCRMC member Lynn Allen-Hoffman, the first female University of Wisconsin-Madison faculty member to start a biotech company.

June 16, 2021The Cap Times

The Food and Drug Administration-approved trial will use a form of transplant that replaces a patients bone marrow with alpha-beta T-cell depleted peripheral blood stem cells from closely matched unrelated donors or family members.

May 27, 2021

Over the past two decades, stem cell research at UW-Madison has grown from involving a handful of scientists to nearly 100 from more than 30 schools, colleges and departments.

May 25, 2021Quarterly Magazine, Vol. 23, No. 1

Nine University of WisconsinMadison postdoctoral researchers have been recognized with the inaugural Postdoc Excellence Awards for their teaching, service and mentoring. Daniel Z. Radecki (Comparative Biosciences) received one of these awards.

The defining feature of Dans work with the (UWMadison Postdoctoral Association) and others is his commitment to bettering the lives of all postdocs. He envisions how each event and initiative can best impact the individual, through the lenses of diversity and inclusion, immigration status, postdocs personal lives (e.g. childcare considerations), department/discipline, and more.

Congratulations, Daniel!

April 29, 2021

Researchers at UWMadison have made new photoreceptors from human pluripotent stem cells. However, it remains challenging to precisely deliver those photoreceptors within the diseased or damaged eye so that they can form appropriate connections, says David Gamm, director of the McPherson Eye Research Institute and professor of ophthalmology and visual sciences at the UW School of Medicine and Public Health.

While it was a breakthrough to be able to make the spare parts these photoreceptors its still necessary to get them to the right spot so they can effectively reconstruct the retina, he says. So, we started thinking, How can we deliver these cells in a more intelligent way? Thats when we reached out to our world-class engineers at UWMadison.

Research from the University of WisconsinMadison finds that a new therapeutic approach for heart failure could help restore cardiac function by regenerating heart muscle. In a study recently published in the journal Circulation, the UW team describes its success in improving, in a mouse model, the function of heart muscle by temporarily blocking a key metabolic enzyme after a heart attack. This simple intervention, the researchers say, could ultimately help people regain cardiac function. Our goal was to gain new understanding of how the heart can heal itself following injury at the molecular and cellular level and see if there was a way to restore cardiac function to an earlier state, says UWMadisons Ahmed Mahmoud, professor of cell and regenerative biology in the School of Medicine and Public Health.

Learn more about the research here.April 15, 2021

Grafting neurons grown from monkeys own cells into their brains relieved the debilitating movement and depression symptoms associated with Parkinsons disease, researchers at the University of WisconsinMadison reported today. In a study published in the journal Nature Medicine the UW team describes its success with neurons made from cells from the monkeys own bodies after reprogramming to induced pluripotent stem cells. UWMadison neuroscientist Su-Chun Zhang, whose Waisman Center lab grew the brain cells, said this approach avoided complications with the primates immune systems and takes an important step toward a treatment for millions of human Parkinsons patients. Learn more about their work here.March 1, 2021

The project, led by David Gamm, MD, PhD, director of the McPherson Eye Research Institute and professor of ophthalmology and visual sciences at the UW School of Medicine and Public Health, will develop a transplantable patch to restore vision to members of the armed forces who have been injured by blasts or lasers.December 11, 2020

This week, the NIH Office of Research Infrastructure Programs highlights Dr. Marina Emborg, her WNPRC lab team and their UWMadison colleagues advances in detecting heart disease in Parkinsons and evaluating new therapies that specifically target nerve disease within the human heart.December 2020

Its been 25 years since University of WisconsinMadison scientist James Thomson became the first in the world to successfully isolate and culture primate embryonic stem cells. He accomplished this breakthrough first with nonhuman primates at the Wisconsin National Primate Research Center in 1995, using rhesus monkey cells, then in 1996 with marmoset cells. Thomson then published his world-changing breakthrough on human embryonic stem cell derivation in Science on Nov. 6, 1998.November 6, 2020

EEMs and exosomes each have attractive characteristics as therapeutics, Dr. Hematti, UW-Madisons Department of Medicine, noted. As a cell therapy, EEMs will not proliferate or differentiate to undesirable cell types, which remains a concern for many stem cell therapies. Moreover, EEMs could be generated from a patients own monocytes using off-the-shelf exosomes, resulting in a faster and more facile process compared to autologous MSCs. Alternatively, exosome therapy could be a cell free, shelf-stable therapeutic to deliver biologically active components. Altogether, we believe our studies results support the use of EEMs and/or exosomes to improve ligament healing by modulating inflammation and tissue remodeling, Dr. Vanderby concluded.November 3, 2020

View more news posts

View news archives

Visit link:
Stem Cell & Regenerative Medicine Center University of ...

To Read More: Stem Cell & Regenerative Medicine Center University of …
categoriaCardiac Stem Cells commentoComments Off on Stem Cell & Regenerative Medicine Center University of … | dataNovember 8th, 2021
Read All

Cells or drugs? The race to regenerate the heart – Scientific American

By daniellenierenberg

Twenty years ago, cardiologist and stem-cell scientist Piero Anversa published an exciting paper. He was then a prominent researcher at New York Medical College in Valhalla, and his data in mice showed that injured hearts could regenerate with the help of stem cells taken from bone marrow1contrary to prevailing wisdom.

Myocardial infarction, commonly known as a heart attack, deprives cardiac muscle cells of oxygen, causing them to perish. The human heart responds by laying scar tissue over lost muscle. But these reconstituted areas dont pump blood as competently as before. In time, this can lead to heart failureparticularly if other heart attacks follow. The implications of Anversas work were clear: stem cells, through their growth and proliferation, had the potential to reverse the damage caused by heart attacks and thereby prevent heart failure.

But other researchers who attempted to replicate these mouse studies found themselves coming up short. Allegations of faked results eventually began to surface, and Anversa, who had since joined Harvard Medical School, and Brigham and Womens Hospital in Boston, Massachusetts, was forced to leave his posts in 2015. Two years later, Brigham and Womens Hospital paid the US government US$10 million to settle allegations that Anversa and his colleagues had used fraudulent data to apply for federal funding. And a 2018 investigation conducted by Harvard called for 31 of Anversas papers to be retracted.

This saga has dampened the enthusiasm that once surrounded research into stem-cell therapy, says Michael Schneider, a research cardiologist at Imperial College London. The controversy, overt scientific misconduct and evidence against Anversas claims has cast aspersions on the field more generally, he admits. Thats unfortunate, because many other stem-cell scientists are conducting legitimate research.

Meanwhile, another heart-healing strategy has emerged, drawing inspiration from species that, unlike humans, can regrow cardiac muscle after trauma. Researchers are seeking to learn more about the molecules produced by zebrafish (Danio rerio) hearts as they heal themselvesand are investigating whether injectable drugs containing the same substances could also yield reparative results.

The question is now whether it will be stem cells, small-molecule drugs or a combination of the two that achieve the goal of convincing the heart to heal instead of scar.

In the wake of the Anversa scandal, there has been an important evolution of thinking on the stem-cells front. A 2019 literature review pointed out that newer studies tend to show the most significant impact from stem-cell therapy comes from the substances the cells secrete, rather than their proliferation2. After many years of work, we find that when we deliver cells into the heart, the benefit of replaced damaged cells is only minor, says the reviews author Javaria Tehzeeb, an internal-medicine specialist at the Albany Medical Center in New York. The real work of regeneration happens, she explains, when the cells produce growth factors, which in turn affect heart repair by reducing inflammation and stimulating the development of new heart muscle.

That means stem-cell therapies share some similarities with the drug strategyessentially it comes down to molecules secreted by the stem cells versus molecules that are directly injected. But they also have important differences.

First, part of the stem-cell therapy benefits might still come from the cells proliferation, even if that bonus is relatively small. Second, theres little control over what substances the stem cells produce once theyre injected, whereas specific molecules can be administered at known doses. And finally, the logistics of scaling up and delivering these two therapies will be very different.

A study published in 2020 showcased the importance of stem-cell-produced molecules by looking at the structural integrity of proteins found in infarcted mouse hearts3. The scientists artificially induced heart attacks in eight adult mice. Four weeks later, they administered stem cells to half the rodents. After a further four weeks, their hearts were removed and washed with a series of buffer solutions and chemical reagents to extract the proteins, which were then analysed. We essentially did a massive scan of every single protein in the heart, says Andre Terzic, lead author of the study. The authors were able to identify almost 4,000 proteins, and showed that heart attacks distorted the structure of 450 of them. But with stem-cell therapy, that number fell to 283.

Proteins are the intimate components that make our hearts work properly, and when the heart is diseased, they become damaged, says Terzic, who is director of the Mayo Clinic Center for Regenerative Medicine in Rochester, Minnesota. The ability of these stem cells to secrete healing signals is probably a key element to what weve observed.

All cells and tissues are constantly telling each other what they need and whether theyre stressed through molecular signalling. When you lose a chunk of cells in a heart attack, you lose part of that conversation, explains Charles Murry, an experimental pathologist and director of the Institute for Stem Cell and Regenerative Medicine at the University of Washington in Seattle. Injected stem cells could be filling in the missing dialogue by secreting signalling and rescue molecules, he explains.

Although this sounds encouraging, there are still parts of the stem-cell-therapy approach that need to be finessed. In a 2018 study, Murry and colleagues transplanted approximately 750 million cardiomyocytes into macaque monkeys that had experienced major heart attacks4. One month after the intervention, the amount of blood pumped by their hearts had increased by 10.6% compared with just 2.5% in the control group. This advantage persisted three months later, but one out of the five stem-cell-treated monkeys suffered arrhythmias. The onset of arrhythmia wasnt previously observed in small-animal studies, but it is a known complication of heart attacks. Nevertheless, the researchers thought it could be a potential side effect of the stem-cell infusion. Obviously it isnt statistically significant, but common sense led us to classify this as a treatment complication, says Murry.

In addition to safety concerns, stem-cell therapies are also beset by questions of practicality. Think of a lab with all these cell culture flasks where you have to grow millions of cells just to create a single dose, says Terzic. Now imagine tens of thousands of patients. Its a formidable effort to be ready, especially if you want to intervene rapidly. You dont have the luxury of time to build up supplies.

Thats one reason why some people think the promise of cardiac rejuvenation lies elsewhere. Theres been an awful lot of time and money spent on stem-cell therapy, raising false hope in patientsand so far, the clinical outcomes have been largely disappointing, says Paul Riley, a cardiovascular scientist at the University of Oxford, UK. Riley is investigating whether inserting specific molecules into the heart might be more effective.

Human hearts cant regenerate on their own, but other animals do have such abilities. Zebrafish, for example, can regrow their hearts after as much as 20% is removed. Newborn mice can also regenerate heart tissue. Observing the molecular pathways in these animals might make similar results possible in humans.

Research has shown that following a myocardial infarction in zebrafish, the epicardiuma membrane surrounding the heart muscleproduces molecular signals that might kick-start muscle-cell regeneration5. The hope is that manipulating the human epicardium could elicit the same therapeutic results. There are probably approaches we can take to target the cells that exist in the heart with small molecules or drugs, that could invoke repair and regeneration, says Riley.

Back in 2011, Riley and colleagues showed that this is theoretically possible6. They pre-treated adult mice with a daily injection of a protein called thymosin 4 for one week before inducing an infarction, and found that these mice were able to produce new cardiac muscle. This offers a road map to a pre-emptive therapy. If an individual is at high risk of a heart attack, says Riley, then its conceivable they could be advised to take a priming or preventative therapeutic, which may counteract an event, but its not quite the holy grail of restoring lost tissue after a heart attack that were searching for. In other studies, Riley has since shown that other proteins besides thymosin 4 might also have a role in stimulating the epicardium to regenerate the heart7.

Its easier to see how the drug route offers clearer prospects for scaling upbut the science behind this approach is newer, and there havent been any clinical trials in humans yet. What goes in stem cells favour is the body of work behind them, says Tehzeeb.

It might be that stem-cell therapies achieve government approvals first, but then drugs overtake them once the science and research have had time to catch up. When we get to the end of the line with molecules, then maybe we can say stem cells are a thing of the past, Tehzeeb says. But until then, we should continue to pursue their potential.

Murry echoes that sentiment, arguing that findings from both camps could end up helping everyones research. We need an ecosystem with a competition of ideas, and as long as its all openly published then well figure it out, he says. Thats the better approach, rather than saying my idea is better than your idea.

This article is part ofNature Outlook: Heart health, an editorially independent supplement produced with the financial support of third parties.About this content.

Orlic, D.et al.Nature410, 701705 (2001).

Tehzeeb, J., Manzoor, A. & Ahmed, M. M.Cureus11, e5959 (2019).

Arrell, D. K., Rosenow, C. S., Yamada, S., Behfar, A. & Terzic, A.npj Regen. Med.5, 5 (2020).

Liu, Y.-W.et al.Nature Biotechnol.36, 597605 (2018).

Cao, J. & Poss, K. D.Nature Rev. Cardiol.15, 631647 (2018).

Smart, N.et al.Nature474, 640644 (2011).

McManus, S.et al.J. Mol. Cell. Cardiol.140, 3031 (2020).

Read more here:
Cells or drugs? The race to regenerate the heart - Scientific American

To Read More: Cells or drugs? The race to regenerate the heart – Scientific American
categoriaCardiac Stem Cells commentoComments Off on Cells or drugs? The race to regenerate the heart – Scientific American | dataNovember 8th, 2021
Read All

Tara Biosystems, Scipher Medicine Partner to Find Therapies for Cardiac Laminopathies – GenomeWeb

By daniellenierenberg

NEW YORK Tara Biosystems and Scipher Medicine said Wednesday that they have entered a collaboration to identify therapeutic targets for drug development in cardiac laminopathies.

Scipher aims to use its Spectra platform to identify potentially therapeutic targets from among proteins found both up- and downstream of LMNA for a stratified disease population, while incorporating data from Tara's Biowire II LMNA disease models.

These human cardiac tissue models derive from induced pluripotent stem cells and include a repertoire of healthy, gene-edited, patient-derived, and drug-induced phenotypes of human disease. "The TARA platform is highly versatile and can capture robust physiologic endpoints of human cardiac function, including contractility, electrophysiology, calcium signaling, [and] structure, as well as genomic, proteomic, and metabolic profiles," Robert Langer, a member of Tara Biosystems' board of directors, said in a statement.

Meanwhile, Scipher's Spectra platform "uniquely integrates AI with the protein network of human cells to identify novel targets in highly complex and debilitating diseases such as laminopathy," Slava Akmaev, chief technology officer and head of therapeutics at Scipher Medicine, said in a statement. "By interrogating the network neighborhood of LMNA and its relationship with the proteins appropriate for targeted therapeutics we are confident that we can identify several novel and relevant drug targets."

In this collaboration, Tara has the exclusive option to pursue drug discovery and clinical development of any identified targets and retains the rights to develop and commercialize any resulting therapeutics. Scipher is eligible for milestone payments and royalties.

"The ability to quickly validate novel targets identified by Spectra on Tara's human tissue model platform allows us to rapidly iterate to identify most effective target," Scipher CEO Alif Saleh said in a statement.

More:
Tara Biosystems, Scipher Medicine Partner to Find Therapies for Cardiac Laminopathies - GenomeWeb

To Read More: Tara Biosystems, Scipher Medicine Partner to Find Therapies for Cardiac Laminopathies – GenomeWeb
categoriaCardiac Stem Cells commentoComments Off on Tara Biosystems, Scipher Medicine Partner to Find Therapies for Cardiac Laminopathies – GenomeWeb | dataNovember 8th, 2021
Read All

Lab-Growing Everything Might Be The Only Way To Attain A Sustainable World – Intelligent Living

By daniellenierenberg

Our Need For Things Lab-Grown

What was once something of the movies objects forming themselves in thin air is real now. Various things can be grown in a laboratory setting, some even on a large scale for commercial distribution. This technology could be a big part of the solution to establish sustainable societies. At the moment, we harvest organs from the deceased, rear animals for meat and dairy, destroy forests by cutting down trees for wood, mine the earth for diamonds, and the list goes on. All these things can already be lab-made or are on the brink of reality.

Once these staples of society can be mass-made affordably, they could supply the world while minimally impacting the natural environment. Acres of land wouldnt need to be used for food and building materials, meaning deforestation can cease, for starters. Looking at lab-grown meats alone: they require 99% less land than traditionally farmed meats, generate up to 96% fewer emissions, use up to 96% less water, and no animals need to be slaughtered in the process.

Naturally, there will be short-term disruptions, particularly job-related. For example, eco-friendly agriculture will mean fewer farms and agriculture jobs. But new employment opportunities will emerge in the scientific and technical fields related to lab-grown foods.

Whats the difference between 3D printing (additive manufacturing) and lab-grown, you may be wondering? 3D printing uses material as ink anything from plastic to cellular material whereas lab-grown materials start off as a bit of material that multiplies on its own, replicating natural processes. Thus, lab-grown material has the same cellular structure as the naturally occurring material and mimics the natural formation process but within a much shorter period.

In the future, we are bound to see various lab-grown breakthroughs coming from the medical field. Eventually, there should be alternative sources for organs and blood cultured from stem cells. In addition, there will likely be lab-produced medicines (lotions, ointments, balms, nutraceuticals, energy drinks, etc.), breast milk, and more.

Scientists are well on the way to functioning full-sized organs, with several innovations in fully functional mini-organs, or organoids, making headlines in recent years. For now, these organoids are tools for testing new drugs and studying human diseases. But soon enough, these research teams will take the technology to the next level and develop organs that can be used for implantation when someone needs an organ replacement. So far, the brain, liver, lungs, thymus, heart, blood, and blood vessels are among the growing list of lab-grown medical accomplishments.

A team of scientists from the University of Pittsburgh managed to grow miniature human livers using induced pluripotent stem cells (IPSCs) made from human skin cells. Meaning, in the far future, someone needing a liver transplant could have the organ grown from their own skin cells! This method may even reduce the chances of a patients immune system rejecting the new tissue because it would recognize the cells as self. Whats more, their lab-grown livers matured in under a month compared to two years in a natural environment.

The scientists tested their fully-functional mini-livers by transplanting them into rats. In this proof-of-concept study, the lab-made organs survived for four days inside their animal hosts, secreting bile acids and urea like a healthy liver would.

A research team led by the University Hospital Dsseldorf induced pluripotent stem cells (iPSCs) to grow into pea-sized brain organoids with rudimentary eye structures that sense light and send signals to the rest of the brain. They used skin cells taken from adult donors, reverted them back into stem cells, and placed them into a culture mimicking a developing brains environment, which encourages them to form specific brain cells. Their mini-brains grew optic cups, vision structures of the eye found where the optic nerve and retina meet. The cups even grew symmetrically, as eyes would, and were functional!

Jay Gopalakrishnan, a senior author of the study, said:

Our work highlights the remarkable ability of brain organoids to generate primitive sensory structures that are light sensitive and harbor cell types similar to those found in the body. These organoids can help to study brain-eye interactions during embryo development, model congenital retinal disorders, and generate patient-specific retinal cell types for personalized drug testing and transplantation therapies.

This achievement is the first time an in vitro system shows nerve fibers of retinal ganglion cells reaching out to connect with their brain target an essential aspect of the mammalian brain.

Scientists from Michigan State University developed functional miniature human heart models grown from stem cells complete with all primary heart cell types and with functioning chambers and vascular tissue. The models could help researchers better understand how hearts develop and provide an ethical platform for treating disease and testing drugs or new treatments.

The teams lab-grown mini hearts follow the fetal development of a human heart, offering a new view into that process. The organoids start beating by day six, and they grow into spheres approximately 1 mm (0.4 in) wide, with all significant cardiac cell types and multiple internal chambers by day 15.

Aside from research purposes, full-sized lab-grown hearts could solve the shortage problem of hearts the world faces today. More than 25 million people suffer heart failure each year. In the United States, approximately 2,500 of the 4,000 people in line for heart transplants receive them. That means almost 50% of the people needing a new heart to keep them alive wont get it.

Unlimited supplies of blood for transfusions are possible with lab-growing technology. Blood has been challenging to grow in the lab. However, real breakthroughs in creating artificial blood have sprung up!

A couple of years ago, Japanese researchers developed universal artificial blood that worked for all blood types. It even has a shelf life of one year stored at room temperature, therefore eliminating the problem of identifying blood type and storage simultaneously.

Like that wasnt impressive enough, last year, a team of scientists from the South China University of Technology, the University of New Mexico, and Sandia National Laboratories created artificial red blood cells (RBCs) with more potential capabilities than real ones! The synthetic RBCs mimic the properties of natural ones such as oxygen transport, flexibility, and long circulation times with the addition of a few new tricks up their sleeves, such as toxin detection, magnetic targeting, and therapeutic drug delivery. In addition, blood contains platelets and red blood cells, so these new cells could be used to make superior artificial blood.

Researchers from the University of British Columbia successfully coaxed stem cells to grow into human blood vessels. The thing that is so remarkable about this study is that the system of blood vessels grown in the lab is virtually identical to the ones currently transporting blood throughout the body. They are using this now to generate new leads in diabetes treatment. They put the lab-grown blood vessels in a petri dish designed to mimic a diabetic environment.

The global demand for meat and dairy is expected to rise by almost 90% over the next 30 years, regardless of the need to cut back on meat consumption. The risk of environmental damage and the rising food demand itself is a problem many have recently addressed. Thats why companies worldwide are on the verge of scaling up all sorts of lab processes to produce various food items, including steaks, chicken, cheese, milk, ice cream, fruits, and more.

Thinktank RethinkX even published research suggesting that proteins from precision fermentation (lab-grown protein using microbes) will be about ten times cheaper than animal protein by 2035, resulting in a collapse of the livestock industry. It says the new food economy will subsequently:

replace an extravagantly inefficient system that requires enormous quantities of inputs and produces considerable amounts of waste with one that is precise, targeted, and tractable. [Using tiny land areas, with a massively reduced requirement for water and nutrients, it] presents the most significant opportunity for environmental restoration in human historyFarm-free food offers hope where hope is missing. We will soon be able to feed the world without devouring it.

The worlds pace of meat consumption is placing a significant strain on the environment. Many studies show that eating less meat is just as crucial to slowing down global warming as using solar panels and zero-emissions vehicles. Unfortunately, animal farming generates an obscene amount of greenhouse gas emissions. Yet again, scientists come to the rescue, working diligently to fix this situation.

Over a decade ago, researchers created something akin to ground beef, but the complex structure of steak didnt happen until recently, with Aleph Farms debuting its thick-cut rib-eye steak in 2018. Furthermore, that first burger cost around US$345,000, but now the price has dropped dramatically to the point that lab-grown chicken is to be commercially produced and hit grocery store shelves as of this year.

SuperMeat, Eat Just, and Aleph Farms are todays most prominent startups working on getting lab-grown meats to people looking to lower their carbon and environmental footprints. In addition, their products are made from actual animal cells, so theyre real meat, but no animals had to be hurt or killed.

Speaking of Aleph Farms, the company also grew meat in space to show that it can even be done in a zero-gravity environment with limited resources.

Aside from Aleph Farms figuring out how to make steak like an authentic steak, a group of Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) researchers also devised a solution to the texture challenge. First, they made edible gelatin scaffolds that have the texture and consistency of real meat. Then, they grew rabbit and cow muscle cells on this scaffolding. The research demonstrates how realistic meat products are possible!

Parker and his Disease Biophysics Group developed a technique to produce the scaffolding. Its a fiber-production system inspired by cotton candy known as immersion Rotary Jet-Spinning (iRJS). It enabled the team to spin long nanofibers of a specific shape and size using centrifugal force. So, they spun food-safe gelatin fibers, creating the base upon which cells could grow.

Natural muscle tissue is composed of an extracellular matrix, which is the glue that holds the tissue together. As a result, it contributes to the texture of the meat. The spun gelatin fibers mimicked this extracellular matrix and provided the texture to make the lab-grown meat realistic. When the team seeded the fibers with animal (rabbit and cow) muscle cells, they anchored to the gelatin scaffolding and grew in long, thin structures, similar to real meat.

Meanwhile, Boston College developed a new, even greener technology that uses the skeleton of spinach leaves to support bovine animal protein growth. However, animal products arent eliminated from the process entirely. For example, lab-grown steak and chicken are created by painlessly harvesting muscle cells from a living cow, subsequently fed and nurtured to multiply and develop muscle tissue. But for this to have the same texture as real meat, the cells need structural support to flourish and are therefore placed in a scaffold.

Singapore is leading the way, becoming the first country in the world to approve the sale of Eat Justs cultured chicken. The company will start by selling nuggets at a restaurant. Meanwhile, SuperMeat has been handing out lab-grown chicken burgers in Israel for free. Theyre aiming to gain public acceptance of the idea.

The cultured chicken starts as a tiny number of harvested cells. Those cells are put into a bioreactor and fed the same nutrients the living animal would consume to grow. The cells multiply and turn into an edible portion of cultured chicken meat. The meats composition is identical to that of real chicken and offers the same nutritional value. And its cleaner because its antibiotic-free!

Labs are manufacturing dairy products by utilizing the fermentation process of living microbes to produce dairy proteins like whey and casein. These proteins are then used to make dairy products like butter, cheese, and ice cream. Two leading companies in this category are Imagindairy and Perfect Day, which already have several products on supermarket shelves in the United States.

Researchers havent figured out how to make fruits and vegetables yet, but a team is perfecting a cell cultivation process that generates plant biomass. The stuff tastes like the natural-grown product from which the cells were obtained and even exceeded its nutritional properties. Although, the texture of the biomass is different. For example, an apple isnt a solid apple akin to one grown from a tree. Instead, its like applesauce.

Lab-produced materials Including wood, diamonds, leather, glass, clothing, crystals, gels, cardboard, and plastics for making objects are either under development or already available. Many materials need to be taken from nature mined from the earth or cut down from forests. If they can be made in a lab instead, then people could leave nature alone!

A recent project led by a Ph.D. student at MIT paves the way for lab-grown wood one of the worlds most vital resources used to make paper, build houses, heat buildings, and so much more. The process begins with live plant cells cultivated in a growth medium coaxed using plant hormones to become wood-like structures. Next, a gel matrix is used to guide the shape of the cellular growth, and controlling the levels of plant hormones regulates the structural characteristics. Therefore, the technology could grow anything from tables and chairs to doors to boats and so on.

The environmental and socio-economic impact of traditionally mined diamonds has been exposed in recent years, and as awareness grows, the rising popularity of lab-grown diamonds does too. Mined diamonds are linked to bloody conflicts, and their excavation produces carbon emissions, requires substantial water use, and causes severe land disturbances.

Research has found that 1,000 tons of earth have to be shifted, 3,890 liters or more of water is used, and 108kg of carbon is emitted per one-carat stone produced. In addition, the traditional diamond mining industry causes irreversible damage to the environment, hence why, a decade ago, researchers started experimenting with how to grow them in the lab. Its been a feat a long time in the making, but we finally have lab-grown diamonds available for eco-conscious consumers to buy.

Diamonds are made of pure carbon. It takes extreme heat and pressure for carbon to crystalize. In nature, this happens hundreds of miles beneath the Earths surface. The ones being mined were shot out by a volcano millions of years ago. So how have scientists managed to hack such an intense and time-consuming process?

They began by investigating the mechanisms behind the diamond formation, zooming in at the atomic level. This led to the invention of a novel technology that utilizes the process of HPHT (high pressure, high temperature) to mimic the natural atmospheric conditions of diamond formation. Labs can use it to replicate the process and turn pure carbon into diamonds in 2-6 weeks.

Lab-grown gems are eco-friendly rocks, especially when theyre made entirely from the sky, like SkyDiamonds. Even the electricity used to grow its stones is from renewables, so theyll indeed be the worlds first zero-impact diamonds.

But how are the diamonds created out of thin air? They are made of carbon from the sky and rainwater. The sky mining facility is in Stroud. Energy is sourced from wind and sunlight. The CO2 is sourced directly from the air. Hydrogen is produced by splitting rainwater molecules in an electrolysis machine using renewable energy. The captured carbon and hydrogen are then used to make methane, used to grow the diamonds. The final product is a diamond anatomically identical to those mined from the ground. It is even accredited, fully certified, and graded by the International Gemological Institute.

Another company, Climeworks, is also making diamonds using carbon sucked from the sky. However, SkyDiamonds takes it a step forward by using rainwater and sunshine in the process.

The last lab-grown object were going to discuss is not something in the works, but an idea a fantastic and outlandish one thats jumping far into the future but was thought up in 2010 by Mercedes Benz. The luxury car companys ambitious BIOME idea shows just how wild imagination can get with lab-grown technology. It envisions a day when it can grow an entire supercar from scratch.

Mercedes-Benz explained when launching the concept:

The interior of the BIOME grows from the DNA in the Mercedes star on the front of the vehicle, while the exterior grows from the star on the rear. The Mercedes star is genetically engineered in each case to accommodate specific customer requirements, and the vehicle grows when the genetic code is combined with the seed capsule. The wheels are grown from four separate seeds.

This list of lab-grown possibilities is just the tip of the iceberg! Other materials in the pipeline include leather, chocolate, and silk. This intelligent technology can make anything a scientist can dream up! The only limit is the imagination and dedication of brilliant people.

See the original post:
Lab-Growing Everything Might Be The Only Way To Attain A Sustainable World - Intelligent Living

To Read More: Lab-Growing Everything Might Be The Only Way To Attain A Sustainable World – Intelligent Living
categoriaCardiac Stem Cells commentoComments Off on Lab-Growing Everything Might Be The Only Way To Attain A Sustainable World – Intelligent Living | dataNovember 8th, 2021
Read All

Roundtable Discussion: Shain Looks at the Role of Transplant Eligibility in Patients With Newly Diagnosed Multiple Myeloma – Targeted Oncology

By daniellenierenberg

A 51-year-old man presented with worsening fatigue on exertion and pallor, with an ECOG performance score of 1. He eventually received a diagnosis of stage II standard-risk multiple myeloma after testing and examination.

During a Targeted Oncology Case-Based Roundtable event, Kenneth Shain, MD, PhD, of Morsani College of Medicine at the University of South Florida in Tampa, FL, discussed a 51-year-old patients with newly-diagnosed multiple myeloma with a group of peers.

MANCHANDANI: For most of my patients I tell them theyre OK. [Although myeloma is incurable], depending upon if its stage II disease, the chances of their survival are good with the newer treatment options out there. Considering the young age [of this patient] andgood performance status, he will be a candidate for transplant.

KREM: I take people through the ISS and I explain the general life span estimates associated with [each stage]. I also explain that any patients prognosis can be different based upon the responsiveness of their disease and their willingness, and ability, to undergo transplant. While cytogenetics and other prognostic features such as ISSR give some prediction of how people will do, theyre not absolute predictors. Ive had people with stage III disease do wonderfully and people with stage I be almost refractory to treatment.

I always let them know theres some wiggle room in that, but I give them a general expectation that this is thought to be incurable, but we can manage it for a fairly good number of years with all the different therapies we have out there. I also explain that with transplant, we probably get the best duration of survival but we dont knowfor sure [how long that duration will last] and that Ive had some patients go 10 to 15 years with multiple myeloma. I also tell people to try to hang in there if they can, because the longer they hang in there, the newer agents well have to manage their disease down the road. But I leave a little bit of a glimmer of hope open while also telling them they have a chronic disease and [that] theyre likely to be seeing me or [some] of my colleagues for a prolonged period.

SHAIN: Does anybody else have a different way of approaching [their patient] or [an opinion] that would be a little counter to [that line of thinking]? Or are we all pretty much in agreement?

ATRASH: In terms of how I run that discussion with my patients, its one of the most challenging discussions, especially for patients with multiple myeloma. Since [2014 there have been a] lot of new drugs added to the market, and if you look at the overall survival for these patients its getting better and better. Still, its very difficult to predict survival for patients based on the ISSR, [although] its a helpful tool in the discussions about transplant or maintenance and [their long-term treatment plan]. But survival is changing [because of] newly approved drugs, so I try to avoid any discussions about survival, especially when we know that some data are showing numbers that are completely different from myeloma centers. It seems like multiple myeloma is a disease [from which], if you have access to novel treatments, you get better; but it depends, and there are a lot of variables there. I think in myeloma centers, where the research is ongoing, the survival almost doubled. It means the researched new drugs that are coming to the market are probably more powerful than the drugs that we have right now.

SHAIN: You kind of have to use the ISSR [scores] as guidelines or guide markersbut they are the only ways of categorizing patients. We all know their [ISSR scores] dont quite behave, and we also know that they were really based on very specific high-risk cytogenetic features. There are ones that have not been incorporated and there are thingsevolving along the way. Not all patients with myeloma read the book, [so to speak,] and their disease doesnt behave the way its supposed to or they cant tolerate drugs. [Getting patients] on the right path of therapy is probably the most important thing. Balancing that hope and that reality. I think hope is something they need to hold onto, because theres a lot more hope than theres ever been in the past with this disease. But it also leads into what is the most appropriate way to take care of these patientsa lot [of which concerns] this transplant-eligible case. I dont really [perform] transplants [in] individuals, but I have them all [receive] transplants when possible.

KREM: I say transplant eligibility is there until they prove theyre not eligible, so for patients 75 or younger, but Ive [performed transplants in] people up to [age] 76 or 77 if they look right, and they have to have a caregiver. They have to have adequate cardiac and pulmonary function and they have to demonstrate good treatment [adherence], and they cant have an active infection. Of course, their disease has to show some glimmer of chemotherapy response and you dont want to put someone through high-dose [treatment] if all the indications are theyre not going to get any mileage out of that. I would say that this patient has painted a picture of someone whos purely a transplant candidate butwho presents another difficult situation because hes not someone whos going to reach his expected life expectancy with standard therapies.

SHAIN: Does anybody else have a different opinion about transplant or a similar [one]? How do you think about that and when do you introduce it?

EPNER: I sell it as, I would take care of them at all phases of their care and oversee them rather than having to refer them and then having communication with the transplanting doctor.There are several FDA-approved drugs, such as ibrutinib [Imbruvica] andpost transplant, cyclophosphamide [Cytoxan]. There are a lot of ways that we can probably make graft-vs-host disease more livable as opposed to giving them another disease thats worse than the disease they had to begin with. I will have that discussion with people and tell them they would have to do it under a clinical trial and have to go [to a bigger cancer center].

KREM: I think that also brings up the question of how you define young patients and what is young.Some people might say that young [patients] are patients under 65 years old, but I think theres especially young. Whos really young? Because there are some patients who are in their 50s or their 40s and you might want to bring that discussion up with them. Maybe you get them under control with the first [autologous stem cell transplant] and then you have a plan ready at first relapse of how youre going to handle them. I think for someone in their 40s or early 50s, just the standard cells for 2 transplants arent quite enough [for] planning and thinking about the future.

SHAIN: Allogeneic transplant is one of the things that I discuss much less than I did even 5 or 10 years ago. Thats because of therapies that exist. I have people that have [had] allogeneic transplant and theyve done very well, and I have people who have [had] allogeneic transplant and theyve done very poorly. So, its still a question we have to think about.

SHAIN: VRd [bortezomib (Velcade) plus lenalidomide (Revlimid) and dexamethasone] is the standard of care and has been the standard of care for a long time for [patients who are] transplant eligible.1 It looks like everybody recognizes that CyBorD or [daratumumab (Darzalex) plus] VRd is only effective in patients with renal failure and probably shouldnt be a standard of care based on data we have. No KRd [carfilzomib (Kyprolis) plus lenalidomide (Revlimid) and dexamethasone] individuals, thats reasonable, though there are some questions there. I would tell you that today Im a DRVd [daratumumab, lenalidomide, bortezomib, and dexamethasone] guy, and I think [that with] the data [from the GRIFFIN trial (NCT02874742)], and if you marry in a little bit of Cassiopeia [NCT02541383 data], theres really strong evidence for 4 drugs to drive the disease down.

KREM: I think its an important point to make that bortezomib is not in all the publications, but there are more and more data starting to come out about the efficacy of the bortezomib dosing schedule.

SHAIN: We know our question is really triplet vs quadruplet. So how are we doing bortezomib in those dosing regimens and what do you think about it?

KREM: With the bortezomib, [data have] suggested that giving bortezomib twice a week for more than a cycle really beats people up. Whether you do it subcutaneously or intravenously, 1.3 mg/m2 in that dose density of cycles 1, 4, 8, and 11 really isnt tolerated long.

PAUL: I also exclusively use weekly bortezomib with the GRIFFIN regimen. Ive had patients [whom] Ive converted to a 28-day regimen as opposed to the 21-day regimen thats currently being evaluated. If I do the 28-day regimen, I do not do weekly daratumumab for cycles 1 through 3, which is what is being evaluated for the current trial. I do that to minimize toxicities and also for patient convenience. We have a lot of patients who come from far away to get their treatments and its challenging to make them come twice a week or even weekly for 12 weeks in a row.

SHAIN: I [also think weekly treatment] makes life a lot easier. Whether it be 1 or 2 cycles of twice weekly [treatment] is probably not terrible, but Ive moved away from it. I was a stickler for a long time to get some dose-dense bortezomib in the beginning, but I think its an important point that we all really understand that keeping people on the drug is more important than getting them a little bit of dose-dense [drug] to begin with.

EPNER: I had a patient with [a recent] myeloma [diagnosis], a couple [of them], in the COVID-19 era, before the vaccines were available. I was concerned about bringing them into the infusion room and exposing them to the risk. What I did was start them on ixazomib [Ninlaro] until they could get vaccinated and then I switched it over to bortezomib. Now, I sent them for their transplants to Emory [Transplant Center] and talked to some of the members of the team there, and they didnt have a very strong opinion about the use of ixazomib in terms of its efficacy.

SHAIN: Ixazomib is a good drug but its not bortezomib. Its a very good drug for the right person who doesnt want to come in or who cant come in. Ive seen it work outstandingly for patients in combination. Ive used it multiple times, but it is not what I walk in thinking about and its not something I often pick forpatients [with a new diagnosis].

KREM: On the plus side for ixazomib, it has great tolerability. I have seen much [fewer] adverse eventscompared with the other therapies. I would politely say that Im not sure how good the single agent or the doublet efficacy is for that drug. It does reasonably well in combination with other agents, but I think it does have a specialized setting, and as you said, Dr Shain, I dont think it replaces bortezomib.

ATRASH: I dont think I had much luck with ixazomib 4 mg, but yes, some patients do get a lot of benefits from ixazomib. In [a phase 1/2 study (NCT01217957)] that showed us that [the] high-risk population did get benefits from ixazomib, all the new data are [indicating that] perhaps ixazomib is not as effective as bortezomib.2 At the beginning of COVID-19at the very beginningI did a similar approach where I tried to avoid infusion center visits, but later we figured out that perhaps going very aggressive, despite COVID-19, is the best approach.

References

1. Voorhees PM, Kaufman JL, Laubach J, et al. Daratumumab, lenalidomide, bortezomib, and dexamethasone for transplant-eligible newly diagnosed multiple myeloma: the GRIFFIN trial. Blood. 2020;136(8):936-945. doi:10.1182/blood.2020005288

2. Kumar SK, Berdeja JG, Niesvizky R, et al. Ixazomib, lenalidomide, and dexamethasone in patients with newly diagnosed multiple myeloma: long-term follow-up including ixazomib maintenance. Leukemia. 2019;33(7):1736-1746. doi:10.1038/s41375-019-0384-1

See the article here:
Roundtable Discussion: Shain Looks at the Role of Transplant Eligibility in Patients With Newly Diagnosed Multiple Myeloma - Targeted Oncology

To Read More: Roundtable Discussion: Shain Looks at the Role of Transplant Eligibility in Patients With Newly Diagnosed Multiple Myeloma – Targeted Oncology
categoriaCardiac Stem Cells commentoComments Off on Roundtable Discussion: Shain Looks at the Role of Transplant Eligibility in Patients With Newly Diagnosed Multiple Myeloma – Targeted Oncology | dataNovember 8th, 2021
Read All

Albert Einstein Cancer Center researcher receives NCI Outstanding Investigator Award to study two deadly blood diseases – EurekAlert

By daniellenierenberg

image:Dr. Ulrich G. Steidl view more

Credit: Albert Einstein College of Medicine

October 27, 2021(BRONX, NY)Ulrich G. Steidl, M.D., Ph.D., co-director of the Blood Cancer Institute and associate director of basic science at the Albert Einstein Cancer Center (AECC), has received a prestigious Outstanding Investigator Award from the National Cancer Institute (NCI). This award is accompanied by a seven-year, $7 million grant to study the molecular and cellular mechanisms that lead to two related blood diseases, myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). Dr. Steidl is one of only 17 recipients of this award in 2021, which is given to accomplished leaders in cancer research who provide significant contributions in their field. The ultimate goal of this research is to develop new treatments and cures for these usually fatal disorders.

Clinical outcomes in MDS and AML have not significantly improved over the past half-century, and cure rates remain below 15% for most patients, said Dr. Steidl, who is also professor of cell biology and of medicine and the Diane and Arthur B. Belfer Faculty Scholar in Cancer Research at Einstein. There is an urgent need to improve our understanding of how these diseases develop and to devise more effective therapies.

MDS and AML Explained

MDS occurs when blood-forming (hematopoietic) stem cells in the bone marrow acquire genetic and non-genetic irregularities, leading to the production of abnormal, dysfunctional blood cells, which out-compete healthy cells. Common symptoms include anemia, infections, and bleeding.

The incidence of MDS in the United States is unclear, with estimates ranging from 10,000 to 40,000 new cases annually; about one-third of MDS patients will go on to develop AML. Treatment for MDS is generally limited to preventing or reducing complications, particularly severe anemia. The only cure is a bone-marrow transplanta therapy not easily tolerated and therefore often reserved for the youngest, most resilient patients. However, most people diagnosed with MDS are elderly.

AML, like MDS, begins with abnormal bone marrow stem cells. But in AML, those cells, after becoming cancerous, proliferate rapidly and quickly spread to the blood and other hematopoietic organs, such as the bone marrow and spleen, and sometimes to other tissues, causing many of the same symptoms seen in MDS, plus others. AML is often fatal within just a few months and afflicts about 21,000 Americans each year. It is usually treated with chemotherapy. Bone-marrow transplantation can cure AML in some patients.

From Stem Cells to Cancer

Recent studies led by Dr. Steidl and his research team have shown that both MDS and AML arise from pre-leukemic stems cells (pre-LSCs), a subpopulation of blood-forming stem cells that have genetic and non-genetic aberrations. Certain varieties (clones) of these pre-LSCs go on to develop into leukemic stem cells (LSCs)cancer cells that are capable of self-renewal. These LSCs lead to sustained leukemia growth and are particularly resistant to drugs. We now know that the considerable diversity of pre-LSC clones affects the development, progression, and treatment resistance of both MDS and AML, said Dr. Steidl, one of the nations leading authorities on both diseases.

What causes some pre-LSCs but not others to become leukemic is not clear, but transcription factors are thought to play a key role. Transcription factors are proteins that turn specific genes on or off, determining a cells function by regulating the activity of genes. In the case of stem cells, transcription factors guide their differentiation into mature cells. Our recent work has shown that the actions of key transcription factors are dysregulated in pre-LSCs and LSCs, meaning that the transcription factors and the molecular programs they govern behave abnormally, he added.

Thanks to his new NCI grant, Dr. Steidl hopes to:

To accomplish these goals, Dr. Steidls research team will employ novel tools for analyzing stem cell clones in patients, as well as newly developed mouse models of pre-LSC progression to MDS and AML.

Developing New Cancer Therapies

The knowledge we gain from this research should enable us to develop drugs that target pre-LSCs and their aberrant transcription factors, said Dr. Steidl. Such an approach holds the promise of achieving lasting remissions and, ultimately, even cures. Hopefully, our understanding of the early events in the progression of MDS and AML may even allow us in the future to prevent these diseases by interrupting the transformation of pre-LSCs to LSCs before overt leukemia can occur.

The grant (R35CA253127) is titled Molecular and Cellular Regulation of Pre-Leukemic Stem Cells and their Therapeutic Targeting.

***

About Albert Einstein College of Medicine

Albert Einstein College of Medicine is one of the nations premier centers for research, medical education and clinical investigation. During the 2020-21 academic year, Einstein is home to 721 M.D. students, 178 Ph.D. students, 109 students in the combined M.D./Ph.D. program, and 265 postdoctoral research fellows. The College of Medicine has more than 1,900 full-time faculty members located on the main campus and at its clinical affiliates. In 2020, Einstein received more than $197 million in awards from the National Institutes of Health (NIH). This includes the funding of major research centers at Einstein in aging, intellectual development disorders, diabetes, cancer, clinical and translational research, liver disease, and AIDS. Other areas where the College of Medicine is concentrating its efforts include developmental brain research, neuroscience, cardiac disease, and initiatives to reduce and eliminate ethnic and racial health disparities. Its partnership with Montefiore, the University Hospital and academic medical center for Einstein, advances clinical and translational research to accelerate the pace at which new discoveries become the treatments and therapies that benefit patients. Einstein runs one of the largest residency and fellowship training programs in the medical and dental professions in the United States through Montefiore and an affiliation network involving hospitals and medical centers in the Bronx, Brooklyn and on Long Island. For more information, please visit einsteinmed.org, read our blog, followus on Twitter, like us on Facebook, and view us on YouTube.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

Go here to read the rest:
Albert Einstein Cancer Center researcher receives NCI Outstanding Investigator Award to study two deadly blood diseases - EurekAlert

To Read More: Albert Einstein Cancer Center researcher receives NCI Outstanding Investigator Award to study two deadly blood diseases – EurekAlert
categoriaCardiac Stem Cells commentoComments Off on Albert Einstein Cancer Center researcher receives NCI Outstanding Investigator Award to study two deadly blood diseases – EurekAlert | dataOctober 28th, 2021
Read All

BioRestorative Therapies Announces Nomination of Two New Members to the Board of Directors – StreetInsider.com

By daniellenierenberg

Get instant alerts when news breaks on your stocks. Claim your 1-week free trial to StreetInsider Premium here.

MELVILLE, N.Y., Oct. 26, 2021 (GLOBE NEWSWIRE) -- BioRestorative Therapies, Inc. (BioRestorative or the Company) (OTC: BRTX), a life sciences company focused on stem cell-based therapies, today announced the nomination of two new independent members to its Board of Directors with industry and medical device experience: Patrick F. Williams, Chief Financial Officer at STAAR Surgical, and David Rosa, President and Chief Executive Officer at NeuroOne. Their election to the Board will take effect in the event the Companys pending registration statement becomes effective.

Our new board member nominations represent qualified and diverse executives who bring new perspectives, relevant expertise and leadership experience, positioning BioRestorative to fulfill our mission of bringing cell therapies to patients said Lance Alstodt, Chief Executive Officer of BioRestorative. The addition of Patrick and David is part of a strategic effort to add meaningful leadership experience to BioRestoratives Board of Directors to support the companys focus on driving future growth, enhancing its corporate governance, and creating additional shareholder value.

Patrick F. Williams

Patrick F. Williams has more than 20 years of experience across medical device, consumer product goods and technology sectors. Appointed as Chief Financial Officer of STAAR Surgical Company in July 2020, Mr. Williams is responsible for optimizing the financial performance of STAAR and ensuring the scalability of various functions to support high growth expansion. From 2016 to 2019, he served as the Chief Financial Officer of Sientra, Inc. before transitioning to General Manager for its miraDry business unit. From 2012 to 2016, Mr. Williams served as Chief Financial Officer of ZELTIQ Aesthetics, Inc., a publicly-traded medical device company that was acquired by Allergan. Previously, he served as Vice President in finance, strategy and investor relations roles from 2007 to 2012 at NuVasive, Inc., a San-Diego based medical device company servicing the spine sector. He has also held finance roles with Callaway Golf and Kyocera Wireless. Mr. Williams received an MBA in Finance and Management from San Diego State University and a Bachelor of Arts in Economics from the University of California, San Diego.

David Rosa

DavidRosa has served as the Chief Executive Officer, President and a director of NeuroOne Medical Technologies Corporation, or NeuroOne (Nasdaq: NMTC), since July2017 and served as Chief Executive Officer and a director of NeuroOne, Inc., formerly its wholly-ownedsubsidiary, from October2016 until December2019, when NeuroOne, Inc. merged with and into NeuroOne. NeuroOne is committed to providing minimally invasive and hi-definition solutions for EEG recording, brain stimulation and ablation solutions for patients suffering from epilepsy, Parkinsons disease, dystonia, essential tremors, chronic pain due to failed back surgeries and other related neurological disorders that may improve patient outcomes and reduce procedural costs. From November2009 to November2015, Mr.Rosa served as the Chief Executive Officer and President of Sunshine Heart, Inc., n/k/a Nuwellis, Inc. (Nasdaq: NUWE), a publicly-heldearly-stagemedical device company. From 2008 to November2009, he served as Chief Executive Officer of Milksmart, Inc., a company that specializes in medical devices for animals. From 2004 to 2008, Mr.Rosa served as the Vice President of Global Marketing for Cardiac Surgery and Cardiology at St. Jude Medical, Inc. He serves as a director on the board of directors of Biotricity Inc (Nasdaq: BTCY) and is Chairman of the Board at Neuro Event Labs, a privately held AI-based diagnostics company in Finland.

About BioRestorative Therapies, Inc.

BioRestorative Therapies, Inc. (www.biorestorative.com) develops therapeutic products using cell and tissue protocols, primarily involving adult stem cells. Our two core programs, as described below, relate to the treatment of disc/spine disease and metabolic disorders:

Disc/Spine Program (brtxDISC): Our lead cell therapy candidate, BRTX-100, is a product formulated from autologous (or a persons own) cultured mesenchymal stem cells collected from the patients bone marrow. We intend that the product will be used for the non-surgical treatment of painful lumbosacral disc disorders or as a complementary therapeutic to a surgical procedure. The BRTX-100 production process utilizes proprietary technology and involves collecting a patients bone marrow, isolating and culturing stem cells from the bone marrow and cryopreserving the cells. In an outpatient procedure, BRTX-100 is to be injected by a physician into the patients damaged disc. The treatment is intended for patients whose pain has not been alleviated by non-invasive procedures and who potentially face the prospect of surgery. We have received authorization from the Food and Drug Administration to commence a Phase 2 clinical trial using BRTX-100 to treat chronic lower back pain arising from degenerative disc disease.

Metabolic Program (ThermoStem): We are developing a cell-based therapy candidate to target obesity and metabolic disorders using brown adipose (fat) derived stem cells to generate brown adipose tissue (BAT). BAT is intended to mimic naturally occurring brown adipose depots that regulate metabolic homeostasis in humans. Initial preclinical research indicates that increased amounts of brown fat in animals may be responsible for additional caloric burning as well as reduced glucose and lipid levels. Researchers have found that people with higher levels of brown fat may have a reduced risk for obesity and diabetes.

Forward-Looking Statements

This press release contains "forward-looking statements" within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended, and such forward-looking statements are made pursuant to the safe harbor provisions of the Private Securities Litigation Reform Act of 1995. You are cautioned that such statements are subject to a multitude of risks and uncertainties that could cause future circumstances, events or results to differ materially from those projected in the forward-looking statements as a result of various factors and other risks, including, without limitation, those set forth in the Company's latest Form 10-K filed with the Securities and Exchange Commission. You should consider these factors in evaluating the forward-looking statements included herein, and not place undue reliance on such statements. The forward-looking statements in this release are made as of the date hereof and the Company undertakes no obligation to update such statements.

CONTACT:Email: ir@biorestorative.com

Read the original post:
BioRestorative Therapies Announces Nomination of Two New Members to the Board of Directors - StreetInsider.com

To Read More: BioRestorative Therapies Announces Nomination of Two New Members to the Board of Directors – StreetInsider.com
categoriaCardiac Stem Cells commentoComments Off on BioRestorative Therapies Announces Nomination of Two New Members to the Board of Directors – StreetInsider.com | dataOctober 28th, 2021
Read All

Induced Pluripotent Stem Cells and Their Potential for …

By daniellenierenberg

Curr Cardiol Rev. 2013 Feb; 9(1): 6372.

1Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA

2Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota, USA

1Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA

1Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA

2Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota, USA

3Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA

1Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA

2Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota, USA

3Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA

Received 2012 Jun 11; Revised 2012 Jul 31; Accepted 2012 Aug 27.

Induced pluripotent stem (iPS) cells, are a type of pluripotent stem cell derived from adult somatic cells. They have been reprogrammed through inducing genes and factors to be pluripotent. iPS cells are similar to embryonic stem (ES) cells in many aspects. This review summarizes the recent progresses in iPS cell reprogramming and iPS cell based therapy, and describe patient specific iPS cells as a disease model at length in the light of the literature. This review also analyzes and discusses the problems and considerations of iPS cell therapy in the clinical perspective for the treatment of disease.

Keywords: Cellular therapy, disease model, embryonic stem cells, induced pluripotent stem cells, reprogramm.

Induced pluripotent stem (iPS) cells, are a type of pluripotent stem cell derived from adult somatic cells that have been genetically reprogrammed to an embryonic stem (ES) cell-like state through the forced expression of genes and factors important for maintaining the defining properties of ES cells.

Mouse iPS cells from mouse fibroblasts were first reported in 2006 by the Yamanaka lab at Kyoto University [1]. Human iPS cells were first independently produced by Yamanakas and Thomsons groups from human fibroblasts in late 2007 [2, 3]. iPS cells are similar to ES cells in many aspects, including the expression of ES cell markers, chromatin methylation patterns, embryoid body formation, teratoma formation, viable chimera formation, pluripotency and the ability to contribute to many different tissues in vitro.

The breakthrough discovery of iPS cells allow researchers to obtain pluripotent stem cells without the controversial use of embryos, providing a novel and powerful method to "de-differentiate" cells whose developmental fates had been traditionally assumed to be determined. Furthermore, tissues derived from iPS cells will be a nearly identical match to the cell donor, which is an important factor in research of disease modeling and drug screening. It is expected that iPS cells will help researchers learn how to reprogram cells to repair damaged tissues in the human body.

The purpose of this paper is to summarize the recent progresses in iPS cell development and iPS cell-based therapy, and describe patient specific iPS cells as a disease model, analyze the problems and considerations of iPS therapy in the clinical treatment of disease.

The methods of reprogramming somatic cells into iPS cells are summarized in Table . It was first demonstrated that genomic integration and high expression of four factors, Oct4/Sox2/Klf4/c-Myc or Oct4/Sox2/Nanog/LIN28 by virus, can reprogram fibroblast cells into iPS cells [1-3]. Later, it was shown that iPS cells can be generated from fibroblasts by viral integration of Oct4/Sox2/Klf4 without c-Myc [4]. Although these iPS cells showed reduced tumorigenicity in chimeras and progeny mice, the reprogramming process is much slower, and efficiency is substantially reduced. These studies suggest that the ectopic expression of these three transcription factors (Oct4/Klf4/Sox2) is required for reprogramming of somatic cells in iPS cells.

Various growth factors and chemical compounds have recently been found to improve the induction efficiency of iPS cells. Shi et al., [5] demonstrated that small molecules, able to compensate for Sox2, could successfully reprogram mouse embryonic fibroblasts (MEF) into iPS cells. They combined Oct4/Klf4 transduction with BIX-01294 and BayK8644s and derived MEF into iPS cells. Huangfu et al., [6, 7] reported that 5-azacytidine, DNA methyltransferase inhibitor, and valproic acid, a histone deacetylase inhibitor, improved reprogramming of MEF by more than 100 folds. Valproic acid enables efficient reprogramming of primary human fibroblasts with only Oct4 and Sox2.

Kim et al. showed that mouse neural stem cells, expressing high endogenous levels of Sox2, can be reprogrammed into iPS cells by transduction Oct4 together with either Klf4 or c-Myc [19]. This suggests that endogenous expression of transcription factors, that maintaining stemness, have a role in the reprogramming process of pluripotency. More recently, Tsai et al., [20] demonstrated that mouse iPS cells could be generated from the skin hair follicle papilla (DP) cell with Oct4 alone since the skin hair follicle papilla cells expressed endogenously three of the four reprogramming factors: Sox2, c-Myc, and Klf4. They showed that reprogramming could be achieved after 3 weeks with efficiency similar to other cell types reprogrammed with four factors, comparable to ES cells.

Retroviruses are being extensively used to reprogram somatic cells into iPS cells. They are effective for integrating exogenous genes into the genome of somatic cells to produce both mouse and human iPS cells. However, retroviral vectors may have significant risks that could limit their use in patients. Permanent genetic alterations, due to multiple retroviral insertions, may cause retrovirus-mediated gene therapy as seen in treatment of severe combined immunodeficiency [25]. Second, although retroviral vectors are silenced during reprogramming [26], this silencing may not be permanent, and reactivation of transgenes may occur upon the differentiation of iPS cells. Third, expression of exogenous reprogramming factors could occur. This may trigger the expression of oncogenes that stimulate cancer growth and alter the properties of the cells. Fourth, the c-Myc over-expression may cause tumor development after transplantation of iPS derived cells. Okita et al. [10] reported that the chimeras and progeny derived from iPS cells frequently showed tumor formation. They found that the retroviral expression of c-Myc was reactivated in these tumors. Therefore, it would be desirable to produce iPS cells with minimal, or free of, genomic integration. Several new strategies have been recently developed to address this issue (Table ).

Stadtfeld et al. [16] used an adenoviral vector to transduce mouse fibroblasts and hepatocytes, and generated mouse iPS cells at an efficiency of about 0.0005%. Fusaki et al. [22] used Sendai virus to efficiently generate iPS cells from human skin fibroblasts without genome integration. Okita et al. [27] repeatedly transfected MEF with two plasmids, one carrying the complementary DNAs (cDNAs) of Oct3/4, Sox2, and Klf4 and the other carrying the c-Myc cDNA. This generated iPS cells without evidence of plasmid integration. Using a polycistronic plasmid co-expressing Oct4, Sox2, Klf4, and c-Myc, Gonzalez et al., [28] reprogrammed MEF into iPS cells without genomic integration. Yu et al. [29] demonstrated that oriP/EBNA1 (EpsteinBarr nuclear antigen-1)-based episomal vectors could be used to generate human iPS cells free of exogenous gene integration. The reprogramming efficiency was about 36 colonies/1 million somatic cells. Narsinh et al., [21] derived human iPS cells via transfection of human adipocyte stromal cells with a nonviral minicircle DNA by repeated transfection. This produced hiPS cells colonies from an adipose tissue sample in about 4 weeks.

When iPS cells generated from either plasmid transfection or episomes were carefully analyzed to identify random vector integration, it was possible to have vector fragments integrated somewhere. Thus, reprogramming strategies entirely free of DNA-based vectors are being sought. In April 2009, it was shown that iPS cells could be generated using recombinant cell-penetrating reprogramming proteins [30]. Zhou et al. [30] purified Oct4, Sox2, Klf4 and c-Myc proteins, and incorporated poly-arginine peptide tags. It allows the penetration of the recombinant reprogramming proteins through the plasma membrane of MEF. Three iPS cell clones were successfully generated from 5x 104 MEFs after four rounds of protein supplementation and subsequent culture of 2328 days in the presence of valproic acid.

A similar approach has also been demonstrated to be able to generate human iPS cells from neonatal fibroblasts [31]. Kim et al. over-expressed reprogramming factor proteins in HEK293 cells. Whole cell proteins of the transduced HEK293 were extracted and used to culture fibroblast six times within the first week. After eight weeks, five cell lines had been established at a yield of 0.001%, which is one-tenth of viral reprogramming efficiency. Strikingly, Warren et al., [24] demonstrated that human iPS cells can be derived using synthetic mRNA expressing Oct3/4, Klf4, Sox2 and c-Myc. This method efficiently reprogrammed fibroblast into iPS cells without genome integration.

Strenuous efforts are being made to improve the reprogramming efficiency and to establish iPS cells with either substantially fewer or no genetic alterations. Besides reprogramming vectors and factors, the reprogramming efficiency is also affected by the origin of iPS cells.

A number of somatic cells have been successfully reprogrammed into iPS cells (Table ). Besides mouse and human somatic cells, iPS cells from other species have been successfully generated (Table ).

The origin of iPS cells has an impact on choice of reprogramming factors, reprogramming and differentiation efficiencies. The endogenous expression of transcription factors may facilitate the reprogramming procedure [19]. Mouse neural stem cells express higher endogenous levels of Sox2 and c-Myc than ES cells. Thus, two transcription factors, exogenous Oct4 together with either Klf4 or c-Myc, are sufficient to generate iPS cells from neural stem cells [19]. Ahmed et al. [14] demonstrated that mouse skeletal myoblasts endogenously expressed Sox2, Klf4, and c-Myc and can be easily reprogrammed to iPS cells.

It is possible that iPS cells may demonstrate memory of parental source and therefore have low differentiation efficiency into other tissue cells. Kim et al. [32] showed that iPS cells reprogrammed from peripheral blood cells could efficiently differentiate into the hematopoietic lineage cells. It was found, however, that these cells showed very low differentiation efficiency into neural cells. Similarly, Bar-Nur et al. found that human cell-derived iPS cells have the epigenetic memory and may differentiate more readily into insulin producing cells [33]. iPS cells from different origins show similar gene expression patterns in the undifferentiated state. Therefore, the memory could be epigenetic and are not directly related to the pluripotent status.

The cell source of iPS cells can also affect the safety of the established iPS cells. Miura et al. [54] compared the safety of neural differentiation of mouse iPS cells derived from various tissues including MEFs, tail-tip fibroblasts, hepatocyte and stomach. Tumorigenicity was examined. iPS cells that reprogrammed from tail-tip fibroblasts showed many undifferentiated pluripotent cells after three weeks of in vitro differentiation into the neural sphere. These cells developed teratoma after transplantation into an immune-deficient mouse brain. The possible mechanism of this phenomenon may be attributable to epigenetic memory and/or genomic stability. Pre-evaluated, non-tumorigenic and safe mouse iPS cells have been reported by Tsuji et al. [55]. Safe iPS cells were transplanted into non-obese diabetic/severe combined immunodeficiency mouse brain, and found to produce electrophysiologically functional neurons, astrocytes, and oligodendrocytes in vitro.

The cell source of iPS cells is important for patients as well. It is important to carefully evaluate clinically available sources. Human iPS cells have been successfully generated from adipocyte derived stem cells [35], amniocytes [36], peripheral blood [38], cord blood [39], dental pulp cells [40], oral mucosa [41], and skin fibroblasts (Table ). The properties and safety of these iPS cells should be carefully examined before they can be used for treatment.

Shimada et al. [17] demonstrated that combination of chemical inhibitors including A83-01, CHIR99021, PD0325901, sodium butyrate, and Y-27632 under conditions of physiological hypoxia human iPS cells can be rapidly generated from adipocyte stem cells via retroviral transduction of Oct4, Sox2, Klf4, and L-Myc. Miyoshi et al., [42] generated human iPS cells from cells isolated from oral mucosa via the retroviral gene transfer of Oct4, Sox2, c-Myc, and Klf4. Reprogrammed cells showed ES-like morphology and expressed undifferentiated markers. Yan et al., [40] demonstrated that dental tissue-derived mesenchymal-like stem cells can easily be reprogrammed into iPS cells at relatively higher rates as compared to human fibroblasts. Human peripheral blood cells have also been successfully reprogrammed into iPS cells [38]. Anchan et al. [36] described a system that can efficiently derive iPS cells from human amniocytes, while maintaining the pluripotency of these iPS cells on mitotically inactivated feeder layers prepared from the same amniocytes. Both cellular components of this system are autologous to a single donor. Takenaka et al. [39] derived human iPS cells from cord blood. They demonstrated that repression of p53 expression increased the reprogramming efficiency by 100-fold.

All of the human iPS cells described here are indistinguishable from human ES cells with respect to morphology, expression of cell surface antigens and pluripotency-associated transcription factors, DNA methylation status at pluripotent cell-specific genes and the capacity to differentiate in vitro and in teratomas. The ability to reprogram cells from human somatic cells or blood will allow investigating the mechanisms of the specific human diseases.

The iPS cell technology provides an opportunity to generate cells with characteristics of ES cells, including pluripotency and potentially unlimited self-renewal. Studies have reported a directed differentiation of iPS cells into a variety of functional cell types in vitro, and cell therapy effects of implanted iPS cells have been demonstrated in several animal models of disease.

A few studies have demonstrated the regenerative potential of iPS cells for three cardiac cells: cardiomyocytes, endothelial cells, and smooth muscle cells in vitro and in vivo. Mauritz [56] and Zhang [57] independently demonstrated the ability of mouse and human iPS cells to differentiate into functional cardiomyocytes in vitro through embryonic body formation. Rufaihah [58], et al. derived endothelial cells from human iPS cells, and showed that transplantation of these endothelial cells resulted in increased capillary density in a mouse model of peripheral arterial disease. Nelson et al. [59] demonstrated for the first time the efficacy of iPS cells to treat acute myocardial infarction. They showed that iPS cells derived from MEF could restore post-ischemic contractile performance, ventricular wall thickness, and electrical stability while achieving in situ regeneration of cardiac, smooth muscle, and endothelial tissue. Ahmed et al. [14] demonstrated that beating cardiomyocyte-like cells can be differentiated from iPS cells in vitro. The beating cells expressed early and late cardiac-specific markers. In vivo studies showed extensive survival of iPS and iPS-derived cardiomyocytes in mouse hearts after transplantation in a mouse experimental model of acute myocardial infarction. The iPs derived cardiomyocyte transplantation attenuated infarct size and improved cardiac function without tumorgenesis, while tumors were observed in the direct iPS cell transplantation animals.

Strategies to enhance the purity of iPS derived cardiomyocytes and to exclude the presence of undifferentiated iPS are required. Implantation of pre-differentiation or guided differentiation of iPS would be a safer and more effective approach for transplantation. Selection of cardiomyocytes from iPS cells, based on signal-regulatory protein alpha (SIRPA) or combined with vascular cell adhesion protein-1 (VCAM-1), has been reported. Dubois et al. [60] first demonstrated that SIRPA was a marker specifically expressed on cardiomyocytes derived from human ES cells and human iPS cells. Cell sorting with an antibody against SIRPA could enrich cardiac precursors and cardiomyocytes up to 98% troponin T+ cells from human ESC or iPS cell differentiation cultures. Elliott et al. [61] adopted a cardiac-specific reporter gene system (NKX2-5eGFP/w) and identified that VCAM-1 and SIRPA were cell-surface markers of cardiac lineage during differentiation of human ES cells.

Regeneration of functional cells from human stem cells represents the most promising approach for treatment of type 1 diabetes mellitus (T1DM). This may also benefit the patients with type 2 diabetes mellitus (T2DM) who need exogenous insulin. At present, technology for reprogramming human somatic cell into iPS cells brings a remarkable breakthrough in the generation of insulin-producing cells.

Human ES cells can be directed to become fully developed cells and it is expected that iPS cells could also be similarly differentiated. Stem cell based approaches could also be used for modulation of the immune system in T1DM, or to address the problems of obesity and insulin resistance in T2DM.

Tateishi et al., [62] demonstrated that insulin-producing islet-like clusters (ILCs) can be generated from the human iPS cells under feeder-free conditions. The iPS cell derived ILCs not only contain C-peptide positive and glucagon-positive cells but also release C-peptide upon glucose stimulation. Similarly, Zhang et al., [63] reported a highly efficient approach to induce human ES and iPS cells to differentiate into mature insulin-producing cells in a chemical-defined culture system. These cells produce insulin/C-peptide in response to glucose stimuli in a manner comparable to that of adult human islets. Most of these cells co-expressed mature cell-specific markers such as NKX6-1 and PDX1, indicating a similar gene expression pattern to adult islet beta cells in vivo.

Alipo et al. [64] used mouse skin derived iPS cells for differentiation into -like cells that were similar to the endogenous insulin-secreting cells in mice. These -like cells were able to secrete insulin in response to glucose and to correct a hyperglycemic phenotype in mouse models of both T1DM and T2DM after iPS cell transplant. A long-term correction of hyperglycemia could be achieved as determined by hemoglobin A1c levels. These results are encouraging and suggest that induced pluripotency is a viable alternative to directing iPS cell differentiation into insulin secreting cells, which has great potential clinical applications in the treatment of T1DM and T2 DM.

Although significant progress has been made in differentiating pluripotent stem cells to -cells, several hurdles remain to be overcome. It is noted in several studies that the general efficiency of in vitro iPS cell differentiation into functional insulin-producing -like cells is low. Thus, it is highly essential to develop a safe, efficient, and easily scalable differentiation protocol before its clinical application. In addition, it is also important that insulin-producing b-like cells generated from the differentiation of iPS cells have an identical phenotype resembling that of adult human pancreatic cells in vivo.

Currently, the methodology of neural differentiation has been well established in human ES cells and shown that these methods can also be applied to iPS cells. Chambers et al. [65] demonstrated that the synergistic action of Noggin and SB431542 is sufficient to induce rapid and complete neural conversion of human ES and iPS cells under adherent culture conditions. Swistowsk et al. [66] used a completely defined (xenofree) system, that has efficiently differentiated human ES cells into dopaminergic neurons, to differentiate iPS cells. They showed that the process of differentiation into committed neural stem cells (NSCs) and subsequently into dopaminergic neurons was similar to human ES cells. Importantly, iPS cell derived dopaminergic neurons were functional as they survived and improved behavioral deficits in 6-hydroxydopamine-leasioned rats after transplantation. Lee et al. [67] provided detailed protocols for the step-wise differentiation of human iPS and human ES into neuroectodermal and neural crest cells using either the MS5 co-culture system or a defined culture system (Noggin with a small-molecule SB431542), NSB system. The average time required for generating purified human NSC precursors will be 25 weeks. The success of deriving neurons from human iPS cells provides a study model of normal development and impact of genetic disease during neural crest development.

Wernig et al., [68] showed that iPS cells can give rise to neuronal and glial cell types in culture. Upon transplantation into the fetal mouse brain, the cells differentiate into glia and neurons, including glutamatergic, GABAergic, and catecholaminergic subtypes. Furthermore, iPS cells were induced to differentiate into dopamine neurons of midbrain character and were able to improve behavior in a rat model of Parkinson's disease (PD) upon transplantation into the adult brain. This study highlights the therapeutic potential of directly reprogrammed fibroblasts for neural cell replacement in the animal model of Parkinsons disease.

Tsuji et al., [55] used pre-evaluated iPS cells derived for treatment of spinal cord injury. These cells differentiated into all three neural lineages, participated in remyelination and induced the axonal regrowth of host 5HT+ serotonergic fibers, promoting locomotor function recovery without forming teratomas or other tumors. This study suggests that iPS derived neural stem/progenitor cells may be a promising cell source for treatment of spinal cord injury.

Hargus et al., [69] demonstrated proof of principle of survival and functional effects of neurons derived from iPS cells reprogrammed from patients with PD. iPS cells from patients with Parkinsons disease were differentiated into dopaminergic neurons that could be transplanted without signs of neuro-degeneration into the adult rodent striatum. These cells survived and showed arborization, and mediated functional effects in an animal model of Parkinsons disease. This study suggests that disease specific iPS cells can be generated from patients with PD, which be used to study the PD development and in vitro drug screen for treatment of PD.

Reprogramming technology is being applied to derive patient specific iPS cell lines, which carry the identical genetic information as their patient donor cells. This is particularly interesting to understand the underlying disease mechanism and provide a cellular and molecular platform for developing novel treatment strategy.

Human iPS cells derived from somatic cells, containing the genotype responsible for the human disease, hold promise to develop novel patient-specific cell therapies and research models for inherited and acquired diseases. The differentiated cells from reprogrammed patient specific human iPS cells retain disease-related phenotypes to be an in vitro model of pathogenesis (Table ). This provides an innovative way to explore the molecular mechanisms of diseases.

Disease Modeling Using Human iPS Cells

Recent studies have reported the derivation and differentiation of disease-specific human iPS cells, including autosomal recessive disease (spinal muscular atrophy) [70], cardiac disease [71-75], blood disorders [13, 76], diabetes [77], neurodegenerative diseases (amyotrophic lateral sclerosis [78], Huntingtons disease [79]), and autonomic nervous system disorder (Familial Dysautonomia) [80]. Patient-specific cells make patient-specific disease modeling possible wherein the initiation and progression of this poorly understood disease can be studied.

Human iPS cells have been reprogrammed from spinal muscular atrophy, an autosomal recessive disease. Ebert et al., [70] generated iPS cells from skin fibroblast taken from a patient with spinal muscular atrophy. These cells expanded robustly in culture, maintained the disease genotype and generated motor neurons that showed selective deficits compared to those derived from the patients' unaffected relative. This is the first study to show that human iPS cells can be used to model the specific pathology seen in a genetically inherited disease. Thus, it represents a promising resource to study disease mechanisms, screen new drug compounds and develop new therapies.

Similarly, three other groups reported their findings on the use of iPS cells derived cardiomyocytes (iPSCMs) as disease models for LQTS type-2 (LQTS2). Itzhaki et al., [72] obtained dermal fibroblasts from a patient with LQTS2 harboring the KCNH2 gene mutation and showed that action potential duration was prolonged and repolarization velocity reduced in LQTS2 iPS-CMs compared with normal cardiomyocytes. They showed that Ikr was significantly reduced in iPS-CMs derived from LQTS2. They also tested the potential therapeutic effects of nifedipine and the KATP channel opener pinacidil (which augments the outward potassium current) and demonstrated that they shortened the action potential duration and abolished early after depolarization. Similarly, Lahti et al., [73] demonstrated a more pronounced inverse correlation between the beating rate and repolarization time of LQTS2 disease derived iPS-CMs compared with normal control cells. Prolonged action potential is present in LQT2-specific cardiomyocytes derived from a mutation. Matsa et al., [74] also successfully generated iPS-CMs from a patient with LQTS2 with a known KCNH2 mutation. iPS-CMs with LQTS2 displayed prolonged action potential durations on patch clamp analysis and prolonged corrected field potential durations on microelectrode array mapping. Furthermore, they demonstrated that the KATP channel opener nicorandil and PD-118057, a type 2 IKr channel enhancer attenuate channel closing.

LQTS3 has been recapitulated in mouse iPS cells [75]. Malan et al. [75] generated disease-specific iPS cells from a mouse model of a human LQTS3. Patch-clamp measurements of LQTS 3-specific cardiomyocytes showed the biophysical effects of the mutation on the Na+ current, withfaster recovery from inactivation and larger late currents than observed in normal control cells. Moreover, LQTS3-specific cardiomyocytes had prolonged action potential durations and early after depolarizations at low pacing rates, both of which are classic features of the LQTS3 mutation.

Human iPS cells have been used to recapitulate diseases of blood disorder. Ye et al. [13] demonstrated that human iPS cells derived from periphery blood CD34+ cells of patients with myeloproliferative disorders, have the JAK2-V617F mutation in blood cells. Though the derived iPS cells contained the mutation, they appeared normal in phenotypes, karyotype, and pluripotency. After hematopoietic differentiation, the iPS cell-derived hematopoietic progenitor (CD34+/CD45+) cells showed the increased erythropoiesis and expression of specific genes, recapitulating features of the primary CD34+ cells of the corresponding patient from whom the iPS cells were derived. This study highlights that iPS cells reprogrammed from somatic cells from patients with blood disease provide a prospective hematopoiesis model for investigating myeloproliferative disorders.

Raya et al., [76] reported that somatic cells from Fanconi anaemia patients can be reprogrammed to pluripotency after correction of the genetic defect. They demonstrated that corrected Fanconi-anaemia specific iPS cells can give rise to haematopoietic progenitors of the myeloid and erythroid lineages that are phenotypically normal. This study offers proof-of-concept that iPS cell technology can be used for the generation of disease-corrected, patient-specific cells with potential value for cell therapy applications.

Maehr et al., [77] demonstrated that human iPS cells can be generated from patients with T1DM by reprogramming their adult fibroblasts. These cells are pluripotent and differentiate into three lineage cells, including insulin-producing cells. These cells provide a platform to assess the interaction between cells and immunocytes in vitro, which mimic the pathological phenotype of T1DM. This will lead to better understanding of the mechanism of T1DM and developing effective cell replacement therapeutic strategy.

Lee et al., [80] reported the derivation of human iPS cells from patient with Familial Dysautonomia, an inherited disorder that affects the development and function of nerves throughout the body. They demonstrated that these iPS cells can differentiate into all three germ layers cells. However gene expression analysis demonstrated tissue-specific mis-splicing of IKBKAP in vitro, while neural crest precursors showed low levels of normal IKBKAP transcript. Transcriptome analysis and cell-based assays revealed marked defects in neurogenic differentiation and migration behavior. All these recaptured familial Dysautonomia pathogenesis, suggesting disease specificity of the with familial Dysautonomia human iPS cells. Furthermore, they validated candidate drugs in reversing and ameliorating neuronal differentiation and migration. This study illustrates the promise of disease specific iPS cells for gaining new insights into human disease pathogenesis and treatment.

Human iPS cells derived reprogrammed from patients with inherited neurodegenerative diseases, amyotrophic lateral sclerosis [78] and Huntingtons disease 79, have also been reported. Dimos et al., [78] showed that they generated iPS cells from a patient with a familial form of amyotrophic lateral sclerosis. These patient-specific iPS cells possess the properties of ES cells and were reprogrammed successfully to differentiate into motor neurons. Zhang et al., [79] derived iPS cells from fibroblasts of patient with Huntingtons disease. They demonstrated that striatal neurons and neuronal precursors derived from these iPS cells contained the same CAG repeat expansion as the mutation in the patient from whom the iPS cell line was established. This suggests that neuronal progenitor cells derived from Huntingtons disease cell model have endogenous CAG repeat expansion that is suitable for mechanistic studies and drug screenings.

Disease specific somatic cells derived from patient-specific human iPS cells will generate a wealth of information and data that can be used for genetically analyzing the disease. The genetic information from disease specific-iPS cells will allow early and more accurate prediction and diagnosis of disease and disease progression. Further, disease specific iPS cells can be used for drug screening, which in turn correct the genetic defects of disease specific iPS cells.

iPS cells appear to have the greatest promise without ethical and immunologic concerns incurred by the use of human ES cells. They are pluripotent and have high replicative capability. Furthermore, human iPS cells have the potential to generate all tissues of the human body and provide researchers with patient and disease specific cells, which can recapitulate the disease in vitro. However, much remains to be done to use these cells for clinical therapy. A better understanding of epigenetic alterations and transcriptional activity associated with the induction of pluripotency and following differentiation is required for efficient generation of therapeutic cells. Long-term safety data must be obtained to use human iPS cell based cell therapy for treatment of disease.

These works were supported by NIH grants HL95077, HL67828, and UO1-100407.

The authors confirm that this article content has no conflicts of interest.

Read more:
Induced Pluripotent Stem Cells and Their Potential for ...

To Read More: Induced Pluripotent Stem Cells and Their Potential for …
categoriaCardiac Stem Cells commentoComments Off on Induced Pluripotent Stem Cells and Their Potential for … | dataOctober 16th, 2021
Read All

Page 6«..5678..2030..»


Copyright :: 2024