Page 20«..10..19202122..3040..»

Stem Cell Assay Market to Witness Growth Acceleration During 2017-2025 – Cole of Duty

By daniellenierenberg

Stem Cell Assay Market: Snapshot

Stem cell assay refers to the procedure of measuring the potency of antineoplastic drugs, on the basis of their capability of retarding the growth of human tumor cells. The assay consists of qualitative or quantitative analysis or testing of affected tissues andtumors, wherein their toxicity, impurity, and other aspects are studied.

Get Exclusive PDF Sample Copy Of This Report:https://www.tmrresearch.com/sample/sample?flag=B&rep_id=40

With the growing number of successfulstem cell therapytreatment cases, the global market for stem cell assays will gain substantial momentum. A number of research and development projects are lending a hand to the growth of the market. For instance, the University of Washingtons Institute for Stem Cell and Regenerative Medicine (ISCRM) has attempted to manipulate stem cells to heal eye, kidney, and heart injuries. A number of diseases such as Alzheimers, spinal cord injury, Parkinsons, diabetes, stroke, retinal disease, cancer, rheumatoid arthritis, and neurological diseases can be successfully treated via stem cell therapy. Therefore, stem cell assays will exhibit growing demand.

Another key development in the stem cell assay market is the development of innovative stem cell therapies. In April 2017, for instance, the first participant in an innovative clinical trial at the University of Wisconsin School of Medicine and Public Health was successfully treated with stem cell therapy. CardiAMP, the investigational therapy, has been designed to direct a large dose of the patients own bone-marrow cells to the point of cardiac injury, stimulating the natural healing response of the body.

Newer areas of application in medicine are being explored constantly. Consequently, stem cell assays are likely to play a key role in the formulation of treatments of a number of diseases.

Global Stem Cell Assay Market: Overview

The increasing investment in research and development of novel therapeutics owing to the rising incidence of chronic diseases has led to immense growth in the global stem cell assay market. In the next couple of years, the market is expected to spawn into a multi-billion dollar industry as healthcare sector and governments around the world increase their research spending.

The report analyzes the prevalent opportunities for the markets growth and those that companies should capitalize in the near future to strengthen their position in the market. It presents insights into the growth drivers and lists down the major restraints. Additionally, the report gauges the effect of Porters five forces on the overall stem cell assay market.

Buy This Report @https://www.tmrresearch.com/checkout?rep_id=40<ype=S

Global Stem Cell Assay Market: Key Market Segments

For the purpose of the study, the report segments the global stem cell assay market based on various parameters. For instance, in terms of assay type, the market can be segmented into isolation and purification, viability, cell identification, differentiation, proliferation, apoptosis, and function. By kit, the market can be bifurcated into human embryonic stem cell kits and adult stem cell kits. Based on instruments, flow cytometer, cell imaging systems, automated cell counter, and micro electrode arrays could be the key market segments.

In terms of application, the market can be segmented into drug discovery and development, clinical research, and regenerative medicine and therapy. The growth witnessed across the aforementioned application segments will be influenced by the increasing incidence of chronic ailments which will translate into the rising demand for regenerative medicines. Finally, based on end users, research institutes and industry research constitute the key market segments.

The report includes a detailed assessment of the various factors influencing the markets expansion across its key segments. The ones holding the most lucrative prospects are analyzed, and the factors restraining its trajectory across key segments are also discussed at length.

Global Stem Cell Assay Market: Regional Analysis

Regionally, the market is expected to witness heightened demand in the developed countries across Europe and North America. The increasing incidence of chronic ailments and the subsequently expanding patient population are the chief drivers of the stem cell assay market in North America. Besides this, the market is also expected to witness lucrative opportunities in Asia Pacific and Rest of the World.

Global Stem Cell Assay Market: Vendor Landscape

A major inclusion in the report is the detailed assessment of the markets vendor landscape. For the purpose of the study the report therefore profiles some of the leading players having influence on the overall market dynamics. It also conducts SWOT analysis to study the strengths and weaknesses of the companies profiled and identify threats and opportunities that these enterprises are forecast to witness over the course of the reports forecast period.

Some of the most prominent enterprises operating in the global stem cell assay market are Bio-Rad Laboratories, Inc (U.S.), Thermo Fisher Scientific Inc. (U.S.), GE Healthcare (U.K.), Hemogenix Inc. (U.S.), Promega Corporation (U.S.), Bio-Techne Corporation (U.S.), Merck KGaA (Germany), STEMCELL Technologies Inc. (CA), Cell Biolabs, Inc. (U.S.), and Cellular Dynamics International, Inc. (U.S.).

To know more about the table of contents, you can click @https://www.tmrresearch.com/sample/sample?flag=T&rep_id=40

About Us:

TMR Research is a premier provider of customized market research and consulting services to business entities keen on succeeding in todays supercharged economic climate. Armed with an experienced, dedicated, and dynamic team of analysts, we are redefining the way our clients conduct business by providing them with authoritative and trusted research studies in tune with the latest methodologies and market trends.

Read this article:
Stem Cell Assay Market to Witness Growth Acceleration During 2017-2025 - Cole of Duty

To Read More: Stem Cell Assay Market to Witness Growth Acceleration During 2017-2025 – Cole of Duty
categoriaCardiac Stem Cells commentoComments Off on Stem Cell Assay Market to Witness Growth Acceleration During 2017-2025 – Cole of Duty | dataJune 1st, 2020
Read All

Cardiac Regeneration, Stem Cells

By daniellenierenberg

Content

C. Thomas Caskey, M.D. - FACP, FRSC Schizophrenia disease genes

Katarzyna Cieslik, Ph.D. - Cardiac mesenchymal progenitors

Austin Cooney, Ph.D. - Nuclear receptor regulation of embryonic stem cell function

Thomas Cooper, M.D. - Alternative splicing in cardiac development and disease

Mary Dickinson, Ph.D. - Role of fluid-derived mechanical forces in vascular remodeling and heart morphogenesis

Mark Entman, M.D. - Molecular mechanisms of cardiac injury and repair, inflammatory signaling

Charles Fraser, M.D. - Congenital heart surgery outcomes, bioengineering and assist devices

Peggy Goodell, M.D. - Hematopoietic stem cells, epigenetic modifications

Jeffrey Jacot, Ph.D. - Regenerative therapies for congenital heart disease

Sandra Haudek, Ph.D. - Circulating monocytic fibroblast precursors, cardiac hypertrophy

George Noon, M.D. - Transplant and assist devices

JoAnn Trial, Ph.D. - Origins of fibroblasts in cardiac injury healing

Peter Tsai, M.D., FACS - Custom-fenestrated endovascular stents to repair aortic transections or aneurysms

See original here:
Cardiac Regeneration, Stem Cells

To Read More: Cardiac Regeneration, Stem Cells
categoriaCardiac Stem Cells commentoComments Off on Cardiac Regeneration, Stem Cells | dataMay 31st, 2020
Read All

Hesperos Human-on-a-Chip System Used to Model Preclinical Stages of Alzheimers Disease and Mild Cognitive Impairment – Yahoo Finance

By daniellenierenberg

-- Peer-reviewed publication in Alzheimer's & Dementia: Translational Research & Clinical Interventions validates potential of drug discovery platform and ability to study early stages of disease pathology --

Hesperos Inc., pioneers of the Human-on-a-Chip in vitro system, today announced a new peer-reviewed publication that describes how the companys functional Human-on-a-Chip system can be used as a drug discovery platform to identify therapeutic interventions targeting the preclinical stages of Alzheimers disease (AD) and mild cognitive impairment (MCI). The manuscript, titled "A human induced pluripotent stem cell-derived cortical neuron human-on-a-chip system to study A42 and tau-induced pathophysiological effects on long-term potentiation," was published this week in Alzheimer's & Dementia: Translational Research & Clinical Interventions. The work was conducted in collaboration with the University of Central Florida and with David G. Morgan, Ph.D., Professor of Translational Neuroscience at Michigan State University, and expert in AD pathology.

To date, more than 100 potential therapeutics in development for AD have been abandoned or failed during clinical trials. These therapeutics relied on research conducted in preclinical animal studies, which often are unable to accurately capture the full spectrum of the human disease phenotype, including differences in drug metabolism and excretion between humans and animals. Therefore, there is a need for human models, especially those that accurately recapitulate the functional impairments during the preclinical phases of AD and MCI.

"Hesperos offers a breakthrough technology that provides a human cell-based assay based on cognitive function metrics to evaluate drugs designed to restore cognition at early stages of the Alzheimers continuum," said Dr. Morgan. "This system can serve as a novel drug discovery platform to identify compounds that rescue or alleviate the initial neuronal deficits caused by A1-42 and/or tau oligomers, which is a main focus of clinical trials."

In 2018, Hesperos received a Phase I Small Business Innovation Research (SBIR) grant from the National Institute on Aging (NIA) division within the US National Institutes of Health (NIH) to help create a new multi-organ human-on-a-chip model for testing AD drugs. Research conducted under this grant included a study to assess therapeutic interventions based on functional changes in neurons, not neuronal death.

In the recent Alzheimer's & Dementia publication, Hesperos describes its in vitro human induced pluripotent stem cell (iPSC)-derived cortical neuron human-on-a-chip system for the evaluation of neuron morphology and function after exposure to toxic A and tau oligomers as well as brain extracts from AD transgenic mouse models.

"Researchers are now focusing on biomarker development and therapeutic intervention before symptoms arise in AD and MCI," said James Hickman, Ph.D., Chief Scientist at Hesperos and Professor at the University of Central Florida. "By studying functional disruption without extensive cell loss, we now have a screening methodology for drugs that could potentially evaluate therapeutic efficacy even before the neurodegeneration in MCI and AD occurs."

The researchers found that compared to controls, treatment with toxic A and tau oligomers or brain extracts on the iPSC cortical neurons significantly impaired information processing as demonstrated by reduction in high-frequency stimulation-induced long-term potentiation (LTP), a process that is thought to underlie memory formation and learning. Additionally, oligomer and brain extract exposure led to dysfunction in iPSC cortical neuron electrophysiological activity, including decreases in ion current and action potential firing.

While exposure to the toxic oligomers and brain extracts caused morphological defects in the iPSC cortical neurons, there was no significant loss in cell viability.

"Clinical success for AD therapies has been challenging since preclinical animal studies often do not translate to humans," said Michael L. Shuler, Ph.D., Chief Executive Officer of Hesperos. "With our recent study, we are now one step closer in developing an AD multi-organ model to better evaluate drug metabolism in the liver, penetration through the blood-brain barrier and the effects on neuronal cells."

Story continues

About Alzheimers Disease/Preclinical Stage AD

AD is a progressive disease that is characterized by memory loss and deterioration of cognitive function. Preclinical AD is the first stage of the disease, and it begins long before any symptoms become apparent. It is thought that symptoms do not manifest until there is a significant death of neuronal cells, which is caused by the aggregation of toxic amyloid beta (A) and tau oligomers, typically during the earliest stages of the disease. Unfortunately, treatment after the diagnosis of MCI may be too late to reverse or modify disease progression.

To read the full manuscript, please visit https://alz-journals.onlinelibrary.wiley.com/doi/full/10.1002/trc2.12029.

About Hesperos

Hesperos, Inc. is a leading provider of Human-on-a-Chip microfluidic systems to characterize an individuals biology. Founders Michael L. Shuler and James J. Hickman have been at the forefront of every major scientific discovery in this realm, from individual organ-on-a-chip constructs to fully functional, interconnected multi-organ systems. With a mission to revolutionize toxicology testing as well as efficacy evaluation for drug discovery, the company has created pumpless platforms with serum-free cellular mediums that allow multi-organ system communication and integrated computational PKPD modeling of live physiological responses utilizing functional readouts from neurons, cardiac, muscle, barrier tissues and neuromuscular junctions as well as responses from liver, pancreas and barrier tissues. Created from human stem cells, the fully human systems are the first in vitro solutions to accurately predict in vivo functions without the use of animal models. More information is available at http://www.hesperosinc.com.

Hesperos and Human-on-a-Chip are trademarks of Hesperos Inc. All other brands may be trademarks of their respective holders.

View source version on businesswire.com: https://www.businesswire.com/news/home/20200529005128/en/

Contacts

Michelle LinnBioscribe774-696-3803michelle@bioscribe.com

The rest is here:
Hesperos Human-on-a-Chip System Used to Model Preclinical Stages of Alzheimers Disease and Mild Cognitive Impairment - Yahoo Finance

To Read More: Hesperos Human-on-a-Chip System Used to Model Preclinical Stages of Alzheimers Disease and Mild Cognitive Impairment – Yahoo Finance
categoriaCardiac Stem Cells commentoComments Off on Hesperos Human-on-a-Chip System Used to Model Preclinical Stages of Alzheimers Disease and Mild Cognitive Impairment – Yahoo Finance | dataMay 31st, 2020
Read All

Merck’s KEYTRUDA (pembrolizumab) Superior to Standard of Care Chemotherapy in Patients with MSI-H Colorectal Cancer – BioSpace

By daniellenierenberg

For many years, the standard of care for the first-line treatment of patients with MSI-H colorectal cancer has been the combination of mFOLFOX6 plus bevacizumab. This is the first time a single-agent, anti-PD-1 therapy demonstrated a superior, statistically significant and clinically meaningful improvement in progression-free survival compared to chemotherapy for these patients, said Dr. Roy Baynes, senior vice president and head of global clinical development, chief medical officer, Merck Research Laboratories. There is an unmet need for new treatment options in the first-line setting that may provide sustained, long-term improvements in outcomes for patients with MSI-H colorectal cancer. We are grateful to have the opportunity to present these practice-changing findings at the plenary session of this years ASCO.

KEYTRUDA monotherapy significantly reduced the risk of disease progression or death by 40% versus standard of care chemotherapy, with fewer treatment-related adverse events observed, in patients with MSI-H metastatic colorectal cancer. KEYTRUDA also demonstrated a long-term, durable response that lasted over two years for those who responded to treatment, said Thierry Andre, MD, professor of medical oncology, Sorbonne University, and Head of the Medical Oncology Department in St. Antoine Hospital, Assistance Publique Hpitaux de Paris. Data from KEYNOTE-177 show that KEYTRUDA monotherapy has the potential to become the new standard of care for first-line treatment of patients with MSI-H metastatic colorectal cancer.

In May 2017, KEYTRUDA became the first cancer therapy approved by the U.S. Food and Drug Administration for use based on a biomarker, regardless of tumor type, in previously treated patients with MSI-H or dMMR solid tumors.

As announced, more than 80 abstracts in nearly 20 types of solid tumors and blood cancers will be presented from Mercks broad oncology portfolio and investigational pipeline at ASCO. A compendium of presentations and posters of Merck-led studies will be posted by Merck on Friday, May 29 at 8 a.m. ET. Follow Merck on Twitter via @Merck and keep up to date with ASCO news and updates by using the hashtag #ASCO20.

KEYNOTE-177 Study Design and Additional Data (Abstract #LBA4)

KEYNOTE-177 is a randomized, open-label, Phase 3 trial evaluating KEYTRUDA monotherapy versus standard of care chemotherapy for the first-line treatment of patients with MSI-H or dMMR metastatic colorectal cancer (ClinicalTrials.gov, NCT02563002). The dual primary endpoints are PFS and OS. The study enrolled 307 patients, who were randomized to receive either KEYTRUDA (200 mg intravenously on Day 1 of each three-week cycle for up to 35 cycles) or investigators choice of one of the following chemotherapy-based regimens: mFOLFOX6; mFOLFOX6 plus bevacizumab (5 mg/kg IV on Day 1 of each two-week cycle); mFOLFOX6 plus cetuximab (400 mg/m2 IV, then 250 mg/m2 weekly in each two-week cycle); FOLFIRI; FOLFIRI plus bevacizumab (5 mg/kg IV on Day 1 of each two-week cycle); or FOLFIRI plus cetuximab (400 mg/m2 IV, then 250 mg/m2 weekly in each two-week cycle).

In this study, KEYTRUDA demonstrated a statistically significant and clinically meaningful improvement in PFS (HR=0.60 [95% CI, 0.45-0.80; p=0.0002]) and showed a median PFS of 16.5 months compared with 8.2 months for patients treated with chemotherapy. The two-year PFS rate was 48% with KEYTRUDA versus 19% with chemotherapy. The ORR was 43.8% with KEYTRUDA versus 33.1% with chemotherapy, with a complete response observed in 11.1% and 3.9% of patients, respectively; partial responses were observed in 32.7% and 29.2% of patients, respectively. Median duration of response was not reached with KEYTRUDA (range, 2.3+ to 41.4+) versus 10.6 months with chemotherapy (range, 2.8 to 37.5+). Additionally, 83% of patients had durable responses lasting at least two years with KEYTRUDA versus 35% with chemotherapy. In the study, 59% of patients in the intent-to-treat population received subsequent anti-PD-1/PD-L1 therapy after discontinuing study treatment in the chemotherapy arm.

The safety profile of KEYTRUDA demonstrated a lower incidence of Grade 3 treatment-related adverse events (AEs) versus chemotherapy (22% versus 66%, respectively), and no new toxicities were observed. Immune-mediated AEs and infusion reactions occurred in 31% of patients receiving KEYTRUDA and 13% of patients receiving chemotherapy. The most commonly reported immune-mediated AEswere hypothyroidism (12%) and colitis (7%) with KEYTRUDA, and infusion reactions (8%) with chemotherapy.

Merck Investor Event

Merck will hold a virtual investor event in conjunction with the ASCO Annual Meeting on Tuesday, June 2 at 2 p.m. ET. Details will be provided at a date closer to the event at http://investors.merck.com/home/default.aspx.

About Microsatellite Instability High (MSI-H)

Microsatellite instability (or MSI) is defined by the National Cancer Institute as a change that occurs in the DNA of certain cells (such as tumor cells) in which the number of repeats of microsatellites (short, repeated sequences of DNA) is different from the number of repeats that was in the DNA when it was inherited. The cause of MSI may be a defect in the ability to repair mistakes made when DNA is copied in the cell. This defect is also referred to as mismatch repair deficiency (dMMR). It is estimated that approximately 5-15% of colorectal cancer patients have tumors that score as either MSI-H or dMMR when testing is performed.

About Colorectal Cancer

Colorectal cancer starts in the colon or the rectum, and these cancers are referred to as colon cancer and rectal cancer depending on where the cancer starts. Colorectal cancer often begins with growths on the inner lining of the colon or rectum called polyps, which can change into cancer over time. Colorectal cancer is the third most commonly diagnosed cancer and the second most common cause of cancer-related death worldwide. It is estimated there were nearly 850,000 new cases of colorectal cancer and more than 880,000 deaths from the disease globally in 2018. In the United States, it is estimated there will be nearly 105,000 new cases of colon cancer and more than 43,000 new cases of rectal cancer, resulting in more than 53,000 deaths from colorectal cancer in 2020. The five-year survival rates for advanced/metastatic colon cancer and rectal cancer (stage IV) are estimated to be 14% and 15%, respectively.

About KEYTRUDA (pembrolizumab) Injection, 100 mg

KEYTRUDA is an anti-PD-1 therapy that works by increasing the ability of the bodys immune system to help detect and fight tumor cells. KEYTRUDA is a humanized monoclonal antibody that blocks the interaction between PD-1 and its ligands, PD-L1 and PD-L2, thereby activating T lymphocytes which may affect both tumor cells and healthy cells.

Merck has the industrys largest immuno-oncology clinical research program. There are currently more than 1,200 trials studying KEYTRUDA across a wide variety of cancers and treatment settings. The KEYTRUDA clinical program seeks to understand the role of KEYTRUDA across cancers and the factors that may predict a patient's likelihood of benefitting from treatment with KEYTRUDA, including exploring several different biomarkers.

Selected KEYTRUDA (pembrolizumab) Indications

Melanoma

KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic melanoma.

KEYTRUDA is indicated for the adjuvant treatment of patients with melanoma with involvement of lymph node(s) following complete resection.

Non-Small Cell Lung Cancer

KEYTRUDA, in combination with pemetrexed and platinum chemotherapy, is indicated for the first-line treatment of patients with metastatic nonsquamous non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.

KEYTRUDA, in combination with carboplatin and either paclitaxel or paclitaxel protein-bound, is indicated for the first-line treatment of patients with metastatic squamous NSCLC.

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with NSCLC expressing PD-L1 [tumor proportion score (TPS) 1%] as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations, and is stage III where patients are not candidates for surgical resection or definitive chemoradiation, or metastatic.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with metastatic NSCLC whose tumors express PD-L1 (TPS 1%) as determined by an FDA-approved test, with disease progression on or after platinum-containing chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving KEYTRUDA.

Small Cell Lung Cancer

KEYTRUDA is indicated for the treatment of patients with metastatic small cell lung cancer (SCLC) with disease progression on or after platinum-based chemotherapy and at least 1 other prior line of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

Head and Neck Squamous Cell Cancer

KEYTRUDA, in combination with platinum and fluorouracil (FU), is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent head and neck squamous cell carcinoma (HNSCC).

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent HNSCC whose tumors express PD-L1 [combined positive score (CPS) 1] as determined by an FDA-approved test.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) with disease progression on or after platinum-containing chemotherapy.

Classical Hodgkin Lymphoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory classical Hodgkin lymphoma (cHL), or who have relapsed after 3 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Primary Mediastinal Large B-Cell Lymphoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory primary mediastinal large B-cell lymphoma (PMBCL), or who have relapsed after 2 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials. KEYTRUDA is not recommended for treatment of patients with PMBCL who require urgent cytoreductive therapy.

Urothelial Carcinoma

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who are not eligible for cisplatin-containing chemotherapy and whose tumors express PD-L1 [combined positive score (CPS) 10], as determined by an FDA-approved test, or in patients who are not eligible for any platinum-containing chemotherapy regardless of PD-L1 status. This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who have disease progression during or following platinum-containing chemotherapy or within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy.

KEYTRUDA is indicated for the treatment of patients with Bacillus Calmette-Guerin (BCG)-unresponsive, high-risk, non-muscle invasive bladder cancer (NMIBC) with carcinoma in situ (CIS) with or without papillary tumors who are ineligible for or have elected not to undergo cystectomy.

Microsatellite Instability-High (MSI-H) Cancer

KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR)

This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with MSI-H central nervous system cancers have not been established.

Gastric Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic gastric or gastroesophageal junction (GEJ) adenocarcinoma whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test, with disease progression on or after two or more prior lines of therapy including fluoropyrimidine- and platinum-containing chemotherapy and if appropriate, HER2/neu-targeted therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Esophageal Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic squamous cell carcinoma of the esophagus whose tumors express PD-L1 (CPS 10) as determined by an FDA-approved test, with disease progression after one or more prior lines of systemic therapy.

Cervical Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cervical cancer with disease progression on or after chemotherapy whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Hepatocellular Carcinoma

KEYTRUDA is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Merkel Cell Carcinoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with recurrent locally advanced or metastatic Merkel cell carcinoma (MCC). This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Renal Cell Carcinoma

KEYTRUDA, in combination with axitinib, is indicated for the first-line treatment of patients with advanced renal cell carcinoma (RCC).

Selected Important Safety Information for KEYTRUDA

Immune-Mediated Pneumonitis

KEYTRUDA can cause immune-mediated pneumonitis, including fatal cases. Pneumonitis occurred in 3.4% (94/2799) of patients with various cancers receiving KEYTRUDA, including Grade 1 (0.8%), 2 (1.3%), 3 (0.9%), 4 (0.3%), and 5 (0.1%). Pneumonitis occurred in 8.2% (65/790) of NSCLC patients receiving KEYTRUDA as a single agent, including Grades 3-4 in 3.2% of patients, and occurred more frequently in patients with a history of prior thoracic radiation (17%) compared to those without (7.7%). Pneumonitis occurred in 6% (18/300) of HNSCC patients receiving KEYTRUDA as a single agent, including Grades 3-5 in 1.6% of patients, and occurred in 5.4% (15/276) of patients receiving KEYTRUDA in combination with platinum and FU as first-line therapy for advanced disease, including Grades 3-5 in 1.5% of patients.

Monitor patients for signs and symptoms of pneumonitis. Evaluate suspected pneumonitis with radiographic imaging. Administer corticosteroids for Grade 2 or greater pneumonitis. Withhold KEYTRUDA for Grade 2; permanently discontinue KEYTRUDA for Grade 3 or 4 or recurrent Grade 2 pneumonitis.

Immune-Mediated Colitis

KEYTRUDA can cause immune-mediated colitis. Colitis occurred in 1.7% (48/2799) of patients receiving KEYTRUDA, including Grade 2 (0.4%), 3 (1.1%), and 4 (<0.1%). Monitor patients for signs and symptoms of colitis. Administer corticosteroids for Grade 2 or greater colitis. Withhold KEYTRUDA for Grade 2 or 3; permanently discontinue KEYTRUDA for Grade 4 colitis.

Immune-Mediated Hepatitis (KEYTRUDA) and Hepatotoxicity (KEYTRUDA in Combination With Axitinib)

Immune-Mediated Hepatitis

KEYTRUDA can cause immune-mediated hepatitis. Hepatitis occurred in 0.7% (19/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.4%), and 4 (<0.1%). Monitor patients for changes in liver function. Administer corticosteroids for Grade 2 or greater hepatitis and, based on severity of liver enzyme elevations, withhold or discontinue KEYTRUDA.

Hepatotoxicity in Combination With Axitinib

KEYTRUDA in combination with axitinib can cause hepatic toxicity with higher than expected frequencies of Grades 3 and 4 ALT and AST elevations compared to KEYTRUDA alone. With the combination of KEYTRUDA and axitinib, Grades 3 and 4 increased ALT (20%) and increased AST (13%) were seen. Monitor liver enzymes before initiation of and periodically throughout treatment. Consider more frequent monitoring of liver enzymes as compared to when the drugs are administered as single agents. For elevated liver enzymes, interrupt KEYTRUDA and axitinib, and consider administering corticosteroids as needed.

Immune-Mediated Endocrinopathies

KEYTRUDA can cause adrenal insufficiency (primary and secondary), hypophysitis, thyroid disorders, and type 1 diabetes mellitus. Adrenal insufficiency occurred in 0.8% (22/2799) of patients, including Grade 2 (0.3%), 3 (0.3%), and 4 (<0.1%). Hypophysitis occurred in 0.6% (17/2799) of patients, including Grade 2 (0.2%), 3 (0.3%), and 4 (<0.1%). Hypothyroidism occurred in 8.5% (237/2799) of patients, including Grade 2 (6.2%) and 3 (0.1%). The incidence of new or worsening hypothyroidism was higher in 1185 patients with HNSCC (16%) receiving KEYTRUDA, as a single agent or in combination with platinum and FU, including Grade 3 (0.3%) hypothyroidism. Hyperthyroidism occurred in 3.4% (96/2799) of patients, including Grade 2 (0.8%) and 3 (0.1%), and thyroiditis occurred in 0.6% (16/2799) of patients, including Grade 2 (0.3%). Type 1 diabetes mellitus, including diabetic ketoacidosis, occurred in 0.2% (6/2799) of patients.

Monitor patients for signs and symptoms of adrenal insufficiency, hypophysitis (including hypopituitarism), thyroid function (prior to and periodically during treatment), and hyperglycemia. For adrenal insufficiency or hypophysitis, administer corticosteroids and hormone replacement as clinically indicated. Withhold KEYTRUDA for Grade 2 adrenal insufficiency or hypophysitis and withhold or discontinue KEYTRUDA for Grade 3 or Grade 4 adrenal insufficiency or hypophysitis. Administer hormone replacement for hypothyroidism and manage hyperthyroidism with thionamides and beta-blockers as appropriate. Withhold or discontinue KEYTRUDA for Grade 3 or 4 hyperthyroidism. Administer insulin for type 1 diabetes, and withhold KEYTRUDA and administer antihyperglycemics in patients with severe hyperglycemia.

Immune-Mediated Nephritis and Renal Dysfunction

KEYTRUDA can cause immune-mediated nephritis. Nephritis occurred in 0.3% (9/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.1%), and 4 (<0.1%) nephritis. Nephritis occurred in 1.7% (7/405) of patients receiving KEYTRUDA in combination with pemetrexed and platinum chemotherapy. Monitor patients for changes in renal function. Administer corticosteroids for Grade 2 or greater nephritis. Withhold KEYTRUDA for Grade 2; permanently discontinue for Grade 3 or 4 nephritis.

Immune-Mediated Skin Reactions

Immune-mediated rashes, including Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN) (some cases with fatal outcome), exfoliative dermatitis, and bullous pemphigoid, can occur. Monitor patients for suspected severe skin reactions and based on the severity of the adverse reaction, withhold or permanently discontinue KEYTRUDA and administer corticosteroids. For signs or symptoms of SJS or TEN, withhold KEYTRUDA and refer the patient for specialized care for assessment and treatment. If SJS or TEN is confirmed, permanently discontinue KEYTRUDA.

Other Immune-Mediated Adverse Reactions

Immune-mediated adverse reactions, which may be severe or fatal, can occur in any organ system or tissue in patients receiving KEYTRUDA and may also occur after discontinuation of treatment. For suspected immune-mediated adverse reactions, ensure adequate evaluation to confirm etiology or exclude other causes. Based on the severity of the adverse reaction, withhold KEYTRUDA and administer corticosteroids. Upon improvement to Grade 1 or less, initiate corticosteroid taper and continue to taper over at least 1 month. Based on limited data from clinical studies in patients whose immune-related adverse reactions could not be controlled with corticosteroid use, administration of other systemic immunosuppressants can be considered. Resume KEYTRUDA when the adverse reaction remains at Grade 1 or less following corticosteroid taper. Permanently discontinue KEYTRUDA for any Grade 3 immune-mediated adverse reaction that recurs and for any life-threatening immune-mediated adverse reaction.

The following clinically significant immune-mediated adverse reactions occurred in less than 1% (unless otherwise indicated) of 2799 patients: arthritis (1.5%), uveitis, myositis, Guillain-Barr syndrome, myasthenia gravis, vasculitis, pancreatitis, hemolytic anemia, sarcoidosis, and encephalitis. In addition, myelitis and myocarditis were reported in other clinical trials, including classical Hodgkin lymphoma, and postmarketing use.

Treatment with KEYTRUDA may increase the risk of rejection in solid organ transplant recipients. Consider the benefit of treatment vs the risk of possible organ rejection in these patients.

Infusion-Related Reactions

KEYTRUDA can cause severe or life-threatening infusion-related reactions, including hypersensitivity and anaphylaxis, which have been reported in 0.2% (6/2799) of patients. Monitor patients for signs and symptoms of infusion-related reactions. For Grade 3 or 4 reactions, stop infusion and permanently discontinue KEYTRUDA.

Complications of Allogeneic Hematopoietic Stem Cell Transplantation (HSCT)

Immune-mediated complications, including fatal events, occurred in patients who underwent allogeneic HSCT after treatment with KEYTRUDA. Of 23 patients with cHL who proceeded to allogeneic HSCT after KEYTRUDA, 6 (26%) developed graft-versus-host disease (GVHD) (1 fatal case) and 2 (9%) developed severe hepatic veno-occlusive disease (VOD) after reduced-intensity conditioning (1 fatal case). Cases of fatal hyperacute GVHD after allogeneic HSCT have also been reported in patients with lymphoma who received a PD-1 receptorblocking antibody before transplantation. Follow patients closely for early evidence of transplant-related complications such as hyperacute graft-versus-host disease (GVHD), Grade 3 to 4 acute GVHD, steroid-requiring febrile syndrome, hepatic veno-occlusive disease (VOD), and other immune-mediated adverse reactions.

In patients with a history of allogeneic HSCT, acute GVHD (including fatal GVHD) has been reported after treatment with KEYTRUDA. Patients who experienced GVHD after their transplant procedure may be at increased risk for GVHD after KEYTRUDA. Consider the benefit of KEYTRUDA vs the risk of GVHD in these patients.

Increased Mortality in Patients With Multiple Myeloma

In trials in patients with multiple myeloma, the addition of KEYTRUDA to a thalidomide analogue plus dexamethasone resulted in increased mortality. Treatment of these patients with a PD-1 or PD-L1 blocking antibody in this combination is not recommended outside of controlled trials.

Embryofetal Toxicity

Based on its mechanism of action, KEYTRUDA can cause fetal harm when administered to a pregnant woman. Advise women of this potential risk. In females of reproductive potential, verify pregnancy status prior to initiating KEYTRUDA and advise them to use effective contraception during treatment and for 4 months after the last dose.

Adverse Reactions

In KEYNOTE-006, KEYTRUDA was discontinued due to adverse reactions in 9% of 555 patients with advanced melanoma; adverse reactions leading to permanent discontinuation in more than one patient were colitis (1.4%), autoimmune hepatitis (0.7%), allergic reaction (0.4%), polyneuropathy (0.4%), and cardiac failure (0.4%). The most common adverse reactions (20%) with KEYTRUDA were fatigue (28%), diarrhea (26%), rash (24%), and nausea (21%).

In KEYNOTE-002, KEYTRUDA was permanently discontinued due to adverse reactions in 12% of 357 patients with advanced melanoma; the most common (1%) were general physical health deterioration (1%), asthenia (1%), dyspnea (1%), pneumonitis (1%), and generalized edema (1%). The most common adverse reactions were fatigue (43%), pruritus (28%), rash (24%), constipation (22%), nausea (22%), diarrhea (20%), and decreased appetite (20%).

In KEYNOTE-054, KEYTRUDA was permanently discontinued due to adverse reactions in 14% of 509 patients; the most common (1%) were pneumonitis (1.4%), colitis (1.2%), and diarrhea (1%). Serious adverse reactions occurred in 25% of patients receiving KEYTRUDA. The most common adverse reaction (20%) with KEYTRUDA was diarrhea (28%).

In KEYNOTE-189, when KEYTRUDA was administered with pemetrexed and platinum chemotherapy in metastatic nonsquamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 20% of 405 patients. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonitis (3%) and acute kidney injury (2%). The most common adverse reactions (20%) with KEYTRUDA were nausea (56%), fatigue (56%), constipation (35%), diarrhea (31%), decreased appetite (28%), rash (25%), vomiting (24%), cough (21%), dyspnea (21%), and pyrexia (20%).

In KEYNOTE-407, when KEYTRUDA was administered with carboplatin and either paclitaxel or paclitaxel protein-bound in metastatic squamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 15% of 101 patients. The most frequent serious adverse reactions reported in at least 2% of patients were febrile neutropenia, pneumonia, and urinary tract infection. Adverse reactions observed in KEYNOTE-407 were similar to those observed in KEYNOTE-189 with the exception that increased incidences of alopecia (47% vs 36%) and peripheral neuropathy (31% vs 25%) were observed in the KEYTRUDA and chemotherapy arm compared to the placebo and chemotherapy arm in KEYNOTE-407.

In KEYNOTE-042, KEYTRUDA was discontinued due to adverse reactions in 19% of 636 patients with advanced NSCLC; the most common were pneumonitis (3%), death due to unknown cause (1.6%), and pneumonia (1.4%). The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia (7%), pneumonitis (3.9%), pulmonary embolism (2.4%), and pleural effusion (2.2%). The most common adverse reaction (20%) was fatigue (25%).

In KEYNOTE-010, KEYTRUDA monotherapy was discontinued due to adverse reactions in 8% of 682 patients with metastatic NSCLC; the most common was pneumonitis (1.8%). The most common adverse reactions (20%) were decreased appetite (25%), fatigue (25%), dyspnea (23%), and nausea (20%).

Adverse reactions occurring in patients with SCLC were similar to those occurring in patients with other solid tumors who received KEYTRUDA as a single agent.

In KEYNOTE-048, KEYTRUDA monotherapy was discontinued due to adverse events in 12% of 300 patients with HNSCC; the most common adverse reactions leading to permanent discontinuation were sepsis (1.7%) and pneumonia (1.3%). The most common adverse reactions (20%) were fatigue (33%), constipation (20%), and rash (20%).

In KEYNOTE-048, when KEYTRUDA was administered in combination with platinum (cisplatin or carboplatin) and FU chemotherapy, KEYTRUDA was discontinued due to adverse reactions in 16% of 276 patients with HNSCC. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonia (2.5%), pneumonitis (1.8%), and septic shock (1.4%). The most common adverse reactions (20%) were nausea (51%), fatigue (49%), constipation (37%), vomiting (32%), mucosal inflammation (31%), diarrhea (29%), decreased appetite (29%), stomatitis (26%), and cough (22%).

In KEYNOTE-012, KEYTRUDA was discontinued due to adverse reactions in 17% of 192 patients with HNSCC. Serious adverse reactions occurred in 45% of patients. The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia, dyspnea, confusional state, vomiting, pleural effusion, and respiratory failure. The most common adverse reactions (20%) were fatigue, decreased appetite, and dyspnea. Adverse reactions occurring in patients with HNSCC were generally similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy, with the exception of increased incidences of facial edema and new or worsening hypothyroidism.

In KEYNOTE-087, KEYTRUDA was discontinued due to adverse reactions in 5% of 210 patients with cHL. Serious adverse reactions occurred in 16% of patients; those 1% included pneumonia, pneumonitis, pyrexia, dyspnea, GVHD, and herpes zoster. Two patients died from causes other than disease progression; 1 from GVHD after subsequent allogeneic HSCT and 1 from septic shock. The most common adverse reactions (20%) were fatigue (26%), pyrexia (24%), cough (24%), musculoskeletal pain (21%), diarrhea (20%), and rash (20%).

In KEYNOTE-170, KEYTRUDA was discontinued due to adverse reactions in 8% of 53 patients with PMBCL. Serious adverse reactions occurred in 26% of patients and included arrhythmia (4%), cardiac tamponade (2%), myocardial infarction (2%), pericardial effusion (2%), and pericarditis (2%). Six (11%) patients died within 30 days of start of treatment. The most common adverse reactions (20%) were musculoskeletal pain (30%), upper respiratory tract infection and pyrexia (28% each), cough (26%), fatigue (23%), and dyspnea (21%).

More:
Merck's KEYTRUDA (pembrolizumab) Superior to Standard of Care Chemotherapy in Patients with MSI-H Colorectal Cancer - BioSpace

To Read More: Merck’s KEYTRUDA (pembrolizumab) Superior to Standard of Care Chemotherapy in Patients with MSI-H Colorectal Cancer – BioSpace
categoriaCardiac Stem Cells commentoComments Off on Merck’s KEYTRUDA (pembrolizumab) Superior to Standard of Care Chemotherapy in Patients with MSI-H Colorectal Cancer – BioSpace | dataMay 30th, 2020
Read All

Hesperos Human-on-a-Chip System Used to Model Preclinical Stages of Alzheimer’s Disease and Mild Cognitive Impairment – Business Wire

By daniellenierenberg

ORLANDO, Fla.--(BUSINESS WIRE)--Hesperos Inc., pioneers of the Human-on-a-Chip in vitro system, today announced a new peer-reviewed publication that describes how the companys functional Human-on-a-Chip system can be used as a drug discovery platform to identify therapeutic interventions targeting the preclinical stages of Alzheimers disease (AD) and mild cognitive impairment (MCI). The manuscript, titled A human induced pluripotent stem cell-derived cortical neuron human-on-a-chip system to study A42 and tau-induced pathophysiological effects on long-term potentiation, was published this week in Alzheimer's & Dementia: Translational Research & Clinical Interventions. The work was conducted in collaboration with the University of Central Florida and with David G. Morgan, Ph.D., Professor of Translational Neuroscience at Michigan State University, and expert in AD pathology.

To date, more than 100 potential therapeutics in development for AD have been abandoned or failed during clinical trials. These therapeutics relied on research conducted in preclinical animal studies, which often are unable to accurately capture the full spectrum of the human disease phenotype, including differences in drug metabolism and excretion between humans and animals. Therefore, there is a need for human models, especially those that accurately recapitulate the functional impairments during the preclinical phases of AD and MCI.

Hesperos offers a breakthrough technology that provides a human cell-based assay based on cognitive function metrics to evaluate drugs designed to restore cognition at early stages of the Alzheimers continuum, said Dr. Morgan. This system can serve as a novel drug discovery platform to identify compounds that rescue or alleviate the initial neuronal deficits caused by A1-42 and/or tau oligomers, which is a main focus of clinical trials.

In 2018, Hesperos received a Phase I Small Business Innovation Research (SBIR) grant from the National Institute on Aging (NIA) division within the US National Institutes of Health (NIH) to help create a new multi-organ human-on-a-chip model for testing AD drugs. Research conducted under this grant included a study to assess therapeutic interventions based on functional changes in neurons, not neuronal death.

In the recent Alzheimer's & Dementia publication, Hesperos describes its in vitro human induced pluripotent stem cell (iPSC)-derived cortical neuron human-on-a-chip system for the evaluation of neuron morphology and function after exposure to toxic A and tau oligomers as well as brain extracts from AD transgenic mouse models.

Researchers are now focusing on biomarker development and therapeutic intervention before symptoms arise in AD and MCI, said James Hickman, Ph.D., Chief Scientist at Hesperos and Professor at the University of Central Florida. By studying functional disruption without extensive cell loss, we now have a screening methodology for drugs that could potentially evaluate therapeutic efficacy even before the neurodegeneration in MCI and AD occurs.

The researchers found that compared to controls, treatment with toxic A and tau oligomers or brain extracts on the iPSC cortical neurons significantly impaired information processing as demonstrated by reduction in high-frequency stimulation-induced long-term potentiation (LTP), a process that is thought to underlie memory formation and learning. Additionally, oligomer and brain extract exposure led to dysfunction in iPSC cortical neuron electrophysiological activity, including decreases in ion current and action potential firing.

While exposure to the toxic oligomers and brain extracts caused morphological defects in the iPSC cortical neurons, there was no significant loss in cell viability.

Clinical success for AD therapies has been challenging since preclinical animal studies often do not translate to humans, said Michael L. Shuler, Ph.D., Chief Executive Officer of Hesperos. With our recent study, we are now one step closer in developing an AD multi-organ model to better evaluate drug metabolism in the liver, penetration through the blood-brain barrier and the effects on neuronal cells.

About Alzheimers Disease/Preclinical Stage AD

AD is a progressive disease that is characterized by memory loss and deterioration of cognitive function. Preclinical AD is the first stage of the disease, and it begins long before any symptoms become apparent. It is thought that symptoms do not manifest until there is a significant death of neuronal cells, which is caused by the aggregation of toxic amyloid beta (A) and tau oligomers, typically during the earliest stages of the disease. Unfortunately, treatment after the diagnosis of MCI may be too late to reverse or modify disease progression.

To read the full manuscript, please visit https://alz-journals.onlinelibrary.wiley.com/doi/full/10.1002/trc2.12029.

About Hesperos

Hesperos, Inc. is a leading provider of Human-on-a-Chip microfluidic systems to characterize an individuals biology. Founders Michael L. Shuler and James J. Hickman have been at the forefront of every major scientific discovery in this realm, from individual organ-on-a-chip constructs to fully functional, interconnected multi-organ systems. With a mission to revolutionize toxicology testing as well as efficacy evaluation for drug discovery, the company has created pumpless platforms with serum-free cellular mediums that allow multi-organ system communication and integrated computational PKPD modeling of live physiological responses utilizing functional readouts from neurons, cardiac, muscle, barrier tissues and neuromuscular junctions as well as responses from liver, pancreas and barrier tissues. Created from human stem cells, the fully human systems are the first in vitro solutions to accurately predict in vivo functions without the use of animal models. More information is available at http://www.hesperosinc.com.

Hesperos and Human-on-a-Chip are trademarks of Hesperos Inc. All other brands may be trademarks of their respective holders.

Read more here:
Hesperos Human-on-a-Chip System Used to Model Preclinical Stages of Alzheimer's Disease and Mild Cognitive Impairment - Business Wire

To Read More: Hesperos Human-on-a-Chip System Used to Model Preclinical Stages of Alzheimer’s Disease and Mild Cognitive Impairment – Business Wire
categoriaCardiac Stem Cells commentoComments Off on Hesperos Human-on-a-Chip System Used to Model Preclinical Stages of Alzheimer’s Disease and Mild Cognitive Impairment – Business Wire | dataMay 30th, 2020
Read All

progenitor cell product Market Latest trending report is booming globally by Top Leading Players NeuroNova AB, StemCells, ReNeuron Limited, Asterias…

By daniellenierenberg

Due to the pandemic, we have included a special section on the Impact of COVID 19 on the progenitor cell productMarket which would mention How the Covid-19 is Affecting the Industry, Market Trends and Potential Opportunities in the COVID-19 Landscape, Key Regions and Proposal for progenitor cell product Market Players to battle Covid-19 Impact.

The progenitor cell productMarket report is one of the most comprehensive and important data about business strategies, qualitative and quantitative analysis of Global Market. It offers detailed research and analysis of key aspects of the progenitor cell product market. The market analysts authoring this report have provided in-depth information on leading growth drivers, restraints, challenges, trends, and opportunities to offer a complete analysis of the progenitor cell product market.

Top Leading players covered in the progenitor cell product market report: NeuroNova AB, StemCells, ReNeuron Limited, Asterias Biotherapeutics, Thermo Fisher Scientific, STEMCELL Technologies, Axol Bio, R&D Systems, Lonza, ATCC, Irvine Scientific, CDI and More

Get PDF Sample Report With Impact of COVID-19 on progenitor cell product [emailprotected] https://www.marketinforeports.com/Market-Reports/Request-Sample/74653

The report offers clear guidelines for players to cement a position of strength in the global progenitor cell product market. It prepares them to face future challenges and take advantage of lucrative opportunities by providing a broad analysis of market conditions. the global progenitor cell product market will showcase a steadyCAGR in the forecast year 2020 to 2026.

On the basis of product, we research the production, revenue, price, market share and growth rate, primarily split into:Pancreatic progenitor cellsCardiac Progenitor CellsIntermediate progenitor cellsNeural progenitor cells (NPCs)Endothelial progenitor cells (EPC)OthersFor the end users/applications, this report focuses on the status and outlook for major applications/end users, consumption (sales), market share and growth rate of PROGENITOR CELL PRODUCT for each application, including:Medical careHospitalLaboratory

Our Complimentary Sample progenitor cell product market Report Accommodate a Brief Introduction of the research report, TOC, List of Tables and Figures, Competitive Landscape and Geographic Segmentation, Innovation and Future Developments Based on Research Methodology.

Inquire and Get Up to 30% DiscountBy Clicking Here!https://www.marketinforeports.com/Market-Reports/Request_discount/74653

Regions Covered in the Global progenitor cell product Market: The Middle East and Africa (GCC Countries and Egypt) North America (the United States, Mexico, and Canada) South America (Brazil etc.) Europe (Turkey, Germany, Russia UK, Italy, France, etc.) Asia-Pacific (Vietnam, China, Malaysia, Japan, Philippines, Korea, Thailand, India, Indonesia, and Australia)

Years Considered to Estimate the progenitor cell product Market Size:History Year: 2015-2019Base Year: 2019Estimated Year: 2020Forecast Year: 2020-2026

Highlights of the Report: Accurate market size and CAGR forecasts for the period 2019-2026 Identification and in-depth assessment of growth opportunities in key segments and regions Detailed company profiling of top players of the global progenitor cell product market Exhaustive research on innovation and other trends of the global progenitor cell product market Reliable industry value chain and supply chain analysis Comprehensive analysis of important growth drivers, restraints, challenges, and growth prospects

For More Information:https://www.marketinforeports.com/Market-Reports/74653/progenitor-cell-product-market

Customization of the Report:Market Info Reports provides customization of reports as per your need. This report can be personalized to meet your requirements. Get in touch with our sales team, who will guarantee you to get a report that suits your necessities.

Get Customization of the [emailprotected]:https://www.marketinforeports.com/Market-Reports/Request-Customization/74653/progenitor-cell-product-market

Contact Us:Mr. Marcus KelCall: +1 415 658 9988 (International)+91 84 839 65921 (IND)Email: [emailprotected]Website: http://www.marketinforeports.com

The rest is here:
progenitor cell product Market Latest trending report is booming globally by Top Leading Players NeuroNova AB, StemCells, ReNeuron Limited, Asterias...

To Read More: progenitor cell product Market Latest trending report is booming globally by Top Leading Players NeuroNova AB, StemCells, ReNeuron Limited, Asterias…
categoriaCardiac Stem Cells commentoComments Off on progenitor cell product Market Latest trending report is booming globally by Top Leading Players NeuroNova AB, StemCells, ReNeuron Limited, Asterias… | dataMay 30th, 2020
Read All

Leonhardts Launchpads Announces Issuance of New U.S. Patent for Bioelectric Plus Biologics Platform for Organ Regeneration and Healing – Life Pulse…

By daniellenierenberg

United States, California, Irvine 05-27-2020 (PRDistribution.com) Latest Patent Further Strengthens Intellectual Property Portfolio Covering Novel Platform for Precisely ControllingRegenerative Protein Expressions Including Stem Cell Homing and Differentiation Control

Technology Has Key Potential Applications in Regeneration of Failing Heart, Brain, Kidney, Liver, Pancreas, Lungs, Aorta, Vision and Hearing as well as Transcutaneous Uses for Accelerated Wound Healing, Skin, Hair and Penile Function Regeneration (ED)Irvine, California, May 27th, 2020 Leonhardts Launchpads, an innovation and startup launch accelerator focused on developing novel therapeutics that harness the bodys innate mechanisms to regenerate failing organs and to heal tissues, today announced the issuance of a new U.S. patent providing broad protection for the companys first-of-its-kind combination bioelectrics and biologics technology platform, which has multiple potential therapeutic applications in organ regeneration and recovery. Previous stem cell therapies that delivered stem cells alone in a single application failed to regenerate organs fully. Electrical stimulation technologies to date have failed to zero in on and deliver the precise right bioelectric signaling sequences for controlling specific regenerative protein expressions when and where needed. This pioneering technology platform is the first to combine the powerful ability of bioelectric stimulation with repeat deliveries of not just stem cells but a whole host of support factors similar to an egg yolk designed to help cells survive, proliferate, engraft and differentiate with the intention of fully regenerating failing organs. stated primary inventor, Executive Chairman and CEO Howard J. Leonhardt. U.S. Patent 10,646,644 Issued May 12th, 2020 https://patents.justia.com/patent/10646644covers bioelectric stimulation controlled release of SDF1 and PDGF known stem cell homing and proliferation factors as well as use of a re-fillable micro infusion pump for slow infusion of a mixed composition of stem cells, exosomes, micro RNAs, nutrient hydrogel, growth factor cocktail, selected alkaloids and anti-inflammatory agents with the intention of regenerating organs and healing tissues. SDF1 and PDGF highlighted in these new patent claims also have strong capabilities in promoting arteriogenesis (mature blood vessel growth).The Leonhardt team has separately filed or acquired patent claims for bioelectric controlled expression of follistatin, klotho, tropoelastin, VEGF, IGF1, CXCL5, HIF1a, EGF, HGF, OPG, RANKL and COL17A1 all known to have a role in organ healing https://patents.justia.com/patent/20180064935. Separately the Leonhardts Launchpads startup CancerCell has 9 issued U.S. patents https://cancercellinc.com/list-of-the-issued-cancer-patents/ for bioelectric treatment of cancer and dozens of additional cancer treatment related claims pending https://patents.justia.com/patent/20190030330. The team has filed patent clams on the combination of bioelectric stimulation and PRF https://patents.justia.com/patent/20200000709. Other important patent filings have been submitted on bioelectric inflammation management https://patents.justia.com/patent/20190022389 and blood pressure management https://patents.justia.com/patent/20190022396The Leonhardts Launchpads technology platform is based on foundational scientific research that began in the late 1980s working with Dr. Race Kao and Dr. George Magovern Sr. in Pittsburgh when they injected satellite cells (myoblasts or muscle stem cells) to repair damaged heart tissue in dogs and published the results in The Physiologist in 1989. In 1995 Howard Leonhardt filed his first patent for a stem cell and biologics delivery system for organ repair ProCell https://patents.google.com/patent/US5693029A/en based on work that began in 1988. In 1998 the Leonhardt team began collaboration with Dr. Doris Taylor whom that year published a landmark paper in Nature Medicine https://www.nature.com/articles/nm0898-929 on repair of infarcted hearts with myoblast cells. Dr. Taylor currently still serves as co-chair of our Scientific Advisory Board today. In 1999 the Leonhardt team worked with Dr. Shinichi Kanno to publish in Circulation, the Journal of the American Heart Association, pioneering results with bioelectric stimulation driven VEGF protein expression for limb salvage via angiogenesis in animals https://www.ahajournals.org/doi/abs/10.1161/01.cir.99.20.2682 and filed a patent application for the same within a year. Since then the Leonhardt team and LeonhardtsLaunchpads and itsportfolio of startupshas had issued, pending,optioned orlicensed over 600patentclaims for organregeneration andrecovery. In 2001 Howard Leonhardt and Dr. Juan Chachques filed patents on bioelectric stimulation controlled myogenesis and dynamic cardiac support with an early less potent stem cell homing signal. That same year a Leonhardt led team working with Dr. Patrick Serruys completed the landmark first ever case of non-surgical cell based regeneration of a damaged human heart in The Netherlands. Howard Leonhardt began a collaboration at that time with Dr. Jorge Genovese co-inventor of this patent, and BioLeonhardts VP of Bioelectric Regeneration Research, that continues to this day. Over 200 dedicated talented people help Leonhardts Launchpads and its startups advance their developments almost every day see Team https://leonhardtventures.com/team/ and Scientific Advisory Board https://calxstars.com/scientific-advisory-board/.About Leonhardts Launchpads:Leonhardts Launchpads by Cal-X Stars Business Accelerator, Inc. in California, Leonhardts Launchpads Utah, Inc., Leonhardts Launchpads Australia PTY and Leonhardts Launchpads branches in Minneapolis, Pittsburgh and Brazil are the innovation and startup launch accelerator arms of Leonhardt Ventures (Leonhardt Vineyards LLC DBA Leonhardt Ventures). Leonhardt Ventures has been developing breakthrough medtech and biotech innovations since the 1980s. In the 1980s the team patented, developed and commercialized the PolyCath line of cardiovascular balloon catheters. In the 1990s they developed and completed the first non-surgical repair of an aortic aneurysm (Melbourne, Australia 1995) and patented what is still today the leading endovascular stent graft for aortic aneurysm repair. In that time period they also patented one of the first percutaneous heart valve systems. Since 2000 the team has been focused almost exclusively on stem cell, biologics and bioelectric based organ regeneration and healing. In May of 2001 the team completed the landmark first ever non-surgical case of cell therapy for heart damage recovery. In 2008 the team began exploring if what they had learned from research in regenerating hearts could be translated to other organs. The organization now has 30 related startups and organ specific innovations in its 2020 portfolio class https://leonhardtventures.com/development-pipeline/ in these groups (1) Heart & Cardiovascular, (2) Brain, (3) Cosmetic & Reproductive Health, (4) Major Organ Regeneration and (5) Cancer. The accelerator business model is to accelerate each organ specific innovation through first in human studies and then secure a strategic partner to advance the product through commercialization. Click on Leonhardt Ventures and Leonhardts Launchpads 2020 Annual Report for more information https://leonhardtventures.com/wp-content/uploads/2020/04/4_23_2020.pdfand our web site at http://www.leonhardtventures.comSee previous PDGF related press release https://www.biospace.com/article/releases/-b-leonhardt-b-and-b-genovese-b-file-patent-for-bioelectric-controlled-expression-of-pdgf-a-powerful-organ-regeneration-cytokine-/See previous KLOTHO anti-aging related press release https://www.biospace.com/article/leonhardt-s-launchpads-announces-filing-of-patent-for-bioelectric-stimulation-controlled-klotho-expression-powerful-anti-aging-and-regeneration-promoting-protein-/Contact See contact page on web site for contact information for all locations and phone numbers https://leonhardtventures.com/contact/Leonhardts Launchpads[emailprotected]Warning and Disclaimers: Product(s) are not yet proven safe or effective. Patents pending may not be issued. Patents licensed or optioned may not be maintained. Patents issued may be invalidated. Products are in early stage development. Forward looking statements may change without notice. As an investment these startups mentioned are in the highest risk category for total loss and only suitable for sophisticated experienced accredited investors. The company does not have on hand sufficient resources to bring these products through clinical studies and may not obtain these resources. The company is under staffed and under funded compared to most other participants in this space. Due to a small staff at the accelerator to maintain all web sites and other published materials they may not be fully up to date and there may be out date inaccurate information. If you have any questions on our products or our company please write us to ask.Leonhardts Launchpads by Cal-X Stars,18575 Jamboree Rd #6, Irvine, CA 92612Leonhardts Launchpads Utah, Inc.Research Lab @ 2500 S State St. #D249, Salt Lake City, UT 84115

Media Contacts:

Company Name: Leonhardts Launchpads by Cal-X Stars Business Accelerator, Inc.Full Name: Howard J. LeonhardtPhone: (424) 291-2133Email Address: Send EmailWebsite: http://www.leonhardtventures.com

For the original news story, please visit https://prdistribution.com/news/leonhardts-launchpadsannounces-issuance-of-newus-patent-forbioelectric-plus-biologics-platform-for-organ-regeneration-and-healing.html.

Powered by WPeMatico

Continue reading here:
Leonhardts Launchpads Announces Issuance of New U.S. Patent for Bioelectric Plus Biologics Platform for Organ Regeneration and Healing - Life Pulse...

To Read More: Leonhardts Launchpads Announces Issuance of New U.S. Patent for Bioelectric Plus Biologics Platform for Organ Regeneration and Healing – Life Pulse…
categoriaCardiac Stem Cells commentoComments Off on Leonhardts Launchpads Announces Issuance of New U.S. Patent for Bioelectric Plus Biologics Platform for Organ Regeneration and Healing – Life Pulse… | dataMay 28th, 2020
Read All

Merck’s KEYTRUDA (pembrolizumab) Superior to Standard of Care Chemotherapy in Patients with MSI-H Colorectal Cancer – Maryville Daily Times

By daniellenierenberg

KENILWORTH, N.J.--(BUSINESS WIRE)--May 28, 2020--

Merck (NYSE: MRK), known as MSD outside the United States and Canada, today announced the first presentation of results from KEYNOTE-177, a Phase 3 trial evaluating KEYTRUDA, Mercks anti-PD-1 therapy, for the first-line treatment of patients with microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR) unresectable or metastatic colorectal cancer. In this pivotal study, KEYTRUDA monotherapy significantly reduced the risk of disease progression or death by 40% (HR=0.60 [95% CI, 0.45-0.80; p=0.0002]) and showed a median progression-free survival (PFS) of 16.5 months compared with 8.2 months for patients treated with chemotherapy (investigators choice of mFOLFOX6 or FOLFIRI, with or without bevacizumab or cetuximab), a current standard of care in this patient population. As previously announced, the study will continue without changes to evaluate overall survival (OS), the other dual primary endpoint. These results were selected for presentation on Sunday, May 31, 2020 in the plenary session of the virtual scientific program of the 2020 American Society of Clinical Oncology (ASCO) Annual Meeting (Abstract #LBA4).

For many years, the standard of care for the first-line treatment of patients with MSI-H colorectal cancer has been the combination of mFOLFOX6 plus bevacizumab. This is the first time a single-agent, anti-PD-1 therapy demonstrated a superior, statistically significant and clinically meaningful improvement in progression-free survival compared to chemotherapy for these patients, said Dr. Roy Baynes, senior vice president and head of global clinical development, chief medical officer, Merck Research Laboratories. There is an unmet need for new treatment options in the first-line setting that may provide sustained, long-term improvements in outcomes for patients with MSI-H colorectal cancer. We are grateful to have the opportunity to present these practice-changing findings at the plenary session of this years ASCO.

KEYTRUDA monotherapy significantly reduced the risk of disease progression or death by 40% versus standard of care chemotherapy, with fewer treatment-related adverse events observed, in patients with MSI-H metastatic colorectal cancer. KEYTRUDA also demonstrated a long-term, durable response that lasted over two years for those who responded to treatment, said Thierry Andre, MD, professor of medical oncology, Sorbonne University, and Head of the Medical Oncology Department in St. Antoine Hospital, Assistance Publique Hpitaux de Paris. Data from KEYNOTE-177 show that KEYTRUDA monotherapy has the potential to become the new standard of care for first-line treatment of patients with MSI-H metastatic colorectal cancer.

In May 2017, KEYTRUDA became the first cancer therapy approved by the U.S. Food and Drug Administration for use based on a biomarker, regardless of tumor type, in previously treated patients with MSI-H or dMMR solid tumors.

As announced, more than 80 abstracts in nearly 20 types of solid tumors and blood cancers will be presented from Mercks broad oncology portfolio and investigational pipeline at ASCO. A compendium of presentations and posters of Merck-led studies will be posted by Merck on Friday, May 29 at 8 a.m. ET. Follow Merck on Twitter via @Merck and keep up to date with ASCO news and updates by using the hashtag #ASCO20.

KEYNOTE-177 Study Design and Additional Data (Abstract #LBA4)

KEYNOTE-177 is a randomized, open-label, Phase 3 trial evaluating KEYTRUDA monotherapy versus standard of care chemotherapy for the first-line treatment of patients with MSI-H or dMMR metastatic colorectal cancer (ClinicalTrials.gov, NCT02563002 ). The dual primary endpoints are PFS and OS. The study enrolled 307 patients, who were randomized to receive either KEYTRUDA (200 mg intravenously on Day 1 of each three-week cycle for up to 35 cycles) or investigators choice of one of the following chemotherapy-based regimens: mFOLFOX6; mFOLFOX6 plus bevacizumab (5 mg/kg IV on Day 1 of each two-week cycle); mFOLFOX6 plus cetuximab (400 mg/m2 IV, then 250 mg/m2 weekly in each two-week cycle); FOLFIRI; FOLFIRI plus bevacizumab (5 mg/kg IV on Day 1 of each two-week cycle); or FOLFIRI plus cetuximab (400 mg/m2 IV, then 250 mg/m2 weekly in each two-week cycle).

In this study, KEYTRUDA demonstrated a statistically significant and clinically meaningful improvement in PFS (HR=0.60 [95% CI, 0.45-0.80; p=0.0002]) and showed a median PFS of 16.5 months compared with 8.2 months for patients treated with chemotherapy. The two-year PFS rate was 48% with KEYTRUDA versus 19% with chemotherapy. The ORR was 43.8% with KEYTRUDA versus 33.1% with chemotherapy, with a complete response observed in 11.1% and 3.9% of patients, respectively; partial responses were observed in 32.7% and 29.2% of patients, respectively. Median duration of response was not reached with KEYTRUDA (range, 2.3+ to 41.4+) versus 10.6 months with chemotherapy (range, 2.8 to 37.5+). Additionally, 83% of patients had durable responses lasting at least two years with KEYTRUDA versus 35% with chemotherapy. In the study, 59% of patients in the intent-to-treat population received subsequent anti-PD-1/PD-L1 therapy after discontinuing study treatment in the chemotherapy arm.

The safety profile of KEYTRUDA demonstrated a lower incidence of Grade 3 treatment-related adverse events (AEs) versus chemotherapy (22% versus 66%, respectively), and no new toxicities were observed. Immune-mediated AEs and infusion reactions occurred in 31% of patients receiving KEYTRUDA and 13% of patients receiving chemotherapy. The most commonly reported immune-mediated AEswere hypothyroidism (12%) and colitis (7%) with KEYTRUDA, and infusion reactions (8%) with chemotherapy.

Merck will hold a virtual investor event in conjunction with the ASCO Annual Meeting on Tuesday, June 2 at 2 p.m. ET. Details will be provided at a date closer to the event at http://investors.merck.com/home/default.aspx.

About Microsatellite Instability High (MSI-H)

Microsatellite instability (or MSI) is defined by the National Cancer Institute as a change that occurs in the DNA of certain cells (such as tumor cells) in which the number of repeats of microsatellites (short, repeated sequences of DNA) is different from the number of repeats that was in the DNA when it was inherited. The cause of MSI may be a defect in the ability to repair mistakes made when DNA is copied in the cell. This defect is also referred to as mismatch repair deficiency (dMMR). It is estimated that approximately 5-15% of colorectal cancer patients have tumors that score as either MSI-H or dMMR when testing is performed.

Colorectal cancer starts in the colon or the rectum, and these cancers are referred to as colon cancer and rectal cancer depending on where the cancer starts. Colorectal cancer often begins with growths on the inner lining of the colon or rectum called polyps, which can change into cancer over time. Colorectal cancer is the third most commonly diagnosed cancer and the second most common cause of cancer-related death worldwide. It is estimated there were nearly 850,000 new cases of colorectal cancer and more than 880,000 deaths from the disease globally in 2018. In the United States, it is estimated there will be nearly 105,000 new cases of colon cancer and more than 43,000 new cases of rectal cancer, resulting in more than 53,000 deaths from colorectal cancer in 2020. The five-year survival rates for advanced/metastatic colon cancer and rectal cancer (stage IV) are estimated to be 14% and 15%, respectively.

About KEYTRUDA (pembrolizumab) Injection, 100 mg

KEYTRUDA is an anti-PD-1 therapy that works by increasing the ability of the bodys immune system to help detect and fight tumor cells. KEYTRUDA is a humanized monoclonal antibody that blocks the interaction between PD-1 and its ligands, PD-L1 and PD-L2, thereby activating T lymphocytes which may affect both tumor cells and healthy cells.

Merck has the industrys largest immuno-oncology clinical research program. There are currently more than 1,200 trials studying KEYTRUDA across a wide variety of cancers and treatment settings. The KEYTRUDA clinical program seeks to understand the role of KEYTRUDA across cancers and the factors that may predict a patient's likelihood of benefitting from treatment with KEYTRUDA, including exploring several different biomarkers.

Selected KEYTRUDA (pembrolizumab) Indications

KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic melanoma.

KEYTRUDA is indicated for the adjuvant treatment of patients with melanoma with involvement of lymph node(s) following complete resection.

Non-Small Cell Lung Cancer

KEYTRUDA, in combination with pemetrexed and platinum chemotherapy, is indicated for the first-line treatment of patients with metastatic nonsquamous non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.

KEYTRUDA, in combination with carboplatin and either paclitaxel or paclitaxel protein-bound, is indicated for the first-line treatment of patients with metastatic squamous NSCLC.

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with NSCLC expressing PD-L1 [tumor proportion score (TPS) 1%] as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations, and is stage III where patients are not candidates for surgical resection or definitive chemoradiation, or metastatic.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with metastatic NSCLC whose tumors express PD-L1 (TPS 1%) as determined by an FDA-approved test, with disease progression on or after platinum-containing chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving KEYTRUDA.

KEYTRUDA is indicated for the treatment of patients with metastatic small cell lung cancer (SCLC) with disease progression on or after platinum-based chemotherapy and at least 1 other prior line of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

Head and Neck Squamous Cell Cancer

KEYTRUDA, in combination with platinum and fluorouracil (FU), is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent head and neck squamous cell carcinoma (HNSCC).

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent HNSCC whose tumors express PD-L1 [combined positive score (CPS) 1] as determined by an FDA-approved test.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) with disease progression on or after platinum-containing chemotherapy.

Classical Hodgkin Lymphoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory classical Hodgkin lymphoma (cHL), or who have relapsed after 3 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Primary Mediastinal Large B-Cell Lymphoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory primary mediastinal large B-cell lymphoma (PMBCL), or who have relapsed after 2 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials. KEYTRUDA is not recommended for treatment of patients with PMBCL who require urgent cytoreductive therapy.

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who are not eligible for cisplatin-containing chemotherapy and whose tumors express PD-L1 [combined positive score (CPS) 10], as determined by an FDA-approved test, or in patients who are not eligible for any platinum-containing chemotherapy regardless of PD-L1 status. This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who have disease progression during or following platinum-containing chemotherapy or within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy.

KEYTRUDA is indicated for the treatment of patients with Bacillus Calmette-Guerin (BCG)-unresponsive, high-risk, non-muscle invasive bladder cancer (NMIBC) with carcinoma in situ (CIS) with or without papillary tumors who are ineligible for or have elected not to undergo cystectomy.

Microsatellite Instability-High (MSI-H) Cancer

KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR)

This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with MSI-H central nervous system cancers have not been established.

KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic gastric or gastroesophageal junction (GEJ) adenocarcinoma whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test, with disease progression on or after two or more prior lines of therapy including fluoropyrimidine- and platinum-containing chemotherapy and if appropriate, HER2/neu-targeted therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic squamous cell carcinoma of the esophagus whose tumors express PD-L1 (CPS 10) as determined by an FDA-approved test, with disease progression after one or more prior lines of systemic therapy.

KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cervical cancer with disease progression on or after chemotherapy whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

KEYTRUDA is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

KEYTRUDA is indicated for the treatment of adult and pediatric patients with recurrent locally advanced or metastatic Merkel cell carcinoma (MCC). This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

KEYTRUDA, in combination with axitinib, is indicated for the first-line treatment of patients with advanced renal cell carcinoma (RCC).

Selected Important Safety Information for KEYTRUDA

Immune-Mediated Pneumonitis

KEYTRUDA can cause immune-mediated pneumonitis, including fatal cases. Pneumonitis occurred in 3.4% (94/2799) of patients with various cancers receiving KEYTRUDA, including Grade 1 (0.8%), 2 (1.3%), 3 (0.9%), 4 (0.3%), and 5 (0.1%). Pneumonitis occurred in 8.2% (65/790) of NSCLC patients receiving KEYTRUDA as a single agent, including Grades 3-4 in 3.2% of patients, and occurred more frequently in patients with a history of prior thoracic radiation (17%) compared to those without (7.7%). Pneumonitis occurred in 6% (18/300) of HNSCC patients receiving KEYTRUDA as a single agent, including Grades 3-5 in 1.6% of patients, and occurred in 5.4% (15/276) of patients receiving KEYTRUDA in combination with platinum and FU as first-line therapy for advanced disease, including Grades 3-5 in 1.5% of patients.

Monitor patients for signs and symptoms of pneumonitis. Evaluate suspected pneumonitis with radiographic imaging. Administer corticosteroids for Grade 2 or greater pneumonitis. Withhold KEYTRUDA for Grade 2; permanently discontinue KEYTRUDA for Grade 3 or 4 or recurrent Grade 2 pneumonitis.

KEYTRUDA can cause immune-mediated colitis. Colitis occurred in 1.7% (48/2799) of patients receiving KEYTRUDA, including Grade 2 (0.4%), 3 (1.1%), and 4 (<0.1%). Monitor patients for signs and symptoms of colitis. Administer corticosteroids for Grade 2 or greater colitis. Withhold KEYTRUDA for Grade 2 or 3; permanently discontinue KEYTRUDA for Grade 4 colitis.

Immune-Mediated Hepatitis (KEYTRUDA) and Hepatotoxicity (KEYTRUDA in Combination With Axitinib)

Immune-Mediated Hepatitis

KEYTRUDA can cause immune-mediated hepatitis. Hepatitis occurred in 0.7% (19/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.4%), and 4 (<0.1%). Monitor patients for changes in liver function. Administer corticosteroids for Grade 2 or greater hepatitis and, based on severity of liver enzyme elevations, withhold or discontinue KEYTRUDA.

Hepatotoxicity in Combination With Axitinib

KEYTRUDA in combination with axitinib can cause hepatic toxicity with higher than expected frequencies of Grades 3 and 4 ALT and AST elevations compared to KEYTRUDA alone. With the combination of KEYTRUDA and axitinib, Grades 3 and 4 increased ALT (20%) and increased AST (13%) were seen. Monitor liver enzymes before initiation of and periodically throughout treatment. Consider more frequent monitoring of liver enzymes as compared to when the drugs are administered as single agents. For elevated liver enzymes, interrupt KEYTRUDA and axitinib, and consider administering corticosteroids as needed.

Immune-Mediated Endocrinopathies

KEYTRUDA can cause adrenal insufficiency (primary and secondary), hypophysitis, thyroid disorders, and type 1 diabetes mellitus. Adrenal insufficiency occurred in 0.8% (22/2799) of patients, including Grade 2 (0.3%), 3 (0.3%), and 4 (<0.1%). Hypophysitis occurred in 0.6% (17/2799) of patients, including Grade 2 (0.2%), 3 (0.3%), and 4 (<0.1%). Hypothyroidism occurred in 8.5% (237/2799) of patients, including Grade 2 (6.2%) and 3 (0.1%). The incidence of new or worsening hypothyroidism was higher in 1185 patients with HNSCC (16%) receiving KEYTRUDA, as a single agent or in combination with platinum and FU, including Grade 3 (0.3%) hypothyroidism. Hyperthyroidism occurred in 3.4% (96/2799) of patients, including Grade 2 (0.8%) and 3 (0.1%), and thyroiditis occurred in 0.6% (16/2799) of patients, including Grade 2 (0.3%). Type 1 diabetes mellitus, including diabetic ketoacidosis, occurred in 0.2% (6/2799) of patients.

Monitor patients for signs and symptoms of adrenal insufficiency, hypophysitis (including hypopituitarism), thyroid function (prior to and periodically during treatment), and hyperglycemia. For adrenal insufficiency or hypophysitis, administer corticosteroids and hormone replacement as clinically indicated. Withhold KEYTRUDA for Grade 2 adrenal insufficiency or hypophysitis and withhold or discontinue KEYTRUDA for Grade 3 or Grade 4 adrenal insufficiency or hypophysitis. Administer hormone replacement for hypothyroidism and manage hyperthyroidism with thionamides and beta-blockers as appropriate. Withhold or discontinue KEYTRUDA for Grade 3 or 4 hyperthyroidism. Administer insulin for type 1 diabetes, and withhold KEYTRUDA and administer antihyperglycemics in patients with severe hyperglycemia.

Immune-Mediated Nephritis and Renal Dysfunction

KEYTRUDA can cause immune-mediated nephritis. Nephritis occurred in 0.3% (9/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.1%), and 4 (<0.1%) nephritis. Nephritis occurred in 1.7% (7/405) of patients receiving KEYTRUDA in combination with pemetrexed and platinum chemotherapy. Monitor patients for changes in renal function. Administer corticosteroids for Grade 2 or greater nephritis. Withhold KEYTRUDA for Grade 2; permanently discontinue for Grade 3 or 4 nephritis.

Immune-Mediated Skin Reactions

Immune-mediated rashes, including Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN) (some cases with fatal outcome), exfoliative dermatitis, and bullous pemphigoid, can occur. Monitor patients for suspected severe skin reactions and based on the severity of the adverse reaction, withhold or permanently discontinue KEYTRUDA and administer corticosteroids. For signs or symptoms of SJS or TEN, withhold KEYTRUDA and refer the patient for specialized care for assessment and treatment. If SJS or TEN is confirmed, permanently discontinue KEYTRUDA.

Other Immune-Mediated Adverse Reactions

Immune-mediated adverse reactions, which may be severe or fatal, can occur in any organ system or tissue in patients receiving KEYTRUDA and may also occur after discontinuation of treatment. For suspected immune-mediated adverse reactions, ensure adequate evaluation to confirm etiology or exclude other causes. Based on the severity of the adverse reaction, withhold KEYTRUDA and administer corticosteroids. Upon improvement to Grade 1 or less, initiate corticosteroid taper and continue to taper over at least 1 month. Based on limited data from clinical studies in patients whose immune-related adverse reactions could not be controlled with corticosteroid use, administration of other systemic immunosuppressants can be considered. Resume KEYTRUDA when the adverse reaction remains at Grade 1 or less following corticosteroid taper. Permanently discontinue KEYTRUDA for any Grade 3 immune-mediated adverse reaction that recurs and for any life-threatening immune-mediated adverse reaction.

The following clinically significant immune-mediated adverse reactions occurred in less than 1% (unless otherwise indicated) of 2799 patients: arthritis (1.5%), uveitis, myositis, Guillain-Barr syndrome, myasthenia gravis, vasculitis, pancreatitis, hemolytic anemia, sarcoidosis, and encephalitis. In addition, myelitis and myocarditis were reported in other clinical trials, including classical Hodgkin lymphoma, and postmarketing use.

Treatment with KEYTRUDA may increase the risk of rejection in solid organ transplant recipients. Consider the benefit of treatment vs the risk of possible organ rejection in these patients.

Infusion-Related Reactions

KEYTRUDA can cause severe or life-threatening infusion-related reactions, including hypersensitivity and anaphylaxis, which have been reported in 0.2% (6/2799) of patients. Monitor patients for signs and symptoms of infusion-related reactions. For Grade 3 or 4 reactions, stop infusion and permanently discontinue KEYTRUDA.

Complications of Allogeneic Hematopoietic Stem Cell Transplantation (HSCT)

Immune-mediated complications, including fatal events, occurred in patients who underwent allogeneic HSCT after treatment with KEYTRUDA. Of 23 patients with cHL who proceeded to allogeneic HSCT after KEYTRUDA, 6 (26%) developed graft-versus-host disease (GVHD) (1 fatal case) and 2 (9%) developed severe hepatic veno-occlusive disease (VOD) after reduced-intensity conditioning (1 fatal case). Cases of fatal hyperacute GVHD after allogeneic HSCT have also been reported in patients with lymphoma who received a PD-1 receptorblocking antibody before transplantation. Follow patients closely for early evidence of transplant-related complications such as hyperacute graft-versus-host disease (GVHD), Grade 3 to 4 acute GVHD, steroid-requiring febrile syndrome, hepatic veno-occlusive disease (VOD), and other immune-mediated adverse reactions.

In patients with a history of allogeneic HSCT, acute GVHD (including fatal GVHD) has been reported after treatment with KEYTRUDA. Patients who experienced GVHD after their transplant procedure may be at increased risk for GVHD after KEYTRUDA. Consider the benefit of KEYTRUDA vs the risk of GVHD in these patients.

Increased Mortality in Patients With Multiple Myeloma

In trials in patients with multiple myeloma, the addition of KEYTRUDA to a thalidomide analogue plus dexamethasone resulted in increased mortality. Treatment of these patients with a PD-1 or PD-L1 blocking antibody in this combination is not recommended outside of controlled trials.

Based on its mechanism of action, KEYTRUDA can cause fetal harm when administered to a pregnant woman. Advise women of this potential risk. In females of reproductive potential, verify pregnancy status prior to initiating KEYTRUDA and advise them to use effective contraception during treatment and for 4 months after the last dose.

In KEYNOTE-006, KEYTRUDA was discontinued due to adverse reactions in 9% of 555 patients with advanced melanoma; adverse reactions leading to permanent discontinuation in more than one patient were colitis (1.4%), autoimmune hepatitis (0.7%), allergic reaction (0.4%), polyneuropathy (0.4%), and cardiac failure (0.4%). The most common adverse reactions (20%) with KEYTRUDA were fatigue (28%), diarrhea (26%), rash (24%), and nausea (21%).

In KEYNOTE-002, KEYTRUDA was permanently discontinued due to adverse reactions in 12% of 357 patients with advanced melanoma; the most common (1%) were general physical health deterioration (1%), asthenia (1%), dyspnea (1%), pneumonitis (1%), and generalized edema (1%). The most common adverse reactions were fatigue (43%), pruritus (28%), rash (24%), constipation (22%), nausea (22%), diarrhea (20%), and decreased appetite (20%).

In KEYNOTE-054, KEYTRUDA was permanently discontinued due to adverse reactions in 14% of 509 patients; the most common (1%) were pneumonitis (1.4%), colitis (1.2%), and diarrhea (1%). Serious adverse reactions occurred in 25% of patients receiving KEYTRUDA. The most common adverse reaction (20%) with KEYTRUDA was diarrhea (28%).

In KEYNOTE-189, when KEYTRUDA was administered with pemetrexed and platinum chemotherapy in metastatic nonsquamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 20% of 405 patients. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonitis (3%) and acute kidney injury (2%). The most common adverse reactions (20%) with KEYTRUDA were nausea (56%), fatigue (56%), constipation (35%), diarrhea (31%), decreased appetite (28%), rash (25%), vomiting (24%), cough (21%), dyspnea (21%), and pyrexia (20%).

In KEYNOTE-407, when KEYTRUDA was administered with carboplatin and either paclitaxel or paclitaxel protein-bound in metastatic squamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 15% of 101 patients. The most frequent serious adverse reactions reported in at least 2% of patients were febrile neutropenia, pneumonia, and urinary tract infection. Adverse reactions observed in KEYNOTE-407 were similar to those observed in KEYNOTE-189 with the exception that increased incidences of alopecia (47% vs 36%) and peripheral neuropathy (31% vs 25%) were observed in the KEYTRUDA and chemotherapy arm compared to the placebo and chemotherapy arm in KEYNOTE-407.

In KEYNOTE-042, KEYTRUDA was discontinued due to adverse reactions in 19% of 636 patients with advanced NSCLC; the most common were pneumonitis (3%), death due to unknown cause (1.6%), and pneumonia (1.4%). The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia (7%), pneumonitis (3.9%), pulmonary embolism (2.4%), and pleural effusion (2.2%). The most common adverse reaction (20%) was fatigue (25%).

In KEYNOTE-010, KEYTRUDA monotherapy was discontinued due to adverse reactions in 8% of 682 patients with metastatic NSCLC; the most common was pneumonitis (1.8%). The most common adverse reactions (20%) were decreased appetite (25%), fatigue (25%), dyspnea (23%), and nausea (20%).

Adverse reactions occurring in patients with SCLC were similar to those occurring in patients with other solid tumors who received KEYTRUDA as a single agent.

In KEYNOTE-048, KEYTRUDA monotherapy was discontinued due to adverse events in 12% of 300 patients with HNSCC; the most common adverse reactions leading to permanent discontinuation were sepsis (1.7%) and pneumonia (1.3%). The most common adverse reactions (20%) were fatigue (33%), constipation (20%), and rash (20%).

In KEYNOTE-048, when KEYTRUDA was administered in combination with platinum (cisplatin or carboplatin) and FU chemotherapy, KEYTRUDA was discontinued due to adverse reactions in 16% of 276 patients with HNSCC. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonia (2.5%), pneumonitis (1.8%), and septic shock (1.4%). The most common adverse reactions (20%) were nausea (51%), fatigue (49%), constipation (37%), vomiting (32%), mucosal inflammation (31%), diarrhea (29%), decreased appetite (29%), stomatitis (26%), and cough (22%).

In KEYNOTE-012, KEYTRUDA was discontinued due to adverse reactions in 17% of 192 patients with HNSCC. Serious adverse reactions occurred in 45% of patients. The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia, dyspnea, confusional state, vomiting, pleural effusion, and respiratory failure. The most common adverse reactions (20%) were fatigue, decreased appetite, and dyspnea. Adverse reactions occurring in patients with HNSCC were generally similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy, with the exception of increased incidences of facial edema and new or worsening hypothyroidism.

In KEYNOTE-087, KEYTRUDA was discontinued due to adverse reactions in 5% of 210 patients with cHL. Serious adverse reactions occurred in 16% of patients; those 1% included pneumonia, pneumonitis, pyrexia, dyspnea, GVHD, and herpes zoster. Two patients died from causes other than disease progression; 1 from GVHD after subsequent allogeneic HSCT and 1 from septic shock. The most common adverse reactions (20%) were fatigue (26%), pyrexia (24%), cough (24%), musculoskeletal pain (21%), diarrhea (20%), and rash (20%).

In KEYNOTE-170, KEYTRUDA was discontinued due to adverse reactions in 8% of 53 patients with PMBCL. Serious adverse reactions occurred in 26% of patients and included arrhythmia (4%), cardiac tamponade (2%), myocardial infarction (2%), pericardial effusion (2%), and pericarditis (2%). Six (11%) patients died within 30 days of start of treatment. The most common adverse reactions (20%) were musculoskeletal pain (30%), upper respiratory tract infection and pyrexia (28% each), cough (26%), fatigue (23%), and dyspnea (21%).

In KEYNOTE-052, KEYTRUDA was discontinued due to adverse reactions in 11% of 370 patients with locally advanced or metastatic urothelial carcinoma. Serious adverse reactions occurred in 42% of patients; those 2% were urinary tract infection, hematuria, acute kidney injury, pneumonia, and urosepsis. The most common adverse reactions (20%) were fatigue (38%), musculoskeletal pain (24%), decreased appetite (22%), constipation (21%), rash (21%), and diarrhea (20%).

In KEYNOTE-045, KEYTRUDA was discontinued due to adverse reactions in 8% of 266 patients with locally advanced or metastatic urothelial carcinoma. The most common adverse reaction resulting in permanent discontinuation of KEYTRUDA was pneumonitis (1.9%). Serious adverse reactions occurred in 39% of KEYTRUDA-treated patients; those 2% were urinary tract infection, pneumonia, anemia, and pneumonitis. The most common adverse reactions (20%) in patients who received KEYTRUDA were fatigue (38%), musculoskeletal pain (32%), pruritus (23%), decreased appetite (21%), nausea (21%), and rash (20%).

In KEYNOTE-057, KEYTRUDA was discontinued due to adverse reactions in 11% of 148 patients with high-risk NMIBC. The most common adverse reaction resulting in permanent discontinuation of KEYTRUDA was pneumonitis (1.4%). Serious adverse reactions occurred in 28% of patients; those 2% were pneumonia (3%), cardiac ischemia (2%), colitis (2%), pulmonary embolism (2%), sepsis (2%), and urinary tract infection (2%). The most common adverse reactions (20%) were fatigue (29%), diarrhea (24%), and rash (24%).

Adverse reactions occurring in patients with gastric cancer were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.

Adverse reactions occurring in patients with esophageal cancer were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.

In KEYNOTE-158, KEYTRUDA was discontinued due to adverse reactions in 8% of 98 patients with recurrent or metastatic cervical cancer. Serious adverse reactions occurred in 39% of patients receiving KEYTRUDA; the most frequent included anemia (7%), fistula, hemorrhage, and infections [except urinary tract infections] (4.1% each). The most common adverse reactions (20%) were fatigue (43%), musculoskeletal pain (27%), diarrhea (23%), pain and abdominal pain (22% each), and decreased appetite (21%).

Adverse reactions occurring in patients with hepatocellular carcinoma (HCC) were generally similar to those in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy, with the exception of increased incidences of ascites (8% Grades 3-4) and immune-mediated hepatitis (2.9%). Laboratory abnormalities (Grades 3-4) that occurred at a higher incidence were elevated AST (20%), ALT (9%), and hyperbilirubinemia (10%).

Among the 50 patients with MCC enrolled in study KEYNOTE-017, adverse reactions occurring in patients with MCC were generally similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy. Laboratory abnormalities (Grades 3-4) that occurred at a higher incidence were elevated AST (11%) and hyperglycemia (19%).

In KEYNOTE-426, when KEYTRUDA was administered in combination with axitinib, fatal adverse reactions occurred in 3.3% of 429 patients. Serious adverse reactions occurred in 40% of patients, the most frequent (1%) were hepatotoxicity (7%), diarrhea (4.2%), acute kidney injury (2.3%), dehydration (1%), and pneumonitis (1%). Permanent discontinuation due to an adverse reaction occurred in 31% of patients; KEYTRUDA only (13%), axitinib only (13%), and the combination (8%); the most common were hepatotoxicity (13%), diarrhea/colitis (1.9%), acute kidney injury (1.6%), and cerebrovascular accident (1.2%). The most common adverse reactions (20%) were diarrhea (56%), fatigue/asthenia (52%), hypertension (48%), hepatotoxicity (39%), hypothyroidism (35%), decreased appetite (30%), palmar-plantar erythrodysesthesia (28%), nausea (28%), stomatitis/mucosal inflammation (27%), dysphonia (25%), rash (25%), cough (21%), and constipation (21%).

Because of the potential for serious adverse reactions in breastfed children, advise women not to breastfeed during treatment and for 4 months after the final dose.

There is limited experience in pediatric patients. In a trial, 40 pediatric patients (16 children aged 2 years to younger than 12 years and 24 adolescents aged 12 years to 18 years) with various cancers, including unapproved usages, were administered KEYTRUDA 2 mg/kg every 3 weeks. Patients received KEYTRUDA for a median of 3 doses (range 117 doses), with 34 patients (85%) receiving 2 doses or more. The safety profile in these pediatric patients was similar to that seen in adults; adverse reactions that occurred at a higher rate (15% difference) in these patients when compared to adults under 65 years of age were fatigue (45%), vomiting (38%), abdominal pain (28%), increased transaminases (28%), and hyponatremia (18%).

Mercks Focus on Cancer

Read more here:
Merck's KEYTRUDA (pembrolizumab) Superior to Standard of Care Chemotherapy in Patients with MSI-H Colorectal Cancer - Maryville Daily Times

To Read More: Merck’s KEYTRUDA (pembrolizumab) Superior to Standard of Care Chemotherapy in Patients with MSI-H Colorectal Cancer – Maryville Daily Times
categoriaCardiac Stem Cells commentoComments Off on Merck’s KEYTRUDA (pembrolizumab) Superior to Standard of Care Chemotherapy in Patients with MSI-H Colorectal Cancer – Maryville Daily Times | dataMay 28th, 2020
Read All

Regenerative Medicine Market to Witness a Pronounce Growth During 2017 to 2025 – 3rd Watch News

By daniellenierenberg

Regenerative Medicine Market: Snapshot

Regenerative medicine is a part of translational research in the fields of molecular biology and tissue engineering. This type of medicine involves replacing and regenerating human cells, organs, and tissues with the help of specific processes. Doing this may involve a partial or complete reengineering of human cells so that they start to function normally.

Get Sample Copy of the Report @https://www.tmrresearch.com/sample/sample?flag=B&rep_id=1889

Regenerative medicine also involves the attempts to grow tissues and organs in a laboratory environment, wherein they can be put in a body that cannot heal a particular part. Such implants are mainly preferred to be derived from the patients own tissues and cells, particularly stem cells. Looking at the promising nature of stem cells to heal and regenerative various parts of the body, this field is certainly expected to see a bright future. Doing this can help avoid opting for organ donation, thus saving costs. Some healthcare centers might showcase a shortage of organ donations, and this is where tissues regenerated using patients own cells are highly helpful.

There are several source materials from which regeneration can be facilitated. Extracellular matrix materials are commonly used source substances all over the globe. They are mainly used for reconstructive surgery, chronic wound healing, and orthopedic surgeries. In recent times, these materials have also been used in heart surgeries, specifically aimed at repairing damaged portions.

Cells derived from the umbilical cord also have the potential to be used as source material for bringing about regeneration in a patient. A vast research has also been conducted in this context. Treatment of diabetes, organ failure, and other chronic diseases is highly possible by using cord blood cells. Apart from these cells, Whartons jelly and cord lining have also been shortlisted as possible sources for mesenchymal stem cells. Extensive research has conducted to study how these cells can be used to treat lung diseases, lung injury, leukemia, liver diseases, diabetes, and immunity-based disorders, among others.

Global Regenerative Medicine Market: Overview

The global market for regenerative medicine market is expected to grow at a significant pace throughout the forecast period. The rising preference of patients for personalized medicines and the advancements in technology are estimated to accelerate the growth of the global regenerative medicine market in the next few years. As a result, this market is likely to witness a healthy growth and attract a large number of players in the next few years. The development of novel regenerative medicine is estimated to benefit the key players and supplement the markets growth in the near future.

Global Regenerative Medicine Market: Key Trends

The rising prevalence of chronic diseases and the rising focus on cell therapy products are the key factors that are estimated to fuel the growth of the global regenerative medicine market in the next few years. In addition, the increasing funding by government bodies and development of new and innovative products are anticipated to supplement the growth of the overall market in the next few years.

On the flip side, the ethical challenges in the stem cell research are likely to restrict the growth of the global regenerative medicine market throughout the forecast period. In addition, the stringent regulatory rules and regulations are predicted to impact the approvals of new products, thus hampering the growth of the overall market in the near future.

Global Regenerative Medicine Market: Market Potential

The growing demand for organ transplantation across the globe is anticipated to boost the demand for regenerative medicines in the next few years. In addition, the rapid growth in the geriatric population and the significant rise in the global healthcare expenditure is predicted to encourage the growth of the market. The presence of a strong pipeline is likely to contribute towards the markets growth in the near future.

Global Regenerative Medicine Market: Regional Outlook

In the past few years, North America led the global regenerative medicine market and is likely to remain in the topmost position throughout the forecast period. This region is expected to account for a massive share of the global market, owing to the rising prevalence of cancer, cardiac diseases, and autoimmunity. In addition, the rising demand for regenerative medicines from the U.S. and the rising government funding are some of the other key aspects that are likely to fuel the growth of the North America market in the near future.

Furthermore, Asia Pacific is expected to register a substantial growth rate in the next few years. The high growth of this region can be attributed to the availability of funding for research and the development of research centers. In addition, the increasing contribution from India, China, and Japan is likely to supplement the growth of the market in the near future.

Request TOC of the Report @https://www.tmrresearch.com/sample/sample?flag=T&rep_id=1889

Global Regenerative Medicine Market: Competitive Analysis

The global market for regenerative medicines is extremely fragmented and competitive in nature, thanks to the presence of a large number of players operating in it. In order to gain a competitive edge in the global market, the key players in the market are focusing on technological developments and research and development activities. In addition, the rising number of mergers and acquisitions and collaborations is likely to benefit the prominent players in the market and encourage the overall growth in the next few years.

Some of the key players operating in the regenerative medicine market across the globe areVericel Corporation, Japan Tissue Engineering Co., Ltd., Stryker Corporation, Acelity L.P. Inc. (KCI Licensing), Organogenesis Inc., Medtronic PLC, Cook Biotech Incorporated, Osiris Therapeutics, Inc., Integra Lifesciences Corporation, and Nuvasive, Inc.A large number of players are anticipated to enter the global market throughout the forecast period.

About TMR Research:

TMR Research is a premier provider of customized market research and consulting services to business entities keen on succeeding in todays supercharged economic climate. Armed with an experienced, dedicated, and dynamic team of analysts, we are redefining the way our clients conduct business by providing them with authoritative and trusted research studies in tune with the latest methodologies and market trends.

Originally posted here:
Regenerative Medicine Market to Witness a Pronounce Growth During 2017 to 2025 - 3rd Watch News

To Read More: Regenerative Medicine Market to Witness a Pronounce Growth During 2017 to 2025 – 3rd Watch News
categoriaCardiac Stem Cells commentoComments Off on Regenerative Medicine Market to Witness a Pronounce Growth During 2017 to 2025 – 3rd Watch News | dataMay 26th, 2020
Read All

Autologous Stem Cell Based Therapies Market Segmentation Along With Regional Outlook, Competitive Strategies, Factors Contributing To Growth 2020-2026…

By daniellenierenberg

QY Research as of late produced a research report titled, Autologous Stem Cell Based Therapies . The research report speak about the potential development openings that exist in the worldwide market. The report is broken down on the basis of research procedures procured from historical and forecast information. The global Autologous Stem Cell Based Therapies market is relied upon to develop generously and flourish as far as volume and incentive during the gauge time frame. The report will give a knowledge about the development openings and controls that will build the market. Pursuers can increase important perception about the eventual fate of the market.

Key companies that are operating in the global Autologous Stem Cell Based Therapies market are: Regeneus, Mesoblast, Pluristem Therapeutics Inc, US STEM CELL, INC., Brainstorm Cell Therapeutics, Tigenix, Med cell Europe, etc.

Get PDF Sample Copy of the Report to understand the structure of the complete report: (Including Full TOC, List of Tables & Figures, Chart) :

https://www.qyresearch.com/sample-form/form/1787822/covid-19-impact-on-autologous-stem-cell-based-therapies-market

Segmental Analysis

The report incorporates significant sections, for example, type and end user and a variety of segments that decide the prospects of the market. Each type provide data with respect to the business esteem during the conjecture time frame. The application area likewise gives information by volume and consumption during the estimate time frame. The comprehension of this segment direct the readers in perceiving the significance of variables that shape the market development.

Global Autologous Stem Cell Based Therapies Market Segment By Type:

, Embryonic Stem Cell, Resident Cardiac Stem Cells, Umbilical Cord Blood Stem Cells

Global Autologous Stem Cell Based Therapies Market Segment By Application:

, Neurodegenerative Disorders, Autoimmune Diseases, Cardiovascular Diseases

Competitive Landscape

The report incorporates various key players and producers working in the local and worldwide market. This segment shows the procedures received by players in the market to remain ahead in the challenge. New patterns and its reception by players assist readers with understanding the elements of the business and how it very well may be utilized to their own benefit. The readers can likewise recognize the strides of players to comprehend the global market better.

Key companies operating in the global Autologous Stem Cell Based Therapies market include Regeneus, Mesoblast, Pluristem Therapeutics Inc, US STEM CELL, INC., Brainstorm Cell Therapeutics, Tigenix, Med cell Europe, etc.

Key questions answered in the report:

For Discount, Customization in the Report: https://www.qyresearch.com/customize-request/form/1787822/covid-19-impact-on-autologous-stem-cell-based-therapies-market

TOC

1.1 Research Scope1.2 Market Segmentation1.3 Research Objectives1.4 Research Methodology1.4.1 Research Process1.4.2 Data Triangulation1.4.3 Research Approach1.4.4 Base Year1.5 Coronavirus Disease 2019 (Covid-19) Impact Will Have a Severe Impact on Global Growth1.5.1 Covid-19 Impact: Global GDP Growth, 2019, 2020 and 2021 Projections1.5.2 Covid-19 Impact: Commodity Prices Indices1.5.3 Covid-19 Impact: Global Major Government Policy1.6 The Covid-19 Impact on Autologous Stem Cell Based Therapies Industry1.7 COVID-19 Impact: Autologous Stem Cell Based Therapies Market Trends 2 Global Autologous Stem Cell Based Therapies Quarterly Market Size Analysis2.1 Autologous Stem Cell Based Therapies Business Impact Assessment COVID-192.1.1 Global Autologous Stem Cell Based Therapies Market Size, Pre-COVID-19 and Post- COVID-19 Comparison, 2015-20262.2 Global Autologous Stem Cell Based Therapies Quarterly Market Size 2020-20212.3 COVID-19-Driven Market Dynamics and Factor Analysis2.3.1 Drivers2.3.2 Restraints2.3.3 Opportunities2.3.4 Challenges 3 Quarterly Competitive Assessment, 20203.1 By Players, Global Autologous Stem Cell Based Therapies Quarterly Market Size, 2019 VS 20203.2 By Players, Autologous Stem Cell Based Therapies Headquarters and Area Served3.3 Date of Key Players Enter into Autologous Stem Cell Based Therapies Market3.4 Key Players Autologous Stem Cell Based Therapies Product Offered3.5 Mergers & Acquisitions, Expansion Plans 4 Impact of Covid-19 on Autologous Stem Cell Based Therapies Segments, By Type4.1 Introduction1.4.1 Embryonic Stem Cell1.4.2 Resident Cardiac Stem Cells1.4.3 Umbilical Cord Blood Stem Cells4.2 By Type, Global Autologous Stem Cell Based Therapies Market Size, 2019-2021 5 Impact of Covid-19 on Autologous Stem Cell Based Therapies Segments, By Application5.1 Overview5.5.1 Neurodegenerative Disorders5.5.2 Autoimmune Diseases5.5.3 Cardiovascular Diseases5.2 By Application, Global Autologous Stem Cell Based Therapies Market Size, 2019-20215.2.1 By Application, Global Autologous Stem Cell Based Therapies Market Size by Application, 2019-2021 6 Geographic Analysis6.1 Introduction6.2 North America6.2.1 Macroeconomic Indicators of US6.2.2 US6.2.3 Canada6.3 Europe6.3.1 Macroeconomic Indicators of Europe6.3.2 Germany6.3.3 France6.3.4 UK6.3.5 Italy6.4 Asia-Pacific6.4.1 Macroeconomic Indicators of Asia-Pacific6.4.2 China6.4.3 Japan6.4.4 South Korea6.4.5 India6.4.6 ASEAN6.5 Rest of World6.5.1 Latin America6.5.2 Middle East and Africa 7 Company Profiles7.1 Regeneus7.1.1 Regeneus Business Overview7.1.2 Regeneus Autologous Stem Cell Based Therapies Quarterly Revenue, 20207.1.3 Regeneus Autologous Stem Cell Based Therapies Product Introduction7.1.4 Regeneus Response to COVID-19 and Related Developments7.2 Mesoblast7.2.1 Mesoblast Business Overview7.2.2 Mesoblast Autologous Stem Cell Based Therapies Quarterly Revenue, 20207.2.3 Mesoblast Autologous Stem Cell Based Therapies Product Introduction7.2.4 Mesoblast Response to COVID-19 and Related Developments7.3 Pluristem Therapeutics Inc7.3.1 Pluristem Therapeutics Inc Business Overview7.3.2 Pluristem Therapeutics Inc Autologous Stem Cell Based Therapies Quarterly Revenue, 20207.3.3 Pluristem Therapeutics Inc Autologous Stem Cell Based Therapies Product Introduction7.3.4 Pluristem Therapeutics Inc Response to COVID-19 and Related Developments7.4 US STEM CELL, INC.7.4.1 US STEM CELL, INC. Business Overview7.4.2 US STEM CELL, INC. Autologous Stem Cell Based Therapies Quarterly Revenue, 20207.4.3 US STEM CELL, INC. Autologous Stem Cell Based Therapies Product Introduction7.4.4 US STEM CELL, INC. Response to COVID-19 and Related Developments7.5 Brainstorm Cell Therapeutics7.5.1 Brainstorm Cell Therapeutics Business Overview7.5.2 Brainstorm Cell Therapeutics Autologous Stem Cell Based Therapies Quarterly Revenue, 20207.5.3 Brainstorm Cell Therapeutics Autologous Stem Cell Based Therapies Product Introduction7.5.4 Brainstorm Cell Therapeutics Response to COVID-19 and Related Developments7.6 Tigenix7.6.1 Tigenix Business Overview7.6.2 Tigenix Autologous Stem Cell Based Therapies Quarterly Revenue, 20207.6.3 Tigenix Autologous Stem Cell Based Therapies Product Introduction7.6.4 Tigenix Response to COVID-19 and Related Developments7.7 Med cell Europe7.7.1 Med cell Europe Business Overview7.7.2 Med cell Europe Autologous Stem Cell Based Therapies Quarterly Revenue, 20207.7.3 Med cell Europe Autologous Stem Cell Based Therapies Product Introduction7.7.4 Med cell Europe Response to COVID-19 and Related Developments 8 Key Findings 9 Appendix9.1 About US9.2 Disclaimer

About Us:

QYResearch always pursuits high product quality with the belief that quality is the soul of business. Through years of effort and supports from huge number of customer supports, QYResearch consulting group has accumulated creative design methods on many high-quality markets investigation and research team with rich experience. Today, QYResearch has become the brand of quality assurance in consulting industry.

See the article here:
Autologous Stem Cell Based Therapies Market Segmentation Along With Regional Outlook, Competitive Strategies, Factors Contributing To Growth 2020-2026...

To Read More: Autologous Stem Cell Based Therapies Market Segmentation Along With Regional Outlook, Competitive Strategies, Factors Contributing To Growth 2020-2026…
categoriaCardiac Stem Cells commentoComments Off on Autologous Stem Cell Based Therapies Market Segmentation Along With Regional Outlook, Competitive Strategies, Factors Contributing To Growth 2020-2026… | dataMay 26th, 2020
Read All

Study: Heart Problems in SMA May Be Tied to Calcium Dysregulation – SMA News Today

By daniellenierenberg

Heart problems associated with spinal muscular atrophy(SMA) may be caused partially by calcium dysregulation in heart muscle cells in the absence of the survival motor neuron(SMN) protein, a study suggests.

These findings shed light not only on the underlying mechanisms of heart problems in SMA which may open new therapeutic avenues but also support the monitoring of heart function in this patient population.

The study, SMN-deficiency disrupts SERCA2 expression and intracellular Ca2+ signaling in cardiomyocytes from SMA mice and patient-derived iPSCs, was published in the journal Skeletal Muscle.

SMA is caused by the loss of SMN, a protein produced in several cell types throughout the body and involved inmultiple and fundamental cellular processes. While SMN deficiency in motor nerve cells is considered the diseases root cause, increasing evidence suggests that other cells and organs in the body also are particularly affected, including the heart.

Cardiovascular problems have been reported in patients with the most severe severeforms of SMA and in mouse models of the disease. Moreover, a previous study supported by theSMA Foundation showed that SMA patients have higher-than-normal levels of several heart failure markers, suggesting that sufficient levels of SMN are essential for normal heart function.

However, the mechanisms behind these SMA-associated heart problems remain largely unknown and no study has established that SMN deficiency directly affects heart function.

Researchers have now evaluated whether SMN deficiency compromised the contractile function of heart cells isolated from a mouse model of a severe form of SMA and also those generated from SMA patients-derived induced pluripotent stem cells (iPSCs).

iPSCs are fully matured cells that researchers can reprogram in a lab dish to revert them back to a stem cell state that has the capacity to differentiate into almost any type of cell.

Results showed that the levels of three heart failure markers atrial natriuretic peptide, brain natriuretic peptide, and skeletal alpa-actin were significantly increased in heart tissue from SMA mice prior to considerable neuromuscular degeneration, compared with that from healthy mice.

This suggested that mechanical function of the heart may be altered early in the disease progression of this severe SMA mouse model, the researchers wrote.

In agreement, heart cells from SMA mice showed impaired contractile function, compared with cells from healthy mice. The team noted that contraction problems in the heart often are associated with calcium dysregulation and lower levels of SERCA2, an enzyme that controls calcium levels inside cells.

Further analysis showed that SMN-deficient heart cells, from both SMA mice and SMA patients, had a significant drop in SERCA2 levels and impaired calcium dynamics, compared with healthy cells.

Notably, these deficits were at least partially corrected when patient-derived cells were modified to increase their production of SMN protein. Conversely, heart cells derived from healthy individuals and forced to lower their SMN production mimicked the deficits seen in SMN-deficient heart cells.

These results demonstrate that SMN regulates SERCA2 [levels] and intracellular [calcium dynamics] in [heart cells] that may impair cardiac function and lead to elevation of heart failure markers, as observed in mice and patients with SMA, the researchers wrote.

The data also suggest that heart cell dysfunction occurs early in the disease course and therefore is likely to be a direct result of SMN loss and not secondary to neurodegeneration, the team noted.

Since deficits in calcium dynamics also were previously reported to occur in SMN-deficient motor nerve cells, the researchers hypothesized that calcium dysregulation may be a common disease mechanism in SMA.

Finally, while neuromuscular degeneration remains the hallmark feature of the disease, impaired heart function may be a contributing factor in disease progression that will require monitoring in light of new therapies that are improving motor function and extending survival, the researchers wrote.

Marta Figueiredo holds a BSc in Biology and a MSc in Evolutionary and Developmental Biology from the University of Lisbon, Portugal. She is currently finishing her PhD in Biomedical Sciences at the University of Lisbon, where she focused her research on the role of several signalling pathways in thymus and parathyroid glands embryonic development.

Total Posts: 85

Ana holds a PhD in Immunology from the University of Lisbon and worked as a postdoctoral researcher at Instituto de Medicina Molecular (iMM) in Lisbon, Portugal. She graduated with a BSc in Genetics from the University of Newcastle and received a Masters in Biomolecular Archaeology from the University of Manchester, England. After leaving the lab to pursue a career in Science Communication, she served as the Director of Science Communication at iMM.

Link:
Study: Heart Problems in SMA May Be Tied to Calcium Dysregulation - SMA News Today

To Read More: Study: Heart Problems in SMA May Be Tied to Calcium Dysregulation – SMA News Today
categoriaCardiac Stem Cells commentoComments Off on Study: Heart Problems in SMA May Be Tied to Calcium Dysregulation – SMA News Today | dataMay 25th, 2020
Read All

Global Stem Cell Reconstructive Market- Industry Analysis and Forecast… – Azizsalon News

By daniellenierenberg

Global Stem Cell Reconstructive Marketwas valued US$ XX Mn in 2019 and is expected to reach US$ XX Mn by 2027, at a CAGR of 24.5% during a forecast period.

Market Dynamics

The Research Report gives an in-depth account of the drivers and restraints in the stem cell reconstructive market. Stem cell reconstructive surgery includes the treatment of injured or dented part of body. Stem cells are undifferentiated biological cells, which divide to produce more stem cells. Growing reconstructive surgeries led by the rising number of limbs elimination and implants and accidents are boosting the growth in the stem cell reconstructive market. Additionally, rising number of aged population, number of patients suffering from chronic diseases, and unceasing development in the technology, these are factors which promoting the growth of the stem cell reconstructive market. Stem cell reconstructive is a procedure containing the use of a patients own adipose tissue to rise the fat volume in the area of reconstruction and therefore helping 3Dimentional reconstruction in patients who have experienced a trauma or in a post-surgical event such as a mastectomy or lumpectomy, brain surgery, or reconstructive surgery as a result of an accident or injury. Stem cell reconstructive surgeries are also used in plastic or cosmetic surgeries as well. Stem cell and regenerative therapies gives many opportunities for development in the practice of medicine and the possibility of an array of novel treatment options for patients experiencing a variety of symptoms and conditions. Stem cell therapy, also recognised as regenerative medicine, promotes the repair response of diseased, dysfunctional or injured tissue using stem cells or their derivatives.

REQUEST FOR FREE SAMPLE REPORT:https://www.maximizemarketresearch.com/request-sample/54666/

The common guarantee of all the undifferentiated embryonic stem cells (ESCs), foetal, amniotic, UCB, and adult stem cell types is their indefinite self-renewal capacity and high multilineage differentiation potential that confer them a primitive and dynamic role throughout the developmental process and the lifespan in adult mammal.However, the high expenditure of stem cell reconstructive surgeries and strict regulatory approvals are restraining the market growth.

The report study has analyzed revenue impact of covid-19 pandemic on the sales revenue of market leaders, market followers and disrupters in the report and same is reflected in our analysis.

Global Stem Cell Reconstructive Market Segment analysis

Based on Cell Type, the embryonic stem cells segment is expected to grow at a CAGR of XX% during the forecast period. Embryonic stem cells (ESCs), derived from the blastocyst stage of early mammalian embryos, are distinguished by their capability to distinguish into any embryonic cell type and by their ability to self-renew. Owing to their plasticity and potentially limitless capacity for self-renewal, embryonic stem cell therapies have been suggested for regenerative medicine and tissue replacement after injury or disease. Additionally, their potential in regenerative medicine, embryonic stem cells provide a possible another source of tissue/organs which serves as a possible solution to the donor shortage dilemma. Researchers have differentiated ESCs into dopamine-producing cells with the hope that these neurons could be used in the treatment of Parkinsons disease. Upsurge occurrence of cardiac and malignant diseases is promoting the segment growth. Rapid developments in this vertical contain protocols for directed differentiation, defined culture systems, demonstration of applications in drug screening, establishment of several disease models, and evaluation of therapeutic potential in treating incurable diseases.

Global Stem Cell Reconstructive Market Regional analysis

The North American region has dominated the market with US$ XX Mn. America accounts for the largest and fastest-growing market of stem cell reconstructive because of the huge patient population and well-built healthcare sector. Americas stem cell reconstructive market is segmented into two major regions such as North America and South America. More than 80% of the market is shared by North America due to the presence of the US and Canada.

DO INQUIRY BEFORE PURCHASING REPORT HERE:https://www.maximizemarketresearch.com/inquiry-before-buying/54666/

Europe accounts for the second-largest market which is followed by the Asia Pacific. Germany and UK account for the major share in the European market due to government support for research and development, well-developed technology and high healthcare expenditure have fuelled the growth of the market. This growing occurrence of cancer and diabetes in America is the main boosting factor for the growth of this market.

The objective of the report is to present a comprehensive analysis of the Global Stem Cell Reconstructive Market including all the stakeholders of the industry. The past and current status of the industry with forecasted market size and trends are presented in the report with the analysis of complicated data in simple language. The report covers all the aspects of the industry with a dedicated study of key players that includes market leaders, followers and new entrants. PORTER, SVOR, PESTEL analysis with the potential impact of micro-economic factors of the market has been presented in the report. External as well as internal factors that are supposed to affect the business positively or negatively have been analysed, which will give a clear futuristic view of the industry to the decision-makers.

The report also helps in understanding Global Stem Cell Reconstructive Market dynamics, structure by analysing the market segments and projects the Global Stem Cell Reconstructive Market size. Clear representation of competitive analysis of key players by Application, price, financial position, Product portfolio, growth strategies, and regional presence in the Global Stem Cell Reconstructive Market make the report investors guide.Scope of the Global Stem Cell Reconstructive Market

Global Stem Cell Reconstructive Market, By Sources

Allogeneic Autologouso Bone Marrowo Adipose Tissueo Blood Syngeneic OtherGlobal Stem Cell Reconstructive Market, By Cell Type

Embryonic Stem Cell Adult Stem CellGlobal Stem Cell Reconstructive Market, By Application

Cancer Diabetes Traumatic Skin Defect Severe Burn OtherGlobal Stem Cell Reconstructive Market, By End-User

Hospitals Research Institute OthersGlobal Stem Cell Reconstructive Market, By Regions

North America Europe Asia-Pacific South America Middle East and Africa (MEA)Key Players operating the Global Stem Cell Reconstructive Market

Osiris Therapeutics NuVasives Cytori Therapeutics Takeda (TiGenix) Cynata Celyad Medi-post Anterogen Molmed Baxter Eleveflow Mesoblast Ltd. Micronit Microfluidics TAKARA BIO INC. Tigenix Capricor Therapeutics Astellas Pharma US, Inc. Pfizer Inc. STEMCELL Technologies Inc.

MAJOR TOC OF THE REPORT

Chapter One: Stem Cell Reconstructive Market Overview

Chapter Two: Manufacturers Profiles

Chapter Three: Global Stem Cell Reconstructive Market Competition, by Players

Chapter Four: Global Stem Cell Reconstructive Market Size by Regions

Chapter Five: North America Stem Cell Reconstructive Revenue by Countries

Chapter Six: Europe Stem Cell Reconstructive Revenue by Countries

Chapter Seven: Asia-Pacific Stem Cell Reconstructive Revenue by Countries

Chapter Eight: South America Stem Cell Reconstructive Revenue by Countries

Chapter Nine: Middle East and Africa Revenue Stem Cell Reconstructive by Countries

Chapter Ten: Global Stem Cell Reconstructive Market Segment by Type

Chapter Eleven: Global Stem Cell Reconstructive Market Segment by Application

Chapter Twelve: Global Stem Cell Reconstructive Market Size Forecast (2019-2026)

Browse Full Report with Facts and Figures of Stem Cell Reconstructive Market Report at:https://www.maximizemarketresearch.com/market-report/global-stem-cell-reconstructive-market/54666/

About Us:

Maximize Market Research provides B2B and B2C market research on 20,000 high growth emerging technologies & opportunities in Chemical, Healthcare, Pharmaceuticals, Electronics & Communications, Internet of Things, Food and Beverages, Aerospace and Defense and other manufacturing sectors.

Contact info:

Name: Vikas Godage

Organization: MAXIMIZE MARKET RESEARCH PVT. LTD.

Email: sales@maximizemarketresearch.com

Contact: +919607065656/ +919607195908

Website:www.maximizemarketresearch.com

Read more:
Global Stem Cell Reconstructive Market- Industry Analysis and Forecast... - Azizsalon News

To Read More: Global Stem Cell Reconstructive Market- Industry Analysis and Forecast… – Azizsalon News
categoriaCardiac Stem Cells commentoComments Off on Global Stem Cell Reconstructive Market- Industry Analysis and Forecast… – Azizsalon News | dataMay 25th, 2020
Read All

Exosome Therapeutic Market Size, Share, Trends, Global Research, Technology Implementation and Geographical Overview Till 2027 – Cole of Duty

By daniellenierenberg

Exosome Therapeutic Marketanalyses the current market size, status, enterprise competition pattern, advantages and disadvantages of enterprise products, development trends regional industrial layout characteristics and macroeconomic policies and industrial policy. By focusing on all the necessities and requirements of the businesses for achieving a successful business growth, the Exosome Therapeutic Market Report are created. The CAGR values estimate the fluctuation about the rise or fall of demand for the specific forecasted period with respect to investment. The Exosome Therapeutic Market report also recognizes and analyses the expanding trends along with major drivers, restraints, challenges and opportunities in the market.

Exosome Therapeutic Marketis expected to gain market growth in the forecast period of 2019 to 2026. Data Bridge Market Research analyses that the market is growing with a CAGR of 21.9% in the forecast period of 2019 to 2026 and expected to reach USD 31,691.52 million by 2026 from USD 6,500.00 million in 2018.

Get Sample Report: To Know the Impact of COVID-19 on this[emailprotected]https://www.databridgemarketresearch.com/request-a-sample/?dbmr=global-exosome-therapeutic-market

Synopsis of Global Exosome Therapeutic Market:-Exosomes is used to transfer RNA, DNA, and proteins to other cells in the body by making alteration in the function of the target cells. Increasing research activities in exosome therapeutic is augmenting the market growth as demand for exosome therapeutic has increased among healthcare professionals.

Increased number of exosome therapeutics as compared to the past few years will accelerate the market growth. Companies are receiving funding for exosome therapeutic research and clinical trials. For instance, In September 2018, EXOCOBIO has raised USD 27 million in its series B funding. The company has raised USD 46 million as series a funding in April 2017. The series B funding will help the company to set up GMP-compliant exosome industrial facilities to enhance production of exosomes to commercialize in cosmetics and pharmaceutical industry.

Some Of The Major Competitors Currently Working In Global Exosome Therapeutic Market Are:Bayer AG, Iso-Tex Diagnostics, Inc., Bracco Diagnostic Inc., Novalek Pharmaceuticals Pvt. Ltd., iMAX, Taejoon Pharm, Unijules Medicals Ltd, General Electric, Guerbet LLC, J.B.Chemicals & Pharmaceuticals Ltd among others players domestic and global. DBMR analysts understand competitive strengths and provide competitive analysis for each competitor separately.

For More Information or Query or Customization Before Buying, Visit @https://www.databridgemarketresearch.com/inquire-before-buying/?dbmr=global-exosome-therapeutic-market

North America Dominates The Exosome Therapeutic Market as the U.S. Is leaderin exosome therapeutic manufacturing as well as research activities required for exosome therapeutics. At present time Stem Cells Group holding shares around 60.00%. In addition global exosomes therapeutics manufacturers like EXOCOBIO, evox THERAPEUTICS and others are intensifying their efforts in China. The Europe region is expected to grow with the highest growth rate in the forecast period of 2019 to 2026 because of increasing research activities in exosome therapeutic by population.

Huge Investment by Automakers for Exosome Therapeutics and New Technology Penetration

Global exosome therapeutic market also provides you with detailed market analysis for every country growth in pharma industry with exosome therapeutic sales, impact of technological development in exosome therapeutic and changes in regulatory scenarios with their support for the exosome therapeutic market. The data is available for historic period 2010 to 2017.

Browse in-depth TOC on Exosome Therapeutic Market

50 Tables

250 No of Figures

150 Pages

This Exosome Therapeutic Market report contains all aspects that are directly or indirectly related to the multiple areas of the global market. Our experts have carefully collated the global Exosome Therapeutic Market data and estimated the change in the forecast period. This information in the report helps customers make accurate decisions about market activity Exosome Therapeutic Market based on forecasting trends. This report also discusses current or future policy research or regulations that must be initiated by management and market strategies.

Buy This Report (Single User Access)@https://www.databridgemarketresearch.com/checkout/buy/singleuser/gl

Global Exosome Therapeutic Market Scope and Market Size

Global Exosome Therapeutic Market is segmented of the basis of type, source, therapy, transporting capacity, application, route of administration and end user. The growth among segments helps you analyse niche pockets of growth and strategies to approach the market and determine your core application areas and the difference in your target markets.

Based on type, the market is segmented into natural exosomes and hybrid exosomes. Natural exosomes are dominating in the market because natural exosomes are used in various biological and pathological processes as well as natural exosomes has many advantages such as good biocompatibility and reduced clearance rate compare than hybrid exosomes.

Based on therapy, the market is segmented into immunotherapy, gene therapy and chemotherapy. Chemotherapy is dominating in the market because chemotherapy is basically used in treatment of cancer which is major public health issues. The multidrug resistance (MDR) proteins and various tumors associated exosomes such as miRNA and IncRNA are include in in chemotherapy associated resistance.

Based on transporting capacity, the market is segmented into bio macromolecules and small molecules. Bio macromolecules are dominating in the market because bio macromolecules transmit particular biomolecular information and are basically investigated for their delicate properties such as biomarker source and delivery system

Based on application, the market is segmented into oncology, neurology, metabolic disorders, cardiac disorders, blood disorders, inflammatory disorders, gynecology disorders, organ transplantation and others. Oncology segment is dominating in the market due to rising incidence of various cancers such as lung cancer, breast cancer, leukemia, skin cancer, lymphoma. As per the National Cancer Institute, in 2018 around 1,735,350 new cases of cancer was diagnosed in the U.S. As per the American Cancer Society Inc in 2019 approximately 268,600 new cases of breast cancer diagnosed in the U.S.To be continued..Detailed Segmentation ofExosome Therapeutic Market

The Countries Covered In The Exosome Therapeutic Market Report Are U.S., Canada and Mexico in North America, Germany, France, U.K., Netherlands, Switzerland, Belgium, Russia, Italy, Spain, Turkey, Rest of Europe in Europe, China, Japan, India, South Korea, Singapore, Malaysia, Australia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific in the Asia-Pacific, South Africa, Rest of Middle East and Africa as a part of Middle East and Africa, Brazil and Rest of South America as part of South America.

Along with the elaborated information about the key contenders, the globalExosome Therapeutic Marketreport efficiently provides information by segmenting the market on the basis of the type services and products offerings, form of the product, applications of the final products, technology on which the product is based, and others. The report is also bifurcated the market on the basis of regions to analyze the growth pattern of the market in different geographical areas.

The Exosome Therapeutic Market report includes the leading advancements and technological up-gradation that engages the user to inhabit with fine business selections, define their future-based priority growth plans, and to implement the necessary actions. The global Exosome Therapeutic Market report also offers a detailed summary of key players and their manufacturing procedure with statistical data and profound analysis of the products, contribution, and revenue.

Global Exosome Therapeutic Market Report includes Detailed TOC points:

1 Introduction

2Market Segmentation

3 Market Overview

3.3 Opportunities

4 Executive Summaries

5 Premium Insights

6 Regulatory Procedure

7 Global Exosome Therapeutic Market, By Type

8 Global Exosome Therapeutic Market, by disease type

9 Global Exosome Therapeutic Market, By Deployment

10 Global Exosome Therapeutic Market, By End User

11 Global Exosome Therapeutic Market, By Distribution Channel

12 Global Exosome Therapeutic Market, By Geography

13 Global Exosome Therapeutic Market, Company Landscape

14 Company Profile

Continued!!!

About Data Bridge Market Research:

An absolute way to forecast what future holds is to comprehend the trend today!

Data Bridge set forth itself as an unconventional and neoteric Market research and consulting firm with unparalleled level of resilience and integrated approaches. We are determined to unearth the best market opportunities and foster efficient information for your business to thrive in the market. Data Bridge endeavors to provide appropriate solutions to the complex business challenges and initiates an effortless decision-making process.

Data Bridge adepts in creating satisfied clients who reckon upon our services and rely on our hard work with certitude. We are content with our glorious 99.9 % client satisfying rate.

Contact Us:

Data Bridge Market Research

US: +1 888 387 2818

UK: +44 208 089 1725

Hong Kong: +852 8192 7475

Email:[emailprotected]

Visit link:
Exosome Therapeutic Market Size, Share, Trends, Global Research, Technology Implementation and Geographical Overview Till 2027 - Cole of Duty

To Read More: Exosome Therapeutic Market Size, Share, Trends, Global Research, Technology Implementation and Geographical Overview Till 2027 – Cole of Duty
categoriaCardiac Stem Cells commentoComments Off on Exosome Therapeutic Market Size, Share, Trends, Global Research, Technology Implementation and Geographical Overview Till 2027 – Cole of Duty | dataMay 24th, 2020
Read All

COVID-19: How do India’s urban informal settlements fight the pandemic – Down To Earth Magazine

By daniellenierenberg

Indias slum population is ill-prepared to face the novel coronavirus disease (COVID-19) pandemic, with livelihoods threatened as a consequence of the lockdown

The novel coronavirus disease (COVID-19) pandemic infected over four million people worldwide as of May 7, 2020 and killed over 200,000 people. After receiving its first cases on January 28, India witnessed a spike in late March, that led to a nationwide lockdown on March 24 in order to stem the infection.

The number of cases, however, only increased in the past couple of months. As of May 10, 63,975 cases were reported, mostly in densely populated and highly urbanised areas, resulting in almost 2,109 deaths.

One of the measures adopted by the Union and state governments following World Health Organization guidelines was to tell people to stay home and follow the practice of social distancing where emphasis is laid on the maintenance of distance of at least six feet between individuals.

Access to safe drinking water, proper sanitation and health conditions to protect from the infection is necessary to stop human-to-human transmission along with ensuring good consistency in hand washing and waste management practices.

A question, however, emerges over the efficacy of such measures, given that India has the second-most dense population in the world, with a less than adequate healthcare system and a high migration rate, compounded by the fact that 21.9 per cent of the countrys total population lives below the poverty line, according to 2018 data from the National Sample Survey Office.

Is social distancing a viable strategy for this largely informal society? Can a largely poor population, consisting primarily of marginalised communities and migrant daily wage workers adopt such strict guidelines?

We focus on this question by analysing the socio-economic conditions of people living in informal urban settlements and slums within the country.

What is clear is that the slum population is ill-prepared to fight the pandemic, with livelihoods threatened as a consequence of the lockdown. It also sounds impractical to assume slum households have hygienic access to water, toilets, sewers and drainage in informal settlements.

In overcrowded slums, measures like physical distancing and self-quarantine remain far from implementation.

Dharavi Asias biggest slum located in Mumbai with an approximate one million population shows this reality. As on April 29, Dharavi reported a total of 590 cases, with 20 deaths. These deaths include youth and children, according to a media report.

Researchers from the Centre for Sustainability estimate the reproductive ratio (R naught) for the SARS-CoV-2 virus that causes COVID-19 on a global scale. They suggest this number in India's slums to be 20 per cent on an average, higher because of dense living conditions, according to a report in news daily Hindustan Times. This vulnerability is borne out in statistics as well.

We analysed data from the fourth round of the National Family Health Survey (NFHS-4) and the 2011 census, focusing on more urbanised states like Maharashtra, Madhya Pradesh, Uttar Pradesh, Delhi, Tamil Nadu and Telangana.

Within these states, we further classified urban households residing in slums in Mumbai, suburban Mumbai, Nagpur, Indore, Meerut, Hyderabad, Chennai and Delhi.

Distribution of SARS-CoV-2

To begin with, we described the basic characteristics of confirmed cases of the virus in Indian states, with basic calculations from COVID-19 India. We analysed details such as growth rate, fatality rate, recovery rate, test per million and share of active cases.

Basic method to understand the novel coronavirus pandemic select states in India

Source: NFHS-4, Census-2011,COVID19

Based on the reported rise in the pace of infection in various states, we attempted its association with share of migrants and slum population. The statistics indicate a clear pattern of intensity among major cities.

The share in total active COVID-19 cases is higher in Maharashtra (36.4 per cent per million), followed by Gujarat (12.5 per cent), Tamil Nadu (12 per cent) and Delhi (10.9 per cent).

With respect to fatality rates, West Bengal, Gujarat and Madhya Pradesh lead the table. Recovery rate too, follows the same trend with the notable exceptions of Kerala and Telangana.

When one reads the pace of increase in infection, it is evident that the most urbanised and in-migration states like Maharashtra, Delhi, Gujarat and Telangana according to the 2011 census show higher incidences of infection.

At the same time, there is a reasonable rise in COVID-19 cases in Bihar, Jharkhand, West Bengal and Uttar Pradesh because of reverse migration following the lockdown.

On the other hand, its association with the degree of urbanisation may very well be due to under-served and under-privileged residents with limitation of housing and basic amenities that inhibits adhering to the required prevention protocol. The most vulnerable therefore become the slum residents with poor sanitation practices.

Percentage of the novel coronavirus cases and risk in select urban districts

Source: NFHS-4, Census-2011, COVID-19.org

Approximately 65 million people, or 22 per cent, of Indias total population lives in urban slums, according to a report. Most of the temporary and semi-temporary migrants, however, live in slums across major cities.

A few districts of Maharashtra, including Mumbai, suburban Mumbai and Nagpur are home to 1.39 million temporary migrants and 5.74 million semi-permanent migrants.

These migrant labourers form the backbone of Indias economy, work on lower daily wages and do not have the privilege of working from home with stable wages.

They either risk infection to work in the current lockdown or face unemployment and starvation. It is these workers who are prone to a higher risk of comorbidity and consequently at a greater risk to get infected with the virus.

Risks with migrants, slum households

When we look at migrants, they mainly live in metropolitan hubs, including Mumbai, Delhi and Chennai and are vulnerable due to the informal nature of their livelihoods in these slums.

While associating the share of migration and the quantum of infection, we find a positive correlation indicating the migration related vulnerability of this infection. This association is further strengthened when one considers the share of the most vulnerable population living in the urban slums of Mumbai, Central Delhi, Chennai and Hyderabad with a positive correlation.

SARS-CoV-2infections correlation with migrants within slum households

Assessing social distancing, sanitation

Slum lanes are so narrow that when we cross each other, we cannot cross without our shoulders rubbing against the other person, said a slum dweller, quoted by international news outlet The Guardian. This is, unfortunately, the case in most slum pockets in India.

The World Economic Forum, for example, said Dharavi has a high population density of over 270,000 people living per square kilometre.

This undoubtedly makes social distancing norms impractical. Most of the migrant families or migrant workers who live in single rooms depend oncommunity toilets and water taps.

Findings from NFHS-4 show that among slum households, 56.94 per cent use unimproved toilets, 63.76 per cent live in one room tenements and 76.25 per cent have limited access to water for hand wash.

Unsurprisingly, the evidence shows a positive correlation among virus infections and residences with unimproved toilet facilities, one room households and unavailability of water.

For almost all slum households, using hand sanitiser is very expensive and moreover, access to water for hand-washing is inadequate to begin with. Maintaining social distancing is also not possible given the high density of the population within these slums.

The current crisis should send alarm bells ringing for governments and urban planners in the country over the sustainability of our cities for its citizens. Ensuring good and consistently applied water sanitation and hygiene and waste management practices in communities is a pre-requisite for containing the spread of the epidemic.

Given the evidence on living reality of slums residents and urban migrants in Indian cities, norms like social distancing and hygiene practices seem far from reality.

SARS-CoV-2correlation with hygiene and sanitation conditions in slum households

Policy implications

The analysis highlights the inadequacies of human living and its vulnerability in the face of a pandemic. Overcrowded slums in major cities house an important but extremely vulnerable section of our society.

This population was severely affected due to both the typical infectiveness of the virus as well as the lockdown, leading to substantial losses in lives and livelihoods of these people.

A Stranded Workers Action Network survey recently conducted across various states showed out of 11,159 migrant workers, 96 per cent did not get ration and 90 per cent of them did not get wages.

In case of such an outbreak and the associated measures for its containment, basic deficiencies of the urban poor are overlooked, not just in terms of their compromised living, but also limited access to medical care. It is evident that measures adopted originate from a middle-class mindset that assumes a lot more and is remote from prevailing realities.

This pandemic is a reminder for the need of a slum emergency planning map for every urban settlement and developed solid waste management strategy.

Most importantly, urban planners need to urgently rethink about the sustainability of mega cities in the wake of the outbreak. We have seen vulnerable populations disproportionately affected all the worlds major cities from Wuhan in China, to New York in the United States and Mumbai and Delhi in India.

While the more privileged sections of society have the luxury of sequestering themselves and maintain social-distancing, large swathes of people who do not have the luxury to do so often suffer.

This episode should is an eye-opener to reveal that if we are to recover from crises in the future, we need to strengthen and equip the basic health and public health infrastructure of the urban cities to cater to all its residents to guarantee sustainable urban living.

We are a voice to you; you have been a support to us. Together we build journalism that is independent, credible and fearless. You can further help us by making a donation. This will mean a lot for our ability to bring you news, perspectives and analysis from the ground so that we can make change together.

Read the rest here:
COVID-19: How do India's urban informal settlements fight the pandemic - Down To Earth Magazine

To Read More: COVID-19: How do India’s urban informal settlements fight the pandemic – Down To Earth Magazine
categoriaCardiac Stem Cells commentoComments Off on COVID-19: How do India’s urban informal settlements fight the pandemic – Down To Earth Magazine | dataMay 22nd, 2020
Read All

MicroCures Announces Issuance of New European Patent Providing Broad Protection for First-of-its-Kind Cell Movement Decelerator Technology – Yahoo…

By daniellenierenberg

Latest Patent Further Strengthens Intellectual Property Portfolio Covering Novel Platform for Precisely Controlling Core Cell Migration Mechanisms

Decelerator Technology Has Key Potential Applications in Treatment of Cancer and Fibrosis and Serves as Key Complement to Companys Cell Motility Accelerator Platform for Enhanced Tissue Repair

NEW YORK, May 20, 2020 (GLOBE NEWSWIRE) -- MicroCures, a biopharmaceutical company developing novel therapeutics that harness the bodys innate regenerative mechanisms to accelerate tissue repair, today announced the issuance of a new European patent providing broad protection for the companys first-of-its-kind cell movement decelerator technology, which has potential therapeutic applications in combating cancer metastases and fibrosis. The companys decelerator technology is being developed alongside MicroCures accelerator technology, which is designed to enhance repair of tissue, nerves, and organs following trauma. With the newly issued patent in the European Union (#3052117), the companys global patent estate now includes eight issued and 12 pending patents covering its underlying technology, as well as the therapeutic programs that have emerged from the platform.

Our proprietary platform technology represents a fundamentally new way of thinking about how to harness the bodys natural cell movement processes to drive therapeutic outcomes in response to a range of medical challenges. Whether it is removing the brakes from cells to accelerate their migration and drive tissue, nerve and organ repair, or putting the brakes on cell movement to combat tumor metastases and fibrosis, we are pioneering an entirely new treatment paradigm, said Derek Proudian, co-founder and chief executive officer of MicroCures. While we clearly recognize the importance of the development work we are undertaking in support of this platform, it is equally important to build a strong, wide-reaching intellectual property portfolio to protect it. This latest patent issuance provides us yet another key piece of intellectual property, bringing our total number of issued and pending patents to 20.

MicroCures technology is based on foundational scientific research at Albert Einstein College of Medicine regarding the fundamental role that cell movement plays as a driver of the bodys innate capacity to repair tissue, nerves, and organs. The company has shown that complex and dynamic networks of microtubules within cells crucially control cell migration, and that this cell movement can be reliably modulated to achieve a range of therapeutic benefits. Based on these findings, the company has established a first-of-its-kind proprietary platform to create siRNA-based therapeutics capable of precisely controlling the speed and direction of cell movement by selectively silencing microtubule regulatory proteins.

The company has developed a broad pipeline of therapeutic programs with an initial focus in the area of tissue, nerve and organ repair. Unlike regenerative medicine approaches that rely upon engineered materials or systemic growth factor/stem cell therapeutics, MicroCures technology directs and enhances the bodys inherent healing processes through local, temporary modulation of cell motility. Additionally, the company is developing a decelerator technology based on the same foundational science. Instead of accelerating cell movement for therapeutic repair and regeneration, this technology is designed to slow or halt the movement of cells, potentially offering a unique, natural approach to preventing cancer metastases and fibrosis.

About MicroCures

MicroCures develops biopharmaceuticals that harness innate cellular mechanisms within the body to accelerate and improve recovery after traumatic injury. MicroCures has developed a first-of-its-kind therapeutic platform that precisely controls the rate and direction of cell migration, offering the potential to deliver powerful therapeutic benefits for a variety of large and underserved medical applications.

MicroCures has developed a broad pipeline of novel therapeutic programs with an initial focus in the area of tissue, nerve and organ repair. The companys lead therapeutic candidate, siFi2, targets excisional wound healing, a multi-billion dollar market inadequately served by current treatments. Additional applications for the companys cell migration accelerator technology include dermal burn repair, corneal burn repair, cavernous nerve repair/regeneration, spinal cord repair/regeneration, and cardiac tissue repair. Cell migration decelerator applications include combatting cancer metastases and fibrosis. The company protects its unique platform and proprietary therapeutic programs with a robust intellectual property portfolio including eight issued patents, as well as 12 pending patent applications.

Story continues

For more information please visit: http://www.microcures.com

Contact:

MicroCuresinfo@microcures.com

Continued here:
MicroCures Announces Issuance of New European Patent Providing Broad Protection for First-of-its-Kind Cell Movement Decelerator Technology - Yahoo...

To Read More: MicroCures Announces Issuance of New European Patent Providing Broad Protection for First-of-its-Kind Cell Movement Decelerator Technology – Yahoo…
categoriaCardiac Stem Cells commentoComments Off on MicroCures Announces Issuance of New European Patent Providing Broad Protection for First-of-its-Kind Cell Movement Decelerator Technology – Yahoo… | dataMay 21st, 2020
Read All

As we wait for a vaccine, heres a snapshot of potential COVID-19 treatments – Science News

By daniellenierenberg

Aggressive public health measures tostem the tidal wave of coronavirus infections have left people isolated,unemployed and wondering when it will all end. Life probably wont gocompletely back to normal until vaccines against the virus are available,experts warn.

Researchers are working hard on thatfront. At least six vaccines are currently being tested in people, says EstherKrofah, chief executive of the FasterCures center at the Milken Institute in Washington,D.C. We expect about two dozen more toenter clinical trials by this summer and early fall. That is a huge number,Krofah said at an April 17 briefing. Dozens more are in earlier stages oftesting.

In unpublished, preliminary results of a test of one vaccine, inoculated people made as many antibodies against the coronavirus as people who have recovered from COVID-19 (SN: 5/18/20). The mRNA-based vaccine induces human cells to make one of the viruss proteins, which the immune system then builds antibodies to attack. That study was small, only eight people, but a second phase of safety testing has begun.

But vaccinestake time to test thoroughly (SN: 2/21/20). Even with acceleratedtimelines and talk of emergency use of promising vaccines for health care workersand others at high risk of catching the virus, the general public will likelywait a year or more to be vaccinated.

In the meantime, new treatments may helpsave lives or lessen the severity of disease in people who become ill.Researchers around the world are experimenting with more than 130 drugs to findout if any can help COVID-19 patients, according to atracker maintained by the Milken Institute.

Some of those drugs are aimed atstopping the virus, while others may help calm overactive immune responses thatdamage lungs and other organs. Although researchers are testing a battery ofrepurposed drugs and devising new ones, there is still a great deal ofuncertainty over whether the drugs help, or maybe even hurt.

The wait is frustrating, but theres still much doctors and scientists dont know about how this new coronavirus affects the body. Getting answers will take time, and finding measures to counter the virus that are both safe and effective will take even more. Early results suggest that the antiviral drug remdesivir can modestly speed recovery from COVID-19 (SN: 5/13/20). It is not a cure, but the drug may become the new standard of care as researchers continue to test other therapies.

Scientists and journalists share a core belief in questioning, observing and verifying to reach the truth. Science News reports on crucial research and discovery across science disciplines. We need your financial support to make it happen every contribution makes a difference.

Antiviral drugs interfere with a viruss ability to replicate itself, though such drugs are difficult to create. Remdesivir is being tested in half a dozen clinical trials worldwide. The drug mimics a building block of RNA, the genetic material of the coronavirus (SN: 3/10/20). When the virus copies its RNA, remdesivir replaces some of the building blocks, preventing new virus copies from being produced, laboratory studies have shown.

Early results in COVID-19 patients given the drug outside of a clinical trial showed that 68 percent needed less oxygen support after treatment, as reported online April 10 in the New England Journal of Medicine (SN: 4/29/20). The drug went to very sick patients, including those who needed oxygen from a ventilator or through tubes in the nose. Other researchers have disputed those results, questioning the study methods and statistical analyses, which may have given an exaggerated impression of good outcomes. The studys authors say they have reanalyzed the data and still conclude that remdesivir has benefits.

Soon after, the U.S. National Instituteof Allergy and Infectious Diseases announced that hospitalized patients withCOVID-19 who got intravenous remdesivir recoveredmore quickly than those on a placebo: in 11 days versus 15. Those findingshad not been reviewed by other scientists at the time of the announcement. Thedug provides researchers with a baseline for comparing other treatments. Wethink its really opening the door to the fact that we now have the capabilityof treating, Anthony Fauci, director of the NIAID said April 29 in a newsbriefing at the White House.

Antiviral medications used against HIV are also being tested against COVID-19. The combination of lopinavir and ritonavir stops an HIV enzyme called the M protease from cutting viral proteins so that the virus can replicate itself. The SARS-CoV-2 virus produces a similar enzyme. But early results from a small study in China showed that the combination didnt stop viral replication or improve symptoms (SN: 3/19/20), and there were side effects.

For now, the Society of Critical CareMedicine recommendsagainst using the drugs, and the Infectious Diseases Society of Americasays patients should get the drugs onlyas part of a clinical trial. Several large trials may report results soon.

The HIV drugs may not work well against SARS-CoV-2, even though the viruses have similar M proteases: The coronaviruss enzyme lacks a pocket where the drugs fit in the HIV version of the enzyme.

This illustrates why antiviral drugs areso difficult to develop. Designing a drug requires knowing the 3-D structure ofthe viruss proteins, which can take months to years. But researchers arealready getting some close-up views of the new coronavirus. A team in Chinaexamined the structure of the coronaviruss M protease and designed smallmolecules that could block a part of the protein necessary to do its job. Theteam describedtwo such molecules, dubbed 11a and 11b, April 22 in Science.

In test tubes, both molecules stopped the virus from replicating in monkey cells. In mice, 11a stuck around longer in the blood than 11b, so the researchers tested 11a further and found it seemed safe in rats and beagles. More animal tests will probably be needed to show whether it stops the virus, then multiple stages of human tests will have to follow. The drug development and testing process often takes on average 10 years or more, and can fail at any point along the way.

Meanwhile, hundreds of thousands of people worldwide have already recovered from COVID-19, and many are donating blood that might contain virus-fighting antibodies. Clinical trials are under way to test whether antibodies from recovered patients blood plasma can help people fight off the virus (SN: 4/25/20, p. 6). More such trials are planned.

Stopping the virus is only half the problem. In some people seriously ill with COVID-19, their immune system becomes the enemy, unleashing storms of immune chemicals called cytokines. Those cytokines trigger immune cells to join the fight against the virus, but sometimes the cells go too far, causing damaging inflammation.

Some of the drugs used to calm cytokines in cancer patients (SN: 6/27/18, p. 22) may also help people with COVID-19 ride out the storm, says cancer researcher Lee Greenberger, chief scientific officer of Leukemia and Lymphoma Society. Several of those drugs are being tested against the coronavirus now.

Hydroxychloroquine, a drug approved totreat autoimmune disorders such as lupus and rheumatoid arthritis, became ahousehold word after President Trump touted it as a possible COVID-19treatment.

The drug is being tested in numerouslarge clinical trials around the world to see if it might help calm cytokinestorms in COVID-19 patients as well. But so far, there is no solid evidence thatit works either to prevent infection in people or to treat people who alreadyhave the disease.

And in some studies the drug has caused serious side effects, including causing irregular heartbeats, says Raymond Woosley, a pharmacologist at the University of Arizona College of Medicine in Phoenix. People with heart problems, low potassium or low oxygen levels in their blood are at higher risk of these side effects, he says. And those are exactly the kinds of patients who are most vulnerable to COVID-19. So, the very sickest COVID patients are those at most risk for these life-threatening arrhythmias and cardiac effects.

Results of some rigorous clinical trialsof hydroxychloroquine are expected this summer. Meanwhile, the U.S. Food andDrug Administration allows the drug to be used when no other treatment isavailable and patients cant join a clinical trial.

Todays enthusiasm for any drug thatseems promising feels familiar, says Woosley. He remembers the excitement overAZT, the first drug used to fight HIV in the 1980s. It wasnt the best drug tocombat the AIDS epidemic, and better ones came later. Likewise, the firsttreatments for COVID-19 might be better than nothing, but not the best we willultimately get.

Meanwhile, we wait.

With hundreds of clinical trials going on around the world, some answers may come soon. But for now, keeping the coronavirus contained will probably require aggressive testing, tracing and isolating contacts of people who have the virus and continued social distancing.

Headlines and summaries of the latest Science News articles, delivered to your inbox

More:
As we wait for a vaccine, heres a snapshot of potential COVID-19 treatments - Science News

To Read More: As we wait for a vaccine, heres a snapshot of potential COVID-19 treatments – Science News
categoriaCardiac Stem Cells commentoComments Off on As we wait for a vaccine, heres a snapshot of potential COVID-19 treatments – Science News | dataMay 21st, 2020
Read All

cardiac disease and stem cells | Stem Cell Treatment in …

By daniellenierenberg

Despite many breakthroughs in cardiovascular treatment, heart attacks and heart failure still pose a very large threat to the American population. The largest challenge in patients who have had a cardiac complication is the restoration of function to the damaged heart. Since damaged heart tissue is very difficult for the body to replace, physicians are continually looking for new methods of treating the heart.

Regenerative treatment through the use of stem cells is showing a large amount of potential at not only helping reverse the resulting damage of a cardiac attack, but in actually re-growing the damaged tissue in order to restore function.

To understand what stem cells can potentially do for the heart, it is important to first understand the different heart cells that can be damaged in a cardiac event. Destruction of the heart muscle cells, called cardiomyocytes, is the primary cause behind loss of function in a damaged heart. These cells are the muscle behind heart contraction, which sends blood to the rest of the body.

Secondly, vascular endothelial cells (inner lining of blood vessels) and smooth muscle cells (outer lining of blood vessels) each play an important role in the formation of new arteries. These serve to draw nutrients and oxygen to the remaining cardiomyocytes following heart damage, directly influencing the capabilities of a damaged heart.

Numerous studies are being conducted into the purposing of stem cells this manner, with one study providing evidence that bone marrow stem cells were able to develop into the required myocardial cells in mice. The ability to develop human hematopoietic stem cells for heart muscle is already documented technique, with the method of application into humans and the results of implantation still under study.

The research currently being performed on stem cells for cardiac treatment is focused on developing known stem cell traits into a working cure for cardiac complications. The current hurdles researchers face include how to best expand stem cells injected into the heart, how to best deliver the cells, and how to discover new niches (groupings) of stem cells in the body.

Delivery: Current methods of delivery include generic IV injection, which is minimally invasive with varying degrees of success. The most dependable method is to have direct injection into the heart, which requires surgery for visualization. Complications may include potentially clogging the arteries with the introduced stem cells and the invasiveness of the surgery.

Expanding Stem Cells: The majority of transplanted stem cells fail to reach the area of damage. It is crucial for a physician to be able to accurately deliver a large amount of stem cells to offer the patient the best treatment. Methods of better stem cell isolation, identification, and expansion into tissue are currently being developed.

Physician First Choice offers stem cell therapy for cardiac disease. The clinic has multiple stem cell doctors with extensive experience in stem cell therapy for numerous conditions. The stem cell clinic sees patients from all over California and the country, providing both IV stem cell therapy and injections into arthritic joints and areas with tendonitis and ligament injury.

Call (888) 988-0515 for more information and scheduling today!

Originally posted here:
cardiac disease and stem cells | Stem Cell Treatment in ...

To Read More: cardiac disease and stem cells | Stem Cell Treatment in …
categoriaCardiac Stem Cells commentoComments Off on cardiac disease and stem cells | Stem Cell Treatment in … | dataMay 18th, 2020
Read All

Progenitor Cell Product Market 2020| Worldwide Industry Share, Size, Gross Margin, Trend, Future Demand, Analysis by Top Leading Player and Forecast…

By daniellenierenberg

The report on the global Progenitor Cell Product market is comprehensively prepared with main focus on the competitive landscape, geographical growth, segmentation, and market dynamics, including drivers, restraints, and opportunities. It sheds light on key production, revenue, and consumption trends so that players could improve their sales and growth in the GlobalProgenitor Cell Product Market.It brings to light key factors affecting the growth of different segments and regions in the global Progenitor Cell Product market. It also offers SWOT, Porters Five Forces, and PESTLE analysis to thoroughly examine the global Progenitor Cell Product market.It offers a detailed analysis of the competition and leading companies of the global Progenitor Cell Product market. Here, it concentrates on the recent developments, sales, market value, production, gross margin, and other important factors of the business of top players operating in the global Progenitor Cell Product market.

Key companies operating in the global Progenitor Cell Product market include:NeuroNova AB, StemCells, ReNeuron Limited, Asterias Biotherapeutics, Thermo Fisher Scientific, STEMCELL Technologies, Axol Bio, R&D Systems, Lonza, ATCC, Irvine Scientific, CDI

Get PDF Sample Copy of the Report to understand the structure of the complete report: (Including Full TOC, List of Tables & Figures, Chart) :

https://www.qyresearch.com/sample-form/form/1412432/global-progenitor-cell-product-market

With deep quantitative and qualitative analysis, the report provides encyclopedic and accurate research study on important aspects of the global Progenitor Cell Product market. It gives a detailed study on manufacturing cost, upstream and downstream buyers, distributors, marketing strategy, and marketing channel development trends of the global Progenitor Cell Product market. Furthermore, it provides strategic bits of advice and recommendations for players to ensure success in the global Progenitor Cell Product market.

Segmental Analysis

The report has classified the global Progenitor Cell Product industry into segments including product type and application. Every segment is evaluated based on growth rate and share. Besides, the analysts have studied the potential regions that may prove rewarding for the Progenitor Cell Product manufcaturers in the coming years. The regional analysis includes reliable predictions on value and volume, thereby helping market players to gain deep insights into the overall Progenitor Cell Product industry.

Global Progenitor Cell Product Market Segment By Type:

, Pancreatic progenitor cells, Cardiac Progenitor Cells, Intermediate progenitor cells, Neural progenitor cells (NPCs), Endothelial progenitor cells (EPC), Others

Global Progenitor Cell Product Market Segment By Application:

Progenitor Cell Product

Competitive Landscape

It is important for every market participant to be familiar with the competitive scenario in the global Progenitor Cell Product industry. In order to fulfil the requirements, the industry analysts have evaluated the strategic activities of the competitors to help the key players strengthen their foothold in the market and increase their competitiveness.

Key companies operating in the global Progenitor Cell Product market includeNeuroNova AB, StemCells, ReNeuron Limited, Asterias Biotherapeutics, Thermo Fisher Scientific, STEMCELL Technologies, Axol Bio, R&D Systems, Lonza, ATCC, Irvine Scientific, CDI

Regions and Countries

The Middle East and Africa(GCC Countries and Egypt)North America(the United States, Mexico, and Canada)South America(Brazil etc.)Europe(Turkey, Germany, Russia UK, Italy, France, etc.)Asia-Pacific(Vietnam, China, Malaysia, Japan, Philippines, Korea, Thailand, India, Indonesia, and Australia)

Key Questions Answered

What is the size and CAGR of the global Progenitor Cell Product market?

Which are the leading segments of the global Progenitor Cell Product market?

What are the key driving factors of the most profitable regional market?

What is the nature of competition in the global Progenitor Cell Product market?

How will the global Progenitor Cell Product market advance in the coming years?

What are the main strategies adopted in the global Progenitor Cell Product market?

Enquire for customization in Report @https://www.qyresearch.com/customize-request/form/1412432/global-progenitor-cell-product-market

Table of Contents

Table of Contents 1 Progenitor Cell Product Market Overview1.1 Progenitor Cell Product Product Overview1.2 Progenitor Cell Product Market Segment by Type1.2.1 Pancreatic progenitor cells1.2.2 Cardiac Progenitor Cells1.2.3 Intermediate progenitor cells1.2.4 Neural progenitor cells (NPCs)1.2.5 Endothelial progenitor cells (EPC)1.2.6 Others1.3 Global Progenitor Cell Product Market Size by Type1.3.1 Global Progenitor Cell Product Sales and Growth by Type1.3.2 Global Progenitor Cell Product Sales and Market Share by Type1.3.3 Global Progenitor Cell Product Revenue and Market Share by Type1.3.4 Global Progenitor Cell Product Price by Type1.4 North America Progenitor Cell Product by Type1.5 Europe Progenitor Cell Product by Type1.6 South America Progenitor Cell Product by Type1.7 Middle East and Africa Progenitor Cell Product by Type 2 Global Progenitor Cell Product Market Competition by Company2.1 Global Progenitor Cell Product Sales and Market Share by Company (2014-2019)2.2 Global Progenitor Cell Product Revenue and Share by Company (2014-2019)2.3 Global Progenitor Cell Product Price by Company (2014-2019)2.4 Global Top Players Progenitor Cell Product Manufacturing Base Distribution, Sales Area, Product Types2.5 Progenitor Cell Product Market Competitive Situation and Trends2.5.1 Progenitor Cell Product Market Concentration Rate2.5.2 Global Progenitor Cell Product Market Share of Top 5 and Top 10 Players2.5.3 Mergers & Acquisitions, Expansion 3 Progenitor Cell Product Company Profiles and Sales Data3.1 NeuroNova AB3.1.1 Company Basic Information, Manufacturing Base and Competitors3.1.2 Progenitor Cell Product Product Category, Application and Specification3.1.3 NeuroNova AB Progenitor Cell Product Sales, Revenue, Price and Gross Margin(2014-2019)3.1.4 Main Business Overview3.2 StemCells3.2.1 Company Basic Information, Manufacturing Base and Competitors3.2.2 Progenitor Cell Product Product Category, Application and Specification3.2.3 StemCells Progenitor Cell Product Sales, Revenue, Price and Gross Margin(2014-2019)3.2.4 Main Business Overview3.3 ReNeuron Limited3.3.1 Company Basic Information, Manufacturing Base and Competitors3.3.2 Progenitor Cell Product Product Category, Application and Specification3.3.3 ReNeuron Limited Progenitor Cell Product Sales, Revenue, Price and Gross Margin(2014-2019)3.3.4 Main Business Overview3.4 Asterias Biotherapeutics3.4.1 Company Basic Information, Manufacturing Base and Competitors3.4.2 Progenitor Cell Product Product Category, Application and Specification3.4.3 Asterias Biotherapeutics Progenitor Cell Product Sales, Revenue, Price and Gross Margin(2014-2019)3.4.4 Main Business Overview3.5 Thermo Fisher Scientific3.5.1 Company Basic Information, Manufacturing Base and Competitors3.5.2 Progenitor Cell Product Product Category, Application and Specification3.5.3 Thermo Fisher Scientific Progenitor Cell Product Sales, Revenue, Price and Gross Margin(2014-2019)3.5.4 Main Business Overview3.6 STEMCELL Technologies3.6.1 Company Basic Information, Manufacturing Base and Competitors3.6.2 Progenitor Cell Product Product Category, Application and Specification3.6.3 STEMCELL Technologies Progenitor Cell Product Sales, Revenue, Price and Gross Margin(2014-2019)3.6.4 Main Business Overview3.7 Axol Bio3.7.1 Company Basic Information, Manufacturing Base and Competitors3.7.2 Progenitor Cell Product Product Category, Application and Specification3.7.3 Axol Bio Progenitor Cell Product Sales, Revenue, Price and Gross Margin(2014-2019)3.7.4 Main Business Overview3.8 R&D Systems3.8.1 Company Basic Information, Manufacturing Base and Competitors3.8.2 Progenitor Cell Product Product Category, Application and Specification3.8.3 R&D Systems Progenitor Cell Product Sales, Revenue, Price and Gross Margin(2014-2019)3.8.4 Main Business Overview3.9 Lonza3.9.1 Company Basic Information, Manufacturing Base and Competitors3.9.2 Progenitor Cell Product Product Category, Application and Specification3.9.3 Lonza Progenitor Cell Product Sales, Revenue, Price and Gross Margin(2014-2019)3.9.4 Main Business Overview3.10 ATCC3.10.1 Company Basic Information, Manufacturing Base and Competitors3.10.2 Progenitor Cell Product Product Category, Application and Specification3.10.3 ATCC Progenitor Cell Product Sales, Revenue, Price and Gross Margin(2014-2019)3.10.4 Main Business Overview3.11 Irvine Scientific3.12 CDI 4 Progenitor Cell Product Market Status and Outlook by Regions4.1 Global Progenitor Cell Product Market Status and Outlook by Regions4.1.1 Global Progenitor Cell Product Market Size and CAGR by Regions4.1.2 North America4.1.3 Europe4.1.4 Asia-Pacific4.1.5 South America4.1.6 Middle East and Africa4.2 Global Progenitor Cell Product Sales and Revenue by Regions4.2.1 Global Progenitor Cell Product Sales Market Share by Regions (2014-2019)4.2.2 Global Progenitor Cell Product Revenue Market Share by Regions (2014-2019)4.2.3 Global Progenitor Cell Product Sales, Revenue, Price and Gross Margin (2014-2019)4.3 North America Progenitor Cell Product Sales, Revenue, Price and Gross Margin4.3.1 North America Progenitor Cell Product Sales by Countries4.3.2 United States4.3.3 Canada4.3.4 Mexico4.4 Europe Progenitor Cell Product Sales, Revenue, Price and Gross Margin4.4.1 Europe Progenitor Cell Product Sales by Countries4.4.2 Germany4.4.3 France4.4.4 UK4.4.5 Italy4.4.6 Russia4.5 Asia-Pacific Progenitor Cell Product Sales, Revenue, Price and Gross Margin4.5.1 Asia-Pacific Progenitor Cell Product Sales by Regions4.5.2 China4.5.3 Japan4.5.4 South Korea4.5.5 India4.5.6 Australia4.5.7 Indonesia4.5.8 Thailand4.5.9 Malaysia4.5.10 Philippines4.5.11 Vietnam4.6 South America Progenitor Cell Product Sales, Revenue, Price and Gross Margin4.6.1 South America Progenitor Cell Product Sales by Countries4.6.2 Brazil4.7 Middle East and Africa Progenitor Cell Product Sales, Revenue, Price and Gross Margin4.7.1 Middle East and Africa Progenitor Cell Product Sales by Countries4.7.2 Turkey4.7.3 GCC Countries4.7.4 Egypt4.7.5 South Africa 5 Progenitor Cell Product Application5.1 Progenitor Cell Product Segment by Application5.1.1 Medical care5.1.2 Hospital5.1.3 Laboratory5.2 Global Progenitor Cell Product Product Segment by Application5.2.1 Global Progenitor Cell Product Sales by Application5.2.2 Global Progenitor Cell Product Sales and Market Share by Application (2014-2019)5.3 North America Progenitor Cell Product by Application5.4 Europe Progenitor Cell Product by Application5.5 Asia-Pacific Progenitor Cell Product by Application5.6 South America Progenitor Cell Product by Application5.7 Middle East and Africa Progenitor Cell Product by Application 6 Global Progenitor Cell Product Market Forecast6.1 Global Progenitor Cell Product Sales, Revenue Forecast (2019-2025)6.1.1 Global Progenitor Cell Product Sales and Growth Rate Forecast (2019-2025)6.1.2 Global Progenitor Cell Product Revenue and Growth Rate Forecast (2019-2025)6.2 Global Progenitor Cell Product Forecast by Regions6.2.1 North America Progenitor Cell Product Sales and Revenue Forecast (2019-2025)6.2.2 Europe Progenitor Cell Product Sales and Revenue Forecast (2019-2025)6.2.3 Asia-Pacific Progenitor Cell Product Sales and Revenue Forecast (2019-2025)6.2.4 South America Progenitor Cell Product Sales and Revenue Forecast (2019-2025)6.2.5 Middle East and Africa Progenitor Cell Product Sales and Revenue Forecast (2019-2025)6.3 Progenitor Cell Product Forecast by Type6.3.1 Global Progenitor Cell Product Sales and Revenue Forecast by Type (2019-2025)6.3.2 Pancreatic progenitor cells Growth Forecast6.3.3 Cardiac Progenitor Cells Growth Forecast6.4 Progenitor Cell Product Forecast by Application6.4.1 Global Progenitor Cell Product Sales Forecast by Application (2019-2025)6.4.2 Global Progenitor Cell Product Forecast in Medical care6.4.3 Global Progenitor Cell Product Forecast in Hospital 7 Progenitor Cell Product Upstream Raw Materials7.1 Progenitor Cell Product Key Raw Materials7.1.1 Key Raw Materials7.1.2 Key Raw Materials Price7.1.3 Raw Materials Key Suppliers7.2 Manufacturing Cost Structure7.2.1 Raw Materials7.2.2 Labor Cost7.2.3 Manufacturing Expenses7.3 Progenitor Cell Product Industrial Chain Analysis 8 Marketing Strategy Analysis, Distributors8.1 Sales Channel8.2 Distributors8.3 Downstream Customers 9 Research Findings and Conclusion 10 Appendix10.1 Methodology/Research Approach10.1.1 Research Programs/Design10.1.2 Market Size Estimation10.1.3 Market Breakdown and Data Triangulation10.2 Data Source10.2.1 Secondary Sources10.2.2 Primary Sources10.3 Author List10.4 Disclaimer

About Us:

QYResearch always pursuits high product quality with the belief that quality is the soul of business. Through years of effort and supports from the huge number of customer supports, QYResearch consulting group has accumulated creative design methods on many high-quality markets investigation and research team with rich experience. Today, QYResearch has become a brand of quality assurance in the consulting industry.

Continued here:
Progenitor Cell Product Market 2020| Worldwide Industry Share, Size, Gross Margin, Trend, Future Demand, Analysis by Top Leading Player and Forecast...

To Read More: Progenitor Cell Product Market 2020| Worldwide Industry Share, Size, Gross Margin, Trend, Future Demand, Analysis by Top Leading Player and Forecast…
categoriaCardiac Stem Cells commentoComments Off on Progenitor Cell Product Market 2020| Worldwide Industry Share, Size, Gross Margin, Trend, Future Demand, Analysis by Top Leading Player and Forecast… | dataMay 16th, 2020
Read All

Seattle Genetics Highlights Data from Expanding Oncology Portfolio During Virtual Scientific Program of the 2020 ASCO Annual Meeting – BioSpace

By daniellenierenberg

Over the past six months, we have been able to deliver on our promise of bringing important new medicines to certain patients with HER2-positive metastatic breast cancer and metastatic urothelial cancer through two U.S. FDA approvals, said Clay Siegall, Ph.D., Chief Executive Officer at Seattle Genetics. We look forward to sharing data in the ASCO virtual scientific program that reinforce our ability to rapidly advance novel targeted agents across multiple tumor types.

An Expanding Portfolio of Marketed Therapies

Key data presentations will showcase progress for certain patients with HER2-positive metastatic breast cancer and metastatic urothelial cancer as well as for patients with classical Hodgkin lymphoma (HL). Highlights include:

TUKYSA Update in Patients with Brain Metastases

Results for TUKYSA in combination with trastuzumab and capecitabine in patients with brain metastases from the HER2CLIMB pivotal trial of previously treated patients with HER2-positive metastatic breast cancer will be featured in an oral session (Abstract #1005). Data will be presented from these exploratory analyses on findings from the TUKYSA arm of the study on reduction in the risk of death (OS), reduction in the risk of intracranial progression or death (CNS-PFS) and improvement of the intracranial confirmed objective response rate (ORR-IC) compared to trastuzumab and capecitabine. Data will be presented by Nancy U. Lin, Director of the Metastatic Breast Cancer Program in the Susan F. Smith Center for Womens Cancers at Dana-Farber in Boston, MA, during an oral presentation available on demand at 8:00 a.m. ET on May 29, 2020. A separate analysis of adverse events (AE) from the same trial will be presented (Abstract #1043; poster presentation).

PADCEV (enfortumab vedotin-ejfv) in Combination and in Other Solid Tumors

Additional results and durability data from the phase 1b EV-103 trial of PADCEV plus pembrolizumab in first-line metastatic urothelial cancer will be presented (Abstract #5044), and a separate Trials-in-Progress poster will provide details about a new randomized cohort added to the EV-103 study, Cohort K, which is evaluating PADCEV as monotherapy or in combination with pembrolizumab (#TPS5092). Both presentations will be featured in the Genitourinary CancerKidney and Bladder session. Data from the Cohort K, along with other data from the EV-103 trial evaluating PADCEV combined with pembrolizumab as first-line therapy for cisplatin-ineligible patients, could potentially support registration under accelerated approval regulations in the United States.

Additionally, information about the phase 2 EV-202 trial, which is studying PADCEV in six different types of locally advanced and metastatic solid tumors (HR-positive/HER2-negative and triple-negative breast cancers, squamous and non-squamous non-small cell lung cancers, head and neck cancer and gastroesophageal cancers), will be discussed in a Trials-in-Progress poster during the Developmental Therapeutics Molecularly Targeted Agents and Tumor Biology Poster Session (Abstracts #TPS3647).

ADCETRIS (brentuximab vedotin) Continues to Advance

Data to be presented on ADCETRIS will demonstrate the companys progress in efforts to continue expanding clinical research on combination regimens and monotherapy in a variety of HL and peripheral T-cell lymphoma (PTCL) patient populations, including in both older and younger disease settings. A poster presentation will highlight the potential of ADCETRIS in combination with nivolumab or dacarbazine and as a monotherapy for previously untreated older HL patients who typically have poorer outcomes than younger patients due to comorbidities and toxicities related to standard first-line chemotherapy (Abstract #8032). The primary analysis from an ongoing clinical trial evaluating ADCETRIS plus nivolumab in children, adolescents and young adults with standard-risk relapsed or refractory classical HL will also be presented (Abstract #8013; poster discussion). Lastly, two Trials-in-Progress poster presentations will highlight ongoing clinical trials evaluating ADCETRIS as a monotherapy in frontline older HL or CD30-expressing PTCL patients and in a combination regimen in frontline advanced-stage HL patients (Abstracts #TPS8069 and #TPS8068).

A Strong, Diverse Pipeline of Investigational Therapies

An additional four Trials-in-Progress posters for investigational therapies will showcase the companys continued clinical development of pipeline candidates in first-line cervical cancer (Abstract #TPS6095), metastatic breast cancer (Abstract #TPS1104), metastatic pancreatic ductal adenocarcinoma (PDAC) (Abstract #TPS4671) and other solid tumors (Abstract #TPS3652).

The abstracts published in advance of the ASCO meeting were made available today on the ASCO website. All data presentations will be available on-demand on May 29, 2020.

Details of Key Seattle Genetics Presentations at ASCO20 Virtual:

Abstract Title

Abstract #

Presentation Type

Presenter

ADCETRIS (brentuximab vedotin)

Nivolumab and brentuximab vedotin (BV)-based, responseadapted treatment in children, adolescents, and young adults (CAYA) with standard-risk relapsed/refractory classical Hodgkin lymphoma (R/R cHL): Primary analysis

8013

Poster discussion

P. Cole

Frontline Brentuximab Vedotin as Monotherapy or in Combination for Older Hodgkin Lymphoma Patients

8032

Poster presentation

C. Yasenchak

PADCEV (enfortumab vedotin-ejfv)

Study EV-103: Durability results of enfortumab vedotin plus pembrolizumab for locally advanced or metastatic urothelial carcinoma

5044

Poster presentation

J. Rosenberg

TUKYSA (tucatinib)

Tucatinib vs Placebo Added to Trastuzumab and Capecitabine for Patients with Previously Treated HER2+ Metastatic Breast Cancer with Brain Metastases (HER2CLIMB)

1005

Oral presentation

N. Lin

Management of adverse events in patients with HER2+ metastatic breast cancer treated with tucatinib, trastuzumab, and capecitabine (HER2CLIMB)

1043

Poster presentation

A. Okines

Trials-in-Progress

ADCETRIS (brentuximab vedotin)

Frontline brentuximab vedotin in Hodgkin lymphoma and CD30-expressing peripheral T-cell lymphoma for older patients and those with comorbidities

TPS8069

Poster presentation

C. Yasenchak

Brentuximab Vedotin in Combination with Nivolumab, Doxorubucin, and Dacarbazine in Newly Diagnosed Patients with Advanced Stage Hodgkin Lymphoma

TPS8068

Poster presentation

J. Friedman

PADCEV (enfortumab vedotin-ejfv)

Study EV-103: New randomized cohort testing enfortumab vedotin as monotherapy or in combination with pembrolizumab for locally advanced or metastatic urothelial carcinoma

TPS5092

Poster presentation

N. Mar

EV-202: A Phase 2 Study of Enfortumab Vedotin in Patients With Select Previously Treated Locally Advanced or Metastatic Solid Tumors

TPS3647

Poster presentation

J. Bruce

Investigational Therapies

Phase 1b/2 trial of tisotumab vedotin (TV) bevacizumab (BEV), pembrolizumab (PEM), or carboplatin (CBP) in recurrent or metastatic cervical cancer (innovaTV 205/ENGOT-cx8/GOG-3024)

TPS6095

Poster presentation

I. Vergote

SGNLVA-001: A phase 1 open-label dose escalation and expansion study of SGN-LIV1A administered weekly in breast cancer

TPS1104

Poster presentation

H. Beckwith

SGN228-001: A phase 1 open-label dose escalation and expansion study of SGN-CD228A in select advanced solid tumors

TPS3652

Poster presentation

A. Patnik

Phase 1 study of SEA-CD40, gemcitabine, nab-paclitaxel, and pembrolizumab in patients (pts) with metastatic pancreatic ductal adenocarcinoma (PDAC)

TPS4671

Poster presentation

A. Coveler

About ADCETRIS (brentuximab vedotin)

ADCETRIS is an antibody-drug conjugate (ADC) comprising an anti-CD30 monoclonal antibody attached by a protease-cleavable linker to a microtubule disrupting agent, monomethyl auristatin E (MMAE), utilizing Seattle Genetics proprietary technology. The ADC employs a linker system that is designed to be stable in the bloodstream but to release MMAE upon internalization into CD30-expressing tumor cells. Seattle Genetics and Takeda are jointly developing ADCETRIS.

About PADCEV (enfortumab vedotin-ejfv)

PADCEV is an antibody-drug conjugate (ADC) that is directed against Nectin-4, a protein located on the surface of cells and highly expressed in bladder cancer. Nonclinical data suggest the anticancer activity of PADCEV is due to its binding to Nectin-4 expressing cells followed by the internalization and release of the anti-tumor agent monomethyl auristatin E (MMAE) into the cell, which result in the cell not reproducing (cell cycle arrest) and in programmed cell death (apoptosis). PADCEV is co-developed by Seattle Genetics and Astellas.

About TUKYSA (tucatinib)

TUKYSA is an oral medicine that is a tyrosine kinase inhibitor of the HER2 protein. In vitro (in lab studies), TUKYSA inhibited phosphorylation of HER2 and HER3, resulting in inhibition of downstream MAPK and AKT signaling and cell growth (proliferation), and showed anti-tumor activity in HER2-expressing tumor cells. In vivo (in living organisms), TUKYSA inhibited the growth of HER2-expressing tumors. The combination of TUKYSA and the anti-HER2 antibody trastuzumab showed increased anti-tumor activity in vitro and in vivo compared to either medicine alone.

ADCETRIS (brentuximab vedotin) U.S. Important Safety Information

BOXED WARNING

PROGRESSIVE MULTIFOCAL LEUKOENCEPHALOPATHY (PML): JC virus infection resulting in PML and death can occur in ADCETRIS-treated patients.

Contraindication

ADCETRIS concomitant with bleomycin due to pulmonary toxicity (e.g., interstitial infiltration and/or inflammation).

Warnings and Precautions

Administer G-CSF primary prophylaxis beginning with Cycle 1 for patients who receive ADCETRIS in combination with chemotherapy for previously untreated Stage III/IV cHL or previously untreated PTCL.

Monitor complete blood counts prior to each ADCETRIS dose. Monitor more frequently for patients with Grade 3 or 4 neutropenia. Monitor patients for fever. If Grade 3 or 4 neutropenia develops, consider dose delays, reductions, discontinuation, or G-CSF prophylaxis with subsequent doses.

Most Common (20% in any study) Adverse Reactions

Peripheral neuropathy, fatigue, nausea, diarrhea, neutropenia, upper respiratory tract infection, pyrexia, constipation, vomiting, alopecia, decreased weight, abdominal pain, anemia, stomatitis, lymphopenia, and mucositis.

Drug Interactions

Concomitant use of strong CYP3A4 inhibitors or inducers has the potential to affect the exposure to monomethyl auristatin E (MMAE).

Use in Specific Populations

Moderate or severe hepatic impairment or severe renal impairment: MMAE exposure and adverse reactions are increased. Avoid use.

Advise males with female sexual partners of reproductive potential to use effective contraception during ADCETRIS treatment and for at least 6 months after the final dose of ADCETRIS.

Advise patients to report pregnancy immediately and avoid breastfeeding while receiving ADCETRIS.

Excerpt from:
Seattle Genetics Highlights Data from Expanding Oncology Portfolio During Virtual Scientific Program of the 2020 ASCO Annual Meeting - BioSpace

To Read More: Seattle Genetics Highlights Data from Expanding Oncology Portfolio During Virtual Scientific Program of the 2020 ASCO Annual Meeting – BioSpace
categoriaCardiac Stem Cells commentoComments Off on Seattle Genetics Highlights Data from Expanding Oncology Portfolio During Virtual Scientific Program of the 2020 ASCO Annual Meeting – BioSpace | dataMay 15th, 2020
Read All

Doctors just discovered another promising coronavirus therapy – BGR

By daniellenierenberg

The novel coronavirus cant be killed or stopped with the current drugs that we have, the WHO said earlier this week. Dr. Anthony Fauci said separately that its virtually impossible to eradicate the virus. But there are plenty of therapies that can be used to reduce the severity of COVID-19 and shorten the recovery period.

The WHO is studying four or five of the best drugs for the new illness, but there are plenty of new lines of therapy that are discovered on a regular basis. The latest one consists of a treatment thats usually given to Duchenne muscular dystrophy patients.

Cedars-Sinai doctors have given six patients an experimental treatment consisting of cells grown from human heart tissues, according to ABC7. This therapy improved the overall condition of all patients, each of whom were critically ill before the Hail Mary treatment was administered. Four of them have come off ventilators and were discharged, while the other two are still in the hospital, but theyre alive.

Dr. Eduardo Marban and his colleagues were using the treatment for muscular dystrophy patients with heart failure before considering it for COVID-19. The novel coronavirus can do severe damage to the heart, and that may have been the reason why the doctors attempted this novel therapy.

This can only be considered anecdotal evidence at best, but the doctors are hoping that the FDA can approve a more extensive study that can evaluate the benefits of the therapy. The doctors have additional doses available in the freezer for the research.

Cells grown from human heart tissues sound a lot like stem cells, although the report doesnt refer to them as such. This wouldnt be the first time that stem cell use would prove to be helpful in COVID-19 cases. A few weeks ago, doctors from Mount Sinai reported theyve treated 12 patients using stem cells derived from bone marrow, and the therapy allowed 10 of them to come off ventilators. Those physicians also noted that further study is required.

Marban and his colleagues detailed the benefits of injections of cardiac progenitor cells (cardiosphere-derived cells or CDCs) for patients with muscular dystrophy in February 2018. Cardiosphere-derived cells are stem cells derived from cardiac tissue.

We unexpectedly found that treating the heart made the whole body better, Marban said at the time. These basic findings, which have already been translated to clinical trials, rationalize why treating the heart may also benefit skeletal muscle function in boys and young men with Duchenne.

The study showed the stem cells acted not just on the heart tissue, but also on skeletal muscle, and that the benefits persisted. We found that within a few weeks, the injected cells were undetectable, Marban said, but the benefits persisted for at least three months, which led us to discover that exosomes secreted by CDCs are responsible.

The same type of therapy was likely used to treat COVID-19 patients.

Image Source: John Minchillo/AP/Shutterstock

Chris Smith started writing about gadgets as a hobby, and before he knew it he was sharing his views on tech stuff with readers around the world. Whenever he's not writing about gadgets he miserably fails to stay away from them, although he desperately tries. But that's not necessarily a bad thing.

Read the original here:
Doctors just discovered another promising coronavirus therapy - BGR

To Read More: Doctors just discovered another promising coronavirus therapy – BGR
categoriaCardiac Stem Cells commentoComments Off on Doctors just discovered another promising coronavirus therapy – BGR | dataMay 14th, 2020
Read All

Page 20«..10..19202122..3040..»


Copyright :: 2024